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Perspectives on the basis of
seizure-induced respiratory
dysfunction

Daniel K. Mulkey* and Brenda M. Milla

Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States

Epilepsy is an umbrella term used to define a wide variety of seizure disorders

and sudden unexpected death in epilepsy (SUDEP) is the leading cause of

death in epilepsy. Although some SUDEP risk factors have been identified,

it remains largely unpredictable, and underlying mechanisms remain poorly

understood. Most seizures start in the cortex, but the high mortality rate

associated with certain types of epilepsy indicates brainstem involvement.

Therefore, to help understand SUDEP we discuss mechanisms by which

seizure activity propagates to the brainstem. Specifically, we highlight clinical

and pre-clinical evidence suggesting how seizure activation of: (i) descending

inhibitory drive or (ii) spreading depolarization might contribute to brainstem

dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder,

we also considered factors expected to favor or oppose mechanisms of

seizure propagation. We also consider whether epilepsy-associated genetic

variants directly impact brainstem function. Because respiratory failure is a

leading cause of SUDEP, our discussion of brainstem dysfunction focuses on

respiratory control.

KEYWORDS

cortical-brainstem connectivity, seizure propagation, spreading depolarization (SD),
SUDEP (sudden unexpected death in epilepsy), apnea

Introduction

Epilepsy is a chronic disease associated with uncontrolled brain activity that results
in recurrent seizures. Approximately 50 million people globally have epilepsy and people
with this condition have a two-three-fold higher mortality rate than the general public.
Sudden unexpected death in epilepsy (SUDEP)- defined as death in people with epilepsy
that are not caused by injury, drowning, or other known reasons- is a leading cause
of death in epilepsy patients (Pathak et al., 2022) and is second only to stroke in years
of potential life lost to neurological disease, thus making SUDEP a significant public
health problem (Thurman et al., 2014). Despite their potential lethality, most seizures
are not fatal, and so a frequent question posed by family members of SUDEP victims
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is “what was it about that [final] seizure that resulted in
death”1? Considering seizures typically originate in the cortex
and lethality involves disruption of autonomic (Thijs et al.,
2021) and respiratory (Teran et al., 2022) function at the level
of the brainstem, to address this question, we discuss two
likely mechanisms by which cortical seizure activity propagates
to the brainstem. We also consider whether the expression
of epilepsy-associated genes in the brainstem contributes to
epilepsy-associated cardiorespiratory dysfunction (Figure 1).
It is our contention that SUDEP is a heterogenous process
involving different mechanisms depending on the underlying
cause of seizure activity. Highlighted here are what we consider
the most likely mechanisms by which cortical seizure activity
might propagate to the brainstem; however, it is also important
to recognize that other regions and polysynaptic pathways may
contribute to descending seizure propagation.

I. Descending seizure propagation
through synaptic connectivity

Essential components of the respiratory circuit are located
in the brainstem and include inspiratory rhythmogenic neurons
in the pre-bötzinger complex (pre-bötC; Smith et al., 1991),
neurons in the retrotrapezoid nucleus (RTN; Mulkey et al.,
2004) and medullary raphe (Richerson, 2004; Ray et al., 2011)
that regulate breathing in response to changes in CO2/H+

(i.e., function as respiratory chemoreceptors), parabrachial
neurons that modulate inspiratory-expiratory phase transitions
and integrate chemoreceptor, visceral and arousal information
between the forebrain and brainstem (Kaur and Saper, 2019),
and respiratory motor neurons that serve as the final common
output for the respiratory system (Fogarty et al., 2018). These
respiratory centers also receive input from suprapontine regions
including the insular cortex (McKay et al., 2003), hippocampus
(Harper et al., 1998), and amygdala (Feinstein et al., 2022);
in humans, stimulation of these regions results in cessation of
breathing (Ochoa-Urrea et al., 2020), presumably to allow for
voluntary and emotional control of ventilation (Bondarenko
et al., 2014; Ashhad et al., 2022). Evidence also suggests
communication between brainstem respiratory centers and
suprapontine structures is bidirectional; ascending respiratory
activity entrains cortical and limbic network oscillations that are

