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The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells
leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifi-
cally, we propose a process, termed “linear look-ahead,” by which a stationary animal could
compute a series of locations in the direction it is facing. We speculate that this computa-
tion could be achieved through learned patterns of connection strengths among entorhinal
neurons. This paper has three sections. First, we describe the minimal grid cell properties
that will be built into our network. Specifically, the network relies on “rigid modules” of
neurons, where all members have identical grid scale and orientation, but differ in spatial
phase. Additionally, these neurons must be densely interconnected with synapses that
are modifiable early in the animal’s life. Second, we investigate whether plasticity dur-
ing short bouts of locomotion could induce patterns of connections amongst grid cells
or conjunctive cells. Finally, we run a simulation to test whether the learned connection
patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min
walk produces weak strengthening of synapses between grid cells that do not support
linear look-ahead. Similar training in a conjunctive cell module produces a small subset
of very strong connections between cells. These strong pairs have three properties: the
pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring
grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of
the common heading preference. Such a module can produce strong and accurate linear
look-ahead starting in any location and extending in any direction. We speculate that this
process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation;
and (3) stabilize the rigid modules of grid cells and conjunctive cells.
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INTRODUCTION
The discovery of place cells in the hippocampus over three decades
ago led to the concept that the hippocampus was the critical struc-
ture in the brain’s cognitive map (O’Keefe and Nadel, 1978). We
now see this discovery as the first of several steps toward under-
standing how map-like properties are extracted. In subsequent
years the elucidation of head-direction cells (Ranck, 1985), grid
cells (Hafting et al., 2005), conjunctive cells (Sargolini et al., 2006),
and barrier cells (Solstad et al., 2008) have contributed to an under-
standing of map construction. This paper will focus on the prop-
erties of grid cells and conjunctive cells in an effort to understand
their utility for map construction. As with hippocampal place cells,
these two cell types exhibit location-specific firing; that is, indi-
vidual cells will fire in select locations of a given environment. In
contrast to hippocampal place cells, individual conjunctive cells,
and grid cells discharge in highly organized spatial patterns.

Time-averaged recordings from single grid cells reveals they
express a dramatic spatial firing pattern composed of firing rate
bumps that are spaced in a highly regular pattern. For a given cell,
the bumps form a triangular lattice (grid) where the bumps are

evenly spaced from nearest neighbors (scale), and extend along
three axes, oriented 60˚ from each other (orientation). Individual
patterns are also described as having a spatial“phase,”the x, y offset
of the set of bumps (Figure 1).

Although there is no direct evidence of the contribution of
grid cells to place cells or navigation, the connectivity and fir-
ing patterns suggest several functions. First, layer II of the medial
entorhinal cortex, where the greatest concentration of grid cells is
found, projects directly to place cells in CA3 as well as indirectly
to both CA3 and CA1 by way of the perforant path. This suggests
that the spatial firing of grid cells may serve as input to place cells
(O’Keefe and Burgess, 2005; Solstad et al., 2006). Second, the reg-
ular patterns of grid cell firing, where one bump location predicts
the direction and distance to other bump locations, suggests that
grid cells, at least in part, are driven by path integration (O’Keefe
and Burgess, 2005; McNaughton et al., 2006). Third, the stability of
grid cell firing patterns within and across sessions suggests that grid
cell firing is also partially controlled by location-specific sensory
cues (Hafting et al., 2005). Finally, the regular geometric firing pat-
terns, characterized by straight lines and consistent angles, suggest
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that the metrics of distance and direction are extractable features
(Jeffery and Burgess, 2006).

The focus of the current study is to investigate potential mech-
anisms where the metric properties of grid cells could be used to
predict locations directly ahead of the animal’s nose: that is, the set
of locations the animal would encounter if it walked on a direct
path straight ahead. We call this process “linear look-ahead.” We
will explore how linear look-ahead can update an animal’s location
on the grid cell map to an adjacent location ahead of its nose, and
how this process can be extrapolated to more distant locations,
a process that can be exploited for selecting optimal straight line
paths for navigation (Figure 2).

