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To date a number of studies have shown that receptive field shapes of early sensory
neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles.
A still unresolved question is whether the efficient coding hypothesis explains formation
of neurons which explicitly represent environmental features of different functional
importance. This paper proposes that the spatial selectivity of higher auditory neurons
emerges as a direct consequence of learning efficient codes for natural binaural
sounds. Firstly, it is demonstrated that a linear efficient coding transform—Independent
Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural
sounds extracts spatial information present in the signal. A simple hierarchical ICA
extension allowing for decoding of sound position is proposed. Furthermore, it is shown
that units revealing spatial selectivity can be learned from a binaural recording of a natural
auditory scene. In both cases a relatively small subpopulation of learned spectrogram
features suffices to perform accurate sound localization. Representation of the auditory
space is therefore learned in a purely unsupervised way by maximizing the coding
efficiency and without any task-specific constraints. This results imply that efficient coding
is a useful strategy for learning structures which allow for making behaviorally vital
inferences about the environment.

Keywords: efficient coding, natural sound statistics, binaural hearing, spectrotemporal receptive fields, auditory

scene analysis

1. INTRODUCTION
As originally proposed by Barlow (1961), the efficient coding
hypothesis suggests that sensory systems adapt to the statisti-
cal structure of the natural environment in order to maximize
the amount of conveyed information. This implies that stimu-
lus patterns encoded by sensory neurons should reflect statistics
and redundancies present in the natural stimuli. Indeed - it has
been demonstrated that learning efficient codes of natural images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997) or sounds
(Lewicki, 2002) reproduces shapes of neural receptive fields in
the visual cortex and the auditory periphery. Additionally, recent
studies provided statistical evidence suggesting that spectrotem-
poral receptive fields (STRFs) at processing stages beyond the
cochlea, are adapted to the statistics of the auditory environment
(Klein et al., 2003; Carlson et al., 2012; Terashima and Okada,
2012) to provide its efficient representation. However, having a
sole representation of the stimulus is not enough for the organ-
ism to interact with the environment. In order to perform actions,
the nervous system has to extract relevant information from the
raw sensory data and then segregate it according to its functional
meaning. For example the auditory system must extract posi-
tion invariant information regardless of sound quality, separating
“what” and “where” information. In a more recent paper (Barlow,
2001) Barlow proposed that behaviorally relevant stimulus fea-
tures (i.e., ones supporting informed decisions) may be learned
by redundancy reduction. In other words, functional segregation

of neurons can be achieved by efficient coding of sensory inputs.
The evidence in support of this notion is still sparse.

Among different sensory mechanisms, spatial hearing provides
a good example for the extraction and separation of behaviorally
vital information from the sensory signal. The ability to localize
and track sound sources in space is of a critical relevance for the
survival of most animal species. Contrary to vision, audition cov-
ers the entire space surrounding the listener and may therefore
provide an early warning about the presence or motion of objects
in the environment. Mammals localize sounds on the azimuthal
plane using two ears (Schnupp and Carr, 2009; Grothe et al.,
2010). Binaural hearing mechanisms rely on between-ear dispar-
ities to infer the spatial position of the sound source. In humans,
according to the well known Duplex Theory (Strutt, 1907; Grothe
et al., 2010), interaural time differences (ITDs) constitute a major
cue for low frequency sound localization and sounds of high fre-
quency (>1500 Hz) are localized with interaural level differences
(ILDs). However in natural hearing conditions, spectrotempo-
ral properties of sounds vary continuously, hence combinations
of cues available to the organism also change. Even though
temporal differences on the order of microseconds are of a sub-
stantial importance for sound localization, binaural neurons in
the higher areas of the auditory pathway can be characterized with
Spectrotemporal Receptive Fields (STRFS), which have much
more coarse temporal resolution (ms) (Gill et al., 2006). Despite
such loss of temporal accuracy, many of those neurons reveal
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sharp spatial selectivity (Schnupp et al., 2001) encoding the posi-
tion of the sound source in space. What is the neural computation
underlying this process remains an open question.

The present paper uses spatial hearing as an example of a
sensory task, to show how information of different meaning
(“what” and “where”) can be clearly separated. As its main result,
it provides computational evidence pointing that redundancy
reduction leads to the separation of spatial information from
the representation of the sound spectrogram. This means that
formation of the neural auditory space representation can be
achieved without the need of any task-specific computations but
solely by applying the general principle of redundancy reduc-
tion. It is demonstrated that Independent Component Analysis
(ICA) - a linear efficient coding transform (Hyvärinen et al.,
2009) trained on a dataset of spectrograms of simulated as well as
natural binaural speech sounds, extracts sound position invari-
ant features separating them from the representation of the
sound position itself. Learned structures can be understood as
model spatial and spectrotemporal receptive fields of auditory
neurons which encode different kinds of behaviorally relevant
information. Current results are in line with known physiological
phenomena and allow to make new experimental predictions.

2. MATERIALS AND METHODS
High order statistics of natural auditory signal were studied by
performing ICA on a time-frequency representation of binaural
sounds.

As a proxy for natural sounds, speech was used in the present
study. Speech comprises a rich variety of acoustic structures and
has been successfully used to learn statistical models predicting
properties of the auditory system (Klein et al., 2003; Smith and
Lewicki, 2006; Carlson et al., 2012). Additionally, it has been sug-
gested that speech may have evolved to match existing neural
representations, which are optimizing information transmission
of environmental sounds (Smith and Lewicki, 2006).

Spatial sounds were obtained in two ways. Firstly, the effi-
cient coding algorithm was trained using simulated naturalistic
binaural sounds. Simulation gave the advantage of labeling each
sound with its spatial position. Secondly a natural auditory scene
was recorded with binaural microphones. The signal obtained in
this way was less controlled, however it contained more com-
plex and fully natural spatial information. Training datasets were
obtained by drawing 70000 random intervals 216 ms long from
each dataset separately. The data generation process together with
its interpretation is displayed on Figure 1.

2.1. SIMULATED SOUNDS
As a corpus of natural sounds, data from the International
Phonetic Association Handbook (International Phonetic
Association, 1999) were used. The database contains speech
sounds of a narrative told by male and female speakers in 29
languages. All sounds were downsampled to 16000 Hz from their
original sampling rate and bandpass filtered between 200 and
6000 Hz. The training dataset was created by drawing random
intervals of 216 ms from the speech corpus data. Spatial sounds
were simulated by convolving sampled speech chunks with
human Head Related Transfer Functions (HRTFs). HRTF fully

FIGURE 1 | Data generation process. (A) Interpretation of consecutive
stages of data generation. The acoustic environment is either simulated (B)

or recorded with binaural microphones (C). Further stages of the
processing include frequency decomposition and transformation with a
logarithmic nonlinearity, which emulates cochlear filtering (D) Positions of
HRTFs around the head are marked with circles.

describe the sound distortion due to the filtering by the pinnae
and therefore contain entire spatial information available to the
organism. Given an angular sound source position θ, HRTF is
defined by a pair of linear filters:

HRTF(θ) = {hL,θ(t), hR,θ(t)} (1)

where L, R subscrpits denote left and right ear respectively, and
t denotes time sample. One should note that in the temporal
domain, HRTFs are often called Head Related Impulse Response
(HRIR). A set of HRTFs was taken from the LISTEN database
(Warfusel, 2002). The database contains human HRTFs recorded
for 187 positions in the three-dimensional space surrounding the
subject’s head. HRTFs from a single random subject were selected
and further limited to positions lying on the azimuthal plane with
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15◦ spacing (24 positions in total). Monaural stimulus vectors
xE(t) (E ∈ {R, L} denotes the ear) were created by drawing ran-
dom chunks g(t) of speech sounds and convolving them with
HRTF(θ) corresponding to an azimuthal position θ, which was
also randomly drawn:

xE(t) = (g ∗ hE)(t) =
∫ ∞

−∞
hE(τ)g(t − τ)dτ (2)

where ∗ denotes the convolution operator. In this data, spatial and
identity information constitute independent factors.

