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Computational components of 
visual predictive coding circuitry
Stewart Shipp *

Institute of Ophthalmology, University College London, London, United Kingdom

If a full visual percept can be said to be a ‘hypothesis’, so too can a neural 
‘prediction’ – although the latter addresses one particular component of 
image content (such as 3-dimensional organisation, the interplay between 
lighting and surface colour, the future trajectory of moving objects, and 
so on). And, because processing is hierarchical, predictions generated at 
one level are conveyed in a backward direction to a lower level, seeking 
to predict, in fact, the neural activity at that prior stage of processing, and 
learning from errors signalled in the opposite direction. This is the essence 
of ‘predictive coding’, at once an algorithm for information processing 
and a theoretical basis for the nature of operations performed by the 
cerebral cortex. Neural models for the implementation of predictive coding 
invoke specific functional classes of neuron for generating, transmitting 
and receiving predictions, and for producing reciprocal error signals. 
Also a third general class, ‘precision’ neurons, tasked with regulating the 
magnitude of error signals contingent upon the confidence placed upon 
the prediction, i.e., the reliability and behavioural utility of the sensory data 
that it predicts. So, what is the ultimate source of a ‘prediction’? The answer 
is multifactorial: knowledge of the current environmental context and the 
immediate past, allied to memory and lifetime experience of the way of 
the world, doubtless fine-tuned by evolutionary history too. There are, in 
consequence, numerous potential avenues for experimenters seeking to 
manipulate subjects’ expectation, and examine the neural signals elicited 
by surprising, and less surprising visual stimuli. This review focuses upon 
the predictive physiology of mouse and monkey visual cortex, summarising 
and commenting on evidence to date, and placing it in the context of the 
broader field. It is concluded that predictive coding has a firm grounding in 
basic neuroscience and that, unsurprisingly, there remains much to learn.
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1 Introduction

This review addresses functional diversity amongst pyramid neurons of the cerebral 
cortex – how far does current knowledge of anatomical and physiological characteristics 
permit their classification in terms of the computational roles envisaged by predictive 
coding theory? It extends a series examining the neural implementation of one theory in 
particular, the generalised predictive coding (gPC) scheme of Friston (2005) and Kanai 
et al. (2015): a generic comparison of the workings of visual and motor cortex (Shipp et al., 
2013), closer scrutiny of the intrinsic circuitry of areas of visual cortex (Shipp, 2016) and 
an examination of the patterning of hierarchical, extrinsic connections between those 
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areas (Shipp and Friston, 2023). Here, these structural principles of 
neural circuitry will serve as a framework in which to shift the focus 
to visual physiology. In the voluminous literature accumulated to date, 
how does the balance lie between confirmation or refutation of gPC 
– or toward blithe indifference?

There are, of course, several extant strains of hierarchical PC 
theories of cortical function, all tracing their ancestry from 19th 
century precepts that the brain should be  capable of forming a 
predictive model of its environment, as opposed to simply registering 
passively the sensations it encounters (Helmholtz, 1860/1962). Some 
reiterate such heuristics (Keller and Mrsic-Flogel, 2018), whilst others 
have an explicit algorithmic basis, incorporating Bayesian statistics 
such that percepts are optimised by weighing momentary sensory 
evidence against prior knowledge and experience of the environment 
(Rao and Ballard, 1999; Friston and Kiebel, 2009; Spratling, 2016). 
Whatever their nature, all such theories posit two principal 
populations of computational units (i.e., neurons) reciprocally 
exchanging signals: so-called ‘prediction units’ and ‘error units’. 
Predictions flow down the hierarchy, their imperfections eliciting 
error signals in the reverse direction, acting to refine, or optimise 
predictions. Where this exchange is configured to traverse cortical 
areas at separate hierarchical levels, the assignment of computational 
roles to sub-populations of neurons is apodictic: backward projecting 
neurons must be prediction units, and forward projecting units must 
be error units (Mumford, 1992; Rao and Ballard, 1999; Friston, 2005; 
Bastos et al., 2012).

There are, however, significant numbers of neurons that lack such 
extrinsic projections: virtually all inhibitory interneurons, plus certain 
subclasses of pyramid neuron distributed unequally across cortical 
layers. The latter, ‘local’ pyramid neurons are rarely explicitly identified 
by anatomical study, as that requires reconstructing individual cell 
morphology (by intracellular dye injection or, classically, Golgi 
staining) to determine that no axonal process passes out of cortex into 
white matter. In primates, pyramid neurons in layer 2 and layer 4 (or 
layer 4C of primary visual cortex) are inferred to be local, on account 
of rarely, or never, being labelled by retrograde tracers injected into 
remote areas of cortex or any subcortical structure. The same does not 
apply to mice, where a continuous distribution of extrinsically 
projecting pyramid neurons occupies layers 2–6, precluding this 
indirect identification of local pyramids (Berezovskii et al., 2011). 
Analysis of pyramid neuron morphology (both extrinsic and local) 
reveals many subtypes of dendritic and axonal arborisation, varying 
in their relative profusion, laminar involvement and lateral spread; a 
rich tapestry, in other words, upon which to seek to map the 
computational architecture of gPC. A provisional scheme, or ‘template’, 
is outlined below. By way of introduction, gPC invokes six basic 
computational values. The exchange of prediction and prediction-
error comes in two classes, relating to ‘causes’ (categorical variables 
such as colours, shapes, familiar items, gestures) and ‘states’ (dynamic 
temporal relationships between causes). Further, gPC models a 
probability distribution (or ‘expectation’) of both the mean and 
variance of these values, the latter being modelled by inverse variance, 
namely ‘precision’. As the estimate of precision is a second form of 
prediction, gPC specifies two distinct streams of backward messaging 
(Friston and Kiebel, 2009).

The provisional gPC ‘template’ circuitry offers some basic sanity 
checks with reference to known patterns of translaminar and lateral 
intrinsic connectivity, and links to what little is known of the generic 

physiology of particular layers, and of particular cell types. Building 
on these preliminaries, the focus of examination will then shift to 
certain select experimental paradigms cast in the mould of PC 
theories that aim to test or, at least, elucidate the mechanisms proposed 
for predictive processing.

2 gPC template construction

Figure  1 is a schematic, ‘neural’ rendition of the serial 
computational architecture of the gPC algorithm, configured from the 
perspective of error (ERR) units, with hierarchy ascending from left 
to right. Signals from ERR units, weighted by their precision, are 
directly processed by expectation units – specifically those labelled 
EXPC – that represent specific features, or causes of sensory data 
(equivalent to what are termed ‘coding’, ‘value’ or ‘internal 
representation’ units in other accounts). The units labelled EXPP 
express a nonlinear function of the EXPC value, that serves as the 
prediction fed back to the ERR units, where it is compared with (i.e., 
subtracted from) the input ERR units receive from subordinate EXPC 
units (shown at far left). All units are shown as pairs, corresponding 
to separate computation of values pertaining to causes and states; dual 
links show transmission retaining these separate identities, and single 
links where they are integrated. An important distinction, not 
rendered here, is that the computation of states is discrete, in that 
message passing is complete within a single stage of the computation 
(and recapitulated in subsequent stages); for causes this not so, as the 
unidirectional messaging from ERR to EXPC and from EXPP back to 
ERR takes place between serial stages of computation. See Figure 1 of 
Shipp (2016) for an alternative, fuller rendition of gPC architecture.

Figure 2 maps this scheme upon the basic elements of intrinsic 
and extrinsic neural circuitry linking two cortical areas, though 
simplified by omitting the computational units relating to states. It is 
referred to as a ‘template’ to indicate its provisional and rather 
elementary nature in comparison to the known complexity of cortical 
wiring. The format is slightly more abstract than previous renditions 
of the gPC template, but relies upon the same analysis of circuit 
details, largely drawn from primate visual cortex (e.g., the relationship 
between areas V2 and V4). Note that V1 is less suitable for a generic 
model, on account of its unique laminar structure and the fact that, 
being at the base of the hierarchy, it does not issue back connections 
to a subordinate cortical area.

2.1 Forward pathway via layers 4 and 3B

ERR output units correspond to feedforward (FF) pyramid 
neurons, that are concentrated in layer 3B (FF neurons also occur in 
layers 5 and 6, and some are scattered above layer 3B); they project 
principally upon layer 4 but also, less densely, above layer 4 (Rockland 
and Pandya, 1979; Lund et al., 1981; Zeki and Shipp, 1989; Rockland, 
1992a). Thus synaptic contact with pyramid neurons of layer 3B seems 
likely, either upon a cell body or upon its basal dendrites ramifying 
within layer 4. These neurons would be interpreted as intrinsic EXPC 
units, subserving the minimal, disynaptic chain through an area 
specified by gPC; the second synapse is upon an FF ERR unit, again 
in layer 3B. Following Bastos et al. (2012), the smaller local pyramid 
neurons of layer 4 are interpreted as intrinsic ERR units, the first stage 
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of a putative tri-synaptic chain through the area. Existing theories of 
the function of the granular layer 4 of cortex – amplification, and/or 
interpolation of afferent signals – are not incompatible with the gPC 
model. Empirical verification of the minimal number of links in an FF 
chain through an area is vanishingly scarce (across systems and 
species): but, in primates, the pathways from magno- and parvo-
cellular LGN through V1 to V5 and V4 have, respectively, been 
demonstrated to be disynaptic and trisynaptic (Ninomiya et al., 2011); 
the latter is confirmed by cell-morphological analysis of intrinsic 
circuitry, in that only local, but not FF pyramid neurons of the 
superficial layers of V1 were found to receive direct contacts from 
parvocellular relay neurons of layer 4Cb (Sawatari and Callaway, 
2000). Hence these two pathways through V1 serve as analogues for 
the di-and trisynaptic chains devised by the gPC template for 
traversing areas of extrastriate cortex.

Each iteration of the computation of expectation combines the 
current expectation with prediction error arising from the previous 
iteration. Thus reciprocal connections between EXPC units in layer 
3B stand in for the recurrent inputs shown in Figure  1. This is 
supported by evidence of preferential connectivity amongst 
superficial pyramid neurons of similar feature selectivity (Livingstone 
and Hubel, 1984b; Yoshioka et  al., 1996; Hu and Roe, 2022), 
particularly co-axially aligned orientation tuning (Bosking et  al., 
1997; Sincich and Blasdel, 2001; Iacaruso et al., 2017) and the fact that 
layer 3 is found to demonstrate a high density lattice of extended 
lateral connections in most (primate) areas, without known 

exceptions (Lund et al., 1993). By contrast, the negative feedback loop 
between EXPC and ERR units should be formed by more localised 
connections. As previously discussed (Shipp, 2016), somatostatin 
expressing interneurons have the appropriate characteristics for the 
feature selective inhibition of EXPC units by ERR units; PV expressing 
interneurons (‘basket cells’, specifically) have longer range axonal 
arbours and are better suited for the role of gain control within the 
extended EXPC network. Evidence for the exclusion of FF ERR units 
from a large-scale lateral network is provided by the study of Ichinohe 
et  al. (2012) who performed a two-stage procedure, using three 
distinct retrograde tracers, to examine connections between areas 
TEO and TE in monkeys. Stage 1 visualised, in vivo, several separate 
patches of FF neurons in area TEO projecting to the site of a single 
injection of (red) tracer in area TE. In stage 2, two other tracers were 
injected in TEO, one (green) directly into a patch of red labelled cells 
(i.e., amidst identified TE-efferent cells), the other (gold) at a site 
external to those patches – giving rise to two further patchy systems 
of labelled cells, this time revealing networks of intrinsic connections 
within TEO. These three sets of labelled cells formed just two distinct 
networks, one formed by heavily overlapping patches of red and 
green labelled cells, the other by separate gold-labelled patches 
interdigitated between them (− presumptively, the red/green patches 
corresponding to a set of columns with featural selectivity congruent 
with that of the injection site in area TE, and the gold patches 
representing an incongruent feature). Crucially, despite the 
co-distribution of the ‘red’ and ‘green’ networks, double-labelled 

FIGURE 1

A simplified format for the computational architecture of the gPC algorithm. Dual expectation (EXP) and prediction error (ERR) units undertake parallel 
computations of causes and states; these are depicted as unit pairs in darker and lighter tones – but unspecified as to which is which, to reflect a 
commonality of computational strategy. The critical distinction, not rendered here, is that the exchange of messages between hierarchical stages, i.e., 
between levels (i) and (i  +  1), applies only to the computation of causes; by contrast, the computation of states is discrete within each stage. Dual 
communications indicate transmission where cause and state values retain their separate identities; arrow terminals denote a positive effect, round 
terminals a negative effect. Single arrows (with forked tails) indicate transmission where both recipients in a pair of EXP units integrate both cause and 
state values (though independently and non-identically). Two types of EXP unit, ‘coding’ and ‘prediction’, are distinguished: the former (EXPC) encode 
causal features or feature-relationships at a certain level of abstraction, contingent on the hierarchical stage; the latter (EXPP) expresses a nonlinear 
transformation of the EXPC value suitable for predicting a corresponding value of EXPC expressed at the preceding stage (for causes), or the same stage 
(for states). Finally, forward (rightward) transmission from ERR to EXP units is regulated by precision, that controls the gain of ERR signals and hence 
their impact upon higher level processing. See Appendix A of Kanai et al. (2015) for the equations constituting this formulation of the gPC algorithm.
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(green/red) cells were extremely scarce, apart from the immediate 
vicinity of the green tracer injection, i.e., within the target patch of 
red-labelled TE efferent cells, where they were common. The outcome 
was thus entirely consistent with the gPC template of Figure 2 in 
showing that, as the authors themselves concluded, FF neurons’ axon 
collaterals make only short-range intrinsic connections and that 
longer range intrinsic connections are only formed by neurons 
lacking a FF projection (Ichinohe et al., 2012).

Arguably, of course, that study does not conclusively demonstrate 
that the larger scale intrinsic network of putative EXPC units in area 
TEO purely comprised local pyramids, as the neurons concerned 
might have formed extrinsic connections to sites anywhere in the 
brain outside area TE. As noted above, local pyramids are rarely 
explicitly identified – although one prominent type has been 
documented in layer 3B of area V2 (Lund et al., 1981). However, to 
dwell on this point, it is worth noting that the template only precludes 
EXPc units from contributing to the subsequent stage of gPC 
computation (i.e., to a higher, more abstract level of featural 
processing). It does not outlaw outputs to external systems utilising 
visual information at a certain level of abstraction, e.g., to medial 
temporal lobe/hippocampus for the purposes of associative memory 
encoding; or, to the caudate/putamen input stage of the subcortical 
basal ganglia loop, to learn the sensory context of rewarded actions. 
Indeed, EXP rather than ERR units are the natural candidates for such 
an ancillary role.

