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Unmanned aerial vehicles (UAVs) are involved in critical tasks such as inspection and

exploration. Thus, they have to perform several intelligent functions. Various control

approaches have been proposed to implement these functions. Most classical UAV

control approaches, such as model predictive control, require a dynamic model to

determine the optimal control parameters. Other control approaches use machine

learning techniques that require multiple learning trials to obtain the proper control

parameters. All these approaches are computationally expensive. Our goal is to develop

an efficient control system for UAVs that does not require a dynamic model and

allows them to learn control parameters online with only a few trials and inexpensive

computations. To achieve this, we developed a neural control method with fast online

learning. Neural control is based on a three-neuron network, whereas the online learning

algorithm is derived from a neural correlation-based learning principle with predictive

and reflexive sensory information. This neural control technique is used here for the

speed adaptation of the UAV. The control technique relies on a simple input signal from

a compact optical distance measurement sensor that can be converted into predictive

and reflexive sensory information for the learning algorithm. Such speed adaptation is

a fundamental function that can be used as part of other complex control functions,

such as obstacle avoidance. The proposed technique was implemented on a real UAV

system. Consequently, the UAV can quickly learn within 3–4 trials to proactively adapt

its flying speed to brake at a safe distance from the obstacle or target in the horizontal

and vertical planes. This speed adaptation is also robust against wind perturbation. We

also demonstrated a combination of speed adaptation and obstacle avoidance for UAV

navigations, which is an important intelligent function toward inspection and exploration.

Keywords: drone, adaptive neural control, neural proactive control, online learning, speed adaptation, obstacle

avoidance

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) or drones are used in various challenging applications, such as
industrial inspection (Kocerab et al., 2019; Ribeiro et al., 2019; Yao et al., 2021), exploration and
surveying (Dai et al., 2019; Jiao et al., 2020), and rescue and emergency response (Karaca et al.,
2018; Deng et al., 2019), all of which require the UAV to perform a given mission automatically.
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Thus, to effectively complete the mission, UAVs should have
many intelligent functions, such as obstacle avoidance (Figure 1),
exploration, searching, navigation, object transportation, and
autonomous landing. However, a basic safety function is
crucial. In particular, when performing missions in complex
environments, such as caves, tunnels, indoor areas, or urban areas
with many obstacles, the UAV should be in a safe condition
before performing other advanced functions. Therefore, both
basic safety and advanced functions should be considered in
the development of fully autonomous UAVs to handle unknown
environments. To achieve this, different UAV control techniques
have been developed based on two main principles: model-based
and model-free controls.

Model-based control requires kinematic and system dynamic
models to control UAV behavior. Widely used control methods,
which rely on models, include feedback proportional–integral–
derivative (PID) control and model predictive control (MPC).
For PID control, the control parameters are tuned to match the
models to obtain the desired behaviors (Sangyam et al., 2010;
Goodarzi et al., 2013). It is mostly used for basic functions
such as attitude and position control, while the MPC is used to
optimize the control parameters by predicting the future state of
the UAV. The MPC is deployed with both basic functions (e.g.,
precision Dentler et al., 2016; Feng et al., 2018; Jardine et al.,
2019, environmental disturbance compensation Chikasha and
Dube, 2017), and advanced functions (e.g., obstacle avoidance
and navigation, Bareiss et al., 2017; Yang et al., 2019; Dai et al.,
2020). In addition, it is used in trajectory tracking to control
the UAV, ensuring that it follows the planned path (Baca et al.,
2018; Tordesillas et al., 2019; Invernizzi et al., 2020). However,
in advanced functions, the control system needs to perceive the

FIGURE 1 | Speed adaptation algorithm, based on neural control with online correlation-based learning capability (or considered as neural proactive control, insert

circle). A reflexive path is the path for generating reactive behavior, while a predictive path is the path for performing online learning and generating adaptive behavior.

The algorithm serves as a primitive control function for obstacle avoidance. It allows the UAV to automatically fly (see from right to left) and proactively adapt its flying

speed and brake at a safe distance to avoid an obstacle.

frontal (Tordesillas et al., 2019) or surrounding (Bareiss et al.,
2017) environmental information of the UAV to plan a safe flying
trajectory. Therefore, complex sensors (e.g., cameras and laser
scanners) have to be installed. Furthermore, their complex signal
processing to predict the future state and perceive environmental
information requires high computational effort, particularly in
complex environments.

Model-free control, however, does not require a system
dynamic model. This technique includes reactive and learning-
based control for controlling UAVs to perform complexmissions.
For reactive-based control (Rambabu et al., 2015; Cheong et al.,
2016; Ki et al., 2018; Huang et al., 2019), sensory (feedback)
signals are used to generate reactive control commands to the
UAV, such as stop and avoidance commands when obstacles
are detected. Reactive-based control typically requires less
computational effort than other methods, such as the MPC.
However, the system design of this technique should be
considered, including sensor installation, sensor detection range,
and parameter tuning, to ensure the effectiveness of the control
system. For automatic parameter tuning or optimization, various
machine learning methods have been applied including deep
learning (Palossi et al., 2019, 2022; Varshney et al., 2019),
reinforcement learning (RL) (Shin et al., 2019; Wang et al.,
2019; Lin et al., 2020), and an evolutionary algorithm (EA)
(Fu et al., 2018; Yazid et al., 2019). Although they have
become more popular in recent years, their learning processes
are typically time-consuming and computationally expensive,
requiring a large amount of data and multiple learning trials or
iterations. Thus, an offline learning process with prepared data
or a simulation is used before transferring the learned control
parameters to a real UAV. Therefore, it is important to ensure that
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TABLE 1 | Comparison table showing the difference between implementing the

NPC and the explicit MPC as the main controller of the simulated UAV speed

adaptation control.

Comparison Item Control method

NPC Explicit MPC

Dynamic model requirement ✗ ✓

Learning and optimization requirement ✓(online) ✓(offline)

Computational time for generating a

control command (average)

0.38 ms (56.32%) 0.87 ms

Total learning and optimization time

(average)

464.81 s (99.47%) 24.48 h

The percentage values in the table represent that the NPC requires less computational

times than the explicit MPC: 56.32% for one iteration and 99.47% for total

learning/optimization.

all possible situations are introduced during the learning process;
otherwise, the UAV may fail to address unexpected situations
(i.e., situations that have not been trained or learned before).

Based on the aforementioned problems, we propose a neural
proactive control, derived from a neural control network and
correlation-based online learning. The proposed method does
not require a dynamic model, multiple learning trials, or even
a large amount of data and processing power to determine
the optimal control parameters. In addition, it can be directly
implemented on a real UAV to learn online in real time.
The neural control method serves as a model-free proactive
control using a learning technique to proactively provide system
adaptability to interact with the environment. Here, we apply
this control method to the speed adaptation control of a
UAV, allowing it to proactively adapt its flying speed and stop
at a safe distance from the obstacle or target in horizontal
and vertical planes. This speed adaptation is a primitive or
fundamental behavior for buildingmore complex behaviors, such
as approaching/goal-directed and obstacle avoidance. All these
complex behaviors require primitive behavior that can adapt
or change the UAV’s flying speed to stop in front of its target
before performing the next behavior. Speed adaptation control
relies on only one input signal from a compact optical distance
measurement sensor. The proposed algorithm was implemented
on a real UAV and evaluated in a real environment. The aim
is to automatically determine the optimal control parameters
through a learning mechanism that learns from the actual
system dynamics without system and environmental models.
The UAV can learn the speed control parameters (gains) online
to proactively adapt its flying speed and brake at a proper
rate for various maximum speeds in the horizontal and vertical
planes (i.e., flying speed adaptation in the x, y, or z direction).
This learning process is data efficient and can be completed
in 3–4 trials. Furthermore, the control system is robust against
wind perturbation.