THREE CRITICAL FEATURES
Three features of entorhinal cortex need to be elaborated before
proceeding with the analysis. The first is that grid cells are not
the only spatially tuned entorhinal neurons. Complementing grid
cells found predominantly in layer II are conjunctive cells found
predominantly in layer III (Sargolini et al., 2006). Like grid cells,
conjunctive cells fire in the pattern of a regular triangular lattice.
In contrast to grid cells, however, conjunctive cell firing is modu-
lated by head-direction. An individual conjunctive cell will exhibit
the spatial firing pattern of a grid cell, but, additionally, while the

rat is in the location of the cell’s firing bump, the cell will only fire
if the rat’s nose is pointed in the cell’s preferred direction.

The second feature that is critical to our analysis is the dorsal-to-
ventral increase in grid scale originally reported by Hafting et al.
(2005). The scaling increase has been supported in subsequent
work, and correlates both with differences in the membrane prop-
erties of grid cells (Sargolini et al., 2006; Giocomo et al., 2007) and
differences in the scale of place cells at corresponding depths (Kjel-
strup et al., 2008). The range of dorsal-to-ventral scale increase
appears to be greater than a factor of 2 (Barry et al., 2007) but is
presently unclear.

The third critical feature is the modular organization of grid
cells. A grid cell module is a localized region where all cells share
identical orientation and scale. That is, the characterization of
individual grid cells within a module is determined solely by
phase (x, y offset of grid bumps). Hafting et al. (2005), in the
initial grid cell study, reported that all grid cells recorded from a
single tetrode had identical scale and modular properties. Barry
et al. (2007) found discrete jumps in grid scale when driving elec-
trodes from dorsal-to-ventral, suggesting large, discrete modules.
The Moser group has preliminary evidence supporting large-scale
modules (Stensola et al., 2011). It appears that medial entorhinal
cortex is organized as a stack of horizontal slices, with each slice

FIGURE 1 | (A) Idealized spatial excitability pattern of a single grid cell,
illustrating grid scale, and orientation. (B) Closer view of the excitability map
showing the boundaries of a single rectangular tile. The phase of one cell is

illustrated as x and y offsets from the center. If this were from a rigid module,
each cell in the module would have a single excitability bump within the tile.
(C) The offset vector connecting the centers of two grid bumps within a tile.

FIGURE 2 | Place cell and grid cell navigation. (A) An idealized U -shaped
spatial terrain, covered with the firing fields of place cells. Many navigation
models rely on the hippocampus computing a path between current
location and goal that involves crossing a minimal number of firing fields,

illustrated by the dashed arrow. (B) The terrain is overlaid with an idealized
grid cell firing pattern, illustrating that grid cells, in principal contain
information for a linear, shortest-path route between start location and
goal. The path can cross unvisited space.
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representing a module, and neighboring modules representing
large steps in grid scale. Our presumption is that modules are
real. Although evidence for modules has only been presented for
grid cells, we will also assume that the layer III conjunctive cells
have a modular organization that corresponds to the overlying
grid cell module (predominantly found in layer II).

This paper is organized in three parts. The first is devoted to a
concept we refer to as “rigid modules.” Rigid modules are mod-
ules where the constraints of fixed grid scale and orientation are
extremely tight. A “tile” is defined for a rigid module as a spa-
tial region that contains a single grid bump for each neuron in
the module. A tile is a repetitive unit that tessellates to cover all
regions of accessible space. We will describe how understand-
ing the organization of a tile is sufficient for understanding the
collective properties of a rigid module, and how all between cell
spatial firing relationships are represented in a tile. The final two
parts will assume the existence of tile like organization in rigid
modules. In part 2 we examine how regularities of movement
may, through Hebbian synaptic plasticity, affect the connections
amongst neurons in a rigid module. More specifically, we will show
how Hebbian plasticity amongst conjunctive cells can produce
small subsets of strong connections between-cell pairs where (a)
the two cells have similar heading preferences and (b) the phases
are such that the firing bump of the first cell is “upstream” to the
firing bump of the second cell. Finally, in part 3, we will examine
how several sets of rigid modules can, using linear look-ahead,
identify a straight line path connecting the current location and a
known goal, even if the path crosses unexplored regions of space.