1 Partners Against Mortality in Epilepsy (PAME) hosts an annual meeting

that brings together health care providers, basic scientists and families

touched by epilepsy with the goal of improving our understanding

of SUDEP. During previous PAME meetings we had the opportunity

to talk with family members that lost a loved one to SUDEP. These

interactions made a lasting impact on our perception of this disease

and continue to motivate our work in this field.

thought to be important for emotion and memory consolidation
(Herrero et al., 2018; Karalis and Sirota, 2022). Furthermore,
brainstem projections from the reticular formation to the
thalamus and cortex via the reticular activating system modulate
sleep-wake transitions and arousal (Kovalzon, 2016). In the
context of epilepsy, cortical-brainstem connections provide an
anatomical substrate for cortical seizure propagation to the
brainstem, and as such, have long been implicated in seizure-
induced cardiorespiratory dysfunction (Frysinger and Harper,
1990).

The amygdala stands out as a hub of the so-called brainstem-
homeostatic forebrain connectome (Edlow et al., 2016). This
region is located in the temporal lobe and sends extensive
inhibitory projections to brainstem respiratory centers where
it is thought to regulate fear-related respiratory responses
(Nardi et al., 2009; Feinstein et al., 2022), particularly to
external perceived threats but not necessarily interoceptive
threats (Feinstein et al., 2013; for review see Feinstein et al.,
2022). The amygdala is also highly susceptible to seizure
activity (Aroniadou-Anderjaska et al., 2008), and animal models
(Totola et al., 2019), as well as clinical work from pediatric
(Rhone et al., 2020) and adult (Dlouhy et al., 2015; Lacuey
et al., 2017; Nobis et al., 2018) epilepsy patients, showed that
stimulation or seizure activation could elicit apnea. Consistent
with its lack of involvement in interoceptive threats (Feinstein
et al., 2022), amygdala-evoked apneas did not occur in
conjunction with dyspnea (Dlouhy et al., 2015). Curiously,
amygdala-evoked apneas are dependent on attention and nasal
breathing (Nobis et al., 2018). This is interesting because cortical
respiratory rhythms also depend on nasal breathing (Zelano
et al., 2016), suggesting there is a hierarchical organization
to cortical-brainstem communication where conscious effort
through attention or elicited by mouth breathing can override
coordinated activity between regions. This also suggests
interventions that facilitate mouth breathing might limit seizure-
induced apnea.

It should be noted that the amygdala is composed of
multiple sub-nuclei and only a subset of which contribute
to the respiratory activity. For example, stimulation of the
basolateral, basomedial, and central regions consistently resulted
in apnea, whereas stimulation of the more lateral amygdala
failed to affect breathing (Rhone et al., 2020). Therefore, not
all amygdala seizures result in apnea (Park et al., 2020). It
is also worth mentioning that amygdala stimulation elicited
apnea even during sleep (Nobis et al., 2018) when SUDEP
occurs most frequently (Nobili et al., 2011). By contrast, another
putative SUDEP mechanism, namely spreading depolarization
(SD), is less likely to be favored during sleep (see next
section below). In any case, these mechanisms are not
mutually exclusive, but rather may occur simultaneously
and in a synergistic manner. For example, SD will result
in high extracellular potassium ([K+]o) and this has been
shown to facilitate excitatory more so than inhibitory synaptic
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FIGURE 1

Putative basis of brainstem dysfunction in epilepsy. (A) Cortical-brainstem connectivity provides an anatomical basis for seizure propagation to
the brainstem. Likewise, brainstem-cortical projections have been shown to synchronize cortical network activity and so may influence seizure
propensity. (B) Spreading depolarization can propagate through contiguous tissue and if it reaches the brainstem will likely result in respiratory
failure. (C) certain epilepsy-associated ion channel mutations are expressed in the brainstem where they directly impair respiratory function.
Lower insets, cartoon coronal sections show the relative location of suprapontine regions that project to brainstem respiratory centers implicated
in SUDEP (Harper et al., 1998; McKay et al., 2003; Rosin et al., 2006; Yang et al., 2020; Trevizan-Baú et al., 2021; Feinstein et al., 2022; Leitner
et al., 2022). IC, insular cortex; LHA, lateral hypothalamus; HYP, hypothalamus; CeA, central amygdala nucleus; SC, superior colliculus; RN, red
nucleus; KF, kölliker-fuse; PBN, parabrachial nuclei; raphe, medullary raphe nucleus; RTN, retrotrapezoid nucleus; NTS, nucleus of the solitary
tract; pre-bötC, pre-bötzinger complex. Note, that the medullary raphe is part of the reticular activating system.