2.2. NATURAL SOUNDS
In order to obtain a dataset of natural binaural sounds a com-
plex auditory scene was recorded using binaural microphones.
The recording consisted of three people (two males and one
female) engaged in a conversation while moving freely in an
echo-free chamber. Such an environment without reflections and
echoes reduced the number of factors modifying sound wave-
forms. One of the male speakers was recording the audio signal
with Soundman OKM-II binaural microphones placed in the
ear channels. In total 20 min were recorded and included mov-
ing and stationary, often overlapping sound sources. To test the
spatial sensitivity of learned features a recording with a single
male speaker was performed. He walked around the head of the
recording subject with a constant speed following a circular tra-
jectory while reading a book out loud, twice in the clockwise and
twice anti-clockwise direction. The length of the testing dataset
was 54 s.

2.3. SIMULATED COCHLEAR PREPROCESSING
Before reaching the auditory cortex, where spatial receptive fields
(SRFs) were observed (Schnupp et al., 2001), sound waveforms
undergo a substantial processing. Since the modeling focus of the
present study was beyond the auditory periphery, the data were
preprocessed to roughly emulate the cochlear filtering (see the
scheme on Figure 1).

Short Time Fourier Transform (STFT) was performed on each
sound interval included in the training dataset. Each chunk was
divided into 25 overlapping windows each 16 ms long. STFT
spanned 256 frequency channels logarithmically spaced between
200 and 4000 Hz (decomposition into arbitrary, non-linearly
spaced frequency channels was computed using the Goertzel
algorithm). Logarithmic frequency spacing was observed in the
mammalian cochlea and seems to be a robust property across
species (Greenwood, 1990; Smith et al., 2002). The spectral power
of the resulting spectrograms was transformed with a logarithmic
function which emulates the cochlear compressive non-linearity
(Robles and Ruggero, 2001).

Stimuli were 216 ms long in order to match the temporal
extent of cortical neurons’ STRFs, which were characterized by
SRFs (Schnupp et al., 2001). Besides emulating the cochlear trans-
formation of the air pressure waveform, such spectrograms were
reminiscent of the sound representation most effective in map-
ping spectrotemporal receptive fields in the songbird midbrain
(Gill et al., 2006). A very similar representation was used in a
recent sparse coding study (Carlson et al., 2012).

Spectrograms of left and right ears were concatenated. Such
data representation attempts to simulate the input to higher bin-
aural neurons, which operate on spectrotemporal information,
simulteneously fed from monaural channels (Schnupp et al.,
2001; Miller et al., 2002; Qiu et al., 2003). In principle, we could
first train ICA on monaural spectrograms and then model their
codependencies. In such way, however, the algorithm could not
explicitly model binaural correlations. Additionally, this would
require application of a hierarchical model, which lies outside
of the scope of this study. Our approach resembles ICA stud-
ies, which focused on modeling of visual binocular receptive
fields (Hoyer and Hyvärinen, 2000; Hunt et al., 2013). There, the
input to binocular neurons in the visual cortex was modeled by
concatenating image patches from the left and the right eye.

The efficient coding algorithm was run on the resulting time-
frequency representation of the binaural waveforms. After pre-
processing the dimensionality of data vectors was equal to 2 ×
(25 × 256) = 12800. Both training datasets: simulated and nat-
ural one consisted of 70000 samples. Prior to the ICA learning,
the data dimensionality was reduced with Principal Component
Analysis (PCA) to 324 dimensions, preserving more than 99% of
total variance in both cases. Due to memory issues (allocation of a
very large covariance matrix) a probabilistic PCA implementation
was used (Roweis, 1998).

2.4. INDEPENDENT COMPONENT ANALYSIS
ICA is a family of algorithms which attempt to find a maximally
non-redundant, information-preserving representation of the
training data within the limits of the linear transform (Hyvärinen
et al., 2009). In its standard version, given the data matrix X ∈
R

n×m (where n is the number of data dimensions and m the num-
ber of samples), ICA learns a filter matrix W ∈ R

n×n, such that:

WX = S (3)

where columns of X are data vectors x ∈ R
n, rows of W are lin-

ear filters w ∈ R
n and S ∈ R

n×m is a matrix of latent coefficients.
Equivalently the model can be defined using a basis function
matrix A = W−1, such that:

X = AS (4)

Columns a ∈ R
n of matrix A are known as basis functions and

in neural systems modeling can be interpreted as linear stimulus
features represented by neurons, which form an efficient code of
the training data ensemble (Hyvärinen et al., 2009). Linear coef-
ficients s are in turn a statistical analogy of the neuronal activity.
Since they can take both positive and negative values, their direct
interpretation as physiological quantities such as firing rates is not
trivial. For a discussion of relationship between linear coefficients
and neuronal activity, please refer to Rehn and Sommer (2007);
Hyvärinen et al. (2009). Equation 4 implies that each data vector
can be represented as a linear combination of basis functions a

x(t) =
∑

i

siai(t) (5)
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where t indexes the data dimensions. The set of basis functions
a is called a dictionary. ICA attempts to learn a maximally non-
redundant code. For this reason latent coefficients s are assumed
to be statistically independent i.e.,

p(s) =
n∏

i = 1

p(si) (6)

The marginal probability distributions p(si) are usually assumed
to be sparse (i.e., of high kurtosis), since natural sounds and
images have intrinsically sparse structure (Olshausen and Field,
1997) and can be represented as a combination of a small num-
ber of primitives. In the present work logistic distribution of the
form:

p(si|μ, ξ) = exp(− si−μ
ξ

)

ξ(1 + exp(− si−μ
ξ

))2
(7)

with position μ = 0 and scale parameter ξ = 1 is assumed. The
basis functions are learned by maximizing the log-likelihood of
the model via gradient ascent (Hyvärinen et al., 2009).

2.5. ANALYSIS OF LEARNED BASIS FUNCTIONS
Similarity between left and right ear parts of learned basis func-
tions was assessed using the Binaural Similarity Index (BSI), as
proposed in Miller et al. (2002). The BSI is simply Pearson’s cor-
relation coefficient between left and right ear parts of each basis
function. BSI equal to −1 means that absolute values at every fre-
quency and time position are equal and have the opposite sign,
while BSI equal to 1 means that the basis function represents the
same information in both ears.

Dictionary of binaural basis functions learned from natu-
ral data was classified according to the modulation spectra of
their left ear parts. A modulation spectrum is a two-dimensional
Fourier transform of a spectrogram. It is informative about spec-
tral and temporal modulation of learned features and it has
been applied to study properties of natural sounds (Singh and
Theunissen, 2003) and real (Miller et al., 2002) as well as modeled
(Saxe et al., 2011) receptive fields in the auditory system.