RESULTS
PART 1: MODULAR ORGANIZATION AND RIGID MODULES
We call a module “rigid” if the orientation and scale of all of
its members are identical. This strict criterion is intended to go
beyond the similarity of orientation and scale in the description
of modules. For example, while 5% variations in grid scale might
be acceptable in a module, such a module would not be rigid. Are
there true rigid modules in entorhinal cortex? There are three pos-
sibilities: (1) that the preliminary observations of horizontal slice
modules are in fact rigid modules; (2) that the horizontal slice
modules are not rigid and there are no rigid modules; and (3) that
a single horizontal module contains several separate rigid subsets.
Although we consider the answer unsettled, the model described
in this manuscript makes the assumption that rigid modules exist
and are the basis for information processing.

If rigid modules exist, then several interesting properties
emerge. The first is that the vector connecting the nearest grid
bumps of any two neurons in a rigid module is a constant. We call
this vector the “shortest interbump vector” (SIV). Consider two
grid cells A and B within a single rigid module (Figure 3). For all
bumps of grid cell A the vector to the nearest bump of B is con-
stant. The implication is that, if as an animal traverses space and
one of its grid cells fires because the animal is at the location of one
of the cell’s grid bumps, then movement in a specific direction and
distance will always result in the subject being at a grid bump loca-
tion of a particular grid cell. The relationship holds for all regions
in a large environment, no matter which of the cell’s many grid
bumps the subjects starts from. Moreover, this relationship is likely

FIGURE 3 | Shortest interbump vector (SIV). In a rigid module, the
vectors connecting the bump of a grid cell to the activity bumps of a
second cell are fixed. The figure illustrates the activity pattern of a single
grid cell (red) with a bump in the center, and the vectors to activity bumps
of a second grid cell (gray). For the central red bump – and any red
bump – there are six vectors to the nearest six bumps of the gray cell
activity map: the shortest is black and the others are dark gray. The SIV is
constant for all red cell activity bumps. A single gray bump falls within a
hexagonal tile centered on the red bump.

to be maintained across environments, given the observation that
grid cells remap across different environments in a rigid manner,
only by shifting the phase of all cells in a module by a constant
amount (Fyhn et al., 2007). That is, in any environment, if cell A is
firing and the rat moves a certain distance and direction it is likely
that cell B will fire. Direction is determined with reference to the
head-direction cell system.

A second property of rigid modules is a spatial pattern we will
refer to as a “tile.” In the initial paper describing grid cells, the
authors introduced the concept that the firing pattern of a single
grid cell will tessellate across the floor of any large apparatus (Haft-
ing et al., 2005), where “tessellation” refers to laying out a repeated
spatial bump pattern called a“tile.” In a rigid module, a tessellating
pattern can be described that includes all of the cells in the mod-
ule. A tile for a rigid module is a contiguous region of space that
contains one and only one bump from each neuron in the mod-
ule. Regions that meet this condition can be laid out, edge-to-edge
to cover all of accessible space (Figure 4). For any rigid grid cell
set, several boundary shapes can outline a tile, including parallel-
ograms (base = gridscale; height = 0.866 × gridscale), a rectangle
(same base and height as parallelograms), and a regular hexagon
(side = 0.577 × gridscale). If a shape successfully outlines a tile in
one position, it will continue to define a tile through any transla-
tion (sliding x and y) without rotation, no matter the magnitude
of translation within the environment.