2.2 Backward pathways from superficial 
and deep layers

Anatomically, feed-backward (FB) pathways have bipolar origins 
and bipolar terminations (Markov et  al., 2014; Shipp, 2016). The 
superficial stream, projecting mainly from layer 3A, focuses upon 
layer 1. The deep stream, originating in layers 5 and 6, terminates 
more equally between the superficial and deep layers; it also has 
greater range, in that it may span several levels of hierarchy. As noted 
above, the gPC algorithm provides for two forms of backward 
messaging, prediction and precision. The gPC template of Figure 2 
provisionally allocates precision FB units to layers 3A and 5, and 
prediction FB units to layer 6. Precision FB units should be capable of 
regulating the gain of FF ERR units by virtue of contacting their apical 
dendrites arborising in layer 1 – a process known as ‘apical 
amplification’ (Phillips, 2017). By contrast, prediction (EXPP) units 
should be capable of a more driving influence upon their targets – also 
nominated as EXPP units – in order to govern the information content 
of their signalling; this would be  mediated by terminating upon 
perisomatic dendrites, as better achieved by the deep component of 
the backward projection to layers 5 and 6. Evidence consistent with 
these assignments has recently been obtained for looped connections 
between V2 and V1 in primates: specifically, the laminar distribution 
in V2 of FB neurons determined to make direct synaptic contact upon 
the FF neurons of V1 that project to V2. This subpopulation of FB 

FIGURE 2

Model neural circuitry (or ‘template’) for gPC computational architecture. The template depicts elements of the intrinsic and extrinsic circuitry linking 
two areas at successive levels in mid-hierarchy (e.g., areas V2 and V4 of primate visual cortex). These are the minimum components (essentially, a 
‘neural skeleton’) for implementing the gPC algorithm, further simplified by omitting the computational apparatus pertaining to states. The 
computational units comprise EXPC, EXPP and ERR classes, as defined in Figure 1, plus ‘Prc’ units, encoding values of precision. EXPc units in layer 3B at 
both levels can be interpreted as intrinsic pyramids; for diagrammatic reasons each shows just a subset of a common connectome. The EXPP unit in 
layer 6 at the higher level is a FB projection neuron; the EXPP unit in layer 6 at the lower level is an intrinsic pyramid, receiving FB input. The extrinsic 
ERR unit, shown in level (i), is an FF projection neuron; the ERR unit in layer 4 of level (i  +  1) is an intrinsic, small pyramid (or ‘granule’ cell), characteristic 
of this layer. Prc units in layers 3A and 5 are also FB projection neurons. Solid arrowed lines indicate direct monosynaptic excitatory connections; Prc 
unit outputs with arc endings are modulatory (N.B. contacting apical dendrites in superficial layers, not the cell body in layer 3B). Ball endings indicate 
inhibitory transmission through an intervening interneuron. Dashed connectors leading to, or from EXPP units in layer 6 denote translaminar 
transmission of unspecified nature (see text for further details).
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neurons was prominent in layers 3A and 5 of V2, but largely absent 
from layer 6 (Siu et al., 2021). By contrast blanket retrograde tracing, 
that detects sources of FB input to all cells in V1, shows a higher 
frequency of FB neurons in layer 6 than layer 5 of V2 (Markov et al., 
2014). If these layer 6 FB neurons of V2 do not directly contact 
superficial FF cells, they must be inferred to focus their backward 
projection upon the deep layers of V1. The gPC template takes this 
anatomical pattern to be conserved between higher extrastriate areas.

The nature of the translaminar circuitry connecting the EXPP units 
in layer 6 to layer 3B is less well specified, with several possibilities at 
both the higher level area (from layer 3 to 6) and the lower level area 
(from layer 6 to 3). In the higher level area, the pathway leading to FB 
EXPP units must compute a nonlinear transform of combined output 
from both cause and state EXPC units (as indicated in Figure 1). Studies 
of translaminar connectivity in extrastriate areas V2, V4 and TE concur 
that a direct output from layer 3 to layer 6 is present, but lighter than 
that to layer 5, which itself has output to layer 6 (Yoshioka et al., 1992; 
Levitt et al., 1994; Fujita and Fujita, 1996). Thus there can be both direct 
and indirect (mono- and di-synaptic) routes to contact peri-somatic 
dendrites of layer 6 pyramids. A third route is direct transmission to 
rising dendritic arborisations of layer 6 pyramids within layer 5, or 
within layer 3B itself (Lund et al., 1981; Yoshioka et al., 1992). These 
possibilities might be viewed as complementary, rather than mutually 
exclusive. Turning to the lower level area, recipient EXPP units here are 
inferred to be  local pyramids with superficial axon arborisations 
reaching to layer 3. Several types of pyramid neuron matching this 
morphological description have been described in layers 5 and 6 of V1 
(Callaway and Wiser, 1996; Wiser and Callaway, 1996, 1997; Briggs and 
Callaway, 2001). They would then transmit to FF ERRC units via a local 
interneuron [and, again in V1, several morphologically distinct 
candidates are available (Lund and Wu, 1997)]. Direct inhibitory 
transmission is also possible – specifically from layer 5 interneurons of 
V1 (Lund et al., 1988) – though less favoured, in view of the fact that 
interneurons are less numerous than pyramid neurons. The known 
anatomical picture for extrastriate cortex is far less detailed; columnar 
transmission from layer 6 to layer 3 is reported, though the specific 
cells of origin were not determined (Yoshioka et al., 1992; Levitt et al., 
1994; Fujita and Fujita, 1996).

Taking an overview, it is remarkable – and encouraging – that an 
information processing theory with non-biological origins (Bayesian 
statistics and machine learning) should map quite so adroitly upon 
cortical circuitry: that FF and FB projection neurons do form separate 
populations, with scant traces of hybridisation (Vezoli et al., 2021; 
Shipp and Friston, 2023); that the duality of backward messaging can 
be accommodated by the bipolar organisation of FB pathways; and 
that intrinsic neurons exist with appropriate lateral and translaminar 
connections to fulfil the requisite links between FF and FB systems. 
It ratifies much of the basic framework, if little of the baroque 
ornamentation of cortical architecture. But that is foundation enough 
to begin to consider how these ideas translate into characteristics of 
physiological function.

3 Generic physiology

At first sight, it can seem bizarre that half a century of cortical 
neurophysiology fails to arbitrate the pivotal question – is gPC a viable 
theory of cortical function? But the grounds for that inadequacy are 

not so cryptic: reportable ‘findings’ typically characterise select 
populations of neurons, and common criteria for defining 
sub-populations of neurons effectively amalgamate the notional gPC 
functional classes. Columnar sets of EXP, ERR and Prc units likely 
share similar featural selectivity (e.g., contour orientation, border 
ownership, motion direction, retinal disparity, higher forms of shape 
or facial configuration, etc). They might be distinguished by rather 
more subtle attributes of spatiotemporal context sensitivity or spiking 
dynamics that do not immediately suggest themselves to investigators 
seeking objective criteria for parcellation of collective data. Anatomical 
data-partitions by area or by, say, cytochrome-oxidase module, miss 
the boat for similar reasons. Partition by cortical layer, as we shall see, 
offers better prospects: but then, studies undertaking this exercise with 
the necessary rigour are few and far between. For our purposes, 
physiological characterisation ideally pertains to a neural 
sub-population determined by cell morphology, or extrinsic 
projection type, or genetic phenotype; these are presently facilitated 
by genetic manipulation of mouse lines, but not yet primate.

This is not to dismiss the ‘generic’ neurophysiological literature 
(i.e., for present purposes, that which does not explicitly address 
predictive processing). There is much that is insightful: findings that 
are consonant with gPC theory, or that expand concepts of how the 
cortex might implement the gPC algorithm. Some have been reviewed 
previously (cortico-geniculate transmission, apical dendritic function, 
lateral connectivity amongst neurons with common feature selectivity) 
and will not be  recapitulated here (Shipp, 2016). The following 
examples augment this (far-from-encyclopaedic) synopsis.

3.1 Simple and complex cells

Following their discovery in V1 of cats and monkeys, Hubel and 
Wiesel’s satisfying intuition that ‘complex’ receptive fields are formed 
by converging inputs from cells with ‘simple’ receptive fields has stood 
the test of time. Paired recordings from the two cell types in cat V1 
concur with this hierarchical theory, showing that complex cells are 
driven by monosynaptic inputs from pools of synchronously spiking 
simple cells, with no evidence for monosynaptic excitation in the 
reverse direction (Alonso and Martinez, 1998; Yu and Ferster, 2013). 
Translating this generic finding to the monkey, the point of note here 
is that single cells of layer 4B of V1 identified by antidromic activation 
to project to area V5 were found to be highly direction selective with 
complex receptive fields – all six of them (plus six in layer 6), a rare 
example of physiological characterisation of a certified projection type 
(Movshon and Newsome, 1996). These complex cells, anatomically 
identified as large stellate cells (Shipp and Zeki, 1989; Nassi and 
Callaway, 2007), must be fed by simple cells, some of them in layer 
4Ca (Blasdel and Fitzpatrick, 1984; Livingstone and Hubel, 1984a; 
Hawken et al., 1988; Gur et al., 2005). The latter are intrinsic, small 
spiny stellate cells, receiving magnocellular geniculate input and 
projecting upon layer 4B (Yabuta and Callaway, 1998). As noted above, 
the implied minimal disynaptic route from LGN to V5 via layers 4Ca 
and 4B has been empirically confirmed by trans-synaptic retrograde 
tracing with rabies virus (Ninomiya et al., 2011). Detailed statistical 
modelling of data recorded from this system again weighs in favour of 
a purely excitatory feedforward model (Lochmann et  al., 2013), 
whereby direction-selective complex cells are fed by pools of similarly 
direction-tuned simple cells, inheriting their directional properties 
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but creating invariance for spatial phase (i.e., the typical ‘complex’ 
property of uniform sensitivity to both light and dark contrast across 
the entire receptive field).

From the perspective of gPC, the circuitry dictates that the simple 
cells of 4Ca must be EXP units, and the output complex cells of layer 
4B must be ERR units. Nothing in the above analysis validates the 
implied ‘expectation’ or ‘error’ functionality, but two conclusions (or 
considerations) do present themselves. The first, quite simply, is that 
all this evidence concurs with the unidirectional excitatory contact 
from EXP units to ERR units shown by the gPC template (Figure 2). 
The second informs the nature of predictive processing. The prediction 
fed back from V5 to the prospective ERR unit in layer 4B (that might 
arrive via layer 6 of V1 or, in this unique system, terminate directly 
within layer 4B itself) should match what that unit is capable of 
signalling, namely the direction of motion of an object or texture 
irrespective of its spatial phase or contrast. Hence, it does not precisely 
match the nature of any individual EXP signal forwarded by a simple 
cell. Whilst those forward EXP signals to the ERR unit are spatial 
phase or contrast sensitive (Lochmann et al., 2013), the backward 
predictive signal is not; the latter predicts a population property of the 
of EXP units, that the ERR unit abstracts from its inputs. There is little 
reason to suppose that such a pooling process – a computational step 
operating in the forward pathway from EXP to ERR units – is unique 
to this early level of the motion pathway. The latter is merely the sole 
system where the requisite anatomical and physiological findings 
coalesce sufficiently to discern it.

3.2 Precision

Precision, by regulating the impact of ascending error signals 
upon higher level representations, operates the Bayesian balance 
between incoming sensory data and prior expectation in determining 
what we actually perceive, or do, depending on the brain system in 
question (Adams et  al., 2013). Prior expectation, of course, is 
multifactorial, drawing upon lifetime experience allied to knowledge 
of the current environmental and behavioural context. And, just as 
representation, and expectation, grow more abstract across the 
cortical hierarchy, so too does the nature of precision. At the lowest 
level precision predicts the reliability of sensory data, and can 
be estimated from the magnitude of the accompanying prediction 
errors. This optimises the veracity of perception. Higher levels 
progressively incorporate behavioural context, or in other words the 
expected relative utility of various forms of sensory data. Thus 
precision can be  fairly equated with attentional mechanisms in 
modulating brain activity. In the visual system attentional effects 
permeate just about every structure outside the retina. So too, 
precision might operate through multiple neural mechanisms: 
proposed candidates include the various neuromodulatory systems, 
corticocortical feedback, and subcortical loops. For example, see 
Shipp and Friston (2023) for a first account of how prediction error 
pooled across feature modality and circulated through the superior 
colliculus and pulvinar might generate precision relating to spatial 
attention. Here, an inferred precision network in the superficial layers 
of area V2 is examined in relation to a potential role in feature attention.

This proposal, relating to feature binding and attention, derives 
from the finding that neurons with bimodal tuning – dual selectivity 
for both chromatic and spatiotemporal features (orientation and/or 

direction selectivity) – are significantly more frequent amongst the 
superficial and deep layers of V2 that receive backward projections 
(Shipp et al., 2009). With respect to the current layer terminology, 
bimodality is a conspicuous feature of layers 2, 3A, 5 and 6 of V2, but 
not of the forward pathway through layers 4 and 3B, where unimodal 
neurons are predominant. It was recognised that, being so positioned, 
bimodal neurons would be capable of mediating feature attention 
effects conveyed via backward pathways (Maunsell and Treue, 2006; 
Liu, 2019) – although, being obtained under the feedback-attenuating 
influence of anaesthesia, the bimodal property itself was likely 
attributable to convergent processing of unimodal forward input from 
V1. For instance there are certain cross-modal psychophysical effects 
demonstrable with bichromatic dot displays, whereby selective 
attention to one component colour determines the direction of a 
motion aftereffect (Sohn et  al., 2004), or enhances sensitivity for 
detection of coherent motion (Croner and Albright, 1997). These are 
challenging to explain when area V5 (Gegenfurtner et al., 1994; Thiele 
et  al., 1999; Barberini et  al., 2005), and its directionally selective 
sources in V1 and V2 (Movshon and Newsome, 1996; Shipp and Zeki, 
2002; Horwitz and Albright, 2005), are all well characterised to lack 
chromatic selectivity.

The proposed mechanism, in which bimodal neurons act as 
‘bridge neurons’ between unimodal outputs, can now be set in the 
broader context of a precision network in V2. Figure 3 shows a model 
of the superficial layers combining pyramid morphology obtained by 
Golgi staining (Lund et al., 1981) with knowledge of connectivity. FF 
signals, relayed from layer 4, are maximal in layer 3B and peter out 
toward layer 2; FB signals are focussed upon layer 1, diminishing in 
intensity through layer 2. Inhabiting this counter-stream architecture 
are pyramid neurons whose dendritic arbors enable differential 
sampling of FF and FB signals. The basal dendrites of deeper pyramids, 
in layer 3, receive FF signals whilst their apical dendrites can sample 
FB signals. By comparison, pyramid neurons lying more superficially 
are observed to have more profuse apical arborisations in layers 1 and 
2. Of note, a corresponding continuum has been quantitatively 
documented in layer 2/3 of mouse V1, where pyramid neurons lying 
more superficially receive progressively less input from layer 4, and 
have progressively broader apical dendritic trees (Weiler et al., 2023). 
In macaque V2, layer 3B houses the forward pathway, posited to 
comprise EXP and ERR pyramid neurons. Layer 3A, by contrast, is the 
primary source of the superficial backward pathway to V1, still well 
within the laminar zone of afferents from layer 4. The pyramid 
neurons here are depicted as precision units, estimating sensory data 
reliability from ascending error signals, but likely also collecting 
modulating influences from layer 1. More superficially, there are 
increasing numbers of neurons inferred to lack extrinsic output 
(confirmed, at least in principle, by a solitary Golgi reconstruction of 
a V2, layer 2 pyramid with axonal arborisation confined to this layer 
(Valverde, 1978)). These are increasingly dominated by intralaminar 
and FB inputs – perhaps exclusively so if the entire dendritic 
arborisation, not merely its apical component, accesses FB drive. All 
of these neurons contribute extensive axon collaterals to a horizontal 
network, noted to be densest in layer 3B. Thus intrinsic superficial 
pyramid neurons may also be interpreted as precision units, tasked 
with local processing of FB signals prior to exerting a modulating 
influence upon elements of the forward pathway.