Spatial sensitivity of basis functions learned from natural data
was further quantified by means of Fisher information. Fisher
information is a measure of how accurate one can estimate a
hidden parameter θ from an observable s knowing a conditional
probability distribution p(s|θ) (Brunel and Nadal, 1998). Here,
θ corresponds to the angular position of the auditory stimulus
and s to one of the sparse coefficients. Assuming a deterministic
mapping s(θ) = f (θ) = μθ distorted with a zero-mean stationary
Gaussian noise, one obtains:

p(s|θ) = N (s|μθ, σ) (8)

For simplicity σ was assumed to be equal to 1. Fisher information
I(θ) then becomes (Brunel and Nadal, 1998):

I(θ) = (
d

dθ
f (θ))2 (9)

Mean values μθ were estimated by averaging coefficient activa-
tions over four trials during which the speaker walked around the

head of the subject. Each activation time course was additionally
smoothed with a 20 samples long rectangular window.

3. RESULTS
Besides the properties of the sound source itself, natural sounds
reaching the ear membrane are also shaped by head-related
filtering. The spectrotemporal structure imposed by the filter
depends on the spatial configuration of objects. By performing
redundancy reduction the auditory system could, in principle,
separate those two sources of variability in the data and extract
spatial information. One should observe that transformations
performed by the cochlea can strongly facilitate this task. The
stimulus xE (where E ∈ L, R indicates the left or the right ear)
is an air pressure waveform g(t) convoluted with an HRTF (or
a combination of HRTFs) hE,θ(t), as defined by equation 2. The
basilar membrane performs frequency decomposition, emulated
here by the Fourier transform:

F(x, ω) =
∫ ∞

−∞
xE(t) exp(−2πiωt)dt

= Ax
ω(cos φx

E,ω + i sin φx
E,ω) (10)

where ω denotes frequency, Ax
E,ω amplitude and φx

E,ω phase. By
the convolution theorem (Katznelson, 2004), convolution in the
temporal domain is equivalent to a pointwise product in the
frequency domain, i.e.,

F((g ∗ hE), ω) =
∫ ∞

−∞
g(t) exp(−2πiωt)dt

∫ ∞

−∞
hE(t) exp(−2πiωt)dt

= A
g
ω(cos φ

g
ω + i sin φ

g
ω)Ah

E,ω(cos φh
E,ω + i sin φh

E,ω)

Additionally, the basilar membrane applies a compressive non-
linearity (Robles and Ruggero, 2001) which this study approx-
imates by transforming the spectral power with a logarithmic
function. Since the logarithm of the product is equal to the sum
of logarithms, the spectral amplitude of the stimulus Ax

E,ω =
Ah

E,ωA
g
ω can be decomposed into the sum:

log(Ah
E,ωA

g
ω) = log(Ah

E,ω) + log(A
g
ω) (11)

This means that the spectrotemporal representation of the signal
generated by the cochlea is a sum of the raw sound and HRTF fea-
tures. One should note, however, that the above analysis applies
to an infnite window Fourier transform, and the data used in this
study was generated by performing a STFT with a 16 ms long,
overlapping windows. Fourier coefficients were mixed between
neighboring windows due to their overlap. For point-source, sta-
tionary sounds this effect did not influence the log(Ah

E,ω) term
of the Equation 11, since HRTFs were shorter than the STFT
window, hence hear-related filtering was temporally constant.
For a dynamic scene, where neighboring STFT windows con-
tained different spatial information, the additive separability of
sound and HRTF features (as described by Equation 11) may
have been distorted. Taken together, a linear redundancy reducing
transform such as ICA provides a reasonable approach to sepa-
rate information about object positions from the raw sound. In
an ideal case, ICA trained on stimulus spectrograms Ax

ω could
separate representation of HRTF (Ah

E,ω) and stimulus (A
g
E,ω)
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amplitudes into two distinct basis functions sets (Harper and
Olshausen, 2011). The difficulty of the separation task depends on
the temporal variability of the spatial information which reflects
configuration of the environment (i.e., number of sources, their
motion patterns and positions). The current study considers two
cases of different complexity: (a) simulated dataset consisting of
short periods of speech displayed from single positions and (b) a
binaural recording of a natural scene with freely moving human
speakers.

3.1. SIMULATED SOUNDS
The goal of the present study was to identify high-order statis-
tics of natural sounds informative about positions of the sound
source. Association of a sound waveform with its spatial position
requires detailed knowledge about source localization i.e., each
sound should be labeled with spatial coordinates of its source.
For this reason binaural sounds studied in this section were sim-
ulated, using speech sounds and human HRTFs. Naturalistic data
created in this way resembled binaural input from the natural
environment, while making position labeling of sources available.

From the simulated dataset, after reducing data dimensionality
with PCA (see section 2.3), 324 ICA basis functions were learned.
A subset of 100 features is depicted in Figure 2. It is clearly visible
that the learned basis can be divided into two separate subpop-
ulations by the similarity between their left and right ear parts,
which is quantified by the Binaural Similarity Index (BSI) (see

FIGURE 2 | ICA basis functions trained on simulated sounds (A)

Binaural basis functions a
g

i
. Left and right ear parts are dissimilar. (B)

Monaural basis functions ak
i . Left and right ear parts are highly similar. (C)

Explanation of the representation. Each stimulus can be decomposed into a
linear combination of monaural basis functions (multiplied by their
coefficients sc

i ) and binaural ones multiplied by coefficients sg
i .

Materials and Methods). Sorted values of the BSI are displayed on
Figure 6A as black circles. The majority of basis functions (314)
exceed the 0.9 threshold and only 10 fall below it. Out of those 8
reveal strong negative interaural correlation and only 2 are close
to 0. Basis functions with the BSI below 0.9, were separated from
the rest and all ten of them are depicted on Figure 2A. Since they
represent different information in each ear they are going to be
called “binaural” through the rest of the paper. This is in con-
trast to “monaural” basis functions which encode similar sound
features in both ears (see Figure 2B).

The binaural sub-dictionary captures signal variability present
due to the head-related filtering. Even though the training dataset
included sounds displayed from 24 positions, hence 24 different
HRTFs were used, only 10 binaural basis functions emerged from
the ICA. Out of those, almost all are temporally stable i.e., do not
reveal any temporal modulation (except for 2 - positions 5 and 6
on Figure 2A). The dominance of temporally constant features
was expected, since training sounds were displayed from fixed
positions and were convoluted with filters, which did not change
in time. Temporally stable basis functions weight spectral power
across frequency channels, mostly with opposite sign in both ears
(as reflected by negative values of the BSI). Surprisingly, despite
the lack of moving sounds in the training dataset, two tempo-
rally modulated basis functions were also learned by the model.
They represent envelope comodulation in high frequencies with
an interaural phase shift of π radians.

A representative subset of 90 monaural basis functions is
depicted on Figure 2B. Their left and right ear parts are exactly
the same and encode a variety of speech features. Regularities
such as harmonic stacks, on- and offsets or formants are visible.
Captured monaural patterns essentially reproduce results from a
recent study by Carlson et al. (2012) which shows that efficient
coding of speech spectrograms learns features similar to STRFs in
the Inferior Colliculus (IC). Monaural basis functions are, how-
ever, not a focus of the present study and are not going to be
discussed in detail.

A separation of the learned dictionary into two subpopu-
lations of binaural and monaural basis functions (ag and ak

respectively) allows to represent every sound spectrogram in the
training dataset as a linear combination of two isolated factors i.e.,
representations of speech and HRTF structures (see Figure 2C).
Taking this fact into account, Equation 5 can be rewritten as:

x(t) =
G∑

i = 1

s
g
i a

g
i (t) +

K∑
j = 1

sk
j ak

j (t) (12)

This notation explicitly decomposes the basis into G spatial basis
functions ag and K and non-spatial basis functions ak.