transmission (Rasmussen et al., 2020), thus promoting synaptic
seizure propagation. Likewise, excitatory synaptic transmission
has been shown to facilitate SD in a seizure-related mouse
model of familial hemiplegic migraine type-1 (Tottene et al.,
2009). Furthermore, SUDEP-prone mouse lines showed cortical
epileptic activity that correlated with abnormal brainstem
electroencephalographic (EEG) oscillations and suppression
of brainstem activity (Gu et al., 2022), suggesting cortical-
brainstem connectivity facilitated SD propagation to the
brainstem.

In addition to individual ictal events causing
cardiorespiratory arrest as described above, it is also possible
that repeated cortical seizures cause maladaptive changes to
the forebrain and brainstem respiratory circuity that render the

respiratory system vulnerable to failure. In this case, epilepsy
patients are expected to exhibit background cardiorespiratory
abnormalities. Indeed, interictal cardiorespiratory problems
are common in epilepsy (Barot and Nei, 2019). Typical
background autonomic and respiratory symptoms exhibited
by Dravet syndrome patients and partly recapitulated in
animal models of this disease include diminished heart rate
variability, bradycardia, and hypoventilation with increased
apnea (Delogu et al., 2011; Kim et al., 2018). The possibility
the brainstem is disrupted in epilepsy is also supported by
anatomical evidence showing patients with focal epilepsy have
diminished brainstem volume (Mueller et al., 2018) including
loss of both neurons (Patodia et al., 2021) and astrocytes
(Patodia et al., 2019) in respiratory control centers. Evidence

Frontiers in Neural Circuits 03 frontiersin.org

https://doi.org/10.3389/fncir.2022.1033756
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/journals/neural-circuits#articles
https://www.frontiersin.org


Mulkey and Milla 10.3389/fncir.2022.1033756

also suggests that seizure activity can alter synaptic connectivity
between cortical and brainstem structures, and such circuit
level changes may alter brainstem function and perpetuate
excitotoxicity-related damage (Armada-Moreira et al., 2020).
For example, amygdala neurons located ipsilateral to the
temporal lobe seizure foci exhibited a stronger convergence
of cardiorespiratory information compared to neurons on the
contralateral side (Frysinger and Harper, 1990), thus indicating
seizure activity enhanced excitatory coupling between cortical
and brainstem respiratory areas. Nevertheless, the possibility
that altered cortex-brainstem connectivity contributes to
brainstem dysfunction or cell death remains unknown. From
a bottom-up perspective, it is conceivable that enhanced
respiratory-driven oscillations in cortical regions might increase
neural network synchronization and seizure propensity.

It has also been speculated that seizure-induced amygdala-
dependent apnea is independent of the underlying cause or
type of epilepsy (Rhone et al., 2020). However, considering
the central nucleus of the amygdala provides a primary output
of this region to the brainstem (Feinstein et al., 2022) and
since neurons in this region are mostly inhibitory and suppress
breathing presumably by synaptic inhibition, it seems unlikely
such a mechanism would be effective in forms of epilepsy
associated with loss of inhibitory tone. Consistent with this,
amygdala neurons that make monosynaptic projections to the
parabrachial pneumotaxic center are hypoexcitable in a mouse
model of Dravet syndrome (Yan et al., 2021). Also, inhibitory
neurons in the amygdala appear prone to seizure-induced
damage (Tuunanen et al., 1996), which conceivably will favor
epileptogenesis in the amygdala and nearby hippocampus but
is less likely to increase inhibitory bombardment of brainstem
respiratory centers.

In sum, seizure activation of cortical to brainstem inhibitory
projections can disrupt cardiorespiratory function and
contribute to SUDEP (Figure 2). Repeated activation of
cortical-brainstem circuits may also alter network connectivity
in maladaptive ways that compromise cardiorespiratory
control, favor seizure propagation to the brainstem or increase
synchronized cortical activity to increase seizure propensity.