Our so-called bridge neurons were found throughout layers 2 and 
3A of V2. Being defined by the physiological property of dual-tuning, 
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their identity, connection-wise, as extrinsic or local pyramids is 
unknown. However, they are proposed to make intrinsic connections 
with separate clusters of FF neurons (ergo ERR units) in layer 3B 
transmitting signals relating to form/colour, or motion, respectively, 
to areas V4 and V5. The functional logic of the proposed bridging 
mechanism can be  illustrated with respect to the enhancement of 
sensitivity to coherent dot motion – observed both psychometrically 
(Croner and Albright, 1997) and neurometrically in area V5 of 
macaque monkeys (Croner and Albright, 1999) – when the subset of 
coherent dots, i.e., those moving in a uniform direction, is made 
salient in colour with respect to the co-extensive cloud of dots moving 
incoherently. Suppose the coherent dots are red and move upward. 
The display elicits feature attention to red that, in physiological terms, 
modulates the responsiveness of all red-sensitive visual neurons. 
Amongst bridge neurons tuned to various combinations of colour and 
direction of motion, those selective for ‘red-up’ will experience 
optimal forward drive and backward apical amplification. This 
influence can, in turn, be communicated to FF output neurons with 
matching, albeit unimodal tuning. In this example, the amplification 
of ‘up’ direction-selective neurons efferent to area V5 is the crucial 
outcome, effectively raising sensitivity for coherent motion detection 
in comparison to a monochromatic display. Corroboratory findings 
from human fMRI indicate that V2 plays a pivotal role in mediating a 
colour-motion mis-binding illusion (Zhang X. L. et al., 2014).

Are there further characteristics of layer 2 neurons, interpretable 
as adaptations toward processing of backward input? Unfortunately, 
suitable studies of superficial layer physiology are few and far between, 
certainly in the primate literature. In V1, the receptive fields of layer 2 
neurons were characterised as larger than those of layer 3 but less 

precisely tuned for spatiotemporal features; chromatic properties were 
not assessed (Gur and Snodderly, 2008). The recordings were made in 
alert but passively behaving subjects, and could yet be consistent with 
an intrinsic modulatory role, in contrast to FF neurons in layer 3 with 
better capability to transmit specific, focal image features. Layer 2 also 
showed significantly higher spontaneous activity, perhaps consonant 
with a couple of electrical characteristics of neurons in layer 2 of 
mouse V1 – higher membrane input resistance and longer time 
constants – as noted by Weiler et al. (2023). Whilst, therefore, FB 
precision signalling finds an initial, if tenuous foothold in generic 
physiology, the nature of FF error signalling is more securely rooted 
in well-documented aspects of cellular electrophysiology and neural 
dynamics (Section 3.3).

3.3 Gamma oscillations

Neural oscillations of varied frequency are attributed multiple 
roles in perception and cognition, facilitating signal processing and 
transmission. Gamma rhythms (30-40 Hz and above) are credited 
with regulating effective connectivity or, in other words, mediating 
selective communication within a pluripotent anatomical network 
(Fries, 2005; Akam and Kullmann, 2014; Buzsaki and Schomburg, 
2015; Fries, 2015). Gamma is also characteristic of FF transmission, 
by virtue of asymmetric causality in hierarchical systems (van 
Kerkoerle et al., 2014; Bastos et al., 2015b; Michalareas et al., 2016; 
Ferro et al., 2021), and being more strongly expressed in superficial 
cortex where FF neuron density is maximal (Buffalo et al., 2011). 
Since, in neural models of gPC, FF connections are associated with 

FIGURE 3

Model of a precision network in superficial layers of area V2. Green and red columns, at far left and right, indicate laminar range and intensity of FF and 
FB afferent systems: green, superficial axon terminations of layer 4 granule cells receiving input from V1; red, axon terminations of backward 
projections from areas such as V4 and TEO. Pyramid neurons credited as precision units (red) or ERR units (green) are shown at various depths, those 
lying more superficially bearing more profuse apical dendritic arborisation within layer 1 (basal dendrites not shown); EXP units are omitted. (a) FB 
pyramid in layer 3A identified to project to V1. (b,F) FF pyramids in layer 3B identified to project to either area V4, or V5 (these cells are known to occur 
in segregated clusters). (c,e) Local pyramids in layer 2, inferred to make lateral contacts upon neurons throughout layers 2 and 3. (d) A ‘bridge neuron’ 
– with indeterminate status as local or FB pyramid, but classified physiologically by bimodal feature tuning and conjectured to contact FF pyramids in 
layer 3B. Red arrows indicate lateral communication with predominant origin in backward (precision) processing; olive arrows indicate lateral 
communication originating from integration of forward and backward processing. It is not known precisely how lateral connections distribute across 
peri-somatic, basal or apical dendritic cell compartments; the arrows indicate the target neuron, not the point of contact.
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error signalling, so too must gamma oscillations. This is ratified 
empirically by behavioural paradigms designed to evoke a prediction 
error when conditioned expectation is violated by a ‘surprising’ 
stimulus: transient gamma enhancement is observed, both in EEG/
MEG study of human subjects (Bauer et al., 2014; Brodski et al., 2015; 
van Pelt et al., 2016), and invasive recordings from monkeys (Bastos 
et al., 2020; Esmailpour et al., 2022) as reviewed below (Section 4).

Are gamma oscillations specific to ERR unit activity, or common 
to all superficial layer neurons? Clarification of this question, at least 
in respect of V1, is afforded by the identification of a sub-class of 
excitatory cell characterised by a narrow spike waveform and high 
propensity for burst-firing (Onorato et  al., 2020). These ‘bNW’ 
(bursting, narrow-waveform) neurons comprised 30% of neurons 
recorded in the superficial layers of macaque V1, as distinct from two 
other classes, broad-spiking excitatory neurons and non-bursting 
narrow spiking neurons (inferred interneurons). The crucial 
observation is that, of these three classes, bNW neurons showed the 
tightest phase-locking to the local gamma cycle (determined from 
concurrent recording of the local field potential), and their spikes 
occurred fractionally earlier than the spikes of interneurons, consistent 
with computational modelling of gamma genesis through reciprocal 
E-I interactions (Buzsaki and Wang, 2012). The population of bNW 
neurons thus has the numerical frequency and spiking characteristics 
to serve as ERR units, and anatomically should correspond to the 
superficial FF cells that are densest in layer 3A of V1 (Rockland, 
1992b). Macaque and cat V1 are similar to each other (and dissimilar 
to mouse V1) in generating uniquely strong gamma rhythms upon 
visual stimulation, in comparison to other visual areas. Importantly 
therefore, cat V1 is known to have an equivalent burst-spiking class of 
pyramid neuron – ‘chattering cells’ – further characterised by 
prominent gamma oscillations of membrane potential upon visual 
stimulation, as recorded intracellularly (Gray and McCormick, 1996). 
Notably, cells of this type were restricted to layer 2/3 of cat V1 where 
the great majority of FF neurons are located (Ferrer et al., 1988; Shipp 
and Grant, 1991), and subsequent morphological analysis by cell 
dye-injection indeed revealed axons passing into white matter.

Gamma oscillations can additionally be  seen as a mechanism 
subserving precision, in that they are instrumental in governing 
effective connectivity between cortical areas – according to a 
theoretical construct known variously as ‘communication through 
coherence’ or ‘routing by synchrony’ (Fries, 2005; Kreiter, 2006). This 
is evidenced by simultaneous dual recordings from areas V1 and V4. 
Two studies followed a similar behavioural strategy of cueing attention 
to one or other of a pair of stimuli that were far enough apart to 
activate separate groups of neurons in V1, but close enough to fall 
together within the larger receptive fields of V4 neurons (Bosman 
et  al., 2012; Grothe et  al., 2012). A well-replicated finding in this 
scenario is the ‘shrinking receptive field phenomenon’: faced with such 
dual stimulation, V4 neurons respond selectively to whichever is 
attended, such that a stimulus whose colour or form normally elicits 
a strong response will fail to do so when a less preferred stimulus is 
attended (Moran and Desimone, 1985; Luck et al., 1997; Reynolds 
et al., 1999). In neural terms, attention appears to gate which source 
of afferent input from V1 is able to communicate with V4. The studies 
in question measured gamma coherence (i.e., a consistent phase 
relationship over time between gamma cycles operating in V1 and V4) 
and found that it was substantial with respect to the locus of the 
attended stimulus in V1, and negligible with respect to the other 
(Bosman et  al., 2012; Grothe et  al., 2012). Given such sustained 

coherence, spikes arising during the excitatory phase of one cycle 
might be timed to arrive at the period of maximal excitability of the 
other. The conventional metric for effective connectivity in either 
direction is granger causality (GC; Friston et al., 2014), obtainable as 
a spectrum of transmission magnitude against oscillation frequency. 
And, applying this metric to bidirectional transmission between V1 
and V4 across trials with attention alternating between the two sites 
in V1, the most notable observation is a peak in GC for gamma 
frequencies (60–80 Hz) in the attended condition, for FF transmission 
from V1 to V4 (Bosman et al., 2012).

The neural mechanisms underpinning transareal coherence 
remain poorly understood. Of note, the recordings were local field 
potentials, obtained by intracortical electrodes in one case (Grothe 
et al., 2012) and by sub-pial contacts in the other (Bosman et al., 2012) 
– both susceptible to activity from a broader population of neurons 
than those directly emitting or receiving transcortical signals. 
Furthermore, direct connections between areas V1 and V4 are 
relatively sparse (Yukie and Iwai, 1985; Steele et al., 1991; Nakamura 
et  al., 1993; Ungerleider et  al., 2008), and the bulk of signal 
transmission is likely to relay via area V2, itself known to engage in 
gamma coherence with V1 (Roberts et  al., 2013). Conceivably, 
transareal coherence at gamma frequencies depends upon a gamut of 
precision mechanisms. Within V1, separate stimulation sites should 
desynchronise in order to allow selective coherence with one or the 
other; cholinergic modulation, known to facilitate visual attention, has 
been implicated in mediating such local desynchronisation in occipital 
cortex and area V1 in particular (Pinto et al., 2013; Chen et al., 2015; 
Sajedin et  al., 2019). This might also instantiate laminar-specific 
modulation of inhibitory mechanisms (Katsanevaki et  al., 2023). 
Acting more broadly, subcortical re-entrant loops, operating from 
fronto-parietal control centres via colliculus and pulvinar have long 
been proposed to regulate and coordinate the transareal propagation 
of oscillations (Lopes da Silva et al., 1980; Shipp, 2003, 2004; Bourgeois 
et al., 2020) and evidence to this effect is beginning to accumulate 
(Saalmann et  al., 2012; Fitzgerald et  al., 2013; Zhou et  al., 2016; 
Bonnefond et al., 2017; Quax et al., 2017; Eradath et al., 2021). A 
significant experimental obstacle is the requirement for simultaneous 
recording from multiple, precisely targeted cortical and subcortical 
sites. This Section concludes with a final study – ‘Top-down Beta 
Enhances Bottom-Up Gamma’ (Richter et  al., 2017) – that is 
particularly notable for examining coordinated activity from three 
separate cortical sites and tying together several of the precepts of 
top-down precision regulation as advanced above.

The background to this work is the original proposition that 
top-down signals (in a cognitive sense) exploit coherence in the beta 
range of frequencies (13–30 Hz) and might act to modulate bottom-up 
gamma signals (Wang, 2010). Subsequent systematic evaluation of the 
anatomically validated visual hierarchy in macaques (Bastos et al., 
2015b), and its presumed human equivalent (Michalareas et al., 2016) 
established causal asymmetry in oscillatory transmission: gamma GC 
is prevalent in the forward direction and beta (or alpha/beta) GC in 
the backward direction. Notably, such a decrement in frequency from 
forward to backward transmission is inherent in the gPC algorithm, 
which dictates that expectation/prediction units must show low-pass 
dynamics as a consequence of frequency attenuation in assimilating 
cumulative prediction error (Friston, 2008; Bastos et al., 2015a). The 
study of Richter et al. (2017) utilises the same electrocorticographic 
data mentioned above (Bosman et al., 2012; Bastos et al., 2015b) and 
focuses upon area 7A in addition to V1 and V4 – area 7A being a 
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parietal area implicated in shifting spatial attention (Robinson et al., 
1995; Steinmetz and Constantinidis, 1995) and, whilst something of a 
‘poor relation’ to neighbouring area LIP, holds the advantage of 
accessibility to sub-pial electrodes. Richter et al. (2017) confirm that 
beta GC is greater in the 7A-to-V1 than V1-to-7A direction, and 
enhanced by spatial attention to the site of the V1 electrode in 
question. Furthermore, they show that forward gamma GC to area V4 
from the same V1 electrode is then enhanced: specifically, that there 
is epoch-by-epoch correlation in the joint magnitudes of 7A-to-V1 
beta GC and V1-to-V4 gamma GC, with the effect of the former upon 
the latter being delayed by about 100 msec. This influence of 7A over 
V1 must be mediated indirectly, via V2 and/or other prestriate areas, 
as direct afferents from 7A to V1 are rather sparse, and limited to 
peripheral field within the calcarine sulcus, well away from the 
recording sites upon the occipital surface of V1 (Borra and Rockland, 
2011). Hence, transmission from 7A to V1 is best interpreted as a 
cascaded, high-level precision signal, predicting the behavioural 
significance of a particular visual locus; given the known physiology 
of area 7A, it is unlikely to be predicting featural content, and the 
observed influence was not suppressive. The outcome of the study can 
thus be interpreted as an example of FB precision acting to enhance 
the gain of FF error transmission.