3.1.1. Emergence of model spatial receptive fields
Marginal coefficient histograms conformed rather well to the
logistic distribution assumed by the ICA model, although bin-
aural coefficients were typically more sparse (see Figure 3). In
order to understand how informative learned features are about
position of sound sources, conditional distributions of the linear
coefficients were studied. Histograms conditioned on a location
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FIGURE 3 | Spatial sensitivity of basis functions. (A–F) Spectrotemporal
basis functions and associated conditional histograms of linear coefficients s.
Solid red lines mark means and dashed lines limits of plus/minus standard

deviation. (G,H) Example pairwise dependencies between monaural and
binaural basis functions respectively. Each point is one sound and grayscale
corresponds to its spatial position.

of a sound source reveal whether any spatial information is
encoded by learned basis functions.

Figures 3A–F displays 6 basis functions and corresponding
conditional histograms. The horizontal axis of each conditional
histogram corresponds to the angular position of the sound
source (from 0 to 345◦). A vertical cross-section is a normalized
histogram of the coefficient values for all sounds displayed in the
training dataset from a particular position (around 2900 samples
on average).

Three representative monaural basis functions are depicted on
Figures 3D–F. It is immediately visible that conditional distribu-
tions of their coefficients are stationary across spatial positions.
The zero-centered logistic pdf with a constant scale parameter
(parameters equal to those of the marginal pdf) is preserved
across all positions. This implies that coefficients of monaural
basis functions are independent from the sound source location.
Monaural bases encode speech features and since all speech struc-
tures were displayed from all positions in the training data, their
activations do not carry spatial information. This property is
characteristic for all basis functions with BSI greater than 0.9.

Coefficients of binaural basis functions reveal a very differ-
ent dependency structure (see Figures 3A–C. Their variance at
each spatial position is very low, however, variability across posi-
tions is much higher. Activations of binaural features remain close

to zero at most angular positions regardless of the sound iden-
tity. At few preferred positions they reveal pronounced peaks
in activation (positive or negative) reflected by strong shifts in
the mean value. This highly non-stationary structure of condi-
tional pdfs is informative about the sound position, while remains
almost invariant to the sound’s identity (which is reflected by the
small standard deviation). Basis function depicted on Figure 3A
responds with a strong positive activation to sounds originating at
270◦ (i.e., directly in front of the right ear) and with a strong neg-
ative activation to sounds originating from the directly opposite
location - at 90◦ (i.e., in front of the left ear). Sounds at posi-
tions deviating ±15◦ from peaks also modulate basis activations,
although activations are weaker. Similar spatial selectivity pattern
is revealed by the basis function on Figure 3C, which however
responds positively to sounds at 60 and negatively to sounds at
315◦. The spectrotemporal feature on Figure 3B encodes spatial
information of a particularly high behavioral relevance. Its activ-
ity significantly deviates from zero, only when sounds are placed
behind the head in the interval between 165 and 210◦ . This region
is not visually accessible, therefore position or motion of objects
in that area has to be inferred basing on auditory information
only. It may appear that conditional histograms are symmetric
around the 180◦ point. However, positive and negative peaks of
coefficient histograms do not have exactly equal absolute values.
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It is important to notice here that each spectrotemporal feature
captured by binaural basis functions is an indirect representation
of the sound position in the surrounding environment. Therefore
if ICA basis functions can be interpreted as STRFs of binaural
neurons, the corresponding conditional histograms constitute a
theoretical analogy of their SRFs informing the organism about
the position of the sound source within the head-centered frame
of reference.

3.1.2. Decoding of the sound position
As described in the previous subsection, linear coefficients of bin-
aural basis functions are informative about the location of the
sound source. Spatial selectivity of single basis functions is how-
ever not specific enough to reliably localize sounds. Pairwise coef-
ficient activations of two exemplary basis functions are depicted
on Figure 3G. Each point represents a single sound and its color
corresponds to the source’s angular position. Strong clustering of
same-colored points is strongly visible. They form at least 6 highly
separable clusters. This, in turn, shows that the joint distribution
of those two coefficients contains more information about the
source position than one dimensional conditional pdfs. This is
in contrast to Figure 3H depicting co-activations of two monau-
ral basis functions. There, points of all colors are strongly mixed,
creating a “salt and pepper” pattern, where no clear separation
between source positions is visible.

To test, whether reliable decoding of sound position from acti-
vations of binaural basis functions is possible, this work employs
the Gaussian Mixture Model (GMM). The GMM models the
marginal distribution of latent coefficients sg used for the posi-
tion decoding as a linear combination of Gaussian distributions,
such that:

p(sg) =
24∑

k = 1

p(sg |Ck)p(Ck) (13)

p(sg |Ck) = N (sg |μk, Dk) (14)

where Ck is a position label (C1 = 0 deg, C24 = 345 deg) and
μk, Dk denote a position specific mean vector and covariance
matrix respectively. The structure of dependencies among ran-
dom variables is presented in a graphical form in Figure 4A. Since
the prior on position labels p(Ck) is assumed to be uniform,
the decoding procedure can be recast as a maximum-likelihood
estimation:

Ĉ = arg max
k

p(sg |Ck) (15)

where Ĉ is the decoded position. The resulting procedure iterates
over all position labels and returns the one which maximizes the
probability of an observed data sample.

The decoding performance relies on the selected subset of basis
functions used for this task. To test whether binaural features con-
tribute stronger to the position decoding than monaural ones,
all basis functions were sorted according to their BSI. Then, the
GMM was trained using incrementally larger number of latent
coefficients, starting from a single one corresponding to the basis
function with the highly negative BSI and ending using the entire
basis function set. In every step, for the GMM training 70% of

FIGURE 4 | Position decoding model. (A) A graphical model representing
variable dependencies. (B) Decoders performance plotted against the
number of used basis functions. Vertical dashed line separates binaural
basis functions from monaural ones.

the data were used, while remaining 30% were used for cross-
validation. The average decoder performance is plotted against
the number of used features on Figure 4B. Binaural features
are separated from the monaural ones with a dashed vertical
line. A straightforward observation is that binaural basis func-
tions almost saturate the decoding accuracy. Indeed it reaches
the level of 97.9%. Adding remaining 314 monaural basis func-
tions increases the performance to 99.7% which is only 1.8%
point. Interestingly, temporally modulated binaural basis func-
tions number 5 and 6 did not contribute to the decoding quality,
which is visible as a short plateau on the plot. Saturation of
the decoder’s performance by binaural basis function activations
entails that almost entire spatial information present in the sound
is separated from other kinds of information by the ICA model
and represented by binaural basis functions. Relating this obser-
vation to the nervous system, this means, that the spatial position
of natural sound sources can be decoded from the joint activity of
a relatively small subpopulation of binaural neurons.

3.2. NATURAL SOUNDS
The previous section described results for simulated sounds.
While simulated sounds have the advantage of giving a full control
over source positions they are only a very crude approximation to
the binaural stimuli occurring in the real natural environment.
This section describes results obtained using binaural record-
ings of a real-world auditory scene, consisting of three speakers
moving freely in an echo-free environment.

Binaurality of learned basis functions was again quantified
with the BSI. Sorted BSI values are plotted on Figure 6A as gray
triangles. A strong difference is visible, when compared with val-
ues of the dictionary trained on simulated data (black circles).
Firstly, 64 natural basis functions lay below the 0.9 threshold -
many more compared to only 10 simulated ones. Secondly, natu-
ral BSIs vary more smoothly, and are more uniformly distributed
between −1 and 0.9 (see the histogram displayed in the inset).