We additionally evaluated the online learning experiment
of the proposed neural proactive control on a simulated UAV
platform (Gazebo) to show that our control technique can be
easily applied to another UAV platform without a dynamic

model or a specific parameter setup for the UAV. Thus, the
proposed neural control can be considered as a general fast online
learning system for addressing the speed adaptation of different
UAVs with different maximum flying speeds. The performance
of our neural proactive control was compared with that of
the MPC (Varshney et al., 2019; Lindqvist et al., 2020; Wang
et al., 2021). The results show that both methods can effectively
control the UAV to adapt its flying speed at an appropriate
rate for various maximum speeds. However, there are more
system requirements for implementing the MPC. For example,
the MPC requires a specific dynamic model of the UAV and
is computationally expensive, while the neural control does not
require any model and is computationally inexpensive (i.e., 56.32
and 99.47% less computational time for one iteration and total
learning/optimization, respectively; see Table 1 in Section 3).
Finally, we presented a use case of speed adaptation control as
a primitive adaptive function of obstacle avoidance in a real
environment with static and dynamic obstacles, which enables
the UAV to fly effectively and become closer to the obstacle
before avoiding it, which is significant for applications such as
inspection and exploration.

Taken together, this study has the following
main contributions:

• General and robust control with fast online learning and
data efficiency for UAV speed adaptation. It can handle
different maximum flying speeds in the horizontal and vertical
planes and unexpected wind perturbation. The online learning
method is computationally inexpensive and does not require
multiple trials and a large data collection to automatically
optimize the speed control parameter(s). Consequently, it is
more efficient than traditional model predictive control and
machine learning-based control.

• Demonstrations for real-world speed adaptation and obstacle
avoidance of a UAV in a variety of situations, including
encountering static and dynamic obstacles, flying under
unexpected wind perturbation, and flying in different
directions (i.e., x, y, and z directions).

• Available source code of the neural control method in our Git
repository1 to allow replication.

The remainder of this article is organized as follows. In Section
2, we present an overview of the proposed control system
and details of the speed adaptation algorithm based on neural
proactive control (neural control and online learning). Section
3 provides a description of the UAV system used as our
experimental platform and the experiments and results of the
proactive control technique at different flying speeds in real
and simulated environments. We also present a performance
comparison of the proposed control technique with classical
reactive control and MPC techniques, and a use case for obstacle
avoidance of the proposed control technique. Finally, Sections 4
and 5 provide the discussion and conclusions, respectively.

1https://gitlab.com/BRAIN_Lab/public/neural-control-and-online-learning-for-

speed-adaptation.git
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FIGURE 2 | Setup for testing and demonstrating the performance of the control system. In this scenario, a UAV flies at a given speed toward an obstacle. When it

becomes close to the obstacle, the learning system allows it learn to gradually adapt its speed and brake at a safe distance from the obstacle. The proposed control

and learning system is not restricted to a certain flying direction. It can be used to adapt the flying speed of a UAV in the horizontal and vertical planes (i.e., x, y, or

z direction).

2. MATERIALS AND METHODS

In this section, we describe the neural control and online
learning system used for speed adaptation and obstacle avoidance
(Figure 2). First, we provide an overview of the control
system, including its requirements and potential applications.
Subsequently, we describe the principle and functionality
of neural control and online learning system. Finally, we
demonstrate how we use the output of the control system for the
behavioral control of UAVs.

2.1. Control System Overview
The control system is based on a modular structure (Figure 3).
It consists of an input module with distance measurement sensor
feedback, a neural control and online learning module, an output
mapping module, and a low-level flight control module. In this
study, the neural control and online learning module is the main
component developed and applied to enable a UAV to adaptively
reduce its speed (or determine the appropriate rate of speed
adaptation) to brake before colliding with an obstacle (Figure 2)
in the horizontal and vertical planes. The rate of speed adaptation
is proportional to the plastic synaptic weight of the neural
control system. An input correlation (ICO) learning mechanism
was employed to learn the synaptic weight (see Section 2.2).
Our use case, described later, shows that a UAV can fly in an
area with obstacles while gradually and continuously learning
to determine a proper synaptic weight for speed adaptation at
any given flying speed. This neural control and online learning
system requires only obstacle detection information at different
ranges (here, a simple distance measurement sensor; Figure 3)
to generate an adaptive speed control output (see Section 2.3)
without system and environmental models. Thus, in principle,
it can be utilized for speed adaptation in other mobile robot
systems, where its speed control output should be mapped to
the final low-level speed control command of the corresponding
robot system.

2.2. Neural Control and Online Learning for
Speed Adaptation
To achieve speed adaptation of the UAVs, we utilized neural
control with the ICO learning mechanism2 as a proactive
neurocomputing system to generate an adaptive control signal
to the UAV. Neural control is based on a three-neuron network,
as shown in Figure 3B. Neurons N1 and N2 of the network were
modeled as discrete-time non-spiking neurons. The activity, ai,
of each neuron was developed based on the following equation:

ai(t) =

n
∑

j=1

Wij · oj(t − 1)+ Bi i = 1, . . . , n, (1)

where n denotes the number of neurons, Bi is an internal bias
term or a sensory input to neuron i, and Wij represents the
synaptic weight of the connection from neuron j to neuron i.
The output oi of the neuron is calculated using a linear transfer
function (oi(t) = ai(t)).

Neuron Rm of the network was modeled as a modified rectifier
neuron or modified ReLU. The activation function is defined
as follows:

Rm(t) =

{

o1(t) o1(t) > 1,
0 o1(t) ≤ 1,

(2)

where o1(t) is the output of N1 (Figure 3).
ICO learning is an unsupervised learning technique that uses

a correlation-based learning rule between two input signals,
mapped to different obstacle detection ranges. The first signal
was mapped to long-range detection for prior occurrence and is
called the “predictive signal” (X1). The second signal was mapped
to short-range detection for later occurrence and is called the
“reflexive signal” (X0). Both input signals were transmitted to the

2The strong stability and fast convergence of the ICO have been analyzed in Porr

and Wörgötter (2006).
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learner neuron (N2) through the predictive or plastic synaptic
weight (W1) and reflexive weight (W0), respectively (Figure 3).
The predictive weight can be learned or adapted based on the
ICO learning rule using the correlation between the two input
signals. The correlation was realized bymultiplying the predictive
signal and the positive change (derivative) of the reflexive signal.
A learning rate (µ) was applied to scale the correlation and
define the speed of the learning process. In this learning rule,
only the predictive weight was allowed to change; thus, the
reflexive weight was set to a fixed positive of 1.0. In our approach
(Figure 3), the predictive signal was the output of N1, which
uses a single input signal3 from the distance sensor, while the
reflexive signal was the output of the modified rectifier neuron
Rm (modified ReLU), which uses the N1 output as its input. The
sensor was installed on the UAV to detect obstacles. The sensor
signal was applied as the input signal of N1. It was mapped
to a linear range by N1 using an input gain and bias of −0.4
and 1.2, respectively. The negative input gain basically inverts
and scales the sensor signal, while the bias term offsets it, so
the linear output of N1 can vary between 0.0 (i.e., the distance
between the sensor and an obstacle is greater than 3.0 m) and
1.1 (i.e., the distance between the sensor and an obstacle is equal
to 0.25 m)4. The output of N1 was separated into two paths: the
predictive signal path that transmitted the inputX1 to N2, and the
reflexive signal path that transmitted the input X0 to N2. Here,
the reflexive signal, which is based on the Rm output, is equal to
the predictive signal when the predictive signal is higher than one
and zero when the predictive signal is equal to or less than one, as
described in Equation (2).

In this setup, the predictive weight was initially set to zero, and
the reflexive weight was set to one. Based on the learning rule and
initialized weight setting in the first trial, the output of N2 [i.e.,
o2(t) = W0X0(t) + W1(t)X1(t)] was activated once the reflexive
signal occurred. In this situation, the UAV was controlled only by
the reflexive signal. Consequently, the UAV braked immediately
to avoid hitting the obstacle. However, if the flying speed is quite
high, the UAV may collide with the obstacle. Meanwhile, the
predictive weight was gradually updated during the occurrence
of the reflexive signal through the correlation between these two
signals, as described in Equation (3):

1W1(t) = µ
dX0(t)

dt
X1(t), (3)

where 1W1(t) denotes the change in the predictive weight. µ is
the learning rate, which defines the speed at which the system
can learn. To accelerate the learning process, we set the learning
rate to 0.3. Appendix A provides more details on how different
learning rates impact the system’s performance.