For a given tile shape, translation changes the relationship of
specific grid bumps to the boundary, but leaves tile conformity
intact. Consider the firing of a rigid set of grid cells whose bumps
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FIGURE 4 |The tile concept. A tile is a bounded region that contains
one-and-only one activity bump from each grid cell in a rigid module. A tile
boundary will tessellate, in that it can be placed edge-to-edge to cover a
surface. Three possible tile boundary shapes are (A) rectangles; (B)

hexagons; and (C) parallelograms. (D) shows tesselation patterns. No single
tile boundary will contain all of the SIVs of a rigid module, but the hexagon
contains all of the SIVs connecting to a grid cell with a bump at the center.

are distributed across a large apparatus; add a boundary some-
where on this surface that defines a tile. If this boundary is lifted,
translated in position and placed anywhere else, in a process sim-
ilar to using a cookie cutter, the bumps enclosed in the second
location will also define a tile. Although the new location changes
the relationships of individual grid cell bumps to the tile bound-
aries, the boundary continues to enclose one-and-only one bump
for each grid cell.

If we consider the interbump vectors between all bump pairs
within a tile, we will find that many of these are SIVs, but, for any
tile, some are longer. For example, consider bumps A and B from
two different grid cells, with both lying within a rectangular tile, as
in Figure 5. If bump A is adjacent to the left boundary and bump
B is adjacent right boundary, the A–B distance measured within
the tile will be long, approaching 1 grid bump unit. However, for
each of these within-tile bumps, there is a shorter A–B vector to
an outside-of-tile bump of the second cell. These shorter vectors
are identical and are the SIVs for this bump cell pair. In brief, no
tile will contain the SIVs connecting all of its bump pairs.

The set of SIVs originating from the bump of a single neuron,
however, produces a surface bounded by a specific shape, the hexa-
gon described above (Figure 5). This is a tile, since it includes one
and only one grid bump for each neuron in the rigid set. Using
different neurons as the origin produces translations of this tile.
Thus, from the perspective of a grid bump of any grid cell, the set
of SIVs extending from the bump forms a hexagon with the cell’s
grid bump at the center of the hexagon. This bump-centered tile is
a construct that identifies all of the SIVs for the central cell. If we
consider a continuously moving animal, we can define the “cur-
rent effective tile” as the hexagon in which the center represents
the current location of the animal.

FIGURE 5 | All of the shortest interbump vectors (SIVs) emanating

from a grid bump A will describe a hexagonal tile with grid bump A at

the center. The horizontal width of a hexagonal tile is the grid scale; the
side length is (grid scale)/[square root (3)]; the longest SIV is (grid
scale)/[square root(3)].

Firing patterns in a rigid module
The collective firing of a rigid module signals the animal’s location
within a tile, but contains no other location information. A simple
network of neurons in a rigid module demonstrates this property.
Since the tile of a rigid module contains one firing bump of each
grid cell, a tile can be used to represent the spatial firing property
of each neuron. We’ll use a rigid module of grid cells, each with a
grid scale of 60 cm and a rectangular tile covering 30 cm × 24 cm.
Each cell’s spatial firing correlate is represented as a 2D Gaussian
centered at a position within a tile. The module contains 1800
neurons, that are assigned to 100 distinct “excitability maps,” 18
neurons per map. Each excitability map covers a tile and has a sin-
gle “firing bump.” The firing bumps across the set of excitability
maps are spread evenly across the tile. The tile representation is
tessellated to cover the floor of a 1.8 m by 1.8 m square appara-
tus. A virtual rat’s (vRat’s) path, moving at 25 cm/s in 10 ms steps
is constructed within the floor bounds. At every time step, each
neuron’s firing is calculated as a product of the vRat’s location on
the neuron’s excitability map (within the current tile) and a ran-
dom factor. For conjunctive cells, the vRat’s head orientation is a
third factor that governs firing. The result is straightforward and
as predicted. For individual time samples the firing of the set of
neurons is a two-dimensional firing bump, centered on the rat’s
location on a tile. As the rat moves, the center of the firing bump
moves smoothly, but always remains within the tile. Figure 6 illus-
trates single time samples, and the accompanying video (Movie
S1 in Supplementary Material) illustrates movements of the firing
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FIGURE 6 | (A) Video frames from a movie depicting the firing of conjunctive
cells in a module during a 20 s path through a rectangular chamber. (B) The
20-s path is depicted on the right. In (A), the rigid module is depicted as a
rectangular tile, with each cell’s phase mapped in the surface. A virtual
neuron that has fired within the previous 200 ms is depicted with others
invisible. Additionally, the color (and “nose”) of the colored circle indicates
the directional preference of a cell that fired. The black large circle is the
virtual rat’s location at the mid-point of the 200 ms sample. Gray boxes
surrounding the central tile are half-replicas of the central tile. The three
things to note are (1) the firing of cells is represented by a circular cluster,
centered on the rat’s location; (2) for conjunctive cells, a subset of head
angles will fire together; and (3) the firing of the cells in a rigid module can
only signal the rat’s location and head orientation within the module.

