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Oscillatory activity in the gamma range (30–100Hz, see further below) has repeatedly been
proposed as a modality of cognitive operations in the cortex on account of its covariation with
a number of cognitive variables. I recently reviewed this literature (Merker, 2013), concluding that
the evidence is compatible with a far more modest view of the functional role of gamma, long
known to result from the need to balance excitation with inhibition during cortical activation
(Bartos et al., 2007). Gamma will accordingly occur when cortical tissue is functionally activated,
a fact that may suffice to account for its covariation with cognitive variables. The case of gamma
would accordingly be analogous, albeit on a finer time scale, to the way the BOLD signal covaries
with cognitive variables without for that reason performing cognitive operations. On this “infra-
structural” interpretation of gamma activity (seeMerker, 2013, for details), its tight correlation with
the BOLD signal is expected, and is roundly confirmed empirically (Chawla et al., 1999; Logothetis
et al., 2001; Mukamel et al., 2005; Niessing et al., 2005; Lachaux et al., 2007; Nir et al., 2007; Zaehle
et al., 2009; Jerbi et al., 2010; Ossandón et al., 2011; Scheeringa et al., 2011). Here I extend this
perspective on gamma oscillations by showing that they are precluded from performing cognitive
operations by the specifics of how their underlying physiology balances excitation with inhibition.

The principal cells of the cerebral cortex—its pyramidal cells—are exclusively excitatory, using
glutamate as their transmitter. Some 4/5 of the thousands of synapses that stud their surface are
excitatory, and most of these afferents derive from hundreds to thousands of other pyramidal
cells located near and far in the cortical expanse (for details, see Peters, 1987a,b; Douglas and
Martin, 1991; Beaulieu et al., 1992; Braitenberg and Schüz, 1998; Thomson and Lamy, 2007;
Harris and Mrsic-Flogel, 2013; Callaway and Luo, 2015, pp. 8982–8983). Without further neuronal
arrangements, this excitatory-to-excitatory self-connectivity of the cortex would be liable to
runaway excitation in the form of epileptiform seizure activity at the network level (Jefferys,
1990; Wendling et al., 2000, 2002; Netoff et al., 2004; Buzsáki, 2006; Moore et al., 2010), and to
the saturation of firing rates at the level of individual neurons (Shadlen and Newsome, 1994).
These liabilities are remedied by a complement of roughly 20% cortical inhibitory neurons. Their
processes are typically, though not always (see Caputi et al., 2013 and references therein), confined
to their local vicinity. They interact with both principal cells and one another using GABA as their
transmitter, and come in several kinds (Beaulieu, 1993; Binzegger et al., 2004; Ascoli et al., 2008;
Burkhalter, 2008; Karnani et al., 2016).

The numbers, connectivity, and synaptic weights of these inhibitory auxiliaries are such as to
ensure excitation-inhibition balance: rising excitation recruits additional inhibitory interneurons
to effect a matching rise in pyramidal cell inhibition (see e.g., Douglas and Martin, 1991; Anderson
et al., 2000; Wehr and Zador, 2003; Haider et al., 2006; Okun and Lampl, 2008). So crucial is this
balance to normal cortical operation that it is underwritten by homeostatic mechanisms that restore
it under persistent perturbation (Le Roux et al., 2006). The process is so specific that it adjusts
inhibitory weights arriving from different interneurons onto pyramidal cells in accordance with
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the activity levels of individual pyramidal cells, leaving roughly
equal excitation-inhibition ratios across them (Xue et al.,
2014). Cortical dynamic range, sensitivity, linearization, and
gain control are all aspects of or dependent upon this basic
interaction between excitation and inhibition (van Vreeswijk and
Sompolinsky, 1996; Chance et al., 2002; Pouille et al., 2009; see
also Rubin et al., 2015; Barron et al., 2016).