II. Spreading depolarization

SD is a pathological event associated with migraine
headache, ischemic, or traumatic brain injury and epilepsy (for
reviews see Pietrobon and Moskowitz, 2014; Cozzolino et al.,
2018). It is thought to be triggered by a severe depolarization
that leads to large-scale loss of ion and transmitter homeostasis.
In particular, a pronounced increase in [K+]o and glutamate can
initiate a self-propagating wave of depolarization and cytotoxic
edema (Hinzman et al., 2016; Hubel et al., 2017). The ability
of such a wave to propagate into and through contiguous
tissue is strongly influenced by ongoing neural activity and

FIGURE 2

Cortex-brainstem connections provide a framework for seizure-
induced respiratory failure. Seizure activation of inhibitory
cortical projections to brainstem respiratory centers has been
shown to result in respiratory arrest. Seizure activity may also
stimulate excitatory brainstem projections thereby resulting in
metabolic stress and favoring the propagation of spreading
depolarization. For more information on anatomical regions refer
to Figure 1.

metabolic status (Aiba and Noebels, 2015). SD is followed
shortly thereafter by a wave of neural inactivation (presumably
caused by depolarizing block) that results in depression of
EEG activity as frequently observed following generalized tonic-
clonic seizures (GTCS; Surges et al., 2011). In the cortex,
this so-called spreading depression may serve a protective
role by limiting further seizure activity (Tamim et al., 2021).
However, if such an event were to occur in the brainstem
it is expected to have a negative impact on cardiorespiratory
control. Consistent with this, GTCS are the most common
type of seizure associated with SUDEP (Ryvlin et al., 2019),
and mechanisms underlying GTCS are thought to involve
dysregulation of the ascending reticular activating system and
descending reticulospinal projections to result in characteristic
features of GTCS including loss of consciousness and muscle
convulsions (Sedigh-Sarvestani et al., 2015).

In epilepsy patients it is unclear whether post-ictal EEG
suppression is an independent risk factor SUDEP (Ryvlin
et al., 2019); however, pre-clinical experiments using monogenic
SUDEP models showed that brainstem SD correlated with
cardiorespiratory failure and mortality. For example, cortical-
evoked seizures in two SUDEP mouse models (Kv1.1 null and
Scn1aR1407X/+ loss of function) resulted in brainstem SD and
cardiorespiratory arrest (Aiba and Noebels, 2015). Similar results
were also observed in mice expressing a Cav2.1 gain of function
mutation associated with familial hemiplegic migraine type 1
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(Cacna1aS218L/+; Jansen et al., 2019) and mice expressing a
ryanodine receptor-2 gain of function mutation associated with
catecholaminergic polymorphic ventricular tachycardia (Aiba
et al., 2016). Also, in Cacna1aS218L/+ mice the superior colliculus,
a midbrain structure that receives input from both the cortex
and brainstem, was particularly effective at propagating seizure-
induced SD to the brainstem (Cain et al., 2022), suggesting
anatomical connectivity may facilitate SD.

Interestingly, expression of certain epilepsy-associated
channel variants in the cortex but not the brainstem can
cause cortical seizures and SD but in the absence of increased
mortality. For example, Kcnq2 channels produce a subthreshold
K+ conductance (Abbott, 2020) and loss of Kcnq2 function is
associated with neonatal epileptic encephalopathy (Orhan et al.,
2014; Kim H. J. et al., 2021). Conditional deletion of Kcnq2 from
forebrain excitatory neurons (Emx1Cre/+::Kcnq2f/f; Kcnq2 cKO)
resulted in cortical seizures and SD. Despite this, only a small
subset of these animals died prematurely (Aiba and Noebels,
2021). However, a caveat to these experiments is that Emx1cre/+

is not restricted to cortical excitatory neurons but rather is
also expressed by peripheral autonomic ganglia that provide
modulatory feedback to cardiorespiratory centers (Ning et al.,
2022). Excluding potential confounding effects of peripheral
nerves, these results suggest compromised brainstem function is
required for cortical seizure- or SD-induced respiratory arrest
and premature death (see Section “III. Direct effect of epilepsy
associated mutations on brainstem function” below for more
detail).