The inset graph in Figure 3B shows the predictive and
reflexive signals and their correlation for the predictive weight

3Note that during the learning process of the real UAV, we used an input

signal from a motion capture localization system (OptiTrack) only for safety; see

Section 3 for further details.
4Note that in the case of using the input signal from OptiTrack, the output of N1

can vary between 0.0 (i.e., the distance between the drone and virtual obstacle

is greater than 3.0 m) and 1.6 (i.e., the drone flies beyond the virtual obstacle

for 1.0 m).

FIGURE 3 | Neural proactive closed-loop controller for speed adaptation and

obstacle avoidance. The controller consists of four main modules: (A) the input

module, using an optical distance sensor to detect the distance between a

UAV and frontal obstacle; (B) the neural control module with the ICO learning

mechanism as the main component of the proactive controller (the dark blue

dashed line indicating the predictive path and the green line indicating the

reflexive path), consisting of three neurons (two discrete-time non-spiking

neurons (N1 and N2; see Equation 1) and one modified ReLU neuron (Rm;

see Equation 2); (C) the output mapping module that maps the neural output

to the low-level control by separating the output N2 into speed adaptation

control and obstacle avoidance control; (D) the flight controller (Pixhawk/PX4)

for low-level control (i.e., velocity and attitude control). Note that the inset

graph in (B) illustrates the predictive X1 and reflexive X0 signals, their

correlation (X1*dX0/dt), and weight adaptation W1. In our implementation here,

only the positive change of the reflexive signal is used for weight adaptation.

adaptation (W1). The predictive signal occurs earlier, whereas
the reflexive signal in this setup occurs when the predictive
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Algorithm 1 Neural Control and Online Learning.

1: initial_synaptic_weight ⇐ predictive weight (W1)=0, reflexive weight (W0)=1
2: define learning rate (µ)
3: function neural_control_and_online_learning(obs_distance)
4: compute X1 throughN1 ⇐ obs_distance ⊲ compute the predictive signal
5: compute X0 through Rm ⇐ N1_output ⊲ compute the neural control output
6: N2 output ⇐ X1(t)W1(t)+ X0(t)W0(t) ⊲ compute the reflexive signal
7: 1X0(t) ⇐ X0(t)− X0(t − 1) ⊲ compute the derivative of reflexive signal
8: 1W1(t) ⇐ µ1X0(t)X1(t) ⊲ compute the change predictive weight
9: W1(t) ⇐ W1(t)+ 1W1(t) ⊲ update the predictive weight
10: return N2 output

11: mavros_interface_setting ⊲ configure mavros interface parameters
12: command_takeoff ⊲ command the UAV
13: while terminate is NOT_TRUE do ⊲ enter learning process
14: command_goto_start_point ⊲ command the UAV to go to start point
15: for i ⇐ 1 to 200 do
16: fly the UAV forward ⊲ fly the UAV at a given speed (i.e., 0.5, 1.0, 1.5 m/s)
17: obs_distance ⇐ get obstacle distance ⊲ distance from the sensor or motion capture system
18: output ⇐ neural_control_and_online_learning

(obs_distance) ⊲ call the learning function
19: vel_command ⇐ mapping_output(output) ⊲map the neural output to the UAV command

20: if There is no reflexive signal then ⊲ check the convergence of the learning process
21: convergence_count ⇐ convergence_count + 1
22: else

23: convergence_count ⇐ 0

24: if convergence_count > 5 then ⊲ check the terminating condition
25: terminate ⇐ TRUE

26: else

27: terminate ⇐ FALSE

28: command_landing ⊲ complete the learning process and command the UAV to land

signal is greater than a threshold (i.e., 1.0). The predictive
weight is learned at the overlapping period between these two
signals (when they correlate in time) based on the learning
rule in Equation (3). Under this learning rule, we use only a
correlation of a positive change of the reflexive signal (or a
positive derivative) and the predictive signal to incrementally
update the predictive weight until the reflexive signal is no longer
present. This allows the UAV to proactively adapt or decrease its
flying speed to stop in front of the obstacle in time. Algorithm 1
shows the pseudocode of the neural control and online learning,
together with the learning process to determine the optimal
predictive weight. Note that the predictive and reflexive weights
can be considered as adaptive and fixed gains, respectively, for the
speed adaptation control of the UAV.

Here, we performed the experiment and learning process
in a real environment, allowing the control system to learn
with the real dynamics of the UAV. At the beginning of the
learning process, the UAV started to reduce its flying speed
and braked when the reflexive signal occurred. The learning
process was run continuously until the predictive weight became
sufficiently strong. Subsequently, the UAV was controlled only
by the predictive signal with an appropriate magnitude through
the weight. Basically, the UAV was able to proactively decrease
its speed and brake without the reflexive signal (i.e., decreasing

its speed and breaking earlier before the reflexive signal was
active). This indicates that the learning process was complete,
and the reflexive signal no longer occurred. By conducting
this learning process at different maximum flying speeds, we
obtained an appropriate predictive weight for each maximum
speed in relation to its flying speed and the setup of predictive
and reflexive ranges. For example, at a faster flying speed, the
predictive weight was larger, causing the UAV to brake sharply
and stop at a safe distance from the obstacle. This implies that the
strength of the predictive weight is a factor or gain in defining
the speed adaptation rate of the UAV. Importantly, the neural
control and learning system is general and can be applied for
speed adaptation in any direction (x, y, or z).

2.3. UAV Behavior Control
The UAV behaviors were generated through the output
mapping module, which consisted of two sub-modules: speed
adaptation and reactive obstacle avoidance output mapping.
Speed adaptation output mapping was used to convert the output
of N2 into the flying speed of the UAV. The UAV flew forward
when the output of the module was positive and backward when
it was negative. The speed mapping was designed using four
control rules, as expressed in Equation (4). The first rule was
applied when the output of N2 was less than 0.3, and the UAV
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flew at a maximum speed. The second rule was applied when
the output of N2 was greater than or equal to 0.3, but less than
0.9, and the UAV reduced its flying speed by the proportional
square root of the maximum speed. The third rule was applied
when the output of N2 was greater than or equal to 0.9, but less
than 0.95, and the UAV speed was set to zero. The last rule was
applied when the output of N2 was greater than or equal to 0.95,
and the UAV flew backward at 20% of the maximum speed. The
final mapped speed command was applied to the velocity control
through a low-level flight controller (Pixhawk/PX4) to control
the flying speed of the UAV in the horizontal/vertical plane. Based
on this setup, the UAV proactively adapted its flying speed while
approaching the obstacle and flew backward if it became too
close. This allows other advanced functions (such as obstacle
avoidance) to be executed at a safe distance.

vx,y,z(t) =















vx,y,z_max o2(t) < 0.3,
√

(1− o2(t))vx,y,z_max 0.3 ≤ o2(t) < 0.9,
0 0.9 ≤ o2(t) < 0.95 ,
−0.2vx,y,z_max o2(t) ≥ 0.95,

(4)
where vx,y,z(t) denotes the flying speed command for the UAV in
the x, y, or z direction; vx,y,z_max is the maximum flying speed of
the UAV in the x, y, and z directions; and o2(t) is the output of N2.
Note that these four rules with the threshold numbers (0.3, 0.9,
and 0.95) were empirically defined. While the simple mapping
with discrete speed transition is sufficient for the UAV control. To
smoothen speed transition, one can apply an advanced technique,
such as fuzzy logic (Hartono and Nizar, 2019).

For reactive obstacle avoidance control, because it was not
the main focus of this study, we utilized the output of N2 as
a command to activate obstacle avoidance. As described above,
before the UAV performs obstacle avoidance, it should be at a
safe distance from the obstacle by reducing its speed and braking,
in accordance with the speed adaptation algorithm. The UAV
then performs obstacle avoidance, driven by a preprogrammed
reactive obstacle avoidance control.