4 Predictive physiology

Aligning with the traditional view of ‘percepts as hypotheses’ 
(Gregory, 1980), ‘predictions’ under gPC are essentially descriptions 
of what is being viewed, according to the current interpretation of 
retinal image content. Representations grow progressively more 
abstract and spatially invariant at higher levels, each level attempting 
to predict details of the less abstract representation present at a 
subordinate level. This is as true in the temporal dimension as in the 
spatial dimension – higher levels employ longer windows of temporal 
integration, as evidenced by varied lines of investigation in humans 
(Hasson et al., 2008; Gauthier et al., 2012; Honey et al., 2012; Tang 
et al., 2014), monkeys (Murray et al., 2014; Chaudhuri et al., 2015; 
Cocchi et al., 2016) and rodents (Piasini et al., 2021; Siegle et al., 2021). 
Thus predictions do encompass temporal forecasts, and this indeed is 
the approach adopted by most experimental paradigms for 
manipulating subjects’ state of expectation: once accustomed to a 
certain series of events, event (i) predicts the occurrence of event 
(i + 1). Intuitively, such procedures might be most effective when the 
sequence is non-arbitrary and ‘natural’ – such as dynamic facial 
expressions, gestures, locomotor movements, or object trajectories 
obeying Newtonian laws of gravity and motion. Although applied in 
non-invasive human studies (Alink et al., 2010; Kok et al., 2013; van 
Pelt et al., 2016; Hogendoorn and Burkitt, 2018; Thomas et al., 2018; 
Blom et al., 2020; Todorova et al., 2021) direct analogues in the realm 
of monkey neurophysiology are absent; instead, the common strategy 
has been to employ arbitrary sequences of static images, with the 
intention of generating various forms of ‘statistical’ expectation.

4.1 Statistical expectation and error 
encoding

Statistical learning is a recognised and well-studied phenomenon 
in humans, referring to automatic memorisation of temporal 

regularities in routine experience, even if the events in question lack 
much behavioural relevance or escape explicit attention. Various 
procedures exploiting this form of statistical expectation have sought 
to determine neural correlates in IT cortex whilst monkeys passively 
view streams of complex objects. The regularity of the stimulus 
paradigm enables an accurate temporal forecast of what is to 
be presented next, where, and when – although ‘what’ is typically the 
experimental variable, ‘where’ and ‘when’ remaining consistent from 
trial to trial. By their nature, statistical predictions should 
be instantiated prior to stimulus onset: thus their neural mechanisms 
might be isolated during a prestimulus period, and affects upon neural 
activity observable immediately from response onset.

The requisite procedure is to ‘train’ (i.e., simply expose) monkey 
subjects to repeated identical short sequences of highly distinctive 
stimuli, normally metrically standardised colour images of objects and 
animals familiar to humans (but likely merely abstract forms from the 
monkeys’ perspective) – typically thousands of times over several 
weeks. Upon subsequent testing, a few trials with altered sequences 
are interspersed amongst the regular ones; the common finding has 
been that the unpredictable ‘deviant’ items in these sequences elicit 
significantly larger responses, consistent with an interpretation that 
the lesser responses to standard items reflect routine predictive 
suppression (Meyer and Olson, 2011; Meyer et  al., 2014; 
Ramachandran et al., 2016, 2017; Kaposvari et al., 2018; Esmailpour 
et al., 2022). In the first study of this nature Meyer and Olson (2011) 
found 41% (33/81) of neurons in area TE of IT cortex (with unknown 
laminar location) displaying this property at a statistical threshold of 
p < 0.05. Neural dynamics (averaged from this subset of 33 putative 
ERR units) showed that the deviant responses were marginally 
delayed, by 6 ms, with respect to standard responses, and that the 
enhanced activity was present from the outset of the response. Or, in 
other words, that the state of expectation slightly accelerated the 
response to a predicted stimulus, and reduced its magnitude from the 
moment of onset.

Subsequent work has clarified that, essentially, each stimulus in 
a learnt sequence predicts its immediate successor, and that there are 
only minor indications of longer range, so called ‘non-adjacent 
dependencies’ (Meyer et al., 2014; Kaposvari et al., 2018). Taking 
advantage of this, Esmailpour et  al. (2022) used learnt stimulus 
triplets, exchanging the second item between triplets in a minority of 
trials during testing. Hence, in these deviant triplets, both the second 
and third items should elicit an error response, as the third item is no 
longer predicted by its immediate predecessor. Testing was conducted 
in interconnected sites of IT and ventrolateral prefrontal cortex, the 
latter a part of frontal area 45 identified by prior fMRI mapping and 
the former in a region of ventral superior temporal sulcal cortex 
reactive to electrical stimulation of area 45. As anticipated, both the 
2nd and 3rd items of deviant triplets elicited enhanced, error-like 
signals; these were registered in both aggregate ‘multiunit’ neural 
spiking and LFP, recorded in both IT and area 45 cortex in a 
non-laminar resolved fashion. Error signals, obtained as such by 
subtracting standard and deviant responses to the same stimulus 
items occurred at longer latency in area 45 (measured as a 44–88 ms 
delay for multiunit activity), consistent with FF transmission from 
IT. For both areas of cortex, deviant responses entailed enhanced 
gamma LFP, in line with evidence reviewed above linking gamma to 
error signalling. In addition, deviance reduced beta power in LFP 
signals, again in both areas; the report also notes that, in standard 
triplets, beta LFP was greater for the 1st and 2nd items, that both 
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predict a successor, in comparison to the 3rd, that does not. The 
reduction of beta activity occasioned by deviant items perhaps 
signifies that the unexpected stimulus acts to erode predictive 
representations of the expected stimulus at higher levels: both in area 
45 with backward output to IT, and in IT with backward output to 
prestriate cortex.

In all these experiments, a correct prediction is compared to a 
misprediction. Logically, each might be  compared to a neutral 
condition, i.e., the absence of any prediction. Two studies addressing 
this issue, as to whether error signals principally comprise predictive 
suppression, or ‘surprise enhancement’ arrived at different 
conclusions: one favouring predictive suppression as the dominant 
component (Ramachandran et  al., 2017), the other surprise 
enhancement (Kaposvari et al., 2018). It is possible that technical 
details of stimulus presentation such as image and sequence duration, 
and the presence or absence of an interstimulus interval are 
confounding factors here. However, it has been explicitly questioned 
whether surprise enhancement can properly substitute for predictive 
suppression within the conceptual framework of predictive coding 
(Feuerriegel et al., 2021). This issue requires greater consideration of 
the neural mechanism(s) generating an error response, and will 
be returned to in discussion.

None of the above studies considers error signalling in relation to 
different classes of stimulus selectivity – indeed IT responses to objects 
are notoriously difficult to classify in systematic fashion. Face sensitive 
neurons, however, show selectivity for head orientation, such as 
frontal or profile view, and for individually specific configurations of 
facial features – often characterised as ‘view’ and ‘identity’ selectivity 
– and offering a basis for the investigation of selective error signalling. 
The statistical learning study in question here (Schwiedrzik and 
Freiwald, 2017) focused upon ‘ML’, a mid-order face patch known to 
display view selectivity. Subsequent face patches ‘AL’ and, at the 
highest level, ‘AM’ progressively develop identity selectivity 
accompanied by view invariance (Freiwald and Tsao, 2010). This raises 
an intriguing question: what is the nature of error signalling in a face 
patch, ML encoding view yet likely receiving backward predictions 
from areas in which view selectivity is eroded in favour of 
identity coding?

Following standard practice Schwiedrzik and Freiwald (2017) 
allowed monkeys an extensive period (30 days) to learn nine fixed 
pairs of ‘predictor’ and ‘successor’ achromatic human faces; 
subsequent testing introduced deviant pairings that were designed to 
elicit errors in expected view, or expected identity, or both view and 
identity. The nine learnt pairs comprised all possible combinations of 
frontal, left profile and right profile view, all 18 faces having a unique 
identity. A consequent flaw in this design is that any unfamiliar 
pairing of these 18 face images must necessarily evoke an identity 
error; thus, to achieve a view-only error condition, it was necessary to 
employ an unfamiliar (i.e., untrained) view (e.g., reversing a left profile 
to bcome a right profile of the same identity). As this unfamiliar view 
was presented as a predictor face, it is uncertain what expectation it 
should give rise to. And, its use as the predictor face betrays a more 
fundamental problem with the design. Unaccountably, the authors did 
not classify the error conditions in respect of the departure of the 
deviant successor stimulus from the expected stimulus, but by the 
reverse: the departure of the predictor stimulus of a deviant pair from 
the familiar predictor stimulus preceding that successor. In 
consequence, although the study was successful in identfying as many 

as 64% of ML neurons expressing some form of prediction error (an 
enhanced response to the successor stimulus in the context of an 
unfamiliar pairing) the classification of these error signals must 
be amended.

That task is achievable; the deviant pairings retained predictor and 
successor status of the trained stimuli, and hence the composition of 
these pairings can be inferred (see Figure 4). Following the authors’ 
criteria (‘predictor deviance’), each successor face permits two deviant 
pairings classified as identity only (‘ID’), and six classified as view and 
identity (‘V&I’). Reclassifying by conventional ‘successor deviance’ 
(denoted by appending an *), the two ID pairs become *V&I, and two 
of the six V&I pairs reclassify to *ID, whilst four persist as *V&I. The 
study identified systematic variants in the timecourse of error 
signalling: whilst view-error signals were comparatively weaker and 
short-lived, both ID and V&I trials showed more prolonged error 
signalling, enduring from peak response (at 116–125 ms) to around 
400–500 ms post stimulus onset. Tellingly, the response profiles of the 
ID and V&I error signals (as classified by predictor deviance) are 
highly similar, both comprising mainly *V&I error signals as 
reclassified by successor deviance. Although the report confirmed that 
ML neurons are inherently tuned to facial viewpoint, it inferred that 
their error signalling was dominated by identity selectivity inherited 
from descending predictive signals. This conclusion has two flaws. 
First (as noted above) the supposed ‘view-error’ trials were likely 
compromised by a failure of the unfamiliar predictor used in this 
condition to generate anymuch expectation. Second, the two other 
conditions both had a significant content of view prediction error. In 
fact the ID trials, with 100% view-error content as reclassified to *V&I, 
display a marginally more robust average error signal than the V&I 
trials, with lesser (67%) view-error content if all potential deviant 
repairings (four *V&I and two *ID) were presented with 
equal frequency.

Such a revised interpretation of this study (Schwiedrzik and 
Freiwald, 2017) suggests that view-error is indeed the principal 
component of FF transmission from ML. This conclusion is also 
dictated by algorithmic formulations of predictive coding, which 
specify that predictive signals routed to ERR units should match their 
featural competence; they must do so, in order to allow a valid 
subtraction of one from the other. Admittedly it leaves unresolved the 
initial quandary, how view specific predictions might be generated by 
higher stations with laxer forms of view coding.

4.2 Probabilistic expectation and reported 
absence of error encoding

An alternative and more practical means to induce expectation, 
without resorting to an extensive learning period, is to simply repeat 
the same stimulus over and over again. However, any predictive 
suppression caused by so simplistic a procedure runs the risk of being 
confounded by a concurrent ‘neural fatigue’ effect, thought to be the 
consequence of cumulative synaptic depression along the FF pathway 
leading to the brain site of monitored activity; this is frequently 
referred to as ‘repetition suppression’, in distinction to predictive or 
expectation suppression (Vogels, 2016; Feuerriegel et  al., 2021). 
Studies aiming to sidestep this problem have reported an absence of 
error signalling; three are reviewed below with a critical focus upon 
the nature of expectation delivered by the various paradigms.
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One method to dissociate repetition and predictive suppression is 
as follows. Each trial presents a regular sequence of two stimuli (S1 
and S2); S2 is either a repeat of S1 (‘rep’ trial), or an alternative 
stimulus (‘alt’ trial); trials are presented in Rep or Alt blocks, in which 
either rep trials or alt trials are much more frequent; finally all stimuli 
are unique, in that no stimulus is presented in more than one trial 
across the entire experimental session. The experimental logic here is 
that repetition suppression should occur (in rep trials) in both Rep and 
Alt blocks to an equal degree, whereas predictive suppression should 
be favoured by Rep blocks and absent (or much diminished) in Alt 
blocks. Hence in this design statistical regularities are learnt over a far 
shorter time course, within and across stimulus blocks lasting several 
minutes. It has been used to good effect in several human fMRI studies 
yielding results interpretable as predictive suppression, e.g., as initially 
demonstrated for the fusiform face area (Summerfield et al., 2008) – 
but this was not matched by attempts at replication in single unit-
studies of monkey IT cortex (Kaliukhovich and Vogels, 2011; Vinken 
et al., 2018). These studies demonstrated robust repetition suppression 

(i.e., attenuated S2 responses in rep trials), but no more so in Rep 
blocks than Alt blocks, as might have been attributable to predictive 
suppression. Some factors underlying the negative outcome may 
be adduced as follows.

Firstly, both studies use population data of single or multi-unit 
activity, plus LFP signals to report variations in S2 response magnitude 
across trial type and block (normalised with respect to S1 response 
magnitude, which itself shows little variation). Thus any ERR unt 
activity might potentially be masked within the aggregate stimulus 
response – although other studies reviewed above demonstrate that 
this is not invariably the case, e.g., with regard to LFP signals at 
gamma frequencies. The concern lies more in the nature of the 
paradigm, particularly as applied to monkeys. Kaliukhovich and 
Vogels (2011) deployed it as a passive task, requiring no attention. 
They used two distinct stimulus sets, one comprised of gaussian-
windowed natural stimuli (landscapes/animals/bodies/man-made 
artefacts/buildings), the other fractal patterns (complex forms with 
multiple geometric elements and textures). Such stimuli are good for 

FIGURE 4

Variant classification of stimulus pairings by predictor and successor deviance. A schematic rendition of the sequential stimulus pairings employed in 
the study by Schwiedrzik and Freiwald (2017). Images were greyscale human faces of either sex (with bare scalp) shown in frontal (F) or 60° left (L) or 
right (R) profile viewpoint. There were nine training pairs, showing faces from eighteen different individuals, tagged 1–18. In subsequent testing allied to 
neurophysiological recording, a proportion of trials presented faces that were re-coupled so as to deviate from the trained pairings; faces 1–9 and 
10–18 retained their position as first and second stimuli in the sequence respectively, i.e., serving as ‘predictor’ or ‘successor’ images. The deviant 
pairings were configured to confound expectation with respect to face viewpoint, or face identity, or both viewpoint and identity. However, such a 
classification can be contingent on the deviation of either the predictor, or the successor, from the trained pairing: the study employed the former 
(‘predictor deviance’), whereas only the latter (‘successor deviance’) is accurate for assessing prediction error (since only the second sequence in a pair 
may honour or breach expectation). Training pairs are shown at left, followed by columnar arrangement of the three sets of deviant test pairings as 
classified by predictor deviance. Re-classification by successor deviance is indicated by red (‘identity’) or blue (‘view & identity’) colour coding of the 
second stimulus in each pair. Note that the report does not specify precisely which recoupled pairs were presented experimentally; the deviant pairings 
shown here are the logically permissible permutations. The six view-error pairings were created by left–right (or right–left) reversal of the six profile-
view predictor stimuli, thus preserving the sequence of face identity, at the expense of presenting a non-trained face image of (possibly) limited 
predictive status. Exhaustive recoupling of the 18 trained face images generates 72 fresh pairings, comprising 18 identity-error pairs and 54 view & 
identity-error pairs (as classified by predictor deviance). All 18 identity-error pairs reclassify to view & identity under successor deviance. Of the 54 view 
& identity-error pairs one third reclassify to identity-error under successor deviance. The figure shows just 18 of these pairings (corresponding to the 
first triplet of trained successor stimuli) to illustrate how this proportion arises; the second and third triplets of trained successor stimuli follow a similar 
pattern.
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evoking responses from IT cortex, but it is not clear that momentary 
presentation of a novel, abstract, behaviourally irrelevant stimulus will 
elicit much visual cognition. Logically, in order to be able to expect to 
see the same thing again (as ‘S2’), there must be a representation of 
that thing, some conception of it, that can be recalled from memory 
(and not just iconic memory). Here, as we  might infer, no such 
cognition arose within a higher centre with backward, predictive 
output to the recorded region of IT cortex. This might well occur in a 
human subject looking at a face, or the Eifel Tower, but less so for a 
monkey seeing the latter, or a fractal.