The initiation phase of SD is dependent on the concentration
of ions and transmitters in the extracellular space which are
themselves inversely related to extracellular volume (ECV). Also,
ECV increases during sleep (Ding et al., 2016), therefore, we
speculate the threshold for SD induction will be higher during
sleep when SUDEP is thought to occur most frequently (Nobili
et al., 2011). Consistent with this, spontaneous cortical SD in
Kcnq2 cKO mice (Aiba and Noebels, 2021), as well as seizure-
induced death in Kv1.1 null mice (Moore et al., 2014) and
Scn1aR1407X/+ mice (Teran et al., 2019), occurred primarily
during the dark/active state when ECV is expected to be minimal
and the impact of [K+]o on neural activity is most favored (Ding
et al., 2016). Therefore, these results are consistent with the
involvement of high [K+]o as a key determinant of SD threshold
and propagation. However, these results are not consistent with
clinical evidence suggesting SUDEP occurs primarily during
sleep (Buchanan et al., 2021). Note that once SD has been
initiated the corresponding cellular edema is expected to negate
this issue; thus, SD propagation is not expected to be sleep-wake
state dependent.

Seizure events can deplete energy availability, thus limiting
ion and transmitter buffer capacity and lowering SD induction
threshold (Major et al., 2020). Consistent with this, Kv1.1 null
and Scn1aR1407X/+ models showed a low threshold for SD
elicited by metabolic stress. Furthermore, repeated seizures may

facilitate pathological remodeling that can lead to progressively
more severe outcomes. For example, mice that express the Scn1a
loss of function variant R1648H exhibit a mild/asymptomatic
phenotype under resting conditions that can be transformed
into a severe phenotype by subjecting the mice to heat-
or chemoconvulsant-induced seizures (Dutton et al., 2017;
Salgueiro-Pereira et al., 2019). This study also showed that wild
type mice subjected to the same seizure induction protocol did
not develop a severe seizure phenotype. These results suggest
loss of Scn1a function lowered the seizure threshold, as expected,
and is required for remodeling following repeated seizures that
can lead to severe phenotypes and SUDEP. However, contrary
to this, early work with chemoconvulsant models of epilepsy
suggests frequent seizures can confer resistance to SD. For
example, a pentylenetetrazol rat model of epilepsy showed
that frequent seizures increased the SD threshold (Koroleva
et al., 1993). Furthermore, patients with chronic epilepsy and
pilocarpine-treated rats exhibited a similar high [K+]o threshold
for SD (Maslarova et al., 2011). Based on this, it was speculated
that chronic seizures promote a compensatory increase in [K+]o
buffering capacity.

A critical function of astrocytes is to regulate extracellular
ion and transmitter homeostasis and as such are important
determinants of [K+]o buffering. The dynamics of [K+]o
are complex and depend on several factors. Here, we focus
on inward rectifying Kir4.1 channels because these are the
main determinant of astrocyte resting membrane potential
(by K+ efflux) and can serve as a conduit for K+ uptake
when the reversal potential for K+ is depolarized to resting
membrane potential as can occur during increased neural
activity. Glutamate uptake by astrocytes is also an electrogenic
process favored at more negative membrane potentials (Grewer
and Rauen, 2005). Astrocytes are also highly sensitive to seizure
activity and in chronic epilepsy these cells are known to
proliferate (gliosis) and transition into a pro-inflammatory state
(so-called reactive astrocyte) characterized by the release of
cytokines and growth factors that can increase seizure propensity
or promote tissue repair (for review see Wetherington et al.,
2008; Verhoog et al., 2020). Although there is some evidence
suggesting Kir4.1 expression increased in a pilocarpine model
of temporal lobe epilepsy (Nagao et al., 2013) and a mouse
model of Dravet syndrome (Miljanovic et al., 2021), most
studies suggest the opposite, that astrocyte Kir4.1 channel
expression is diminished in epilepsy (Kinboshi et al., 2020;
Ohno et al., 2021). Indeed, loss of function variations (missense
and nonsense mutations) in KCNJ10 (the gene encoding
Kir4.1) causes an epileptic disorder known as EAST/SeSAME
syndrome (Bockenhauer et al., 2009) characterized by early
onset tonic-clonic seizures, sensorineural deafness, ataxia,
intellectual disability, and electrolyte imbalance. Also, astrocyte
Kir4.1 expression or function has been shown to be reduced
in humans (Heuser et al., 2012; Steinhauser et al., 2012;
Kitaura et al., 2018) and various animal models of epilepsy
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(Harada et al., 2013) including DBA/2 model of audiogenic
seizures (Inyushin et al., 2010). Note that Kir4.1 channels also
contribute to K+ buffering by oligodendrocytes, and loss of
oligodendrocyte Kir4.1 channels also increases seizure activity
(Larson et al., 2018). Also, loss of serotonergic signaling by
raphe neurons contributed to seizure propensity and respiratory
arrest in DBA/2 mice (Cervo et al., 2005). This is interesting
because Kir4.1 channels can heteromerize with Kir5.1 to form a
CO2/H+ sensitive conductance (Xu et al., 2000), and recent work
showed that both Kir4.1 and Kir5.1 transcript are expressed by
medullary serotonergic raphe neurons and so may contribute to
CO2/H+ detection by these putative chemoreceptors (Puissant
et al., 2017). Moreover, loss of Kir5.1 (Kcnj16 gene) resulted
in an audiogenic seizure phenotype with increased mortality in
a rat model of salt-sensitive hypertension and chronic kidney
disease (Manis et al., 2021), probably by a mechanism involving
disruption of heteromeric Kir4.1/5.1 channels since Kir5.1 does
not form functional homomeric channels (Pessia et al., 1996).
Therefore, disruption of homo or heteromeric Kir4.1 channels
may be a common substrate for breathing problems and seizure
propensity.