3. EXPERIMENTS AND RESULTS

Speed adaptation and obstacle avoidance were implemented on
the UAV, as shown in Figure 4A. We used a frame wheel 450
quadrotor (F450) as our experimental UAV platform, where
the distance between the diagonal motors of the UAV was
450 mm. The UAV had four brushless, 920 kV motors each
attached with a 30 A electronic speed controller (ESC). In
Figure 4A, the key components comprise the following: (1)
Pixhawk 2.1 (an open-source flight controller) and its accessories,
including telemetry for data exchange with a ground station and
receiver for obtaining manual control signals from a remote
controller; (2) a compact optical distance measurement sensor
(LiDAR-Lite V3) for obstacle detection; (3) an onboard computer
(Odroid XU4) for implementing the proactive neural controller
(Figure 3) and communicating with Pixhawk, Arduino, and the
indoor localization system (OptiTrack); and 4) the Arduino
NANO microcontroller, serving as buffer hardware for the
interface between the sensor and onboard computer. The

Odriod onboard computer is the center of all communications,
as shown in Figure 4B. The interface between the onboard
computer and flight controller was based on the robot operating
system (ROS) using a supported bridge between ROS and
the MAVLink protocol, called MAVROS, through an FTDI
cable. In another ROS interface, located between the onboard
computer and localization system, we used the virtual-reality
peripheral network (VRPN) library to publish the positions and
orientations from the localization system to the UAV using WiFi.
The onboard computer was linked to the Arduino through a
serial interface using a USB cable, converting the PWM signal
from the sensor into a distance and then sending it to the
onboard computer.

The following experiments were performed to (1) evaluate
the performance of the neural control and online learning for
speed adaptation and (2) demonstrate the use of speed adaptation
for obstacle avoidance of the UAV. The control system was
implemented on the onboard computer at an update frequency
of 10 Hz. The first experiment was for the UAV to learn the speed
control parameter (predictive weight) online at different flying
speeds, which can be separated into two parts (i.e., horizontal
and vertical planes). We first learned the weight in the horizontal
plane using the experimental setup shown in Figure 5. Because
the UAV is symmetric, the horizontal plane experiment will only
be conducted in one direction (i.e., the x direction), and the
learned weight can be applied for speed adaptation control in
both x and y directions. Note that the vertical position of the
UAV was maintained at a certain height during the horizontal
experiment. To execute the learning process, the UAV flew
toward a virtual obstacle at a maximum speed of 0.5 m/s in the
real environment setting, as shown in Figure 5B. The distance
from the UAV to the virtual obstacle was defined by subtracting
the position on the x-axis of the UAV and the virtual obstacle,
both of which were provided by the localization system. Instead
of using a signal from the distance sensor, this information was
used as an input signal for this learning process5. The input signal
was fed into the neural control to produce the output signal and
control the UAV to adapt its flying speed. During the learning
process, the algorithm updated the weight based on the online
learning mechanism (see Equation 3).

The results in Figure 6 show real-time data during online
learning at a maximum speed of 0.5 m/s. Initially, the UAV flew
forward toward the obstacle, causing a decrease in the distance
between the two. Once the UAV flew into the predictive range,
the predictive signal became active (Figure 6A). The UAV still
flew toward the obstacle until it reached the reflexive range. Once
the UAV was in the reflexive range, the reflexive signal became
active (Figure 6B). The predictive weight gradually increased
(Figure 6D) owing to the correlation of the predictive signal
and a positive change in the reflexive signal (i.e., a positive
value of the derivative of the reflexive signal), as described in
Equation (3). Consequently, the N2 output was activated based
on a combination of predictive and reflexive signals. This caused

5At a fast speed, the UAVmay crash the obstacle during the learning process. Thus,

to avoid damage, we used the virtual obstacle with the localization system-based

input, rather than a real physical obstacle.
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FIGURE 4 | (A) The UAV with (1) Pixhawk 2.1 flight controller and its accessories, (2) distance sensor, (3) Odroid onboard computer, and (4) Arduino NANO

microcontroller. (B) Schematic connection of the setup.

the speed command in the x-axis to decrease, as described
in Equation (4) (Figure 6E). However, because the predictive
weight was initialized with zero, the UAV speed in this state
decreased only because of the reflexive signal. During the first
trial, the UAV speed started to decrease speed and braked
after passing through the virtual reflexive line. Although the
system performed the same process in the following trials, the
UAV started to proactively adapt its speed. This is because the
predictive signal contributes to the speed adaptation through
the learned predictive weight. In each trial, the system started
with the previous (learned) predictive weight; for example, in
the first trial, the predictive weight was initially set to 0.0,
whereas in the second trial, it started with the learned value
from the previous trial (Figure 6D). During the second trial,
the UAV reacted earlier (proacted) by adapting its speed before
passing the virtual reflexive line, owing to the influence of the
increased predictive weight. The process was automatically and
continuously executed such that the UAV gradually proacted

before passing through the line. After three learning trials, the
UAV successfully adapted its flying speed proactively and braked
before hitting the line. At this point, the reflexive signal did
not occur. Consequently, the predictive weight did not increase
further or converged. The UAV behaved in the same manner in
the remaining trials after learning (see the last five trials (from
600 time steps) in Figures 6A,F). This implies that the learning
process was completed, with the existing predictive weight being
the optimal control parameter for a flying speed of 0.5 m/s.
Moreover, we showed the UAV behavior in three periods as
snapshots during the learning process, as represented by the
gray areas in Figure 6(1)–(3). The same learning process was
performed for the other maximum flying speeds (0.7, 0.9, 1.0,
1.1, 1.3, and 1.5 m/s). The results at speeds of 1.0 and 1.5 m/s
are presented in Appendix B (Figures B1,B2).

The statistical data for the speed adaptation algorithm are
shown in Figure 7. It was calculated using polynomial regression
to fit the relationship between the optimal predictive weights

Frontiers in Neural Circuits | www.frontiersin.org 8 April 2022 | Volume 16 | Article 839361

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Jaiton et al. Neural Control and Online Learning

FIGURE 5 | Experimental setup for neural control with online learning of a UAV. (A) 3D view of the indoor environment for flying the UAV under the localization system,

consisting of eight motion capture cameras. (B) Top view of the flying environment without wind perturbation, showing predictive and reflexive ranges with respect to

the virtual obstacle. In this setup, the virtual obstacle was placed at position x = 0.0, with virtual predictive and virtual reflexive lines located at x = −3.0 m and −0.5

m, respectively. Basically, the predictive range was 2.5 m, and the reflexive range was 0.5 m. The UAV started flying at position x = −4.5 m. (C) Top view of the flying

environment with wind perturbation generated by a fan behind the UAV. (D) The communication system provided UAV positions (i.e., x, y, z) and orientations (i.e., roll,

pitch, yaw) from the localization system to the onboard computer. The communication flow is that the localization system tracks the motion of the UAV and then sends

positions and orientations to the onboard computer. The onboard computer transfers positions and orientations to the flight controller for fusing with IMU information.

