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Compared to computer vision systems, the human visual system is more fast and

accurate. It is well accepted that V1 neurons can well encode contour information. There

are plenty of computational models about contour detection based on the mechanism of

the V1 neurons. Multiple-cue inhibition operator is one well-knownmodel, which is based

on the mechanism of V1 neurons’ non-classical receptive fields. However, this model is

time-consuming and noisy. To solve these two problems, we propose an improvedmodel

which integrates some additional other mechanisms of the primary vision system. Firstly,

based on the knowledge that the salient contours only occupy a small portion of the

whole image, the prior filtering is introduced to decrease the running time. Secondly,

based on the physiological finding that nearby neurons often have highly correlated

responses and thus include redundant information, we adopt the uniform samplings to

speed up the algorithm. Thirdly, sparse coding is introduced to suppress the unwanted

noises. Finally, to validate the performance, we test it on Berkeley Segmentation Data

Set. The results show that the improved model can decrease running time as well as

keep the accuracy of the contour detection.

Keywords: primary visual system, biological mechanism, contour detection, prior filtering, uniform sampling,

sparse coding

INTRODUCTION

Contour detection is a fundamental and critical step in computer vision tasks. Recent years,
several models have been proposed to detect the contours, such as local differential (Canny, 1986),
statistical methods (Konishi et al., 2003), relaxation labeling (Rosenfeld et al., 1976), active contours
(Caselles et al., 1997). These methods achieved good performance in some scenes. However, they
cannot extract salient contours from complex scenes as intelligent as the human.

Hubel and Wiesel (1959) revealed that the majority of V1 cells have high orientation selectivity.
The result showed that cells did not respond to light stimuli which covered the majority of the
animal’s visual fields, whereas responded most strongly to the light spot stimuli with one specific
orientation. The specific orientation is the preferred orientation for the neuron. This mechanism is
very suitable for detecting edges produced by the light and dark contrast.
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In the primary visual cortex, a region around the classical
receptive field (CRF) of one neuron was called the non-classical
receptive field (non-CRF) (Allman et al., 1985). The non-CRF
played a modulatory effect on signals within the CRF, which was
called center-surround interaction (Fitzpatrick, 2000; Jones et al.,
2001). The strength of the negative correlation decreased with
the differences between the features within the center and that
within the surround (Shen et al., 2007). The inhibition intensity
was minimal when features within the CRF and non-CRF were
completely different.

Based on the biological mechanisms mentioned above, some
models have been proposed. Most were based on the center-
surround mechanism, and focused on the single feature for
edge suppression (Li, 1998; Grigorescu et al., 2003; Petkov and
Westenberg, 2003; Ursino and La Cara, 2004; Papari et al., 2007;
Tang et al., 2007a,b; La Cara and Ursino, 2008; Long and Li,
2008; Zeng et al., 2011; Yang et al., 2013). And some models
integrated multiple features such as Pb (Martin et al., 2004)
algorithm, gPb (Maire et al., 2008), and mPb (Ren, 2008). All
these methods needed a supervised learning phase to obtain a
good performance.

MCI model (Multiple-cue inhibition operator) (Yang et al.,
2014) was proposed based on the above-mentioned biological
mechanisms, which integrated multiple features using a
multi-scale strategy without adopting supervised learning.
Compared with other models, this model showed a competitive
performance. However, the biologically inspired method was
time-consuming and noisy, due to its computational mechanisms
of inhibitory responses.

In this paper, we propose a fast contour extraction model
based on MCI, which is named speed MCI (sMCI). The prior
filtering and uniform sampling are introduced to accelerate
the computation of inhibitory responses. Based on biological
or behavioral mechanisms, we obtain the whole inhibitory
responses with weights of partial pixels to improve the
computational efficiency. Besides, the sparseness is computed to
exclude redundant information.

The remaining of this paper is organized as follows. Section
Methods presents original MCI and the improved model.
In section Experiments and Results, the performance of the
improved model is validated on BSDS500 dataset and compared
with MCI. Discussion and conclusion are given in section
Discussion.