These circumstances bear directly on gamma oscillations
and their interpretation in that the balancing of excitation
with inhibition by the interaction of principal cells with their
inhibitory auxiliaries causes the local circuit to oscillate for
fundamental reasons. When exposed to excitatory drive, synaptic
delays in the circuitry and the low-pass filtering introduced
by the biophysics of neuronal transduction (membrane time
constants, after-hyperpolarization, etc.), combine with neuronal
gain (amplification) and the mutual interaction of its inhibitory
neurons to generate oscillatory activity in the gamma range
(Kirschfeld, 1991, 1992; Buhl et al., 1996, 1998; Cobb et al., 1997;
Whittington et al., 2000, 2010; Buzsáki, 2006; Bartos et al., 2007).
This occurs even in isolated pieces of cerebral cortex maintained
in a tissue bath (Llinas et al., 1991; Buhl et al., 1998).

These “inhibition-based rhythms” (Whittington et al., 2000)
constitute gamma as classically defined (Adrian, 1942; Bressler
and Freeman, 1980). They exhibit one or two well defined
frequency peaks in the power spectrum between 30 and
100Hz with most of their spectral power typically confined
to around half an octave around a frequency peak (Ray and
Maunsell, 2011). They must not be confused, in other words,
with the very different phenomenon called “high gamma” by
some investigators (100–200Hz; see Crone et al., 2006). As
shown by Ray and Maunsell (2011), the latter is a broad-
band phenomenon composed of spectral (Fourier) components
of neural spike transients, for which the designation “high
frequency oscillations” used by some investigators appears
appropriate (Tort et al., 2013).

At the membrane level of principal cells, gamma episodes
appear as a tonic depolarization countered by waves of inhibitory
postsynaptic potentials at gamma frequency, causing action
potentials to concentrate to the waning phase of inhibition
(Burchell et al., 1998; Whittington et al., 2000). Crucially, as
shown by simultaneously monitoring the membrane potentials
of pairs of pyramidal cells—clamped to the reversal potential
for exitation and inhibition, respectively—the amplitude and
spacing of waves of excitation-inhibition, registered as gamma
cycles in the local field potential, track, and match fluctuations
in excitatory membrane drive on a cycle by cycle basis (Atallah
and Scanziani, 2009). Gamma oscillations do not, in other words,
resemble sinusoids of steady frequency for a given oscillatory
burst. Instead they have a fluctuating waveform whose amplitude
and frequency changes from one cycle to the next, driven by the
changes in excitatory drive the underlying cellular events are busy
balancing.

In this immediate inhibitory echoing of excitatory magnitude,
a gamma cycle with a larger amplitude typically is followed by
a longer interval to the next cycle. Occurring from one cycle
to the next, this amounts to a change in both instantaneous
frequency and phase, establishing a linkage between changes

in amplitude, frequency and phase across individual gamma
cycles. The in vivo recordings reported by Atallah and Scanziani
have a mean gamma frequency of 35 Hz, around which cycle
lengths vary from 12 to over 40ms. This cycle length difference
(>28ms) spans the full 29ms phase range (2 Pi radians) of
the oscillatory mean frequency of 35Hz. Taken together, these
circumstances harbor profound implications for our conception
of the functional significance of gamma oscillations, implications
which it has fallen upon me to spell out here for the first time, as
follows:

The three principal dimensions or parameters characterizing
an oscillatory phenomenon are frequency, amplitude, and phase.
As just noted, the cellular events ensuring excitation-inbibition
balance in the cortex are reflected in cycle by cycle changes in
all three of these parameters of the local field potential gamma
rythm. With gamma amplitude, instantaneous frequency, and
phase all tied up in the basics of balancing excitation with
inhibition from moment to moment, no substantive degrees of
freedom remain by which additional informational dimensions -
such as cognitive ones - might be reflected in or carried by cortical
gamma.