Similarly to the previous case, the learned dictionary was
divided into two sub-dictionaries - binaural ones - below
and monaural ones - above the 0.9 BSI threshold. The sub-
dictionary consisting of binaural basis functions is displayed
on Figures 5A,B displays 40 exemplary monaural basis func-
tions. While no qualitative difference is visible between monaural
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FIGURE 5 | Basis functions learned using natural data. (A) Binaural basis
functions (60 out of 64). (B) Monaural basis functions (40 out of 250).

features when compared with results from the previous section
(Figure 2B), the binaural sub-dictionaries differ strongly. Basis
functions trained using natural data, reveal much richer variety
of shapes including temporally modulated ones along patterns of
strong spectral modulation.

3.2.1. Properties of the learned representation
This subsection presents properties of binaural basis functions
trained with the natural binaural data. They were studied in more
detail than the dictionary learned from simulated data since its
structure is more complex and may reflect better the properties of
binaural neurons. One should note that in neural systems model-
ing, neural receptive fields correspond better to ICA filters (rows
w of matrix W in Equation 12). Basis functions, however, consti-
tute optimal stimuli i.e., given basis function ai as input the only
non-zero coefficient is going to be si. Additionally, basis functions
are a low-passed version of filters (Hyvärinen et al., 2009), and are
more appropriate for plotting, since they represent actual parts of
stimulus. For those reasons, this study focuses on basis function
statistics.

The binaural dissimilarity of learned features was assessed with
two measures. The BSI provides a continuous value quantifying
how well the left ear part matches the right ear part. It however
does not take into account the dominance of one ear over another.
The dominance can be measured by comparing monaural peaks
i.e., points of the maximal absolute value of left and right ear
parts. Both measures were used by Miller et al. (2002) to describe
receptive fields of binaural neurons in the auditory thalamus and
cortex. Monaural peaks (measured in standard deviation of the
basis function dimensions) are compared on Figure 6B. Crosses
mark basis functions with the positive and diamonds with the
negative BSI. Symbol sizes correspond to the absolute BSI value.

Basis functions cluster along the diagonals (marked with dashed
lines) which means that left and right ear peaks have similar abso-
lute values and no clear dominance of a single ear is present.
Interestingly, while roughly the same number of basis functions
lays in upper right and both lower quadrants, only 4 lay in the
upper left one, corresponding to basis functions with a negative
peak in the left ear and positive in the right ear. Unfortunately,
direct comparison of the analysis on Figure 6B with Figure 9 in
Miller et al. (2002) is not possible, due to the arbitrariness of the
sign in the ICA model (coefficients can have positive and negative
values, flipping the sign of the basis function). Additionally the
notion of ipsi- and contra- laterality is meaningless for ICA basis
functions.

Shapes of basis functions belonging to the binaural sub-
dictionary were studied by analyzing modulation spectra of their
left-ear parts. Even though functions were binaural, classification
according to only the single ear part was sufficient to identify
subgroups with interesting binaural properties. Centers of mass
of modulation spectra (for computation details see Materials and
Methods) are plotted as circles on Figure 6C. Circle color corre-
sponds to the BSI value. Left parts of binaural features display a
tradeoff between spectral and temporal modulation. This com-
plies with the general trend of natural sound statistics (Singh
and Theunissen, 2003). Dictionary elements were divided into
three distinctive groups according to their modulation properties
(marked with roman numerals I, II, III, and separated with dotted
lines on Figure 6C). The first group consisted of weakly modu-
lated features with spectral modulation below 0.3 cycles/octave
and temporal modulation below 4 Hz. Majority of basis functions
belonging to this group had high BSI, close to 0.9. Three repre-
sentative members of the first group are displayed on Figure 6D
in the first row. Since their spectrotemporal modulation is weak,
they capture constant patterns, similar in both ears, up to the
sign. The second group consists of basis functions revealing
strong spectral modulation - above 0.3 cycles/octave. Three exem-
plary members are visible in the second row of Figure 6D. Basis
functions belonging to the second group resemble majority of
ones learned from simulated data. They weight spectral power
across frequency channels constantly over time. In contrast to
simulated basis functions, their BSIs are mostly close to 0, indi-
cating that channel weights do not necessarily have opposite sign
between ears. Additionally, as visible in two out of three displayed
examples, low frequencies below 1 kHz are also weighted.

The third group includes highly temporally modulated fea-
tures. Their temporal modulation exceeds 4 Hz, while the spectral
one stays below 0.3 cycles/octave. Out of 15 members of this
group, only one has a positive BSI value - the rest remains close
to −1. This implies that when their monaural parts are aligned
with each other - corresponding dimensions have a similar abso-
lute value and an opposite sign. Three examplary members of the
third group are depicted in the last row of Figure 6D. They are
qualitatively similar to two temporal basis functions learned from
the simulated data (they represent an envelope comodulation
across multiple frequency channels with a π phase difference).

The temporal differences between monaural parts of basis
functions were further studied using cross-correlation functions
(ccf). Maximal values of the normalized ccf are plotted against
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FIGURE 6 | Properties of basis functions learned using natural data.

(A) BSI values of natural and simulated bases. (B) Peak values of binaural
bases. (C) Centers of mass of modulation spectra. (D) Exemplary basis

functions belonging to groups I, II, and III. (E) Temporal cross-correlation
plotted against its peak value. Color marks the BSI. (F) A histogram of
temporal shifts maximizing the cross correlation.

maximizing temporal shifts on Figure 6E. As in the Figure 6C
- the color of circles represents the BSI value. The histogram
of temporal shifts is depicted on Figure 6F. Cross-correlation of
30 binaural features with a positive BSI, is maximized at 0 tem-
poral shift. In this case, BSI and the peak of cross-correlation
have the same value. This is a property of basis functions with a
weak temporal modulation, which constitute a major part of the
binaural sub-dictionary. Features revealing temporal modulation
have a negative BSI value (dark colors) and a non-zero temporal
difference, which spanned the range between −0.2 and 0.2 s.

3.2.2. Spatial sensitivity of binaural basis functions
In contrast to the simulated dataset, binaural recordings were
not labeled with sound source positions. Furthermore, learned
features may represent dynamic aspects of the object motion,
therefore conditional histograms (constructed as in the previous
section) would not be meaningful.

In order to verify whether binaural basis functions reveal tun-
ing to spatial position of sound sources and invariance to their
identity, a test recording was performed. One of the male speak-
ers read a book out loud, while walking around the head of the
recording subject, following a circular trajectory in a constant

pace. This was repeated twice in the anticlockwise and twice in
the clockwise direction. In such a way, the angular position of
the speaker was made easy to estimate at each time point. The
recording was divided into 216 ms overlapping intervals, and each
interval was encoded using the learned dictionary. A general trend
in the spatial sensitivity of basis functions was measured by com-
puting correlation between estimated speaker’s position and time
courses of linear coefficients in the following way. Firstly, activa-
tion time courses were standarized to have mean equal to 0 and
variance equal to 1. In the next step, time intervals where the coef-
ficient’s absolute value exceeded 1 were extracted. This was done,
since highly sensitive coefficients remained close to 0 most of the
time, and correlated with the speaker’s position only in a narrow
part of the space (i.e., their receptive field). Elements of the binau-
ral sub-dictionary correlated stronger with the estimated position
than elements of the monaural one. Normalized histograms of
linear correlations between the position of the sound source and
sparse coefficients are presented on Figure 7. Monaural basis
functions correlate much weaker with the sound position, which
is reflected in the strong histogram peak around 0. Binaural coef-
ficients in turn, reveal strong correlations of the absolute value of
0.8 in extreme cases. Linear correlation is however not a perfect
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FIGURE 7 | Normalized histograms of activation-position correlations.

way to assess relationship between sparse coefficients and the
source position, since spatial selectivity of basis function may
be limited to a narrow spatial area (as in Figures 8A,B). This
results in correlations of low absolute values, even though spatial
sensitivity of a basis function may be quite high. To show spa-
tial selectivity of learned features, their activations were plotted.
Resulting time courses of basis function activations are displayed
as black continuous lines on Figure 8. Gray dashed lines mark
approximated angular position of the speaker at every time point.