Mindful of these limitations, Vinken et al. (2018) modified the 
procedure to involve an attentive task discriminating face stimuli – i.e. 
to report whether S1 and S2 were the same or different faces. 
Performance on this task demonstrated that the monkeys were indeed 
sensitive to repetition probability, as their decisions were biased 
toward ‘same’ reports in Rep blocks, and toward ‘different’ reports in 
Alt blocks. Recordings were obtained from face patch ML identified 
by prior fMRI mapping. Despite these modifications the outcome was 
much the same as before: repetition suppression could be detected in 
averaged single and multi-unit data, and in high gamma LFP signals, 
but there was no evidence for predictive suppression, as apparent from 
the absence of any block effect. Figure 5A summarises the single unit 
data for one subject showing a 21% reduction in activity in rep trials 
equal in both blocks. The stimuli used in this study were synthetic 
human faces, realistic depictions of highly distinctive individuals but 
– and here is the likely problem – all presenting a uniform frontal 
view. Face patch ML, as noted above, is view selective but expresses 
little or no selectivity for face identity (Freiwald and Tsao, 2010). The 
experiment would have a greater likelihood of success if recordings 
were obtained from a higher face patch (e.g., AM) with featural 
competence to match the same/different predictions of face identity 
(e.g., as indicated in Figure 5B). For ML, the Rep and Alt blocks are 
essentially equivalent, as they both allow prediction of S2 as a frontal 
face view (Figure 5C). Now, following this line of reasoning, it might 
be argued that the same should be true of alt trials, given that they 
present the same, 100% probability that S2 will be  a frontal face. 
However, there is an extra twist here: the design of the experiment 
permits equally certain prediction of S1, given that it too is always a 
frontal face (and regularly timed from fixation onset). Hence all 
stimuli, across all trial and block types, are equally predictable as 
frontal face views, and equally likely to undergo predictive suppression 
– leaving repetition suppression, as effected in S2 of rep trials, as the 
only mechanism operating differentially upon neural activity in ML 
(Figure 5D). Qualitatively, therefore, the response patterns depicted in 
Figures 5A,C,D are indistinguishable, and the magnitude of response 
deficit observed in rep trials allows no inference of the relative severity 
of repetition and predictive suppression.

A contrasting means of regulating expectation is by means of the 
‘oddball’ paradigm, as frequently used in auditory studies (Chao et al., 
2018). This has been adapted for study of areas V1 and V4 with 
sequences of orthogonal gratings, ‘A’ and ‘B’, where a single instance of 
B interrupts repetition of A, such as AAABA (Solomon et al., 2021). 
Successive responses to A are of reduced magnitude, attributable to 
either or both forms of suppression, but the key strategy here is to 
compare responses to B in trials when it appears at a deviant 3rd or 
5th position in the sequence (10% each) compared to a regular 4th 
position (80%). Enhanced responses to deviant B stimuli would 
indicate error signalling, as a smaller response to regular B stimuli 

could only be attributable to predictive suppression, contingent upon 
sequence learning. However no such difference was observed; and 
despite extending exposure to the regular sequence before testing 
deviant sequences, plus exploring factors such as grating size, or 
presentation time, the authors ultimately concluded that spiking and 
LFP activity elicited in the superficial layers, of both areas, by deviant 
and regular B stimuli was “near identical” (Solomon et al., 2021). The 
pertinent question here is whether this paradigm, deployed as a 
passive viewing task, did actually induce states of expectation as 
intended. Even human subjects, with greater implicit cognition of an 
‘oddball’ stimulus, only displayed pattern violation EEG activity when 
explicitly tasked to detect oddballs (Solomon et  al., 2021). That 
monkeys should develop expectation contingent upon position-
dependent cognition of an unattended stimulus-sequence is far from 
given. Lacking that, default expectation (A) = expectation (B) = 50% 
for every grating seen (since A and B reversed role as oddball in 
alternate sessions). It is possible, perhaps, that statistical learning of 
transitional probabilities (as described in 4.1) developed across the 
course of multiple sessions; if so, this would simply reinforce the 
default 50% expectation since, during the course of the experiment, 
mid-sequence pairings AA, AB, BB and BA were presented equally 
frequently. Assessing the paradigm from this perspective, absent 
evidence of error encoding poses little challenge to PC theory.

4.3 Separate encoding of prediction and 
error

This section summarises a couple of studies not merely reporting 
neural signalling of prediction error, but dissociating this from signals 
encoding predictions themselves (Bell et al., 2016; Bastos et al., 2020). 
Both happen to manipulate expectation by a relatively simple means, 
maintaining a fixed frequency of presentation of a certain stimulus 
item within blocks ranging from 0 to 100% between blocks. Bell et al. 
(2016) examined comparative responses to greyscale images of 
monkey faces, and various types of fruit. Recordings (not laminar-
resolved) in areas TEO and TE of IT cortex included, but were not 
restricted to the local network of face sensitive modules (i.e., face 
patch ML, etc). A majority of responsive neurons (61%) had 
significantly higher responses to the face stimuli; virtually none (1%) 
preferred the fruit stimuli (that, as mooted above, might appear as 
unrecognised, non-face abstract forms). These two stimulus types 
were presented as cues in the context of a match-to sample task; to 
make the task more demanding of attention, the images were degraded 
by the addition of a low, or high level of Gaussian noise. Performance 
on the task indicated that, as with Vinken et al. (2018), the subjects 
were highly sensitive to the blocked variations in probability (0, 25, 50, 
75 & 100%), biasing their choices of fruit versus face accordingly, and 
accentuated by the greater stimulus uncertainty imposed by the high-
noise condition. Furthermore the performance data enabled 
theoretical modelling of trial-by-trial fluctuations in the subject’s state 
of expectation, the variable p(face).

The modelling procedure used for this purpose derives from 
reinforcement leaning theory (Sutton and Barto, 1998) and 
additionally provides a measure of trial-by-trial ‘surprise’, Δp(face), 
that serves as an index of prediction error. The authors then performed 
multivariate regression analysis of each recorded neuron’s spiking rate 
across trials using factors of stimulus identity (face or fruit), p(face) 
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and Δp(face) and determined how the population-average regression 
coefficient for each factor varied across the time course of the trial. 
This demonstrated global encoding of Δp(face)/prediction error (see 
Figure  6), and also stimulus identity, but not p(face). Notably, all 
recorded neurons (including those deemed visually unresponsive) 
were submitted to this analysis, and whereas a large proportion of 
neurons emerged with near-zero coefficients on all factors, small 
minorities responded either positively, or negatively to each factor – 
but uniquely, were equally balanced in respect to p(face), so yielding 
the null global encoding of this factor. Two further significant 
observations followed: firstly, this (bipolar) encoding of p(face) was 
present in the prestimulus period and persisted throughout the trial, 
unlike the other two factors whose earliest influence upon neural 
activity initiated 100 msec or so after stimulus onset; secondly, cross-
factor correlation analysis revealed orthogonal encoding of p(face) and 
Δp(face) across the population, i.e., a dissociation consistent with 
separate EXP and ERR units, whereas both factors (as anticipated) 
were associated with a high face/fruit preference in favour of faces.

If the work of Bell et al. (2016, 2017) remains, to date, the foremost 
explicit identification of single-unit encoding of stimulus predictions 
(at least in monkey visual cortex) it is nicely complemented by the 

study of Bastos et al. (2020) focusing upon spectral analysis of gross 
population activity, MUA and LFP, but of known superficial (1–4) 
versus deep (5–6) layer of origin. This multilaminar activity is 
recorded simultaneously by multiple-contact electrodes carefully 
positioned to span all layers when introduced perpendicular to 
sub-dural cortical surface – as proved practical with regard to 
prestriate area V4, parietal area 7A, and a region of posterolateral 
prefrontal cortex (PFC). Non-laminar resolved recordings were also 
made from areas LIP and FEF, but of all these areas only V4 has the 
high level of visual feature selectivity commensurate with the match-
to-sample task that was used to manipulate stimulus expectation. The 
cue stimulus, presented centrally, was followed by a choice array of 
three items presented eccentrically: two foils, plus one matching the 
cue. Crucially, trials were delivered in blocks which either maintained 
one stimulus as cue throughout the block (‘100%’ condition) or 
presented all three as cue with equal frequency (‘33%’ condition). 
These stimuli were natural objects of bright, near uniform colouration, 
and thus easily memorised and distinctive, if merely abstract images 
from the perspective of the monkey subjects. Neural activity recorded 
during cue presentation revealed clear stimulus preferences amongst 
different V4 sites. The preferred cue at a given site was found to elicit 

FIGURE 5

Schematic of the design, and some notional outcomes, of a repetition probability experiment. In this design stimuli are delivered sequentially, one pair 
(S1 and S2) per trial. The probability that S2 is a repeat of S1, or an alternative stimulus, is fixed within a block but varied between blocks, defining 
‘repetition’ and ‘alternation’ blocks as indicated. Repetition suppression should be operative in all repetition (rep) trials irrespective of block. The 
statistical design should encourage expectation of a repeated stimulus in a repetition block, meaning that rep trials (but not alt trials) might also 
demonstrate predictive suppression. Conversely, in alternation blocks, repetition is not expected, or is less expected. Predictive suppression is therefore 
inferred by the presence of a block effect, i.e., different levels of response suppression in rep trials between the two blocks. (A) Single unit data for one 
subject reported by Vinken et al. (2018). Recordings were made in face patch ML to synthetic human face images depicting frontal views of distinctive 
individuals. Both blocks showed the same decrement of response, 21% in rep trials. Hence there is a zero block effect (0%). (B) Notional data for 
recordings from a face patch with sensitivity to face identity. Predictive suppression allied to repetition suppression causes a larger 31% response 
decrement in rep trials in the repetition block. In the alternation block rep trial responses retain a 21% decrement, leading to a block effect of 10%. 
(C) Notional data for face patch ML (possessing face view but not identity sensitivity) invoking the assumption that a frontal view of a face (irrespective 
of identity) is equally predictable for rep trials in both blocks. Thus the combined effect of repetition and predictive suppression is equal in both blocks, 
and the block effect is 0%. (D) Notional data for face patch ML invoking the broader (and possibly more valid) assumption that a frontal view of a face is 
equally predictable for all S1 and all S2 stimuli irrespective of trial or block type (since all stimuli are such). In consequence all responses show an equal 
response decrement due to predictive suppression (although there is no standard response against which to measure it). As repetition suppression 
continues to operate equally in in rep trials in both blocks, the block effect is again 0%.
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maximal MUA and gamma LFP signals, from the superficial layers, 
when presented in the 33% (‘unpredicted’) condition; conversely, it 
elicited maximal beta and alpha LFP signals, from the deep layers, 
when presented in the 100% (‘predicted’) condition. The former 
finding aligns with previous work linking superficial gamma activity 
in V4 to FF error signalling, in that the larger gamma response 
plausibly reflects a lower level of predictive suppression enacted within 
the 33% condition. Notably, the study also reports a finding consonant 
with that of Richter et al. (2017) as described above, in that there was 
a significant trial-by-trial correlation between beta LFP power 
recorded in area 7A, and gamma LFP power expressed by V4; as 
before, this is interpretable as a top-down precision effect, although 
whether mediated directly upon V4, and/or indirectly via V1 cannot 
be ascertained.

The low frequency (alpha/beta) LFP activity recorded in the deep 
layers of V4 acted like a proxy measure for backward predictive 
signals. The alpha/beta LFP power differential between deep and 
superficial layers was most marked when a 100% expected cue 
matched a V4 site’s preferred stimulus, and this was true not only 
following the cue stimulus onset (as stated above), but also during the 
pre-stimulus period. In other words, similar to IT cortex in the study 
of Bell et  al. (2016), V4 appeared to register stimulus-specific 
predictive signals in the regularly timed 1 s period between fixation 
and cue stimulus onset. Finally, simultaneous recording from several 
areas enabled a search for the higher-level source of predictive signals, 

as earmarked by area-to-area Granger causality in the alpha/beta 
frequency range. The deep layers of PFC were found to be strongest 
candidate for this role during the pre-stimulus period, later abetted by 
the superficial layers of the same area following onset of the 
cue stimulus.

A final comment is merited on the nature of adaptation. ‘Neural 
fatigue’ is a legacy term for (usefully) adaptive regulation of synaptic 
efficacy, acting to calibrate neural sensitivity within a changeable 
sensory environment (Thompson and Burr, 2009) – what might 
be classed as perceptual learning as opposed to perceptual inference. 
Under gPC theory, both can be considered mechanisms for reducing 
prediction error (Auksztulewicz and Friston, 2016): perceptual 
learning plays out over multiple trials, theoretically encompassing 
processes such as resetting priors and adjusting the parameters 
governing (predictions of) precision; its panoply of neural mechanisms 
include synaptic plasticity. Perceptual inference operates over the 
course of peristimulus time in a single trial. The evidence presented 
here (Sections 4 & 5) reporting average neural responses over repeated 
trials, uniformly relates to perceptual inference. Concurrent adaptive 
changes may be observed but not commented in detail; e,g, Bastos 
et al. (2020) simply note that repetition effects developed over dozens 
of trials, correlating with the time course of improved behavioural 
performance in their task. From this perspective, paradigms designed 
to distinguish predictive suppression from repetition suppression are 
effectively isolating steady-state error signalling (perceptual inference) 
from longer-term adaptive modification of error signalling 
(perceptual learning).