Subsequently, the fused information (positions and orientations) is sent back to the onboard computer to compute and generate control commands.

and the UAV’s corresponding maximum flying speeds (0.5, 0.7,
0.9, 1.0, 1.1, 1.3, and 1.5 m/s). In this case, the experiment was
repeated seven times at each speed to observe the distribution
of the optimal predictive weight. The graph shows the average,
minimum, and maximum values of each predictive weight.
Moreover, the results show the approximated predictive weights
for other flying speeds between 0.5 and 1.5 m/s. To verify the
usability of the approximated weights, we chose two other
maximum flying speeds: 0.75 and 1.25 m/s. We then performed
the same experiment by flying the UAV toward the virtual
obstacle using the approximated predictive weights of 1.03,
and 1.07, respectively, obtained from Figure 7 at the speeds of
0.75 and 1.25 m/s as the initial weights. Verification results at a
maximum speed of 0.75 m/s are shown in Figure 8. The UAV
adapted its speed and braked before hitting the virtual reflexive
line. Furthermore, the predictive weight did not increase during
the experiment, indicating that the weight used was appropriate
for this flying speed. Similar results for the 1.25 m/s speed are

shown in Appendix C (Figure C1). Both experiments proved
that the approximated predictive weights are usable for the
speed adaptation function of the UAV when flying at different
maximum speeds. Additionally, to demonstrate the robustness of
our neural proactive control, we tested it with wind perturbation
(see the experimental setup in Figure 5C). In this experiment,
we flew the UAV at a maximum speed of 1.0 m/s and used the
learned predictive weight of 1.07, obtained from Figure 7. To
generate wind perturbation, we placed a fan 1.5 m behind the
UAV. The wind gradient is shown in Figure 9D. Figure 9 shows
that our control can successfully adapt the flying speed of the
UAV and brake it at a safe distance from the virtual obstacle. To
investigate the greater effect of wind perturbation on the UAV,
we shifted the UAV and all virtual lines (predictive, reflexive,
and obstacle) backward by 1.5 m (Figure 10E). Consequently,
the UAV has to brake earlier while receiving strong wind
perturbation. Figure 10 shows a comparison of the UAV flying
behavior under three different conditions. The first condition
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FIGURE 6 | Real-time data of speed adaptation during online learning while flying the UAV at a maximum speed of 0.5 m/s. (A) Predictive signal. (B) Reflexive signal.

(C) Derivative of the reflexive signal. (D) Predictive weight. (E) Actual speed (x-axis) of the UAV. (F) Position on the x-axis of the UAV compared to the virtual reflexive

line (blue line). The gray areas represent three periods and show the UAV’s position with respect to the virtual predictive line (VPL), virtual reflexive line (VRL), and virtual

obstacle (VO). These three periods are shown in the three snapshots together with the corresponding estimated trajectories (1, 2, 3) namely the beginning of learning

(1), during learning (2), and after learning (3). A video of this experiment can be viewed on www.manoonpong.com/DSA/video1.mp4.

was when flying the UAVwithout wind perturbation and without
speed adaptation6. The second condition was when flying the
UAV with wind perturbation and without speed adaptation.

6Note that, in principle, the control without the speed adaptation is a conventional

reactive control method with a predefined sensory feedback gain (i.e., here 1.0),

widely used in various UAV behavioral adaptation tasks (Rambabu et al., 2015;

Kramer and Kuhnert, 2018). Thus, we basically compare our speed adaptation with

the conventional method. In contrast, our control with the speed adaptation uses

a proper learned sensory feedback gain with respect to the flying speed.

The third was when flying the UAV with wind perturbation and
with speed adaptation (using an initial predictive weight of 1.07
(obtained from Figure 7) and allowed it to online learn). It can
be seen that the wind perturbation strongly affected the UAV
velocity control where without speed adaptation, the UAV could
not brake and flew beyond the virtual obstacle (Figures 10C,D).
In contrast, using our speed adaptation method, the
UAV managed to effectively brake without hitting the
virtual obstacle.
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FIGURE 7 | Approximated predictive weights based on the seven learned weights at the maximum flying speeds of 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, and 1.5 m/s. For the

seven speeds, we repeated the learning process seven times each. The inset illustrates the learning curves of predictive weights at the maximum flying speeds. It can

be seen that the learning process was fast where the weights converged after 3–4 trials.

A further performance comparison between the UAV flying
with and without the speed adaptation at different flying speeds
is presented in Figure 11. The graph was plotted from the
maximum flying speeds of the UAV and the maximum overshoot
position reached by the UAV before braking and returning to
the desired point (the front of the reflexive line). The data were
recorded during the experiment by flying at five different speeds
(i.e., 0.5, 0.75, 1.0, 1.25, and 1.5 m/s) and repeated seven times
for each speed. We used polynomial regression to approximate
the data at other flying speeds. The results show that the UAV
flying with the proactive control can adapt its flying speed and
stop before hitting the virtual reflexive line. While flying with
the reactive control or using the conventional reactive control,
the UAV was unable to stop before hitting the virtual reflexive
line, and at a speed higher than approximately 0.6 m/s, it hit
or flew beyond the virtual obstacle line. This implies that the
UAV flying in the horizontal plane with reactive control or
inappropriate gain will collide with the obstacle when flying in
a real environment.

We further performed the same experiment in a simulated
environment (Gazebo) to show the ability to apply to another
UAV system without requiring its dynamic model or other
specific parameter setup (see Supplementary Material). In
addition, we compared our model-free neural proactive control
technique with the model-based explicit MPC technique
(Varshney et al., 2019; Lindqvist et al., 2020; Wang et al., 2021)
in the same simulated environment. The simulation results are
shown in Figure 12. Clearly, when flying with the conventional

reactive control, the UAV was unable to stop before hitting
the virtual reflexive line. In contrast, when flying with neural
control or MPC, the UAV was able to adapt its speed to brake
before hitting the reflexive line. Nevertheless, as the maximum
flying speed increased (i.e., 1.5 m/s), the UAV with the MPC had
difficulty adapting its speed. Consequently, its braking position
was significantly close to the reflexive line; while using neural
control, the UAV still adapted its speed and braked at a certain
distance before the line (Figure 12). Comparing our neural
control with the MPC, there are more system requirements
and parameter setups for implementing the MPC, such as the
dynamic model of the UAV and system states (e.g., distance
from obstacle or position, speed, and acceleration). Moreover, the
optimization process of the MPC requires high computational
effort. In contrast, the proposed neural control method requires
only a distance from an obstacle or position with a few learning
trials (less computational effort). The MPC implementation is
provided in Supplementary Material. We also provide a detailed
comparison of the MPC and neural proactive control (NPC)
in Table 1.

In addition to the horizontal plane experiments described
above, we further investigated the speed adaptation when flying
upward and downward in the vertical plane (Figure 2, left).
In this case, the learned predictive weights of the horizontal
plane (Figure 7) cannot be used directly for speed adaptation
in the vertical plane. Furthermore, a predictive weight for flying
upward cannot be used effectively for flying downward and
vice versa. This is because of the asymmetrical structure of the
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FIGURE 8 | Real-time data when flying the UAV at a maximum speed of 0.75 m/s and using an approximated predictive weight of 1.03 (obtained from Figure 7) as

the initial weight. Each graph shows: (A) predictive signal, (B) actual speed (x-axis) of the UAV, and (C) position on the x-axis of the UAV compared to the virtual

reflexive line (blue line). The gray areas represent three periods, showing the position of the UAV with respect to the virtual predictive line (VPL), virtual reflexive line

(VRL), and virtual obstacle (VO) in three snapshots together with the corresponding estimated trajectories (1, 2, 3).

UAV along the vertical axis and the force of gravity that resists
and pulls down the UAV during upward and downward flying,
respectively. Thus, we let real and simulated UAVs (Figure 4
and Supplementary Figure 1) learn the predictive weights for
different maximum speeds in the upward and downward flying
directions. The experimental setup and results are presented in
Supplementary Material. A video of the real UAV experiment is
available at www.manoonpong.com/DSA/video4.mp4

In the second experiment, the neural proactive control
was used to support reactive obstacle avoidance. We divided
the experiment into three sub-experiments. The first sub-
experimental setup is shown in Figures 13A,B. In this
experiment, a real obstacle detection signal from the distance
sensor was used as the input signal of the neural control system.
For this test, we programmed the UAV to avoid an obstacle by
flying right/left once when the final neural output (N2) from

the neural proactive control was higher than a threshold (e.g.,
0.75). This can be considered as a reactive command to activate
obstacle avoidance behavior. The results in Figure 14 show
the UAV behavior when flying in the environment with real
obstacles at a maximum speed of 1.0 m/s, using the predictive
weight of 1.07 (Figure 7). The following behaviors were then
performed: (1) the sensor detected the obstacle, (2) the UAV
started to adapt its flying speed and proactively braked at a
safe distance from the obstacle, (3) the UAV automatically
avoided the obstacle with respect to the preprogrammed obstacle
avoidance behavior, and (4) the UAV subsequently continued
flying forward. Similar behavior was observed when detecting
the following obstacle.