Subfigures (F–J) display activations of 5 representative
monaural basis functions. As expected, their activity correlates
very weakly with the speaker’s trajectory. Monaural basis func-
tions encode features of speech and are invariant to the position
of the speaker. In contrary, activations of binaural basis functions
visible on subfigures (A–E), reveal strong dependence on sub-
jects position and direction of motion. Basis function A remains
non-activated for most of positions and deviates from zero when
the speaker is crossing the area behind the head of the record-
ing subject. The slope of activation time courses is informative
about the direction of speaker’s motion. Similar, however noisier,
spatial tuning is revealed by the basis function D. Basis func-
tion B displays broader spatial sensitivity, and its activation varies
smoothly along the circle surrounding the subject’s head. Spatial
information represented by the spectrally modulated basis func-
tions C and E does not have such a clear interpretation, however
they display pronounced covariation with sound source’s position
(feature C for instance is strongly positively activated, when the
speaker crosses directly opposite to the left ear).

Spatial sensitivity of basis functions can be further quanti-
fied using Fisher information (for computation details please see
Materials and Methods). Figure 9 shows Fisher information esti-
mates as a function of spatial position for features displayed on
Figure 8. Each binaural basis function reveals a preferred region
in space where source’s position is encoded with higher accu-
racy. For this reason, histograms depicted on Figures 9A–E can
be interpreted as an abstract descriptions of auditory SRFs. Basis
function (A), is most strongly informative about position of

the sound source behind the head (around 180◦), which is also
reflected in the timecourse of its activation. The Fisher informa-
tion peaks in visually inaccessible areas also in other, depicted
basis functions [subfigures (B), (C), (E)]. There, however, the
peak is not as pronounced as in the first basis function, and sen-
sitivity to frontal positions is also visible. Fisher information of
monaural basis functions [subfigures (F)–(J)] does not reveal
spatial selectivity, is order of magnitude smaller and would most
probably vanish in the limit of more samples.

All binaural basis functions presented on Figure 8 are weakly
temporally modulated. Temporally modulated basis functions,
do not correlate strongly with the speaker’s position (they also
did not contribute to the position decoding, as described in the
previous section).

4. DISCUSSION
Experimental evidence suggests that redundancy across neurons
is decreased in the consecutive processing stages in the audi-
tory system (Chechik et al., 2006). This is directly in line with
the efficient coding hypothesis. Additionally, a number of studies
have provided evidence of adaptation of binaural neural circuits
to the statistics of the auditory environment over different time
scales. Harper and McAlpine (2004) have argued that proper-
ties of neural representations of ITDs across many species can be
explained by a single principle of coding with maximal accuracy
(maximization of Fisher information). Two recent experimental
studies provide physiological and psychophysical evidence that
neural representations of interaural level (Dahmen et al., 2010),
and time (Maier et al., 2012) disparities are not static but adapt
rapidly to statistics of the stimulus ensemble. The present study
contributes to this lines of research, by showing that coding of
the auditory space can be achieved by redundancy reduction of
spectrotemporal sound representation.

The auditory system has to infer the spatial arrangement of
the surrounding space by analyzing spectrotemporal patterns of
binaural sound. Auditory SRFs are formed, by extracting signal
features which correlate well with environment’s spatial states and
result from the head related filtering. Both sound datasets used
in the present study included two, categorically different vari-
ability sources: spatial information carried by binaural differences
resulting from the HRTF filtering and the raw sound waveform.
Application of ICA - a simple redundancy reducing transform led
to a separation of those information sources and formation of
distinct model neuron sub-populations with specific spatial and
spectrotemporal sensitivity.

4.1. LINEAR PROCESSING OF SPECTROTEMPORAL BINAURAL CUES
Emulation of the cochlear processing by performing spectral
decomposition and application of the logarithmic non-linearity
produces a data representation well adapted for the position
decoding task. While it is usually argued that the logarithmic non-
linearity implemented by mechanical response of the cochlear
membrane is useful for reducing the dynamical range of the signal
(Robles and Ruggero, 2001) it provides an additional advantage.
Since in the frequency domain convolution is equivalent to a
pointwise product of the signal and the filter (Katznelson, 2004),
a logarithm transforms it to a simple addition. A linear operation
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FIGURE 8 | Activation time course of basis functions learned using

natural data. An audio-video version is available in the supplementary
material. Subfigures (A–E) depict binaural basis functions with their activation

time courses, while subfigures (F–J) monaural ones. Black continuous lines
mark standarized activation values, gray dashed lines mark speaker’s angular
position.

FIGURE 9 | Spatial sensitivity quantified with Fisher information. Polar
plots represent area surrounding the listener, black lines mark Fisher
information I(θ) at each angular position. Each subfigure corresponds to a

basis function on the previous figure marked with the same letter. (A–E)

Exemplary binaural basis functions (F–J) exemplary monaural features. Please
note different scales of the plots.

on the “cochlear” data representation suffices to extract features
imposed by the pinnae filtering (Harper and Olshausen, 2011).
One should note, however, that in complex listening situations
involving more than a single, stationary sound source, this simple
relationship (as described by Equation 11) may be distorted and
extracted features can be mixing different aspects of the signal.

It has been observed that a linear approximation of spec-
trotemporal receptive fields in the auditory cortex predicts their
spatial selectivity (Schnupp et al., 2001). This result may be
surprising given that sound localization is a non-linear opera-
tion (Jane and Young, 2000) and that in a general case, linear
STRF models do not explain firing patterns of auditory neurons
(Escabı and Schreiner, 2002; Christianson et al., 2008). Results
shown in this paper suggest that a linear-redundancy reducing
transform applied to log-spectrograms suffices to create model

SRFs, providing a candidate computational mechanism explain-
ing results provided by Schnupp et al. (2001). Localization of a
natural sound source involves information included in multiple
frequency channels. Binaural cues such as ILD are computed in
each channel separately and have to be fused together at a later
stage. This is exemplified by temporally constant basis functions
learned using simulated and natural datasets. They linearly weight
levels in frequency channel of both ears and in this way form their
spatial selectivity. Interestingly the weighting is often asymmetric
(which is reflected by BSI values different from −1). Such pat-
terns represent binaural level differences coupled across multiple
frequency channels. A recent study has shown that a similar com-
putational strategy underlies spatial tuning of binaural neurons
in the nucleus of the brachium of IC in monkeys (Slee and Young,
2013). Since it has already been suggested that IC neurons code
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natural sounds efficiently (Carlson et al., 2012), present results
extend evidence in support of this hypothesis.