METHODS

In this section, we first briefly review MCI and analyze its
problems based on the experimental results. Then, we propose
an improved model, sMCI, to solve the problem of MCI.

The MCI Model
The MCI algorithm (Yang et al., 2014) was proposed to extract
salient contours with the center-surround mechanism. To
combine multiple features, the model adopted a scale-guided
combination strategy. The framework was shown in
Figure 1.

Firstly, the response of one orientation-selective V1 neuron
in CRF was calculated. For an input image I(x, y), the response
ei(x, y; θi, σ) was represented by the derivative of 2D Gaussian
function correlated with preferred orientation θi and scale σ.
After a winner - take - all strategy over Nθ different preferred
orientations, the final CRF response E(x, y; σ) was calculated as
in Equation (2),
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Secondly, the local features were extracted, including orientation
Θ (x, y), luminance L(x, y)and luminance contrast C(x, y).
The computational equations of these features were shown in
Equations (3) - (5), in whichω(xi,yi) was a raised cosine weighted
window, Sxy represented the local square window, and µ =
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Thirdly, the inhibitory weights W 2(x, y), WL(x,y), WC(x,y) were

computed based on the center-surround mechanisms at each

location for each feature, in which 2CRF(x, y) was the orientation
vector computed by Gaussian weighted averaging of 2( x,y )
in the region of CRF. The distance - related weighting function
was denoted as Wd, which meant that the strength of surround
inhibition decreased with the increasing distance from the CRF
center.
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Then, these three weights were integrated into a unified weight
Wcom based on a scale - guided combination strategy, where N(·)
was a linear normalization operator.
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FIGURE 1 | MCI framework revised from Yang et al. (2014).

Finally, the final response Res
(

x, y
)

was calculated based on the
final inhibitory weight.
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where, H (z) =
{

0 z < 0
z z ≥ 0

(11)

Based on the above framework, MCI is applied to obtain
the contours of natural images. Figure 2 gives some contour
extracting results of MCI. Figure 2A represents input images,
Figure 2B is final contour response without post-processing,
Figure 2C represents the real-valued probability of contours after
non-max suppression, Figure 2D is the binary image (containing
values 0 or 1) after hysteresis thresholding. From the red box in
Figure 2B, we can easily see that some texture contours obtained
by the MCI do not belong to the real one. Table 1 shows the
running time for every image in Figure 2, and the average time
consuming of whole database (including 200 images for testing).
And Table 1 also shows the runtime for every MCI step while
the size of the input image is 481 × 321. It nearly takes 15 s to
process an image, far from the processing speed of the human
visual system. And the inhibitory weights at each location are
computed for each feature, which consumes lots of time and does
not compare to the fast and effective information processing in
the human visual system. So, we propose an improved model,
sMCI.

The sMCI Model
Prior Filtering and Uniform Sampling
To accelerate MCI, we improved it from two facts, which are
prior filtering and uniform sampling. We will first introduce the
process of prior filtering.

As shown in Figure 3, the salient object is located in the
red box, which occupies a small portion relative to the whole
image. Meanwhile, the contours of the object are salient relative
to the background. Therefore, based on these observations, we
only select the pixels, with their response value above 30% of
the largest response after filtered with Gabor, to speed up the
calculation of the inhibitory weights. The computing process is
as the following:
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=
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)
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1 E
(

x, y; σ
)

− 30% ∗ Emax ≥ 0
, in

which Emax represents the largest one of the entire image CRF
responses.

Another observation is that the characteristics of adjacent
neurons response have strong correlations which suggests that
their responses are similar (Kohn, 2005). Based on this fact, there
is no need to calculate the inhibitory weights of all neurons for
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FIGURE 2 | MCI results on natural images. (A) Input images. (B) Final contour responses without post-processing. The contour includes some unwanted textures

located in red box. (C) Real-valued probability of contours after non-max suppression. (D) The binary images (containing values 0 or 1) after hysteresis thresholding.

each input image. The inhibitory responses of all neurons can be
approximated by those of partial neurons.