The second sub-experiment demonstrates the usability of
the proposed neural control system for adapting the speed
of the UAV in multiple directions (i.e., adapting the speed
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FIGURE 9 | Real-time data when flying the UAV with wind perturbation. The UAV flew at a maximum speed of 1.0 m/s and used an approximated predictive weight of

1.07 (obtained from Figure 7) as the initial weight. Each graph shows: (A) predictive signal, (B) actual speed (x-axis) of the UAV, (C) position on the x-axis of the UAV

compared to the virtual reflexive line (blue line), and (D) wind speed gradient. The gray areas represent three periods, showing the position of the UAV with respect to

the virtual predictive line (VPL), virtual reflexive line (VRL), and virtual obstacle (VO) in three snapshots together with the corresponding estimated trajectories (1, 2, 3). A

video of this experiment can be viewed on www.manoonpong.com/DSA/video2.mp4.

Frontiers in Neural Circuits | www.frontiersin.org 13 April 2022 | Volume 16 | Article 839361

www.manoonpong.com/DSA/video2.mp4
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Jaiton et al. Neural Control and Online Learning

FIGURE 10 | Real-time data when flying the UAV with strong wind perturbation. The UAV flew at a maximum speed of 1.0 m/s. Each graph shows: (A) predictive

weight, (B) predictive signal, (C) actual speed (x-axis) of the UAV, (D) position on the x-axis of the UAV compared to the virtual reflexive line (blue line), and (E) wind

speed gradient. The three brown dashed blocks are the three different flying conditions: (1) without (w/o) wind perturbation and without (w/o) speed adaptation, (2)

with wind perturbation and without (w/o) speed adaptation, and (3) with wind perturbation and with speed adaptation). The gray areas represent three periods,

showing the position of the UAV with respect to the virtual predictive line (VPL), virtual reflexive line (VRL), and virtual obstacle (VO) in three snapshots, together with

the corresponding estimated trajectories (1, 2, 3). A video of this experiment can be viewed on www.manoonpong.com/DSA/video3.mp4.
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FIGURE 11 | Performance comparison of the real UAV (Figure 4) when flying

with neural proactive control (blue) and conventional reactive control (orange).

The graph was plotted using the maximum overshoot position of the UAV

while flying at different maximum speeds. The proactive control used the

predictive signal with the optimal learned predictive weights or gains (obtained

from Figure 7) while the reactive control used the reflexive signal with a fixed

weight or gain (i.e., 1.0) for all speeds. To observe the distribution of the

system we repeated seven times for each speed.

in the forward (x-axis) and sideward (y-axis) directions). The
experimental setup for the test is illustrated in Figure 13C. We
regulated the pitch and roll commands of the UAV to adapt the
speed in the forward and sideward directions, respectively. In this
scenario, we added another distance sensor to detect an obstacle
from the side and another neural control and online learning
module for sideward-speed adaptation control. We flew the UAV
at a maximum speed of 1.0 m/s and used a predictive weight
of 1.07 (learned from flying in the forward direction; Figure 7)
for both directions. The results in Figure 15 show the UAV’s
behavior. The UAV first flew forward, adapted its flying speed,
and braked proactively at a safe distance from the front obstacle.
It then flew sideways to the left and proactively braked at a safe
distance from the side obstacle.

Finally, the third sub-experiment demonstrates the
adaptability of the proposed neural control system to tackle
a dynamic obstacle. The experimental setup for the test is shown
in Figure 13D. We performed this experiment using the same
speed and predictive weight as in the second sub-experiment.
Here, while the UAV was flying forward, we moved the obstacle
at speeds of 0.25 and 0.5 m/s toward it. Figure 16 shows the
behavior of the UAV when facing a dynamic obstacle. The UAV
successfully adapted its speed without colliding with the obstacle.
For the obstacle speed of 0.25 m/s (Figure 16.1), the system
managed to adapt the speed of the UAV without any further
learning (Figure 16.1B), while the control system automatically
performed further learning to adapt the speed of the UAV to deal
with the obstacle speed of 0.5 m/s (Figure 16.2). This is because
the relative speed of the UAV and obstacle was significantly
increased, and the existing predictive weight could not effectively
brake the UAV. Consequently, the reflexive signal was triggered,

FIGURE 12 | Performance comparison of a simulated IRIS UAV

(Supplementary Figure 1) when flying with speed control using the neural

proactive control (NPC, blue), MPC (green), or conventional reactive control

(orange). The graph was plotted using the maximum overshoot position of the

UAV while flying at different maximum speeds. To observe the distribution of

the system, we repeated seven times for each speed.

resulting in further learning or predictive weight adaptation
(Figure 16.2B). All three sub-experiments (Figures 14–16) were
repeated five times to assess the robustness and performance of
the system. The results show that the UAV was capable of safely
avoiding obstacles on all five occasions. The demonstrations
show that the neural proactive controller can be used to control
the speed of the UAV in multiple directions as well as deal
with a dynamic obstacle. This proves that the speed adaptation
algorithm of the neural controller can be used to generate
primitive adaptive behavior, or a basis function before the UAV
performs more complex behaviors, such as avoiding obstacles
(as shown here), approaching certain targets, and following an
object at different speeds.

4. DISCUSSION

The experiments and results above show how our proposed
method works in the training session, prove our system’s
robustness and generalization on different UAV platforms,
and demonstrate the application of our system as the basis
function for obstacle avoidance control. Here, we further
discuss our proposed method, which in principle consists of
a non-neural component and neural system. While our neural
system is used for speed control and learning (Figure 3B), the
non-neural component is also required to store the learned
predictive weights, approximate the weights using polynomial
regression (Figure 7), and select a proper predictive weight
value with respect to a given maximum flying speed. During
online learning, the neural system updates the weight, which
is then stored in the non-neural component. Multiple learning
sessions were conducted to obtain multiple learned predictive
weights with respect to the corresponding maximum flying
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FIGURE 13 | Experimental setup for speed adaptation and reactive obstacle avoidance in the real environment. (A) 3D view of the indoor environment for flying the

UAV under a localization system, consisting of eight motion capture cameras. (B) Top view of the environment, showing the detection ranges and parameter setting

when using the speed adaptation algorithm for obstacle avoidance. In this setup, three obstacles were placed in sequence with the distances d1 and d2 set to 2.0

and 1.5 m, respectively. To detect the obstacle, we used the distance sensor installed at the front of the UAV. Note that we used the information obtained from the

localization system (motion capture) for the altitude or z position control of the UAV. (C) Top view of the environment showing obstacles placed in both x and y

directions of the UAV. (D) Top view of the environment showing the movable obstacle placed in the x direction of the UAV.

speeds. After online learning, the polynomial regression process
was performed offline to build a relationship between the
predictive weights and maximum flying speeds, and then a
proper approximated predictive weight was selected with respect
to the current maximum speed. Because the control system
can continuously learn online, the weight can be adapted to
deal with environmental changes. After the new weight value is
obtained, it is stored in the non-neural component, and the entire
process is repeated. It is important to note that, in this setup, the
neural system with online learning is model-free, whereas a part
of the non-neural component that uses polynomial regression
is model-based.