4.2. COMPLEX SHAPES OF BINAURAL STRFs
Early binaural neurons localized in the auditory brainstem can
be classified according to kinds of input they receive from each
ear (inhibitory-excitatory - IE and excitatory-excitatory - EE)
(Grothe et al., 2010). At the higher stages of auditory processing
(Inferior Colliculus, Auditory Cortex), binaural neurons respond
also to complex spectrotemporal excitation-inhibition patterns
(Schnupp et al., 2001; Miller et al., 2002; Qiu et al., 2003). The
present paper suggests, which kinds of binaural features may
be encoded and used for spatial hearing tasks by higher binau-
ral neurons. It demonstrates that the reconstruction of natural
binaural sounds requires basis functions representing various
spectrotemporal patterns in each ear. The dictionary of learned
binaural features is best described by a continuous binaural sim-
ilarity value (in this case Pearson’s correlation coefficient - BSI)
and not by a classification into non-overlapping IE-EE groups.
Temporally modulated basis functions consitute a particularly
interesting subset of all binaural ones. Many of them represent a
single cycle of envelope modulation, in opposite phase in each ear
(see Figure 6D). The time interval corresponding to such phase
shift is, however, much larger than the one required for the sound-
wave to travel between the ears. Their emergence and aspects of
the environment they represent remain to be explained. Coding
of different spectrotemporal features in each ear is useful not only
for sound localization and tracking, but may be also applied for
separation of sources while parsing natural auditory scenes (i.e.,
solving the “cocktail party problem”).

4.3. THE ROLE OF HRTF STRUCTURE
Spatial information is created when the sound waveform becomes
convoluted with the head and pinnae filter - HRTF. By tak-
ing into account that this convolution is equivalent to addi-
tion of the log-spectral representation of the sound and the
HRTF, one may conclude that the ICA recovers exact HRTF
forms. A subset of basis functions learned by the ICA model
from the simulated data could, in principle, contain 24 ele-
ments, which would constitute an exactly recovered set of HRTFs
used to generate the training data (see Figure 1D). The other
basis function subset would contain features modeling speech
variability. This is, however, not the case. Firstly - in the simu-
lated dataset - HRTFs corresponding to 24 positions were used,
10 basis functions emerged and only 8 were temporally non-
modulated, as HRTFs are. Despite such dimensionality reduction,
information included in the 8 basis functions was sufficient
to perform the position decoding with 15◦ spatial resolution.
This implies that binaural basis functions did not recover HRTF
shapes but rather formed their compressed representation. It
is important to note here that learned binaural features were
much smoother and did not include all spectral detail included
in HRTFs themselves (compare basis binaural basis functions
from Figures 2A, 5A with HRTFs from Figure 1D). The fact that
coarse spectral information suffices to perform position decod-
ing stands in accord with human psychophysical studies. It has
been demonstrated that HRTFs can be significantly smoothed

without influencing human performance in spatial auditory tasks
(Kulkarni and Colburn, 1998).

In humans and many other species, the area behind the lis-
tener’s head is inaccessible to vision and information about the
presence or motion of objects there can be obtained only by listen-
ing. This particular spatial information is of high survival value
since it may inform about an approaching predator. Interestingly,
in both used datasets features providing pronounced informa-
tion about presence of sound sources behind the head clearly
emerged (see Figures 3B, 8A). Their sensitivity to sound posi-
tion quantified with Fisher information is highest for the area
roughly between 160 and 230◦. Since those basis functions reflect
the HRTF structure, one could speculate that the outer ear shape
(which determines the HRTF) was adapted to make this valubable
spatial information explicit. It is interesting to think that one of
the factors in pinnae evolution, was to provide spectral filters,
highly informative about sound positions behind the head. This,
however, can not be verified within the current setup and remains
a subject of the future research.

4.4. CONCLUSION
Taken together, this paper demonstrates that a theoretical princi-
ple of efficient coding can explain the emergence of functionally
separate neural populations. This is done using an exemplary task
of binaural hearing.

In a previous work by Asari et al. (2006), it has already been
shown that a sparse coding approach may be useful for monaural
position decoding. Their work, however, did not show separation
of spatial and identity information into two distinct channels.
Additionally in contrast to this study (Asari et al., 2006), relied
on simulated data which did not include patterns such as sound
motion.

Learning independent components of binaural spectrograms
has extracted spatially informative features. Their sensitivity to
sound source position, was therefore a result of applying a
general-purpose strategy. This may suggest that seemingly dif-
ferent neural computations may be instantiations of the same
principle. For instance, it may appear that auditory neurons with
spatial and spectrotemporal receptive fields must perform differ-
ent computations. Current results imply that they may be sharing
a common underlying design principle—efficient coding, which
extracts stimulus features useful for performing probabilistic
inferences about the environment.

5. FUNDING
This work was funded by DFG Graduate College “InterNeuro.”

ACKNOWLEDGMENTS
I would like to thank Nils Bertschinger, Timm Lochmann, Philipp
Benner, and Pierre Baudot for helpful discussions and proofread-
ing of this paper.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fncom.2014.
00026/abstract
Movie1.avi - a multimedia version of Figure 8.

Frontiers in Computational Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 26 | 12

http://www.frontiersin.org/journal/10.3389/fncom.2014.00026/abstract
http://www.frontiersin.org/journal/10.3389/fncom.2014.00026/abstract
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Młynarski Efficient coding of the auditory space

REFERENCES
Asari, H., Pearlmutter, B. A., and Zador, A. M. (2006). Sparse represen-

tations for the cocktail party problem. J. Neurosci. 26, 7477–7490. doi:
10.1523/JNEUROSCI.1563-06.2006

Barlow, H. (2001). Redundancy reduction revisited. Network 12, 241–253. doi:
10.1088/0954-898X/12/3/301

Barlow, H. B. (1961). “Possible principles underlying the transformations of sen-
sory messages,” in Sensory Communication, ed W. A. Rosenblith (Cambridge,
MA: MIT Press), 217–234.

Bell, A. J., and Sejnowski, T. J. (1997). The independent components of nat-
ural scenes are edge filters. Vision Res. 37, 3327–3338. doi: 10.1016/S0042-
6989(97)00121-1

Brunel, N., and Nadal, J.-P. (1998). Mutual information, fisher infor-
mation, and population coding. Neural Comput. 10, 1731–1757. doi:
10.1162/089976698300017115

Carlson, N. L., Ming, V. L., and DeWeese, M. R. (2012). Sparse codes for speech
predict spectrotemporal receptive fields in the inferior colliculus. PLoS Comput.
Biol. 8:e1002594. doi: 10.1371/journal.pcbi.1002594

Chechik, G., Anderson, M. J., Bar-Yosef, O., Young, E. D., Tishby, N., and Nelken,
I. (2006). Reduction of information redundancy in the ascending auditory
pathway. Neuron 51, 359–368. doi: 10.1016/j.neuron.2006.06.030

Christianson, G. B., Sahani, M., and Linden, J. F. (2008). The consequences of
response nonlinearities for interpretation of spectrotemporal receptive fields.
J. Neurosci. 28, 446–455. doi: 10.1523/JNEUROSCI.1775-07.2007

Dahmen, J. C., Keating, P., Nodal, F. R., Schulz, A. L., and King, A. J. (2010).
Adaptation to stimulus statistics in the perception and neural representation
of auditory space. Neuron 66, 937–948. doi: 10.1016/j.neuron.2010.05.018

Escabı, M. A., and Schreiner, C. E. (2002). Nonlinear spectrotemporal
sound analysis by neurons in the auditory midbrain. J. Neurosci. 22,
4114–4131.