The other way to speed up the computation is sampling.
This paper presents two sampling methods: sampling in one
direction and in both directions. The detailed steps of two
uniform sampling methods are as follows:

As shown in Figure 4, the black point in Figure 4A represents
the location in the image. In the original MCI algorithm, the
inhibitory weights are calculated at each location for every
feature. For the uniform sampling in the x-direction, we just
need to calculate the inhibitory weights of the black points in
Figure 4B, and the inhibitory weights of the remaining points are
obtained by the weighted sum of the nearby points. For example,
the weight of the blue point can be obtained based on the two
black points whose weights are known. Meanwhile, based on the
biological mechanism that the influence of nearby neurons is
greater than the one of distant neurons, the calculation formula
of the inhibitory weights of the missing blue point in Figure 4B

is in Equation (13):

Wp1 =
2

3
×Wx1 +

1

3
×Wx2 (13)

where Wp1 denotes the unknown weight of blue point, Wx1

and Wx2 represent the black points whose weights have been
calculated. This also applies to the sampling in the y-direction.

In Figure 4C, an illustration is given to clarify the sampling
process in both x and y directions. For a 4 × 4 image, only the
weights of four black points are computed. The weights of the
blue points are computed by two black points, and the weight of
the red point can be represented by the weights of the four blue
points. The calculation of inhibition weights of the missing blue

TABLE 1 | The runtime of each step for MCI and the whole time on some images

and the average time of BSDS 500.

Items Runtime/s

MCI steps Inhibition Weights 14.93

Extract Local Cues 0.78

CRF Responses 0.25

Weights Combination 0.23

Salient Contour Extraction 0.05

Images Image1 15.1

Image2 15.4

Image3 15.1

BSDS500(200 test images) 15.5

points in Figure 4C is given in Equation (14):

Wp2 =
2

3
×Wx2 +

1

3
×Wx4 (14)

and then the calculation of the weight of the missing red point is
obtained by equation (15).

Wp5 =
1

3
×Wp1 +

1

3
×Wp4 +

1

6
×Wp2 +

1

6
×Wp3

=
4

9
×Wx1 +

2

9
×Wx2 +

2

9
×Wx3 +

1

9
×Wx4 (15)

WhereWx1 , Wx2 , Wx3 and Wx4 represent the black points whose
weights are known, Wp1 , Wp2 , Wp3 , and Wp4denote the
unknown weights of blue points, Wp5 denotes the unknown
weight of the red point.
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FIGURE 3 | The mechanism of the prior filtering: most of the true contours are located in the red box, with low percentages in the whole image.

FIGURE 4 | The mechanism of the uniform sampling. (A) The inhibitory weights at each location need to be calculated. (B) The uniform sampling in the x-direction.

Only the weights at the black points need to be calculated. The blue points can be represented by the nearby black points. (C) The uniform sampling in x, y direction.

The blue points can be calculated from the nearby black points. The red point can be obtained by the nearby blue points.

Finally, the prior filtering and uniform sampling are combined
to further accelerate the speed of the method. To avoid losing
too much real contour information, the following fusion method
is adopted: for an image, we first select the pixels with their
values above 10% of the largest response after filtered with
Gabor, and then sample these pixels uniformly to further shorten
the running time and ensure the integrity of the contour
information.

Sparse Coding
After accelerating the algorithm, we propose a method based on
the biological mechanism to suppress the unwanted texture as
shown in Figure 2.

Barlow (1981) has made a statistical and comprehensive
analysis of the total number of cells in the visual pathway of
macaques, which are shown in Table 2. The number of neurons
in the lateral geniculate nucleus (LGN) is almost equal to the
number of neurons in the ganglion, and the number of cells in
the V1 region is much higher than that of the retina and the
LGN. This comparison suggests that the responses of the V1
neurons have sparse properties. For the human visual system,
sparse coding is crucial in encoding the input image, which
can effectively suppress the redundant information. The local
area containing some repeated textures will have a weak sparse
response and the region including a stable boundary usually has
a strong sparse response. Therefore, some unwanted contour

TABLE 2 | Statistical data in the visual pathway of macaques (Unit: million)

(Barlow, 1981).