bump as a vRat traverses a virtual apparatus. Examining the col-
lective firing of members of the module one could have a good
estimate of the animal’s location and movement within the tile,
but would have no information about which tile in the apparatus
the animal occupies.

PART 2: LEARNING IN RIGID MODULES
A number of recent studies have proposed that grid cells are
responsible for path-integration-based updates of the place cell
representation of a rat’s location (O’Keefe and Burgess, 2005; Fuhs
and Touretzky, 2006; Sreenivasan and Fiete, 2011). A principal
goal of our research program is to see if the cells of entorhinal
cortex could perform other navigational calculations. Specifically,
we wanted to see if the grid-modulated cells of entorhinal cor-
tex could perform linear look-ahead,” the process of projecting
vectors to various distances directly ahead of the rat, in order to
vicariously explore potential shortcuts. We speculated that linear
look-ahead mechanisms might: (1) require rigid modules; and
(2) be implemented by synaptic connections developed through
experience-dependent plasticity.

Our reasoning is illustrated in Figure 7. Consider a rigid mod-
ule of grid cells. A rat is at a particular location moving NE (45˚).
Firing correlates predict that one of the grid cells in the module
(grid cell A) will fire and a head-direction cell tuned to 45˚ (HD

FIGURE 7 | (A) Fixed spatial relations between the activity bumps of three
grid cells in a rigid module. (B) Preliminary Hebb model. Grid Cell
A + Head-direction Cell 45, firing together, will predict the firing of Grid Cell
B. While this is correct, the strengthening of these synapses will not be
helpful in predicting the firing of Grid Cell B. The logic requires a conjunctive
firing of the two upstream cells (see text). (C) Hebb model with conjunctive
cells. In this case the firing of conjunctive cell A/45˚ predicts the firing of
conjunctive cell B/45˚. If the synapse has plasticity following Hebbian rules,
the synapse ought to strengthen with experience and lead to predictive
firing.

45) will fire. As the rat moves along this path, it will cross the fir-
ing bump of another cell (grid cell B) and it will fire. Since this
is a rigid module, with fixed vectors connecting bump locations
of pairs of cells, whenever the rat crosses the bump of Cell A at
45˚, grid cell B will likely fire. If we imagine that these cells are
connected with plastic Hebbian synapses (Grid Cell A and HD
45 → Grid Cell B), we suppose that with normal experience these
synapses will strengthen. After the strengthening, we imagine that,
when the rat is at the location of a firing bump of grid cell A and
its nose in pointed 45˚, the strengthened synapses will fire Grid
Cell B, even if the rat is not moving. Grid Cell B firing along with
HD 45 ought to lead to grid cell C firing, and so on, producing the
sequential activation of a series of grid cells whose bumps form a
straight line. This “linear chain reaction” would appear to be the
linear look-ahead mechanism.