Furthermore, we briefly discuss some of the remaining issues
concerning the neural-based speed adaptation control system
of UAVs. The proposed speed adaptation control combines two
sensory signals (reflexive and predictive signals), in which each
signal can generate different types of behavior. The reflexive
signal (short range) with a fixed weight (i.e., 1.0) can produce
reactive behavior once the signal is activated. The predictive

signal (long range) with an adaptive weight can create adaptive
behavior, allowing the UAV to proactively adapt its flying
speed once the signal is activated. We correlated these two
sensory signals using neural correlation-based learning, which
is based on the ICO learning principle. The ICO learning
method is typically used in low-dynamical systems or slow-
speed systems, such as walking and wheeled robots. It has been
used to generate various adaptive behaviors in robots, such as
goal-directed navigation (Shaikh and Manoonpong, 2017), up-
slope locomotion (Manoonpong and Wörgötter, 2009), acoustic
predator-recognition and escape response (Manoonpong and
Wörgötter, 2009), and food retrieval tasks (Porr and Wörgötter,
2007). Owing to its stable and fast convergence characteristics
and computational efficiency (as shown in Porr and Wörgötter,
2006), ICO learning was exploited here for the first time
to control a highly dynamical system, such as a UAV.
Typically, for a UAV to fly safely without colliding with an
obstacle under a conventional reactive control system, the
safe braking distance have to be manually tuned for each
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FIGURE 14 | Real-time data of speed adaptation with obstacle avoidance

when flying the UAV in the real environment at a maximum speed of 1.0 m/s

and a predictive weight of 1.07. (A) Predictive signal. (B) Actual speed (x-axis)

of the UAV. (C) Position of the UAV plotting on the x-y axis to show its overall

trajectory five times repeatedly. (D) Automatic flying behavior of the UAV (see

from the left to right). A video of this experiment can be viewed on www.

manoonpong.com/DSA/video5.mp4.

maximum flying speed. This problem has been solved by
the ICO learning-based speed adaptation control technique,
which can automatically and quickly learn online to perform
safe braking through the adaptive weight or gain of the
predictive signal. Furthermore, the robustness of the proposed
speed adaptation control has been proven by flying the
UAV in a variety of situations, such as when confronted
with static and dynamic obstacles, and unexpected wind
perturbation.

The complexity of our proposed neural control and online
learning for speed adaptation control can be determined as
follows: (1) the number of neurons in the control network,
(2) learning parameters and learning trials (or learning
time) required, and (3) input information required for speed
adaptation control. The neural control network consisted of only
three neurons (i.e., N1, N2, and Rm; Figure 3). The learning
process was based on a simple correlation-based learning rule
(Equation 3) with only one learning parameter (i.e., predictive
weight). It required a few learning trials (3–4 trials with an
average learning time of 464.81 s; Table 1). Additionally, the
total learning time of the three control parameters for speed
adaptation [i.e., three speed gains (predictive weights) in the x-y
direction, z direction when flying upward, and z direction when

FIGURE 15 | Real-time data of speed adaptation in the forward and sideward

directions of the UAV, when flying the UAV in the real environment at a

maximum speed of 1.0 m/s and a predictive weight of 1.07. (A) Predictive

signal from the distance sensor for detecting an obstacle in the forward

direction. (B) Actual speed in the forward direction. (C) Predictive signal from

the distance sensor for detecting an obstacle in the sideward direction. (D)

Actual speed in the sideward direction. (E) Position of the UAV plotted on the

x-y axis to show its overall trajectory five times repeatedly. (F) Automatic flying

behavior of the UAV (see from the left to right). A video of this experiment can

be viewed on www.manoonpong.com/DSA/video6.mp4.

flying downward] requires approximately 1,493.02 s (or 24.88
min). This remains less than the total optimization time of the
MPC (24.48 h) for one speed gain (predictive weights) in the
x-y direction (Table 1). It uses minimal information (i.e., only
one simple distance sensor) as the input to the control network
to predict the system motion dynamics and adapt moving/flying
speed of the system. Thus, the complexity of its implementation
(see the pseudocode in Section 2.2) and computation (Table 1) is
low compared to the MPC.

The speed control function represents the fundamental
behavior of a UAV and can be used to support more
complex behaviors, such as, obstacle avoidance and exploration.
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FIGURE 16 | Real-time data of speed adaptation with a dynamic obstacle when flying the UAV in the real environment at a maximum speed of 1.0 m/s and a

predictive weight of 1.07. (1) The obstacle speed was approximately 0.25 m/s. The obstacle was moved by a human. (2) The obstacle speed was approximately 0.5

m/s. The obstacle was moved by a mobile robot. (A) Actual obstacle speed. (B) Predictive Weight. (C) Predictive signal. (D) Actual speed (x-axis) of the UAV. (E)

Position on the x-axis of the UAV and obstacle. (F) Automatic flying behavior of the UAV (see from left to right) from the gray area period of the above graphs. A video

of this experiment can be viewed on www.manoonpong.com/DSA/video7.mp4.

In several state-of-the-art UAV control techniques, such as
MPC and learning-based control (e.g., deep learning and RL),
speed control is determined as a part of optimizing the
control parameters. However, the MPC (Bareiss et al., 2017;
Lindqvist et al., 2020; Wang et al., 2021) requires a dynamic
model of the UAV, the current state of the UAV, and the
surrounding perceived environment to predict the future state
and determine the optimal control parameters (as shown in
Supplementary Material). These control parameters can be the
positions, flying speeds, and acceleration, depending on the
system and mission goal. Similarly, in deep learning (Kaufmann
et al., 2019; Varshney et al., 2019; Palossi et al., 2022) and RL (Shin
et al., 2019; Singla et al., 2019), these parameters are optimized
through the learning process, which typically requires a large
number of dataset and numerous iterations. In comparison to
existing state-of-the-art UAV control techniques (Table 2), our
neural predictive control technique does not require a UAV
dynamic model, a simulated environment for learning, nor does
it require the collection of a training dataset in advance. Apart
from a UAV localization system, the control technique uses only
a single input from a distance sensor and employs a few learning
trials to online learn/optimize control parameter(s) for speed
adaptation. The resulting speed adaptation behavior is also robust
against static and dynamic obstacles, as well as against wind
perturbation. To the best of our knowledge, the achievement

realized by simple and data-efficient online learning control has
not been demonstrated by others (Table 2). Furthermore, the
control technique can be implemented in a modular architecture
(Figures 2, 3). The architecture is flexible, with a module that
can be added or removed to increase or decrease the ability of
the control system to meet task requirements. This architecture
also allows the independent development of each module, which
reduces the overall complexity of the control system.

Although the speed adaptation control was designed to
use with different maximum UAV flying speeds, we validated
it at a maximum speed of up to 1.5 m/s because of the
limitations of flying space and the experimental setting where
the UAV was unable to fly at a speed faster than 1.5 m/s
for a safety reason. Moreover, when considering the statistical
data in Figure 7, we determined that the variance of the
approximated predictive weight and braking position of the
UAV tends to be high when flying at a fast speed (i.e., 1.5
m/s) compared with other speeds (i.e., 0.5 and 1.0 m/s).
This might be because we used the same predictive and
reflective ranges for all tested speeds, which might be non-
optimal. Additionally, the compact optical distancemeasurement
sensor used in this study was the LiDAR-Lite V3, which is a
narrow beam sensor. This might cause inaccurate measurement
when the shape and size of the obstacle are not suitable or
too small for this measurement technique. In addition, our
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TABLE 2 | A comparison between our proposed and state-of-the-art methods in terms of system requirement for implementing each method, experimental UAV

platform, offline/online learning or optimization process, input information required to perform a task, UAV tasks or behaviors, and environmental uncertainty.

Method System Requirement UAV platform Learning/

Optimization Input

Informations

UAV

Behaviors

Environmental

Uncertianty

UAV

Dynamic

Model

Pre-

collection

Training

Dataset

Simulated

environment

for

learning

Sim Real Offline Online Wind

Perturbation

Dynamic

Object

Bareiss et al.,

20171

UAV’s state and

2D (360◦)

obstacle distance

Obstacle

avoidance

Lindqvist et al.,

20201

UAV’s state and

obstacle state

Obstacle

avoidance

Wang et al.,

20211

UAV’s state Trajectory

tracking

Kaufmann et al.,

20191,2

Visual and UAV’s

state

Trajectory

planning and

tracking

Varshney et al.,

20191,2

UAV’s state Trajectory

tracking

Palossi et al.,

20222

Visual Object pose

estimation and

following

Shin et al.,

20193

Visual Obstacle

avoidance

Singla et al.,

20193

Visual Obstacle

avoidance

Our NPC Obstacle distance

(from a distance

sensor)

Speed

adaptation and

obstacle

avoidance

Note that 1 is MPC, 2 is deep learning, and 3 is RL.

proposed method still relies on a non-neural system to store
or memorize the learned predictive weights at different flying
speeds, perform polynomial regression for predictive weight
approximation, and select a proper predictive weight (W1) value
based on the current maximum speed. Thus, the remaining
issues include further investigation of the system’s behavior
corresponding to the predictive and reflective ranges, using
more accurate sensor systems with automatic sensor range
adaptation, broadening its capability to higher flying speeds,
and improving its robustness. Furthermore, we will develop
different neural modules to replace the existing non-neural
system toward autonomous lifelong learning and adaptation.
The neural modules include (i) a neural memory network
(Tetzlaff et al., 2015; Herpich and Tetzlaff, 2019; Auth et al.,
2020) for control parameter memorization, (ii) a hypernetwork
for control parameter approximation (von Oswald et al., 2019;
Galanti and Wolf, 2020), and (iii) a decision-making network
for proper control parameter selection and action planning
(Arena et al., 2011).