Ganglion LGN V1

1.1 1.1–2.3 130–235

noises can be effectively excluded based on the sparseness
measure.

In this paper, we compute the sparseness measure as
mentioned in Kai-Fu Yang et al. (2015) and Hoyer (2004) to
distinguish the texture region and the non-texture region. The
formula is as follows
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Then, the final neuron response FinalRes can be obtained by
combining the original response Res and the sparseness, which is
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calculated as follows:

FinalRes = Res · sparseness
(

x, y;
−→
h
)

(17)

EXPERIMENTS AND RESULTS

To evaluate the effectiveness of the proposed model, we test it on
the BSDS500. The quantitative performance is compared with the
original MCI model.

Experiment Settings
We test our model on the Berkeley Segmentation Data Set
(BSDS500) (Martin et al., 2001). The BSDS500 is a dataset
provided by the Berkeley computer vision group for image
segmentation or contour detection, which includes 200 training,
200 testing, and 100 validation images. Boundaries in each image

TABLE 3 | Parameter interpretations and settings (Yang et al., 2014).

Parameter interpretations MCI setting sMCI setting

α: Surround inhibition factor, or the texture

attenuation factor

5 5

σ1θ: Inhibition sensitivity of the feature

difference of orientation

0.2 0.2

σ1l : Inhibition sensitivity of the feature

difference of luminance

0.05 0.05

σ1c: Inhibition sensitivity of the feature

difference of luminance contrast

0.05 0.05

p: Fraction of candidate edge pixels that should

be retained in the contour edge map during

hysteresis thresholding

1 1

ws: Size of window for sparseness measure – 5

are labeled by several workers and are averaged to form the
ground truth.

The performance is evaluated by the F-score (Martin et al.,
2004), which denotes the similarity of the detected contours
between human subjects and the algorithms. It is defined as
F-score = 2PR / (P + R), where P represents the precision, R
represents the recall.

Table 3 summarizes the meanings of the parameters involved
in models, for example, the factor α in equation 10 denotes the
connection strength between the CRF and the non-CRF. The
parameter settings adopted in the MCI and sMCI model are the
same.

Results of Prior Filtering and Uniform
Sampling
The prior filtering adopts 30% of the largest responses as the
threshold, whereas prior filtering in combined method adopts
10% of the largest responses. We compare the results of prior
filtering, uniform sampling and the combined one with the
original MCI algorithm and the results are shown in Figure 5.

TABLE 4 | Evaluation results and the runtime on BSDS 500 of the original MCI

algorithm, the prior filtering, the uniform sampling in the x-direction, the uniform

sampling in the y-direction, the uniform sampling in both directions, the combined

method.

Algorithms F-score Running time/s

MCI 0.627 3062

The prior filtering 0.617 1433

Uniform sampling in x direction 0.627 1530

Uniform sampling in y direction 0.626 1580

Uniform sampling in both directions 0.623 1319

The combined method 0.627 1208

FIGURE 5 | Comparison of experimental results. (A) Input images. (B) MCI results. (C) Prior filtering results. (D) Uniform sampling in the x-direction. (E) Uniform

sampling in x, y direction. (F) Combined method.
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The F-score results and the running time are shown in Table 4.
From these results, we can find that running time of the prior
filtering method is relatively short but gets a lower F-score
value. We amplify patch in the green box of Figure 6A and
show it in Figures 6B–E. We can clearly see that some contours
in red box extracted by prior filtering are lost depicted in
Figure 6B. However, contours extracted by uniform sampling
methods are complete, shown in Figures 6C,D. The running
time is nearly the same if only sampling in one direction,
and the same for the accuracy. However, the performance of
uniform sampling in one direction outperforms sampling in
both x and y directions, although the latter is superior to
the former in running time. So, the combined method adopts
sampling in one direction. And the result shows that the
combined method can shorten the running time and keep the
performance.