As expected, astrocyte-specific deletion of Kcnj10 also
disrupted K+ and glutamate uptake and resulted in increased
seizure activity and premature death (Djukic et al., 2007).
Kir4.1 channels also colocalize with aquaporin-4 (Aqp4) water
channels (Nagelhus et al., 2004) and Aqp4 knockout mice
exhibited slowed [K+]o clearance (Amiry-Moghaddam et al.,
2003) and longer duration seizures following neural stimulation
(Binder et al., 2006). Therefore, disruption of Kir4.1 may impact
Aqp4 function and consequently regulation of cell size and
ECV. This may be important because the ability of astrocytes to
influence neural activity by paracrine signaling or regulation of
extracellular ions and transmitters is proximity-dependent and
inversely related to ECV (Murphy et al., 2017).

It is also possible that the loss of Kir4.1 containing
channels will facilitate the release of various neuroactive
signaling molecules from astrocytes. In particular, inhibition
of Kir4.1 chanenls in cultured astrocytes increased expression
of brain-derived neurotrophic factor (BDNF; Kinboshi et al.,
2017), a growth factor that signals through TrkB receptors to
regulate neural growth, differentiation, and synaptic plasticity
(Cowley et al., 1994; Meakin et al., 1999; Huang and
Reichardt, 2003). This is of interest because BDNF is a potent
modulator of epileptogenesis; BDNF expression reportedly
increased in the brains of epileptic patients and animal
models of epilepsy (Jankowsky and Patterson, 2001), whereas
disruption of BDNF/TrkB signaling suppressed seizure activity
in epileptic mouse models (Kokaia et al., 1995; Hagihara
et al., 2005; Liu et al., 2013). Although the link between
the loss of Kir4.1 and increased BDNF expression remains
murky, pharmacological evidence implicates activation of the
MAPK/ERK pathway (Kinboshi et al., 2017), possibly in
response to the depolarization-induced increase in intracellular

Ca2+. Together, these results suggest seizure-induced changes
in astrocyte Kir4.1 expression is maladaptive and likely to
contribute to epileptogenesis.

It is also important to recognize that increased
Kir4.1 expression will not necessarily diminish seizure
propensity. For example, KCNJ10 gain of function variants
that result in increased channel expression (p.R18Q), diminish
proton-dependent inhibition (p.R348H) or increased channel
conductance (p.V84M) are also associated with seizure-like
behavior (Sicca et al., 2011, 2016). Mechanistically, it is hard to
imagine how increased Kir4.1 channel function in astrocytes
might promote seizures. One possibility is that increased
Kir4.1 channel activity may increase [K+]o buffering kinetics,
thereby limiting [K+]o build-up during increased activity. This
mechanism may minimize depolarization-induced Na+ channel
inactivation and allow neurons to fire at higher frequencies
for longer periods of time (Niday and Tzingounis, 2018). Note
that increased Kir4.1 expression is not expected to substantially
decrease [K+]o because a prerequisite for K+ uptake by
astrocytes is high [K+]o and a depolarized K+ reversal potential
relative to resting membrane potential. As such, decreasing
[K+]o will favor K+ efflux.