4.4 Natural expectation

Everyday experience accumulates innumerable priors for 
interpreting natural scenes – what might be termed a knowledge of 
‘visual ecology’ (Gibson, 1979). For example, scenic context and 
regular positional relationships can facilitate object recognition 
(Kaiser et al., 2019), whilst familiarity with natural lighting informs 
basic percepts of object shape, surface colour and glossiness (Murray 
and Adams, 2019). The light-from-above prior (Adams et al., 2004) 
can determine if a shaded, curved surface appears concave or convex, 
but may itself be trumped by other priors: e.g. the face-mask illusion, 
that is contingent on our knowledge that human heads are invariably 
convex (Gregory, 1980). Heuristically, ‘we see what we expect to see’ 
(de Lange et al., 2018); in gPC terms backward-going predictions 
mediate the effect of priors by adjusting the balance of activity between 
EXP and ERR units at subordinate levels. There is, in other words, a 
rich vein of perceptual phenomena ripe for neurophysiological 
exploitation. The following examples span the visual hierarchy, with 
the common thread that the ‘predictions’ here are essentially stimulus 
evoked interpretations – hypotheses – of what is currently being seen, 
as opposed to statistically sourced temporal expectations.

The human brain has a well-known readiness for seeing faces 
where none truly exist (‘pareidolia’: see Figure 7 for an example) – a 
kind of default expectation. It is hard to ascertain if the same is true of 
the monkey (Taubert et al., 2022), but the hierarchical organisation of 
the face system in IT cortex is similar in the two species, consisting of 
six or so discrete patches where neurons respond specifically to face-
like patterns (Grimaldi et  al., 2016; Hesse and Tsao, 2020). 
Simultaneous recording from face patches at posterior, central and 

FIGURE 6

Population encoding of prediction error determined for IT cortex 
(Bell et al., 2016, 2017). The chart shows the timecourse of the 
regression coefficient for the factor Δp(face), a measure of prediction 
error, as determined from the population response of neurons in 
inferotemporal cortex to a monkey face stimulus in the low noise 
condition of this study. The regression analysis was compiled from 
response data gathered across stimulus blocks controlling face 
expectation by varying the block frequency of presentation of either 
a face (or fruit) stimulus from 0 to (25-50-75) to 100%. The factor 
Δp(face) was most prominent in trials in response to a face stimulus 
when a face was most unexpected. The figure shown here is 
reproduced from post-publication correspondence (Bell et al., 2017; 
Vinken and Vogels, 2017) concerning a notional role of repetition 
suppression (i.e., biophysical fatigue) in promoting a reduced 
response to an expected face stimulus, that would otherwise 
be attributed to predictive suppression; it is a modified version of 
regression modelling with added precautions in that regard. The red 
bar indicates the time period where the coefficient is significant, 
from approximately 150–250  ms. Notably, that timecourse is not 
consistent with repetition suppression, as relief from neural fatigue in 
a stimulus block with low face expectation should begin to enhance 
activity earlier, immediately upon response onset at approximately 
100  ms. Reproduced by permission of Elsevier.

https://doi.org/10.3389/fncir.2023.1254009
https://www.frontiersin.org/neural-circuits
https://www.frontiersin.org


Shipp 10.3389/fncir.2023.1254009

Frontiers in Neural Circuits 15 frontiersin.org

anterior levels of IT cortex (pIT, cIT and aIT) found a subset of cells 
with responses consistent with ERR units (Issa et  al., 2018). The 
stimulus set comprised synthetic images of macaque faces with either 
a typical, or atypical (i.e., distorted) configuration of face parts, such 
as eyes and snout. All were vetted to ensure approximate equality in 
their ability to activate neurons in the lowest-level face patch (i.e., 
pIT), known to respond particularly to eye-like images embodied 
within a face-like outline (Issa and DiCarlo, 2012). Face neurons at the 
apex of the hierarchy (aIT) maintained a consistent preference for 
typical faces, in contrast to the earlier levels pIT and cIT, where some 
neurons responded better to atypical faces. This preference, however, 
only began to develop about 30 msec after neural response onset (as 
measured by comparing cumulative spikes within windows 60-90 ms 
and 100-130 ms post stimulus onset). Simultaneous recording allowed 
close comparison of neural dynamics across the three hierarchical 
levels and indicated causation, in that, across images, late phase 
activity in pIT was negatively correlated with early phase activity in 
both cIT and aIT. This is what is expected if a backward predictive (i.e., 
descriptive) signal of a properly configured face acts to suppress 
activity within a subpopulation of face-sensitive ERR units at a lower 
level. Advantageously, the study reports the responses of neurons at 
an individual level (as opposed to a single population metric for each 
area), so providing estimates of 37, 30 and 0% for neurons with error-
like responses in pIT, cIT and aIT, respectively. Smaller fractions (7.0, 
8.6 & 2.5%) showed the reverse behaviour (i.e., a significant increment 
in typical vs. atypical stimulus preference between the early and late 
response phases). The absence of ERR units from what is considered 
to be  the apex of a hierarchical chain (aIT) makes obvious sense, 
although the implications for the intrinsic architecture of such an area 
have yet to be explored. As the recordings were not laminar resolved, 
there is no evidence for a majority supragranular location of error 
responses. However, as the authors remark, it is clearly significant to 
be  able to distinguish putative error and non-error (or ‘state 
estimating’) classes of neurons, as only the latter ‘are truly reflective of 
the tuning preferences of that IT processing stage’ (Issa et al., 2018).

Bistable percepts provide a means of examining the neural basis 
of shifts in visual cognition at higher levels, whilst the retinal image 
remains unchanged. Binocular rivalry provides the additional 
advantage of allowing arbitrary (dichoptic) retinal image content, 
determined by the featural competence of the cortical area under 

study: e.g. opposite directions of motion for study of V5 (Logothetis 
and Schall, 1989), and orthogonal orientations for V4 (Leopold and 
Logothetis, 1996). Each of these studies reported a minority of 
neurons whose stimulus preference (respectively for direction and 
orientation) could be determined during non-rivalrous viewing, and 
whose activity subsequently correlated with the monkey’s alternating 
perceptual reports during rivalrous viewing. These fractions were 22% 
(13/59) for V5 and 24% (16/68) for V4. Importantly, in the current 
context (but an inexplicable-cum-inconsequential detail at that time) 
each of these samples comprised some neurons whose activity was 
enhanced whilst congruent with the perceptual report and some 
whose activity was, conversely, suppressed; the ratio of these two 
classes was about 1:1 for V5, and 2:1 for V4. Considered from the 
perspective of predictive coding theory, the former group acts like 
EXP units, encoding what is currently being perceived, whilst the 
latter unanticipated/aberrant suppressive neurons are natural 
candidates for ERR units (see Figure 8). In retrospect, the alternating 
percepts of the rivalry paradigm provide an ideal vehicle for 
distinguishing EXP and ERR functionality. Future studies exploiting 
this approach could usefully examine the laminar locations of these 
units, and analyse the interplay of perceptual and neural dynamics.

At a primary level, such as studied in area V1, contextual 
predictions reflect statistical properties of the natural environment, 
largely shorn of any cognitive referents – elemental features such as 
the spatial uniformity of texture and chromaticity, or the continuity of 
lines and edges. For example Rao and Ballard (1999) modelled error 
signalling as predictive suppression of local edge detectors by higher 
level representations of an extended contour, so generating the 
documented phenomenon of ‘end-stopping’ in V1. Subsequent 
investigation of such (so-termed) ‘iso-orientation surround 
suppression’ using grating stimuli confirms partial causation by FB 
cortical processes, inferred from the timecourse and laminar profile 
of such effects (Bair et al., 2003; Bijanzadeh et al., 2018) – which is not 
to equate all instances of surround suppression with predictive 
suppression, since the former is also observed in layers where FF 
neurons are sparse, or absent. Rather, the model of Rao and Ballard 
implies that the orientation tuning of surround suppression should 
be keenest in the superficial layers of V1 with peak density of FF 
neurons – as indeed observed (Bijanzadeh et al., 2018) – and that even 
there, the severity of surround suppression should show strong 
variation across presumptive ERR and non-ERR classes of neurons. 
Such variation has been confirmed, for natural images as well as 
regular grating stimuli (Coen-Cagli et al., 2015); and, notably, all three 
of the above-mentioned studies of macaque V1 were conducted under 
anaesthesia, indicating a level of automaticity on the part of contextual 
suppressive effects distinct from various forms of cognitive expectation 
recounted above.

Aiming to test this interpretation of surround suppression more 
rigorously, Uran et al. (2022) devised a metric of image predictability 
exploiting a pair of artificial neural networks. A first network was 
trained in a self-supervised learning protocol to generate image 
content for the (masked) central patch of a fivefold larger natural 
image. A second convolutional network, trained by supervised 
learning for object recognition (OR-CNN), was used to determine the 
similarity of the synthetic image content to the original: submission 
of the twin full images to the OR-CNN caused quantifiably different 
patterns of activity amongst those artificial neurons responsive to the 
central patch. This metric of image predictability is thus the inverse of 

FIGURE 7

Pareidolia – a face in the waves. This striking image was captured 
during a storm at Newhaven harbour, United kingdom. Fittingly, the 
‘face’ evokes the ancient Greek god of the sea, Poseidon. With 
permission Jeff Overs.
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the OR-CNN’s differential response to the synthetic image. Multiple 
natural images, so assessed, were used as stimuli for monkeys in a 
passive fixation task, each scaled to match the central patch to the RF 
size of multiunit activity recorded from superficial sites in area V1. 
The general finding was that V1 activity decreased with image 
predictability. The strongest relationship was between (low) late V1 
firing rates (recorded 200–600 ms post stimulus onset) and (high) 
predictability assessed specifically from the deeper layers of the 
OR-CNN. Due to the progressive convolutional construction of 
CNNs, artificial neurons in deeper layers express higher level features, 
abstracted over larger image sub-regions – though the nature of these 
features typically defies simple description. The study is nonetheless 
supportive of the gPC thesis that higher level contextual predictions 
can exert suppressive effects upon ERR units in subordinate visual 
areas, albeit here detected only as a net decrease in the average, 
‘multiunit’ sample of superficial layer activity.

A significant adjunct to this study is that LFP gamma activity in 
V1 was found to show the opposite behaviour, correlating positively 
with image predictability, particularly as indexed by the early layers of 
the OR-CNN (Uran et al., 2022). This implies susceptibility to lower-
level features, and accords with previous reports that large regular 
stimuli (such as gratings, or patches of uniform chromaticity) elicit 

high gamma activity from area V1 (Ray and Maunsell, 2010; Jia et al., 
2011; Peter et al., 2019; Gieselmann and Thiele, 2022). It demonstrates 
that gamma activity is not invariably a proxy of error signalling, as 
emerged in studies cited above (Bastos et al., 2020; Esmailpour et al., 
2022) – that examined fluctuations in gamma activity occasioned by 
changes in cognitive states of visual expectation whilst viewing the 
identical stimulus. By contrast, increments in stimulus size (coupled 
with cognitive neutrality) can recruit coordinated responses from 
larger neural populations, facilitating local gamma synchronisation of 
LFP signals. Precisely how the neural mechanisms of the gamma cycle 
tie in to FF error signalling remains to be elucidated (Ferro et al., 2021).

5 Predictive coding in mouse V1

In counterpoint to the diversity of sources cited in respect of 
primate work, the body of relevant findings in the mouse is largely the 
product of a single laboratory – Georg Keller (Friedrich Miescher 
Institute, Basel). Using behavioural paradigms to manipulate ‘natural 
expectation’ (as outlined above), it primarily exploits two-photon 
optical imaging to examine cellular and feedback axonal activity in 
layers 1–3 of mouse primary visual cortex (deeper layers being 

FIGURE 8

Inferred EXP unit and ERR unit activity during binocular rivalry. Right: the average activity of two orientation selective cells in area V4 during dichoptic 
(rivalrous) viewing of orthogonal gratings (Leopold and Logothetis, 1996), here interpreted as an EXP unit and an ERR unit. The timescale shows a 
period of 650  ms before and after the behaviourally trained monkey’s report of a change in percept; multiple transitions from the non-preferred to 
preferred orientation (top row), and from the preferred to non-preferred orientation (lower row) are registered at time zero, the instant of perceptual 
report. Reports were made manually, and although they must follow the instant of perceptual reversal with a certain latency, the precise timing is 
unknowable. The yellow-to-orange (preferred-to-nonpreferred) shading shown here is configured for correspondence to the model at left. The key 
observation is that the EXP unit is more active while the percept matches its preferred orientation, and the ERR unit shows the reverse behaviour. Left: 
a schematic model of the interactions between EXPC and ERR units sharing similar orientation selectivity during alternating phases of the two percepts. 
The feedforward drive to the EXP unit is constant and in turn activates a negative feedback loop with the ERR unit. When the percept is concordant 
with the neuron’s preferred orientation, the ERR unit undergoes predictive suppression from a higher level in the hierarchy, which in turn disinhibits the 
EXP unit. Conversely, when the percept is discordant with the neurons’ preference and there is no predictive suppression, the two units achieve a 
more balanced level of activation. The greater FF output of the ERR unit in this state is thought to exert a cumulative destabilising effect at higher levels, 
acting to promote the next perceptual reversal (Hohwy et al., 2008). Grey arrows: FF excitation; blue, solid/dashed lines with filled/open ball-head 
contacts represent active/inactive inhibitory transmission. Activity profiles reproduced with permission SpingerNature.
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inaccessible due to the nature of the optical signal). The optical 
technique uses fluorescent signals to monitor concurrent spiking 
activity (bursts, as opposed to single spikes) in a large population of 
neurons; many remain individually identifiable over the course of 
multiple recording sessions, establishing a neural correlate of 
progressive expectation-learning behaviour. Direct comparison of 
findings between mouse and monkey is stymied, to a degree, by 
systematic differences in the laminar organisation of cortex in the two 
species. The supragranular layers of primate are disproportionately 
expanded, formed by novel developmental mechanisms and endowed 
with a greater diversity of glutamatergic cell types (Dehay et al., 2015; 
Cortay et al., 2020; Berg et al., 2021). One consequence is that the 
differential laminar origins of FF and FB connections between areas, 
that serves as a metric of hierarchical relations in the monkey, is 
obscure in the mouse (necessitating alternative systems based upon 
laminar terminations (Harris et al., 2019; D'Souza et al., 2022); see 
Shipp and Friston (2023) for consideration of how this bears upon 
hierarchical systematics of predictive coding). Irrespective of cortical 
lamination, predictive processing in mouse V1 does appear to employ 
several classes of neuron with functions to match the computational 
units shown in Figure  2 – although, quixotically, the first to 
be explicitly characterised might seem something of a misfit.