The problem is that this does not work. This is because HD 45
does not selectively predict the firing of Grid Cell B (or C). Since
the firing bumps of all grid cells can be approached from a 45˚
angle, HD 45 equally well predicts the firing of all grid cells. Simi-
larly, Grid Cell A does not predict the firing of Grid Cell B any more
than the firing of other grid cells whose firing bumps surround it.
While it is true that the conjunction of Grid Cell A firing and HD
45 predicts the firing of Grid Cell B, it is only the conjunction that
is predictive. Knowledge of the firing of each cell alone is of little or
no predictive value. Most importantly, the Hebbian process does
not signal conjunction – the Hebbian strengthening rule does a
poor job as a logical AND operator. This problem is logically iden-
tical to a problem with water-maze learning described by Brown
and Sharp (1995). As the authors noted, the difficulty is due to
the problem of “linear separability” or the “exclusive or” (XOR)
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problem (Minsky and Papert, 1969). Predicting the firing of Grid
Cell B requires a logical AND operator between the variables of
grid cell firing and head-direction which simple rules of synap-
tic plasticity cannot provide. Below we use a simulation to show
that applying a Hebbian learning rule between pairs of connected
grid cells does not produce useful or selective patterns of synaptic
strengthening.

The failure of useful association can be seen in a simulation.
The simulation models a rat making a 1-h virtual path across
1.8 m × 1.8 m space. The path is created by having the rat move
at constant speed (20 cm/s) and sampling at 10 ms intervals. At
each sample the rat’s heading direction is changed from the pre-
vious direction by a small random factor, within the range ±3˚.
When the rat encounters a wall, its heading changes in a random
direction within accessible space.

The simulation involves a single grid cell that receives inputs
from a large number of grid cells and head-direction cells. If we
think of the single grid cell as “Grid Cell B” the useful association
question boils down to whether during an extended random-walk
training session we will see evidence of correlation between the
firing of any of the upstream grid cells or head-direction cells and
this cell. If Hebbian plasticity were in place, such correlated fir-
ing would lead to selectively strengthened synapses that in turn,
might produce useful patterns of connection. In the simulation
one group of afferents is a set of 882 grid cells with 49 dis-
tinct excitability maps whose peaks are evenly distributed over
the tile. The second group of afferents is a set of 882 afferent head-
direction cells with 18 distinct heading preferences, distributed in
20˚ increments. The firing of each afferent neuron and the single
downstream neuron is determined for each 10 ms interval during
the 1-h path. Firing of each grid cell is determined as a function
of three factors: (1) the vRat’s location in the cell’s excitability
map; (2) a random factor; and (3) a grid cell threshold factor
(to achieve a mean firing rate of about 5 spikes/s). Firing of each
head-direction cell is determined by (1) the vRat’s heading direc-
tion relative to the cell’s preferred direction; (2) a random factor;
and (3) a head-direction threshold factor.

Each of the afferent cells has a connection to the target cell. For
each connection the afferent cell is termed the “origin” and the sin-
gle downstream cell is the “termination.” To assess the correlated
firing between the cells at each end of a connection, “hits” and
“misses” were tabulated following each target cell spike. A hit was
tabulated when the upstream cell fires within a 500 ms window
preceding the downstream spike; a miss was recorded if there was
no spike in the time window. At the conclusion of the 1-h path
a hit ratio was calculated for each connection (e.g., between each
pair of cells).

Hit Ratio = hits/ (hits + misses)

The results reveal little-to-no evidence that Hebbian mecha-
nisms could contribute to look-ahead or other aspects of antici-
patory firing. High hit ratios indicate co-active firing between the
upstream cells and the single downstream grid cell. If there was a
subset of connections with enhanced hit ratios, this would indi-
cate, at least in principle, that selected synaptic connections could
be strengthened by experience-dependent Hebbian mechanisms.

The results are shown in Figure 8. The overall finding is that
selective high hit ratios are barely present. There is a small ten-
dency to observe high hit ratios for connections between grid cells
with peak excitability maps in the region surrounding the peak
excitability of the target grid cell. There is no tendency for high
hit ratios among subsets of head-direction cells. In brief, high hit
ratios, which, if Hebbian mechanisms were in place would lead
to synaptic strengthening, could not lead to a linear look-ahead
mechanism suggested above and in Figure 8. The reason for this is
clear. The prediction made by Figure 7 is that the conjoint firing
of Grid Cell 1 and HD 45 predict the firing of grid cell 2. There
is no suggestion that the firing of either of these cells alone will
predict the firing of grid cell 2. The simulation shows that neither
the firing of Grid Cell 1 nor HD 45 in isolation – or any grid cell
or head-direction cell – will be of substantial predictive value.