Results of Sparse Coding and Final
Evaluation
Although the above method can solve the problem of time-
consuming effectively, there are still unnecessary contour noises
in sMCI results. Therefore, we use the sparse coding to suppress

the unwanted edges. The experimental results of sparseness
are shown in Figure 7, including the whole contour results
and details. As shown in Figure 7B, the textures on tiger’s
tail are unwanted edges, and the sparse response is weak at
that location illustrated in Figure 7C. By the process of sparse
coding, the unwanted texture at the tail is suppressed shown in
Figure 7D.

The final results after non-maxima suppression (Canny,
1986) between MCI and sMCI models are shown in Figure 8.
Figure 8A is the original image, Figure 8B represents the ground
truth, Figure 8C is the MCI result and Figure 8D is the sMCI
result. The F-score values are shown in Table 5.

The experimental results demonstrate that sMCI model
effectively reduces the running time by 52% without degrading
the performance in contour accuracy.

DISCUSSION

Based on the MCI algorithm, we proposed a fast contour
detection model, inspired by the information processing
mechanism in the human primary vision system. The prior
filtering and uniform sampling effectively reduced the running

FIGURE 6 | Results of three methods. (A) Input images. (B) Contour results after prior filtering with 30% largest responses. (C) Contour results after uniform sampling

in the x-direction. (D) Contour results after uniform sampling in x, y direction. (E) Contour results after combined method.

FIGURE 7 | Results after sparse coding. (A) Input images. (B) Responses of the sMCI before sparse coding. (C) Sparseness responses. (D) Final responses after

sparse coding.
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FIGURE 8 | Evaluation images and results by MCI and sMCI. (A) Input images. (B) Ground truth. (C) MCI results (F-score = 0.627). (D) sMCI results

(F-score = 0.629).

TABLE 5 | Evaluation results for MCI and sMCI after sparse coding.

Algorithms F-score Running time/s

MCI 0.627 3062

sMCI 0.629 1470

time. And the sparse coding served to exclude the unwanted
textures. The results on BSDS500 showed the competitive
performance and fastness of the model.

The bright spots of our work can be summarized below.
(a) We adopt the prior filtering based on the knowledge of
human behavioral psychology, which can focus on the area
containing the desired contours. (b) Uniform sampling is
introduced based on the biological mechanism that nearby
neurons often have highly correlated responses and thus include
redundant information. We only calculate the weights of the
partial feature rather than the whole images and reconstructs
the whole feature responses based on properties between nearby
neurons. (c) Sparse coding is introduced in the model, which
provided an effective way to suppress the unwanted edges. The
experimental results showed that the method can decrease the

running time as well as keeping the accuracy of the contour
detection.

However, the mechanism of the algorithm still has a gap
with the human visual system. Therefore, how to optimize
the model based on more biological mechanisms is our next
step.

From the bottom-up mechanism, we can integrate more
underlying features. In our work, we only consider features such
as the orientation, the luminance, and the luminance contrast.
However, the color contrast is also a crucial feature for contour
detection. And in the human visual system, the color information
is modulated by color-opponent mechanisms. One important
extension of our current model is how to utilize the cue of
color in an effective way. In future, we can design a framework
combining the center-surround and color-opponentmechanisms
to optimize the performance of contour detection.

From the top-downmechanism, we can integrate the feedback
mechanism which plays an important modulatory role to the
V1 neurons’ responses. In fact, it is very challenging to extract
the salient object boundaries in complex environments. And a
feedback process can provide attentional support to salient or
behaviorally-relevant features.

In summary, the model we proposed based on the biological
mechanisms in this paper can both keep the accuracy and
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decrease the time-consuming. In the study, we can find that the
neuroscience research promotes the development of the model
research. In the future, the current research will be extended with
more neuroscience results. From these studies, we also hope to
understand the inner mechanisms of the information processing
of the human brain.
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