5.1 Prediction of optic flow speed

The act of running is known to enhance activity in mouse visual 
cortex (Niell and Stryker, 2010) but, more than that, it also appears to 
sculpt response properties to visual motion, such that only a fraction 
of neurons activate purely in accord with retinal signals. Clearly, this 
falls within the framework of predictive processing, as the speed and 
direction of locomotion is a prime predictor of the optical flow field. 
Experimentally, mice are set to run along a linear ‘virtual tunnel’, their 
movement upon a trackerball, restricted to rotate in one dimension, 
governing visual projection onto a toroidal screen. That ‘closed-loop’ 
arrangement is complemented by an ‘open-loop’ condition, where 
visual flow from a previous trial is projected irrespective of the mouse’s 
movement upon the trackerball. One of the most striking findings to 
emerge from this set-up was the ‘omission’, or ‘mismatch’ response, a 
surge of activity in a sub-set of cells occasioned by a transient (1 s) 
pause in motion projection whilst the mouse was running in closed-
loop. Further investigation, exploiting the loosening of parameters 
offered by running in open-loop, established that the signals from this 
class of neuron accurately scaled with the speed difference between 
predicted and visible flow, when the former was faster (Keller et al., 
2012; Zmarz and Keller, 2016). A clear implication is that such 
neurons are, respectively, excited and inhibited by descending 
predictive and ascending visual signals, and a mechanism for the latter 
was revealed by recording from identified classes of interneurons 
under the same conditions. SST (somatostatin) interneurons in 
particular were found to be robustly activated by visual drive, with 
VIP (vasoactive intestinal polypeptide) interneurons also 
participating, according to a simple microcircuit shown in Figure 9 
and Attinger et al. (2017).

Logically, an omission or mismatch response qualifies as a 
negative error signal [prediction – sensory signal] (Attinger et al., 
2017; Keller and Mrsic-Flogel, 2018), reversing the standard 
formulation of error [actual quantity – prediction] prescribed by PC 

algorithms. From a neural perspective, this is simply pragmatic, a 
necessary means of producing an error signal that corrects over-
prediction – given that a ‘standard’ error neuron, like all cortical 
neurons, has a low baseline rate, and so cannot generate negative 
spiking; indeed this is a recognised bug in schemes for neural 
implementation of PC algorithms (Kogo and Trengove, 2015). In this 
case the FF mismatch response should act upon frontal cortex to adapt 
the speed of visual flow predicted by a given level of locomotor activity 
– as appropriate in the real world, for instance, if the flow-speed were 
over-predicted due to a change in the environmental distance of the 
nearest surround surfaces. However, the concept of negative error and 
its corollary, predictive excitation, appears paradoxical with regard to 
the construct of predictive suppression that many studies have taken 
as a kind of leitmotif for predictive coding theory. This issue is resumed 
in Discussion, below.

The equation of the omission response with an error signal has 
been questioned in respect of an alternative interpretation, that halting 
motion elicits a generic visual OFF response, here enhanced by 
locomotion (Muzzu and Saleem, 2021). The counter-argument to that 
emphasises how the omission response is intimately coupled to recent 
visuomotor experience (Vasilevskaya et al., 2023); in particular, the 
omission response can be elicited by so called ‘playback halts’ (brief 
cessation of optic flow in the open-loop condition) and is enhanced 
when this occurs while the mouse is running, but never achieves the 
same magnitude as in the closed loop condition. Furthermore, the 
playback halt response progressively declines with a half-life of a few 
minutes throughout the course of the open-loop session, i.e., the 
longer the interval from the last experience of verisimilitude in the 
closed-loop condition. To add to this debate, these observations are 
readily interpretable in the context of visual learning as a form of 
precision regulation. The open-loop condition renders the sensory 
feedback from locomotion unreliable; adjustments to the visuomotor 
model generating predictions, and to locomotor speed, both fail to 
result in predictable consequences. Hence precision – the regulatory 

FIGURE 9

Microcircuit for generating a negative error neuron. This circuit 
diagram summarises findings regarding the responses of four types 
of interneuron to optic flow stimuli in a virtual tunnel, once the 
properties of (excitatory) negative error neurons had been 
established (Attinger et al., 2017). Two types of interneuron were 
primarily implicated. SST (somatostatin expressing) interneurons 
showed the highest correlation of activity with visual flow, whilst VIP 
(vasoactive intestinal polypeptide expressing) interneurons 
responded to ‘mismatch’, i.e., a short cessation of visual flow whilst 
running. Accordingly, negative error neurons are inhibited by visual 
signals via SST interneurons, and activated by predictive signals of 
visual flow generated by running, both directly and by disinhibition 
via the two classes of interneuron. Arrowheads indicate excitatory 
contacts; ballheads indicate inhibitory contacts.
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gain applied to the error signal – declines in line with gPC theory, as 
outlined previously.

The co-existence of standard, positive error neurons for flow 
speed prediction was acknowledged in theory (Attinger et al., 2017; 
Keller and Mrsic-Flogel, 2018) before being empirically confirmed by 
a study resorting to intracellular recording from behaving mouse 
V1  in the same virtual tunnel set-up (Jordan and Keller, 2020). 
Monitoring subthreshold changes in membrane potential, it found 
one set of superficial layer neurons that tended to depolarise with 
increasing visual flow speed, and hyperpolarise with increasing 
locomotor speed (implied positive error neurons), and another that 
did exactly the reverse (implied negative error neurons). Moreover, 
recent work suggests that these two types are further distinguished by 
belonging to two different transcriptomic classes of excitatory neuron, 
of which three altogether have been identified in layers 2/3 of mouse 
V1 (Tasic et al., 2018; O’Toole et al., 2023). In retrospect, positive error 
neurons were cryptically present in earlier datasets, forming a covert 
minority fraction, whereas other classes – varieties of EXP neuron – 
were possibly hiding in plain sight, unrecognised by the heuristics of 
predictive processing applied by these authors. Figures 10, 11 discuss 
two examples. In contrast to the superficial neurons, deeper layers of 
V1 (principally layer 5, sampled by the electrodes used for intracellular 
recording) integrated visual flow and locomotor speed in 
non-opponent fashion, both commonly exerting a depolarising effect 
at greater speeds (Jordan and Keller, 2020). This was closer to earlier 
observations made elsewhere, by means of a similar virtual tunnel 
recording strategy combined with depth electrodes (Saleem et al., 
2013); it is also rather more similar to the nature of frontal predictive 
signals themselves, as observed in their axon terminals within V1.

Frontal terminations in mouse V1 from ACC (anterior cingulate 
cortex) are known to modulate visual processing in V1 and mediate 
attentional effects via their interaction with inhibitory circuits (Zhang 
S. et al., 2014). Anatomical tracing shows that this frontal projection 
retains topographic order and contacts diverse types of interneuron, 

as well as excitatory cells lying mainly in layers 2/3 and 6 (Leinweber 
et al., 2017). Subsequent viral transfection of the densest source of the 
ACC back projection with the Ca indicator GCaMP6f allowed optical 
monitoring of ACC axonal activity in V1, and demonstrated that the 
predictive signal is not purely a form of motor efference-copy 
(Leinweber et al., 2017). Some 30% of axons initiated activity well 
ahead (upto 1 s) of running onset in the closed loop condition; the 
remainder progressively came onstream upto 1 s after running onset. 
This activity increased with running speed, but was reduced in full 
darkness. In open-loop, visual flow deferred from running onset was 
seen to augment activity with a latency of 1 s. By contrast, the presence 
of visual flow prior to running onset had the opposite effect, reducing 
activity. Presumably therefore, the visuomotor model operated by 
ACC enjoys a re-entrant loop with visual cortex, such that current 
visual signals integrate with motor signals in ACC to abet the 
prediction of future visual signals.

5.2 Prediction of spatially localised features

Another means of exploiting the virtual tunnel set-up is to 
examine predictions based upon distance travelled, in this case 
predictions of the orientation of gratings encountered at fixed virtual 
positions en route to a recognisable, rewarded end point (Fiser et al., 
2016). Orthogonal gratings ‘A’ and ‘B’ were presented in a regular 
A-B-A-B-X sequence (where X, initially set to A, subsequently 
underwent conditional variability to test responses to unpredicted 
stimuli). An initial observation was that a subset of visual, orientation-
tuned neurons that were selective for either A or B responded 
unequally at different locations (e.g., A1 vs. A2), such that a neural 
decoding algorithm was able to predict tunnel location from 
population activity. As the mice gained experience of traversing the 
tunnel in multiple trials across multiple sessions, these visual neurons 
progressively enhanced their response magnitude. Furthermore a 

FIGURE 10

Putative functional identities of mouse V1 neurons activated during running and optic flow. The graphic shows the peak response, averaged across 
trials, of 1,171 neurons in layer 2/3 of mouse V1, in four conditions with varied combinations of running/static locomotion, and presence/absence of 
simulated optic flow (Keller et al., 2012). Neurons in the first four groups (from left, denoted by vertical blank dividers) responded primarily in one 
condition; those in the next six groups responded equally in two conditions; unresponsive neurons are not shown. Baseline: static with absent optic 
flow; Feedback: running with optic flow; Mismatch: brief cessation of optic flow whilst running; Playback: static with optic flow. Labels in the top line 
are provisional assignments of computational role according to predictive coding theory. +ve ERR: standard error neurons activated by visual flow, and 
undergoing predictive suppression by running; −ve ERR: negative error neurons undergoing predictive excitation by running, and suppressed by optic 
flow. EXPC: coding expectation neurons activated by optic flow, and concurrently disinhibited by running-induced predictive suppression of standard 
error neurons. EXPP: predictive expectation neurons carrying flow-predicting signals from frontal cortex, hence active during running irrespective of 
the presence or absence of optic flow. Reproduced by permission of Elsevier.
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second class of neurons emerged – ‘prediction neurons’ – likewise 
selective for either A or B, but whose activity initiated shortly before 
the grating was physically displayed; with further traversals, these 
neurons’ responses also gained in magnitude. These two classes of 
neuron might thus be characterised as orientation-specific ‘predictors’ 
and ‘detectors’, as further underlined by testing across repeated 
sessions in which the fifth sequential grating, ‘X’, was 90% A and 10% 
B across trials (or the reverse, 10% A and 90% B, in a later set of 
sessions). Once accustomed to this conditionality, a detector neuron 
simply continued to respond appropriately to the grating presented. 
By contrast, a predictor neuron’s response anticipated the expected 
grating, irrespective of the grating actually presented; for example the 
mean activity of B predictors encountering X in a 90% B condition 
was equal for X = A and X = B, but marginally less than the activity at 
B2 and B4 at earlier locations in the tunnel, where B was 100% 
expected.

In terms of the computational unit classes envisaged in Figure 2, 
predictor neurons may equate to EXPP units, and detector neurons 
might comprise a mixture of EXPC and ERR units. There should 
therefore be  interactions between them, and several forms were 
indeed observed. Firstly, as noted above, the average magnitude of 
activation of both classes grew larger across successive conditions. But, 
interrupting this trend, the emergence of predictor neurons in 
condition 2 was marked by a decrement of detector neurons’ activity, 
with incremental activity resuming through conditions 3 and 4 
(Figure 12A). This implies that predictor neurons had a suppressive 
effect upon the net activity of detector neurons. A second indication 
of such suppression was that, across trials in the same condition, 
higher activity in (say, B) predictor neurons was associated with lower 
activity amongst B detector neurons, and vice versa (Figure 12B). The 
inference, again, is that a substantial proportion of detector neurons 
generate a standard, positive error signal.

There are two further findings in regard to interactions between 
predictor and detector neuron population activity that are relevant to 
a lingering issue raised above, the status of a negative error signal 
within predictive coding theory. By way of introduction, it is helpful 
to refer to interactions between V1 and LGN (as documented in the 
cat; see Shipp (2016) for a fuller account). LGN relay neurons are held 
to be ERR units. Their receptive fields are either ON or OFF selective, 
and they receive ON and OFF backward input from V1, interpreted 
as predictions of local contrast. The ON predictions suppress ON relay 
cell activity, and likewise OFF suppresses OFF, consistent with a 
positive ERR unit function; however, acting with equal magnitude, 
ON predictions also enhance OFF relay cell activity, and OFF 
predictions enhance ON relay cell activity (Wang et al., 2006). In other 
words, a prediction may both be subtracted from its home channel, 
and added to an opposite channel, such that LGN relay cells combine 
the roles of positive and negative error signalling. Fiser et al. (2016) 
report a comparable observation, in regard to the response of detector 
neurons to unexpected stimuli in the condition described above, 
where fifth grating X was 90% B, and 10% A across trials. They found 
that the mean response of A detectors to unexpected A5 was higher 
in trials where the shortly preceding mean activity of B predictors was 
also high, and lower when it was lower (Figure 12C). Empirically, this 
implies that B-predictive signals act to excite A detector units, and 
theoretically it is consistent with B-predictive signals enhancing the 
activity of our previously inferred subset of A-detectors that are 
positive ERR units, potentially endowing them with negative error 
signalling capacity.

The second finding of interest concerns an omission response, 
occasioned by a condition in which the fifth grating was 90% B, and 
10% absent. Stimulus omission created an unusually strong response, 
with a small minority (2.3%) of neurons responding exclusively in 
these trials. Selective analysis of these omission-sensitive neurons 
showed an inverse relationship to concurrent B predictive activity: 
more omission activity on trials in which B predictive activity was 
high, and less when it was low (Figure  12D). Because omission 
neurons were active only in respect of an absent stimulus, they were 
not classified as A or B selective. However, following the logic above, 
their pattern of activity was possibly consistent with a variant of 
‘A-detector’ error neuron subject to atypically strong excitation from 
B-predictors, but with nugatory visual excitatory drive. Its role would 
be  to nullify any expectation-induced representation of B in 
higher centres.

FIGURE 11

Co-determination of activity of mouse V1 neurons by running speed 
and optic flow speed. The graphic shows the joint correlation of 
activity of 2,259 neurons in layer 2/3 of V1 with running speed and 
optic flow speed, as determined during open loop conditions of 
mice running in a virtual tunnel (Attinger et al., 2017). In regard to 
running (vertical axis), predictive activation is more common than 
predictive suppression, whereas the balance between excitation and 
inhibition by visual flow is more even; the black circle marks the 
bi-dimensional mean correlation. Colour coding indicates a third 
classification, the nature of response to stimulus omission (a brief 
cessation of optic flow whilst running) roughly aligning with flow 
speed correlation. The authors identified cells in the top-left 
quadrant as negative error neurons (predictive activation from 
running, suppression by optic flow). Logically, therefore, cells in the 
lower-right quadrant exhibiting the opposite properties (predictive 
suppression by running, excitation by optic flow) should be positive 
error neurons. Cells in the top-right quadrant could qualify as EXPC 
neurons, on account of activation by both flow and running; direct 
excitation by optic flow, and running induced disinhibition via 
positive error cells. By symmetry, cells in the lower left quadrant 
logically qualify as ‘negative’ EXPC neurons; to rationalise this notion, 
they might hypothetically be neurons excited by a reverse, receding 
optic flow field, and by backward locomotion – and jointly 
suppressed by forward locomotion and an advancing flow field, as 
tested. Neurons conveying a flow-predictive signal from frontal areas 
might also populate the diagram, congregating about the vertical 
axis with near zero optic flow corelation. Reproduced by permission 
of Elsevier.
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In developing this model of ‘crossover’ synthesis of error signals 
(see Figure  13) it is noteworthy that A and B were orthogonal 
orientations, and it is a reasonable caveat that the model is more 
appropriate for basic visual attributes encoded as opposites (e.g., 
contrast, orientation, direction, opponent colours) and less so for 
complex object properties analysed by inferotemporal cortex (see 
Discussion). If so, might the same crossover systematics exist in the 
mechanisms predicting optic flow, and the observed omission 
responses on the part of negative error neurons, discussed above? The 
relevant experimental observations are lacking, reflecting an obvious 
behavioural asymmetry: a receding flow field, occasioned as an animal 
scuttles backward, is rarely experienced. Hypothetically the distinctive 
couplings shown by positive and negative error neurons for 
hyperpolarisation/depolarisation effected by faster/slower optic flow 
speed and locomotor speed (Jordan and Keller, 2020) might all 
be reversed in the eventuality of a receding flow field. Whether this is 
actually the case remains to be tested.