Another interesting mechanism by which increased
Kir4.1 might favor seizure activity involves dysregulation of
brain pH. Astrocytes express high levels of the electrogenic
sodium bicarbonate cotransporter (NBC; Turovsky et al., 2016).
The most common NBC isoform expressed by astrocytes has
1 Na+: 2 HCO−3 stoichiometry and a predicted reversal potential
of around −100 mV (Mulkey and Wenker, 2011). This value is
negative to astrocyte resting membrane potential, thus under
normal conditions HCO−3 flux through the NBC is directed
inward (Mulkey and Wenker, 2011). If this is the case, then
increased expression of Kir4.1 is expected to hyperpolarize
astrocyte membrane potential and decrease electrogenic HCO−3
transport, thereby resulting in extracellular alkalosis. This is
significant because just 0.2 pH unit increase in extracellular pH
can cause seizures (Schuchmann et al., 2006).

In sum, there is no doubt that SD, once initiated, can
have profound effects on neural activity, and preclinical studies
clearly implicate SD as a cause of seizure-induced mortality.
However, the correlation between postictal generalized EEG
suppression (PGES), which presumably also reflects SD, and
SUDEP is a matter of debate in the literature. Some studies
suggest there is a correlation between PGES and SUDEP (Lhatoo
et al., 2010; Moseley and DeGiorgio, 2015), whereas other
studies found PGES duration is not a risk factor for SUDEP
(Surges et al., 2011; Lamberts et al., 2013). Also, sleep-wake
changes in ECV are not expected to favor the initiation of
SD during sleep when SUDEP usually occurs. Furthermore,
although chronic seizure activity may result in compensatory
cellular responses to limit SD, such adaptations are not likely
to involve increased astrocyte Kir4.1 expression since most
evidence indicates loss of this channel in epilepsy. For this same
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reason, astrocyte Kir4.1 channels may have some therapeutic
potential in treating epilepsy, possibly by limiting SD. Consistent
with this, certain antiepileptic drugs have been shown to
stimulate Kir4.1 expression (Mukai et al., 2018).

III. Direct effect of epilepsy
associated mutations on brainstem
function

In addition to promoting seizure activity in the cortex,
epilepsy-associated genetic mutations may also be expressed in
the brainstem (Kuo et al., 2019) where they increase SUDEP
risk in seizure-dependent and -independent manners (Figure 3).
For example, as noted above Emx1cre/+::Kcnq2f/f mice (Kcnq2
cKO) showed spontaneous cortical seizures with SD but they
did not die prematurely (Aiba and Noebels, 2021), suggesting
the brainstem was protected from SD infiltration. Another study
used a similar approach (Emx1Cre/+) to express a dominant
negative Kcnq2 variant (M547V) in forebrain pyramidal neurons
(but with some off-target expression in astrocytes) of Kcnq2
heterozygous knockout mice (C57BL/6 background); unlike
Kcnq2 cKO animals, these mice showed a severe phenotype
including seizures and premature death (Kim E. C. et al., 2021).
In this case, global Kcnq2 haploinsufficiency appears sufficient to
allow cortical seizures to disrupt brainstem function and result in
mortality.

The possibility that brainstem expression of epilepsy-
associated mutations increases the risk of mortality is supported
by evidence that SUDEP can occur without overt seizure activity
(Lhatoo et al., 2016). Pre-clinical animal experiments also
support this possibility. For example, polymorphisms associated
with DBA/2 mice (a common model of audiogenic seizures;
De Sarro et al., 2017) appear to disrupt brainstem serotonergic
signaling and contribute to seizure-induced cardiorespiratory
failure. Specifically, DBA/2 mice express a single amino acid

FIGURE 3

Epilepsy-associated genes may directly disrupt brainstem
function. Brainstem expression of epilepsy-associated ion
channel mutations may directly impact respiratory function or
favor mechanisms for SD propagation to the brainstem.

substitution in the gene encoding tryptophan hydroxylase-2
that results in limited serotonin production (Cervo et al.,
2005), and this likely contributes to seizure-induced respiratory
arrest since the systemic application of serotonin reuptake
inhibitors improved seizure activity and related apneic events in
DBA/2 mice (Faingold et al., 2014). DBA/2 mice also express
a Kcnj10 loss of function mutation that has been shown to
disrupt Kir4.1-dependent maintenance of extracellular K+ and
glutamate (Ferraro et al., 2004; Inyushin et al., 2010) and thus
lower seizure threshold (Figure 2). It is also worth noting
that Kir4.1 channels together with Kir5.1 may contribute to
CO2/H+ chemosensation by serotonergic neurons (Puissant
et al., 2017), thus loss of Kir4.1 could further compromise
raphe chemoreception and worsen seizure-induced respiratory
problems.