5. CONCLUSION

In this study, we introduced neural proactive control by
combining a simple neural control network and a fast
online learning algorithm for the speed adaptation of UAVs.
The neural control was based on a three-neuron network,
whereas the online learning algorithm was derived from
different time scales of earlier (predictive) and later (reflexive)
signals with neural correlation-based learning between the
two signals. In our setup, these signals were generated
from only one input distance sensor signal. The predictive
signal was mapped to the long-range detection of a prior
occurrence. The reflexive signal was mapped to the short-
range detection of a subsequent event. The correlation between
these two signals was used to learn the synaptic weight
of the predictive signal and determine the optimal weight
or speed adaptation gain for each UAV’s maximum flying
speed. Different optimal weights can be utilized to generate
different adaptation rates when flying at different maximum
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speeds, allowing the UAV to decrease its flying speed and
brake at a safe distance from an obstacle. The proposed
technique was implemented on different simulated and real
UAV systems to demonstrate its applicability to different
UAV platforms. Because the neural control technique does
not rely on a system dynamic model, it is general and can
be directly applied to other UAVs. Finally, we evaluated the
performance of the developed method in both environments and
compared its performance with those of the reactive control and
MPC methods.

The performance of the proposed method was demonstrated
by the relationship between the maximum overshoot positions
and maximum flying speeds of the UAV when flying using
speed adaptation control and conventional reactive control
(with and without speed adaptation, respectively). The results
showed that, when flying with speed adaptation control, the
UAV was able to adapt its speed and brake at a safe distance
from the virtual obstacle in horizontal and vertical directions.
However, when flying without the speed adaptation method,
the UAV was unable to brake at a safe distance. At most
speeds, the UAV hit or flew beyond the virtual obstacle line.
This implies that, when flying without speed adaptation control,
the UAV collides with an obstacle in a real environment.
For the performance comparison with the MPC, the results
show that both control techniques were capable of controlling
the UAV to brake at a desired distance from an obstacle.
Nevertheless, the MPC was less effective at high speeds
(i.e., 1.5 m/s; Figure 12B). Furthermore, it had more system
requirements, such as the dynamic model of the UAV and
system states (e.g., distance from obstacle or position, speed,
and acceleration), and required high computational effort in the
optimization process (Table 1). In contrast, the proposed neural
control required only a distance from an obstacle with a few
learning trials (less computational effort, Table 1). Moreover, we
demonstrated the robustness of the speed adaptation control
against wind perturbation and its combination with reactive
obstacle avoidance control for UAV navigation in a real
environment with obstacles in which the UAV could safely avoid
obstacles for all trials.

In the future, we will further improve our system by solving
the remaining issuesmentioned in the section 4. Furthermore, we
will integrate a synaptic scaling mechanism (Tetzlaff et al., 2011;
Grinke et al., 2015) into our learning mechanism. The synaptic
scaling acts as a depression mechanism and can decrease and
stabilize the predictive weight. We will also combine the speed
adaptation control with adaptive obstacle avoidance control
(Pedersen and Manoonpong, 2018) to expand the capability of
the UAV toward a safe and effective navigation system. This
will enable the UAV to fly at different speeds and proactively

adapt its flying speed with safe and efficient obstacle avoidance.
Moreover, the UAV will be able to complete a mission faster and
safer than flying at the same speed in all areas. Furthermore,
we aim to develop other advanced functions, such as goal-
directed navigation, adaptive exploration and transportation,
and autonomous landing to achieve fully autonomous UAVs for
complex real-world applications.
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APPENDIX A: THE EFFECT OF DIFFERENT
LEARNING RATES

This section provides an investigation of how the learning
rate (µ) affects the system’s performance by comparing five
different learning rates (i.e., 0.1, 0.2, 0.3, 0.4, and 0.5) under
a flying speed of 1.0 m/s. Figure A1 shows that different
learning rates resulted in different learning trials. The system
can learn quickly (fewer trials) at a high learning rate and vice
versa. The learned predictive weights converged to different
values at different learning rates. When flying the UAV with
different predictive weights, the control system braked the
UAV at different distances from the obstacle (Figure A1B).
Here, we used a learning rate of 0.3, which allowed for fast
learning (three trials) while keeping the UAV at an appropriate
distance from the virtual reflexive line (i.e., not too close or
not too far from the line compared with the other learning
rates). This ensures that the UAV can be at a safe distance
when facing external disturbances such as wind perturbation or
dynamic obstacles.

APPENDIX B: THE RESULT ON SPEED
ADAPTATION DURING LEARNING AT
DIFFERENT SPEEDS

This section provides real-time data of the speed adaptation
during online learning. Figure B1 shows a maximum
speed of 1.0 m/s. Figure B2 shows a maximum speed
of 1.5m/s.

FIGURE A1 | (A) Learning trial required and the learned predictive weight for

each learning rate. (B) Top view position tracking when the UAV flew using the

learned predictive weights in (A).

APPENDIX C: THE RESULT OF SPEED
ADAPTATION DURING A VERIFICATION
PERIOD AT A MAXIMUM SPEED OF 1.25
M/S

This section (Figure C1) provides real-time data on speed
adaptation during a verification period at a maximum speed of
1.25 m/s, using the approximated predictive weight of 1.07 (the
weight from Figure 7) as the initial predictive weight.

FIGURE B1 | Real-time data of speed adaptation during online learning while

flying the UAV at a maximum speed of 1.0 m/s. (A) Predictive signal. (B)

Reflexive signal. (C) Derivative of the reflexive signal. (D) Predictive weight. (E)

Actual speed (x-axis) of the UAV. (F) Position on the x-axis of the UAV

compared to the virtual reflexive line (blue line). The gray areas represent three

periods and show the UAV’s position with respect to the virtual predictive line

(VPL), virtual reflexive line (VRL), and virtual obstacle (VO). These three periods

are shown in the three snapshots together with the corresponding estimated

trajectories (1, 2, 3) namely the beginning of learning (1), during learning (2),

and after learning (3).
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FIGURE B2 | Real-time data of speed adaptation during online learning while

flying the UAV at a maximum speed of 1.5 m/s. (A) Predictive signal. (B)

Reflexive signal. (C) Derivative of the reflexive signal. (D) Predictive weight. (E)

Actual speed (x-axis) of the UAV. (F) Position on the x-axis of the UAV

compared to the virtual reflexive line (blue line). The gray areas represent three

periods and show the UAV’s position with respect to the virtual predictive line

(VPL), virtual reflexive line (VRL), and virtual obstacle (VO). These three periods

are shown in the three snapshots together with the corresponding estimated

trajectories (1, 2, 3) namely the beginning of learning (1), during learning (2),

and after learning (3).

FIGURE C1 | Real-time data when flying the UAV at a maximum speed of

1.25 m/s and using an approximate predictive weight of 1.07 obtained from

Figure 7 as the initial weight. Each graph shows: (A) predictive signal, (B)

actual speed (x-axis) of the UAV, and (C) position on the x-axis of the UAV

compared to the virtual reflexive line (blue line). The gray areas represent three

learning periods and show the UAV’s position with respect to the virtual

predictive line (VPL), virtual reflexive line (VRL), and virtual obstacle (VO), as in

three snapshots together with the corresponding estimated trajectories

(1, 2, 3).
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