The conjunctive cell solution
The difficulty in using Hebbian rules to create networks that antic-
ipate future locations is that anticipatory prediction requires a
logical conjunction of grid cell firing and head-direction firing – a
logical AND relation. Simple Hebbian learning rules cannot per-
form a conjunctive association. One solution might be a complex
multi-compartmental synaptic morphology, that could perform
logical AND operations (Alarcon et al., 2006). We considered
the possibilities of patterned inputs to synaptic spines, or care-
fully arranged patterns of axo-axonic inputs. While exotic and
un-documented patterns of neuronal connection might solve the
“conjunctive” problem, a more parsimonious solution is known
to exist in entorhinal cortex: conjunctive cells. Although we do
not know how conjunctive cells acquire their basic firing prop-
erties, it is clear that they perform the conjunctive operation. A
given conjunctive cell fires as if it is an AND gate for a head-
direction cell and a grid cell. It will fire in a grid-like spatial pattern,
but only when rat’s head is pointed in the preferred direction
(Figure 7C).

For the remainder of this paper we will examine the role of
conjunctive cells in two steps. First, we will simulate a training ses-
sion, where a vRat moves randomly through space, to show that
the pattern of correlated firing between pairs of cells is precisely
what is predicted above. In Part 3 we will use the strengthened
connections to produce a series of activations simulating linear
look-ahead.

Synaptic strengthening in conjunctive cells
The simulation aimed at looking for patterns of synaptic strength-
ening was run separately on sets of conjunctive cells and grid cells
in rigid modules. Each module contained 1800 all-to-all connected
neurons (3,240,000 connections). The grid cell rigid module con-
tained cells with 100 separate excitability maps, whose peaks were
evenly spread across the tile. Eighteen grid cells shared a single
excitability map. Their firing was individuated by the random
excitability factor (0–1.0) for each cell at each time step along
the path. Each conjunctive cell had a unique phase/heading pref-
erence combination. Each conjunctive cells was assigned 1 out of
100 phases (excitability maps) and one out of 18 evenly spaced
heading preferences. At each 10 ms step, as the vRat moved along
its path, the firing of a conjunctive cell was determined by phase,
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FIGURE 8 | Histograms of results for connection strengths (co-activity

indices) between all cell pairs in a rigid grid cell module (A,C) and

conjunctive cell module (B,D). (A,B) show that for both Grid Cells and
Conjunctive cells that great majority of scores are low, roughly 80% of the

strengths falling in the lowest bin. In (C,D) high-strength scores are
selectively examined by eliminating values below 0.2 and rescaling. This close
examination reveals a subset of strong connections found between pairs of
conjunctive cells (D) but not grid cells (C).

heading preference and a random factor. Connections between all
pairs of grid cells and conjunctive cells were created.

The simulation was run using a single 30-min path with firing
of each cell determined at each 10 ms interval. Although the con-
junctive cell module and the grid cell module were run separately,
both simulations were run on the same path, with identical input
parameters. “Hits” and “misses” for each connection were updated
during the run; at the end of the run “hit ratio” was computed for
each connection.

The question these simulations investigated was whether spe-
cific patterns of correlated firing between pre- and post-synaptic
cells develop within either rigid module. As before, we used the
hit ratio from each cell pair connection to estimate co-active firing
between cell pairs. High hit ratios are exclusively found in the con-
junctive cell module, and, even there, the number of connections
with high hit ratios is a small fraction of the total. As shown in the
histograms of Figure 8, the great majority of connections in both
the grid cell and the conjunctive cell modules have low hit ratios.
If the higher end of the histograms are examined (Figures 8C,D
apply a 0.2 strength cut-off), it is clear that virtually all of the high
hit ratios, those above 0.2, are from the conjunctive cell modules.
A chi-square test of the difference in proportion scores above 0.2
is significant at the 0.01 level.