The retrotrapezoid nucleus (RTN) is another important
respiratory chemoreceptor region implicated in SUDEP (Patodia
et al., 2018). For example, in the context of Dravet syndrome
(caused by loss of function mutations in SCN1A), we showed that
Scn1a transcript is expressed by inhibitory parafacial neurons
in the region of the RTN (Kuo et al., 2019). We also showed
that inhibitory somatostatin (SST)-expressing neurons in the
region of the RTN are inhibited by CO2/H+ and contribute
to RTN chemoreception by disinhibition of CO2/H+-activated
glutamatergic neurons (i.e., RTN chemoreceptors; Cleary et al.,
2021). Therefore, in addition to causing cortical seizure activity,
Dravet syndrome-associated Scn1a mutations may disrupt the
inhibitory modulation of RTN chemoreception. Consistent with
this, inhibitory neurons in the region of the RTN in slices from
mice that express a loss of function Scn1a mutation (A1783V)
conditionally in inhibitory neurons under the vesicular GABA
transporter promoter (Slc32a1cre/+::Scn1aA1783V fl/+) showed
lower basal activity compared to control cells and fired
fewer action potentials in response to depolarizing current
steps (Kuo et al., 2019). Consistent with a disinhibitory
mechanism, chemosensitive RTN neurons in slices from
Slc32a1cre/+::Scn1aA1783V fl/+ mice showed increased baseline
activity and enhanced output in response to increases in
CO2 (Kuo et al., 2019). However, at the whole animal level,
VgatA1783V/+ mice showed reduced respiratory activity in room
air and a blunted ventilatory response to CO2 (Kuo et al., 2019).
This outcome is not entirely unexpected because inhibitory
signaling in the RTN (Cregg et al., 2017) and at other
levels of the respiratory circuit (Baertsch et al., 2018) can
facilitate respiratory output. Also, Slc32a1cre/+::Scn1aA1783V fl/+

mice have spontaneous seizures which, for reasons mentioned
above, may propagate to the brainstem and disrupt respiratory
control in a seizure-dependent manner. This later possibility
is an important consideration since deletion of Scn1a only
from forebrain inhibitory neurons also resulted in seizures
and premature death (Cheah et al., 2012), suggesting in this
mouse model that cortical seizure activity can cause brainstem
dysfunction and SUDEP. This contrasts with evidence from
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Kcnq2 cKO that as noted above exhibits cortical seizure
activity that did not correlate with premature death (Aiba
and Noebels, 2021). Both mouse models are maintained on a
similar C56BL/6 background so the reason(s) for these divergent
results remains unclear. That said, it is worth mentioning
that disruption of Scn1a globally or conditionally only in
forebrain inhibitory neurons caused sleep fragmentation with
less non-rapid eye movement (NREM) sleep and more frequent
waking episodes (Kalume et al., 2015). Although the relationship
between sleep, sleep problems, and epilepsy have long been
appreciated (Diaz-Negrillo, 2013; Wang et al., 2018), the basis for
these associations is not clear. Based on evidence that regulation
of the ECV is coupled to sleep-wake status (Ding et al., 2016) and
decreased ECV positively correlates with neural activity (Walch
et al., 2022), we speculate that disruption of sleep (as seen in
Dravet syndrome; Kalume et al., 2015) will decrease ECV, lower
seizure threshold and favor propagation of SD (Figure 2).

In sum, epilepsy-associated genes may be expressed by
neurons or astrocytes in brainstem respiratory centers and so
may contribute to background breathing problems that render
the system vulnerable to failure. Altered neural activity or
compromised astrocyte regulation of the extracellular milieu
may also favor the propagation of SD into the brainstem.
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