Gill, P., Zhang, J., Woolley, S. M., Fremouw, T., and Theunissen, F. E. (2006).
Sound representation methods for spectro-temporal receptive field estimation.
J. Comput. Neurosci. 21, 5–20. doi: 10.1007/s10827-006-7059-4

Greenwood, D. D. (1990). A cochlear frequency-position function for sev-
eral species 29 years later. J. Acoust. Soc. Am. 87:2592. doi: 10.1121/1.
399052

Grothe, B., Pecka, M., and McAlpine, D. (2010). Mechanisms of sound localization
in mammals. Physiol. Rev. 90, 983–1012. doi: 10.1152/physrev.00026.2009

Harper, N., and Olshausen, B. (2011). “what” and “where” in the auditory
system - an unsupervised learning approach. COSYNE 2011 Proceedings
(Salt Lake City, UT).

Harper, N. S., and McAlpine, D. (2004). Optimal neural population coding of an
auditory spatial cue. Nature 430, 682–686. doi: 10.1038/nature02768

Hoyer, P. O., and Hyvärinen, A. (2000). Independent component analysis applied
to feature extraction from colour and stereo images. Network 11, 191–210. doi:
10.1088/0954-898X/11/3/302

Hunt, J. J., Dayan, P., and Goodhill, G. J. (2013). Sparse coding can predict primary
visual cortex receptive field changes induced by abnormal visual input. PLoS
Comput. Biol. 9:e1003005. doi: 10.1371/journal.pcbi.1003005

Hyvärinen, A., Hurri, J., and Hoyer, P. O. (2009). Natural Image Statistics, Vol. 39.
London: Springer. doi: 10.1007/978-1-84882-491-1

International Phonetic Association. (1999). Handbook of the International Phonetic
Association: A guide to the use of the International Phonetic Alphabet. Cambridge:
Cambridge University Press.

Jane, J. Y., and Young, E. D. (2000). Linear and nonlinear pathways of spectral infor-
mation transmission in the cochlear nucleus. Proc. Natl. Acad. Sci. U.S.A. 97,
11780–11786. doi: 10.1073/pnas.97.22.11780

Katznelson, Y. (2004). An Introduction to Harmonic Analysis. Cambridge, UK:
Cambridge University Press. doi: 10.1017/CBO9781139165372

Klein, D. J., Konig, P., and Kording, K. P. (2003). Sparse spectrotempo-
ral coding of sounds. EURASIP J. Appl. Signal Proc. 7, 659–667. doi:
10.1155/S1110865703303051

Kulkarni, A., and Colburn, H. S. (1998). Role of spectral detail in sound-source
localization. Nature 396, 747–749. doi: 10.1038/25526

Lewicki, M. S. (2002). Efficient coding of natural sounds. Nat. Neurosci. 5, 356–363.
doi: 10.1038/nn831

Maier, J. K., Hehrmann, P., Harper, N. S., Klump, G. M., Pressnitzer, D.,
and McAlpine, D. (2012). Adaptive coding is constrained to midline
locations in a spatial listening task. J. Neurophysiol. 108, 1856–1868. doi:
10.1152/jn.00652.2011

Miller, L. M., Escabí, M. A., Read, H. L., and Schreiner, C. E. (2002).
Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex.
J. Neurophysiol. 87, 516–527.

Olshausen, B. A., and Field, D. J. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature 381, 607–609.
doi: 10.1038/381607a0

Olshausen, B. A., and Field, D. J. (1997). Sparse coding with an overcomplete basis
set: A strategy employed by v1? Vision Res. 37, 3311–3325. doi: 10.1016/S0042-
6989(97)00169-7

Qiu, A., Schreiner, C. E., and Escabí, M. A. (2003). Gabor analysis of audi-
tory midbrain receptive fields: spectro-temporal and binaural composition. J.
Neurophysiol. 90, 456–476. doi: 10.1152/jn.00851.2002

Rehn, M., and Sommer, F. T. (2007). A network that uses few active neurones
to code visual input predicts the diverse shapes of cortical receptive fields. J.
Comput. Neurosci. 22, 135–146. doi: 10.1007/s10827-006-0003-9

Robles, L., and Ruggero, M. A. (2001). Mechanics of the mammalian cochlea.
Physiol. Rev. 81, 1305–1352.

Roweis, S. (1998). “Em algorithms for pca and spca,” in Advances in Neural
Information Processing Systems (Cambridge, MA), 626–632.

Saxe, A., Bhand, M., Mudur, R., Suresh, B., and Ng, A. (2011). “Unsupervised
learning models of primary cortical receptive fields and receptive field plastic-
ity,” in Advances in Neural Information Processing Systems (Cambridge, MA),
1971–1979.

Schnupp, J. W., and Carr, C. E. (2009). On hearing with more than one ear: lessons
from evolution. Nat. Neurosci. 12, 692–697. doi: 10.1038/nn.2325

Schnupp, J. W., Mrsic-Flogel, T. D., and King, A. J. (2001). Linear process-
ing of spatial cues in primary auditory cortex. Nature 414, 200–204. doi:
10.1038/35102568

Singh, N. C., and Theunissen, F. E. (2003). Modulation spectra of natural sounds
and ethological theories of auditory processing. J. Acoust. Soc. Am. 114:3394.
doi: 10.1121/1.1624067

Slee, S. J., and Young, E. D. (2013). Linear processing of interaural level difference
underlies spatial tuning in the nucleus of the brachium of the inferior colliculus.
J. Neurosci. 33, 3891–3904. doi: 10.1523/JNEUROSCI.3437-12.2013

Smith, E. C., and Lewicki, M. S. (2006). Efficient auditory coding. Nature 439,
978–982. doi: 10.1038/nature04485

Smith, Z. M., Delgutte, B., and Oxenham, A. J. (2002). Chimaeric sounds reveal
dichotomies in auditory perception. Nature 416, 87–90. doi: 10.1038/416087a

Strutt, J. W. (1907). On our perception of sound direction. Philos. Magazine 13,
214–232. doi: 10.1080/14786440709463595

Terashima, H., and Okada, M. (2012). “The topographic unsupervised learning
of natural sounds in the auditory cortex,” in Advances in Neural Information
Processing Systems 25 (Cambridge, MA), 2321–2329.

Warfusel, O. (2002). Listen hrtf database. Avilable online at: http://
recherche.ircam.fr/equipes/salles/listen/index.html

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 04 November 2013; accepted: 19 February 2014; published online: 07 March
2014.
Citation: Młynarski W (2014) Efficient coding of spectrotemporal binaural sounds
leads to emergence of the auditory space representation. Front. Comput. Neurosci. 8:26.
doi: 10.3389/fncom.2014.00026
This article was submitted to the journal Frontiers in Computational Neuroscience.
Copyright © 2014 Młynarski. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Computational Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 26 | 13

http://recherche.ircam.fr/equipes/salles/listen/index.html
http://recherche.ircam.fr/equipes/salles/listen/index.html
http://dx.doi.org/10.3389/fncom.2014.00026
http://dx.doi.org/10.3389/fncom.2014.00026
http://dx.doi.org/10.3389/fncom.2014.00026
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Efficient coding of spectrotemporal binaural sounds leads to emergence of the auditory space representation
	Introduction
	Materials and Methods
	Simulated Sounds
	Natural Sounds
	Simulated Cochlear Preprocessing
	Independent Component Analysis
	Analysis of Learned Basis Functions

	Results
	Simulated Sounds
	Emergence of model spatial receptive fields
	Decoding of the sound position

	Natural Sounds
	Properties of the learned representation
	Spatial sensitivity of binaural basis functions


	Discussion
	Linear Processing of Spectrotemporal Binaural Cues
	Complex Shapes of Binaural Strfs
	The Role of HRTF Structure
	Conclusion

	Funding
	Acknowledgments
	Supplementary Material
	References