Finally, Fiser et al. (2016) were also able to examine the activity of 
ACC axon terminals in V1, and again distinguished predictor and 
visual (or detector, as termed here) variants. As with cellular activity, 
predictive signals were absent on initial tunnel traversals and 
developed with accumulated experience; detector signals also gained 
in magnitude, and also developed a modest initial phase of 
pre-stimulus predictive activity. Probing these responses with 
unexpected stimuli again proved instructive. Predictor axon activity 
reflected the conditional probabilities of 90% B, 10% A for the fifth 
grating, in that B-predictors were marginally less active in comparison 
to B2 and B4, and A-predictors gave a tiny response, much less than 
to A1 and A3, but still significant. B-detector axons responded 
comparably to B5 as to B2 and B4; the initial (predictive) phase of 
their response to unexpected A at location 5 was also comparable, but 
declined rapidly following stimulus onset of A5. In the same condition, 
A-detector axons gave no response to B5, whilst their response to A5 
lacked the initial predictive phase, and was smaller than the response 

FIGURE 12

Evidence of interactions between visual ‘predictor’ and ‘detector’ neurons in mouse V1, from the study of Fiser et al. (2016). Mice traversing a virtual 
tunnel encountered a sequence of five gratings: A-B-A-B-X, where X varied across conditions C1-C5: X  =  100% A (C1); 90% B, 10% A (C2); 100% B (C3); 
10% A, 90% B (C4); 10% null, 90% B (C5). Individual neuron responses were traced across this fixed order of conditions, and exhibited visual learning as 
mice progressively gained tunnel experience. (A) The relative, mean responses of the two classes of neuron across C1-C4 (pooling A and B 
selectivities). Predictor neurons sampled at stimulus onset, detector neurons sampled 1  s post-onset. (B–D) Trial-by-trial, detector neuron responses 
are contingent upon prior activity of predictor neurons. (B) Mean responses of B-selective detector cells to B-grating stimulus ‘B5’, in condition 4, in 
two subsets of trials: those with high and low predictive activity, respectively the top and bottom 20% of trials according to the mean, prior activity of 
B-predictor neurons. B-detector neuron activity is sampled 0.5–1.0  s post stimulus onset. (C) Mean responses of A-selective detector neurons to 
unexpected A-grating stimulus A5 in condition 4, in subsets of trials with high and low predictive activity (respectively the top and bottom 50% with 
respect to prior B-predictor neuron activity). A-detector neuron activity is sampled 0.5–1.0  s post stimulus onset. (D) Mean ‘omission’ responses to the 
unexpected absence of B-grating stimulus B5 in condition 5, in subsets of trials with high and low predictive activity (respectively the top and bottom 
50% with respect to prior B-predictor neuron activity). Omission activity is sampled 0.5–1.0  s post stimulus omission (i.e., post-onset, as timed in non-
omission trials).
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to A1 and A3. One way of rationalising this duality of behaviour is to 
infer that predictor signals represent a temporal-forecast component 
of prediction, and detector signals represent the current hypothesis of 
what is being seen, albeit with a modest, predictive ‘jump-start’.

6 Discussion

This review examines the neural implementation of predictive 
coding at the level of basic circuit components, the properties of 

excitatory pyramid neurons in particular assessed from a physiological 
perspective. It is necessary to work from a simple circuit model, 
informed by anatomical data – the purview here being the primate 
visual system (Figure  2). A parallel literature is available in the 
auditory domain (Chao et al., 2018; Heilbron and Chait, 2018; Walsh 
et al., 2020); across species, work in the mouse visual system leads the 
way in many technical respects impossible or impracticable to 
replicate in primates and demanding parallel consideration, whatever 
the uncertainties with regard to primate homology. The Introduction 
refers to a ‘voluminous literature’: sifting through it, as best one can, 

FIGURE 13

The ‘crossover’ model of error synthesis. The crossover model has two founding principles: (i) that negative error units exist, and are necessary for 
correcting overprediction (of prothetic variables) or misprediction of qualitative variables (such as orientation); (ii) that, for reasons of economy, a single 
error unit might combine both positive and negative error signalling. Each schematic shows a pair of channels selective for orthogonal orientations 
(where a ‘channel’ comprises an EXPC unit and an ERR unit with similar tuning), their elementary circuitry, and their stimulus responses. The prediction 
is shown to suppress the ERR unit in its ‘home’ channel, and excite the ERR unit in the opponent channel. Suppressive cross-connections (EXPC to ERR) 
have been added between the channels to replicate the finding in mouse V1 that negative error neurons are inhibited by visual stimuli. Upper 
schematic: the prediction is consonant with the stimulus, suppresses the ERR unit in its home channel, and acts to excite the ERR unit in the opponent 
channel. The home EXP unit, activated by the visual stimulus, is also disinhibited following predictive suppression of the home ERR unit; it suppresses 
activity of the opponent ERR unit. Hence neither ERR unit is active, and the prediction (i.e., representation) of orientation present at a higher level is 
maintained. Lower schematic: prediction of the same orientation, now a misprediction of the stimulus, continues to act in the same way upon the two 
ERR units; but the home EXPC unit is inactive, and the opponent EXPC unit co-excites the opponent ERR unit. In consequence (but not shown) forward 
transmission of the opponent error signal switches the orientation represented at a higher level, that in turn leads to predictive suppression of the error 
signal in that channel, and elevated activity of the EXPC unit through disinhibition. Arrows versus ballheads indicate excitatory versus inhibitory 
connections; Solid versus open or dashed connections indicate active versus inactive connections.
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there is little or nothing to violate the basic precepts of predictive 
coding (after sufficient scrutiny). And there is much that can 
be  rationalised in the light of predictive processing, often a more 
coherent and parsimonious rationale than ingenious alternative 
interpretations. From this perspective, predictive coding theory can 
rightly claim solid foundations in basic neuroscience. Although how 
it might work, exactly, remains richly perplexing.

Focusing initially upon primate studies that directly address 
predictive coding theory, there is evidence linking FF error signalling 
to gamma oscillatory activity in the superficial layers (Bastos et al., 
2020; Esmailpour et al., 2022), and varied findings regarding timing: 
where stimulus expectation precedes stimulus onset, error signalling 
is reportedly virtually immediate, from peak response onward (Meyer 
and Olson, 2011; Schwiedrzik and Freiwald, 2017); where expectation 
is the outcome of viewing the stimulus, it is more delayed (Issa et al., 
2018). Notably however, multi-factor regression modelling of 
population responses (as opposed to subtraction of population 
response curves) suggests that error signalling can be delayed even 
when expectation is pre-formed (Figure 6; Bell et al., 2016) – possibly 
a more secure conclusion, given the explicit efforts to exclude any 
confounding effects of repetition suppression in this study. Prediction 
signals, by contrast, are linked to beta activity in the deep layers. In 
apex frontal areas, this should correspond to the activity of FB, EXPP 
neurons; in intermediate areas, for instance V4 (Bastos et al., 2020) or 
IT (Esmailpour et al., 2022) the signals might associate with both FB 
and intrinsic classes; these co-populate the deep layers according to 
the template model (Figure  2) and cannot be  distinguished by 
measures of gross population activity such as LFP recordings. Looking 
to complementary findings in human cortex, a high-resolution fMRI 
study that cued expectation of one or other orthogonal gratings 
succeeded in detecting predictive signals in V1, specifically in the deep 
layers (Aitken et al., 2020). This might preferentially implicate activity 
in intrinsic EXPP neurons, as extrinsic EXPP neurons in V1 
communicate backward to LGN, that lacks orientation selectivity.

As outlined above, experimental paradigms exploit multiple 
(natural versus statistical) means to manipulate expectation, that may 
well differ in their origins amongst the brain’s cortical and subcortical 
systems, and in their subsequent modes of transmission and 
mechanisms of action. Adopting a broad outlook, it is of interest to 
draw a loose parallel between monkey and mouse observations 
pertaining to a binary origin of predictions in frontal cortex. Frontal 
cortex in the monkey was inferred to issue predictive signals solely 
from the deep layers prior to an expected stimulus onset, and more so 
from the superficial layers once the stimulus was visible (Bastos et al., 
2020). Frontal ACC axons in mouse, observed in V1 (and hence of 
unknown laminar origin), were classified as either predictive or visual 
(Fiser et al., 2016). The former were activated by expectation, ahead 
of and irrespective of whatever stimulus was presented; the latter 
initiated activity just moments ahead of stimulus presentation, that 
either grew more robust or died away contingent upon stimulus 
identity. Thus, in both cases, the distinction looks to be  between 
(pre-stimulus) expectation as temporal forecast, and (post-stimulus) 
expectation as current hypothesis – indeed, it would be surprising if a 
single neural mechanism were to exhibit such dual functionality.

Coding EXP neurons (EXPC – so named for activity hypothetically 
forming the direct substrate of perceptual experience) have proved 
more reclusive, identified by default as non-ERR neurons; either 
explicitly, e.g., in IT cortex of primate (Issa et  al., 2018), or by 

retrospective analysis as essayed here for the mouse (Figures 10, 11). 
Potentially, the clearest demarcation of EXP from ERR neurons has 
been achieved by means of the binocular rivalry paradigm (Logothetis 
and Schall, 1989; Leopold and Logothetis, 1996). This (or other 
bi-stable percepts, not contingent on ocular rivalry), used in 
conjunction with multilaminar electrodes could prove a potent vehicle 
for testing the elemental neural interactions comprising the gPC 
template model, particularly with regard to their relative timing. The 
inverse pattern of activity of inferred EXP and ERR neurons observed 
in V4 is consistent with the nature of their proposed reciprocal 
connections (Figure 8). However, the change in activity triggered by 
the higher level switch in visual cognition should be registered first by 
deep EXPP neurons, and then communicated to superficial EXPC 
neurons via superficial ERR neurons, phases that might all be captured 
by concurrent multilaminar recordings.

Many open questions remain regarding the principles whereby 
predictions are directed to and distributed among populations of ERR 
neurons. The revelation of negative error neurons, excited by 
predictions and signalling the degree to which a prediction may be an 
overestimate (Keller and Mrsic-Flogel, 2018), challenges the construct 
of ‘predictive suppression’ which informs many experimental 
approaches. If predictive excitation is equally common, ‘predictive 
error-discovery’ would be a more fitting appellation. However there is 
scant empirical verification of predictive excitation outside of optic 
flow processing in mouse V1. Speed is a prothetic variable – might its 
quantitative metric be processed differently to qualitative variables 
such as orientation, direction or colour? The only other frank evidence 
for negative error signals comes from LGN neurons processing ON 
and OFF contrast – again, a prothetic variable. Given that the LGN has 
a far simpler computational architecture, it may not be a good model 
of the cortex, but the point of interest about LGN neurons is that, 
interpreted as error neurons, they each combine positive and negative 
error signalling (Wang et al., 2006; Jehee and Ballard, 2009; Shipp, 
2016). This can be generalised to a ‘cross-over’ model of error synthesis 
(Figure 13), whereby a prediction does not merely suppress error 
signalling within its own ‘home’ channel, but also enhances error-
signalling within the opponent channel. As documented above, mice 
V1 neurons tuned to orthogonal gratings showed some predictive 
response properties that were consistent with this idea (Fiser et al., 
2016). There is also an analogous fMRI finding from human subjects 
observing bistable rotary motion (with naturally reversing percepts of 
direction akin to ocular rivalry): a subset of voxels in area V5 with net 
tuning to one direction (when viewing non-ambiguous motion) were 
found to show enhanced activity in periods when subjects reported 
the opposite direction percept, that the authors modelled as prediction 
error (Weilnhammer et al., 2021).

The idea of predictive excitement also bears, in principle, upon the 
issue of ‘surprise enhancement’: this is the observation in IT cortex 
that, compared to a neutral (absent) state of expectation, one and the 
same stimulus can not only elicit a smaller response when expected 
(i.e., predictive suppression) but also a larger response when it is 
unexpected (Kaposvari et al., 2018; Feuerriegel et al., 2021). However, 
it is problematic to apply the idea of crossover error-signalling to 
experiments conducted in IT cortex where [with the exception of 
Schwiedrzik and Freiwald (2017)] there is no overt conception of how 
dimensions of neural encoding relate to image variables in the 
stimulus ensemble. The problem being, in other words, that ‘home’ 
and ‘opponent’ neural channels for any given stimulus are not readily 
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recognisable. This matter was approached empirically by the 
pioneering study of error signalling in IT cortex where, for each 
neuron studied, stimuli were ranked from grade 1 to 6 by the 
magnitude of the response elicited (Meyer and Olson, 2011; 
Ramachandran et al., 2017). In this statistical learning paradigm, each 
leading stimulus predicted a specific trailing stimulus, so it was 
possible to assess whether expectation of grade 1 versus grade 6 had 
any effect upon a neuron’s response to an unexpected stimulus (one of 
grade 2–5). The fact that it did not led the authors to conclude that the 
nature of the error signals they described was not entirely compliant 
with predictive coding theory.

The undercurrent of thinking here is that any given prediction 
should exert a suppressive effect upon an error neuron in proportion 
to the response magnitude of that error neuron to the particular 
predicted stimulus – and that this suppression should be apparent (as 
the appropriate proportional reduction) in the response to any 
stimulus, predicted or not. In fact, the IT dataset was more consistent 
with the generalisation that predictive suppression only occurred 
when the stimulus presented was the predicted stimulus, and not any 
other (note that all stimuli employed were highly distinctive). Taken 
at face value, this finding is not altogether compliant with a crossover 
model of error synthesis. Even so, it might better be  taken as a 
refinement rather than violation of predictive coding heuristics – and, 
perhaps, a challenge to devise a ‘gating’ neural mechanism for 
matching descending predictive signals against ascending sensory 
signals, before allowing predictive signals access to error neurons. The 
more realistic conclusion is, of course, that there is simply a dearth of 
relevant experimental data, and that attempting to infer general 
principles of neural mechanisms implementing the gPC algorithm 
across different cortical areas and species studied by extraordinarily 

different means of manipulating expectation remains very much a 
work-in-progress.
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