But, objects the critic accustomed to thinking of gamma as
a cognitive operator of some kind, what of the innumerable
specific correlations reported over the years between gamma and
cognitive variables? As alreadymentioned, and covered in greater
detail in Section 6 of my 2013 review, there is no contradiction
between such findings and the present interpretation of gamma.
On the contrary, every one of those correlations is expected
because cortical gamma signals an activated state of cortical
tissue: cognitive activity of the most diverse kinds involve cortical
activation. By exact analogy to the BOLD signal, the specificity of
gamma covariation with cognitive variables does not belong to
gamma, but to where in cortical space that activation is recorded.
It is electrode location, in keeping with basic principles of
functional specialization across the cortical sheet (e.g., Woolsey,
1947; Passingham et al., 2002), that accounts for cognitive and
task specificity, while the occurrence of gamma at that location
merely signals its state of activation. The same is of course true of
high frequency oscillations. As a robust signal of local activation
state with better temporal resolution than the BOLD signal,
gamma, and high frequency oscillations have obvious utility as
a means of mapping functional activity in the cortex.

A critic may nevertheless go on to note that the entire
argument so far has pertained to local events, yet a variety
of long-range effects involving synchrony or coherence of
gamma oscillations are documented in the literature (e.g., Varela
et al., 2001; Fries, 2005; Womelsdorf et al., 2007; Vicente
et al., 2008; Gómez-Gardeñes et al., 2010; Gregoriou et al.,
2012; see also Caputi et al., 2013; Buzsáki and Schomburg,
2015). From the present perspective these effects, including
“communication-through-coherence” described by Fries (2005),
are unproblematic, however. They arise as direct consequences of
cortical connectivity. Axonal projections within areas, between
areas, and between the hemispheres convey oscillatory rhythms
to their targets to the extent that their axon potentials are
grouped by oscillatory activity at their source (see Sections 4, 5 of
Merker, 2013). Under circumstances of reciprocal connectivity
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and shared input from a third source, distant loci may even
exhibit synchrony with zero phase lag (Chawla et al., 2001;
Rajagovindan and Ding, 2008; Vicente et al., 2008).

Commonly, however, delays and phase shifts are involved in
distance effects because the details of connective relations, such as
differential laminar disposition, constrain coherence effects (see,
e.g., Bastos et al., 2015 and references therein). The enhanced
efficacy of synchronized afferents at a target structure is also no
mystery. It conforms to elementary contingencies of summation
at the axon initial segment: afferents arriving at a given dendritic
tree close together in time have a higher probability of summing
to an action potential at its axon initial segment than do those that
are not clustered in time (Rall, 1962; Nowak and Bullier, 1997; see
also Section 4, Merker, 2013).

The circumstances pertaining to gamma oscillations and
their genesis reviewed here in all brevity are compatible with
the empirically demonstrated behavior of these oscillations, but
sharply contradict the pervasive tendency to attribute cognitive
significance to their occurrence. Not only is there nomore reason
to do so in their case than in the case of the cortical BOLD
signal (also ubiquitously covarying with cognitive variables), but
the engagement of all three dimensions of gamma variability -
amplitude, instantaneous frequency, and phase - in its cycle by
cycle reflection of excitation-inhibition balancing, would seem
to preclude additional functional roles, whether of a cognitive or
any other kind.

The pervasive tendency to cast cortical gamma in cognitive
terms originated with the so called ‘binding by synchrony’
conjecture of Singer et al. (Gray et al., 1989; Singer and Gray,
1995). As was shown in detail in Section 5 of Merker (2013), the
binding in that case is provided by well documented anatomical
connectivity. The same is true for the more general case of how
the brain manages the collation and conjunction (“binding”)
of attributes defined on spatially separate cortical maps, as
explicated most fully by Kawato in (1997, p. 242 and Figure
15.3). It would seem to be time, then, to retrace that first false
step of 1989, to give up the counterfactual casting of gamma as
a cognitive operator, and return it to its rightful place amidst
the crucial infrastructural operations that balance excitation with
inhibition when cortex engages functionally for any of its many
reasons to do so.
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