Next we looked for distinctive features in the subset of
conjunctive-to-conjunctive connections with high hit ratios. Since
the vRat tended to move in straight lines, creating sequential firing
of conjunctive cells with similar heading preferences, we examined

the difference in heading preference in the origin and termination
cells for each cell pair. Figure 9 is a polar scatter plot of hit ratio
as a function of the heading preference difference. As predicted,
cell pairs with highly correlated activity (e.g., hit ratios above
0.2) were exclusively the cell pairs with close match in preferred
headings.

Connection strength maps help to further identify the small
set of strong connections among conjunctive cells (Figure 10).
These maps are limited to connections between pairs of neurons
with identical heading preferences. To construct the map, a single
“origin” cell is placed at the center, and the co-activation score is
displayed as a black circle, displaced from the center by the SIV
between the two cells. With the size of each circle representing the
co-activation score, the set of circles sits on a hexagonal tile, with
the “origin” cell at the center. From the maps we see two further
features of the connections with high scores. First, high-score con-
nections are greatest for neurons with neighboring firing bumps
(short SIVs). Second, the highest co-activation scores are found
“downstream” to the origin cell; that is, with the center as origin,
in the direction of the heading preference of both cells. This would
be the most frequent direction of the vRat’s movement.

The pattern on each map can be quantified by calculating the
vector from the center of the tile to the centroid of the weighted
connections (see Materials and Methods). When this is done for
all 1800 maps, the mean difference between heading preference
and centroid vectors is 0.3˚, with a mean absolute value of 7.3˚
(Figure 11A). Doing the same computation on grid cells (with
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FIGURE 9 | Circular scatter plots of connection strength as a

function of the difference in heading preference of the

connected cells. (A) plots connection strengths between pairs
of grid cells, where all values are low, and unmodulated by

(pseudo) heading preference. (B) plots connection strengths
between pairs of conjunctive cells, where high values are found
between pairs with similar heading preference (i.e., difference
values near zero).

heading preference randomly assigned) or a pure Monte Carlo
distribution of 1800 angle pairs results in mean absolute devia-
tions of ∼90˚, the mean chance difference between two randomly
selected angles (Figures 11B,C).

The connection strength maps of Figure 10 show a clear spatial
pattern of high co-activity scores. It is clear that the pattern of
high hit ratios for conjunctive cells is proximate to the rat’s cur-
rent location and “points” downstream, in the direction that the
rat is heading. We conclude that high hit ratios are found exclu-
sively in a subset of connections among conjunctive cells. These
connections share three properties: (1) they connect conjunctive
cells with identical or similar heading preferences, (2) they con-
nect conjunctive cells with nearby spatial excitability peaks, and (3)
they connect origin conjunctive cells with cells whose excitability
peak is in the direction the rat is facing.

Time window and the learning rule
The hit ratio learning rule is a form of Hebbian association, in that
the hit ratio will be high when pre-synaptic firing“predicts”a post-
synaptic spike. Hit ratio computations perform almost exactly
as a binomial correlation. When correlation 1 (a binomial cor-
relation between presynaptic cell firing in a time window and
post-synaptic firing) was computed for three sessions the corre-
lations between the correlation 1 and hit ratio scores were 0.992,
0.994, and 0.992. We have used a long (500 ms) pre-synaptic win-
dow in most analyses in order to observe the overall pattern of
interaction. Physiological data suggests shorter window times, in
the order of 50 ms, may be more appropriate for LTP (Bi and Poo,
1998). Shorter windows have two effects on patterns of synap-
tic strengthening: the error of angular estimation increases and
the distance offset decreases (Figure 12). Although the selective
enhancement in the direction of heading preference decreases,
after a 60 min training session, directionally selective enhance-
ment remains statistically significant down to 50 ms. Finally, we
implemented a form of spike-time dependent plasticity (STDP),

with two temporal firing windows: an enhancement window, if
firing preceded the post-synaptic spike, and a decrement win-
dow if pre-synaptic firing followed the post-synaptic spike (Bi
and Poo, 1998). STDP enhances the sensitivity of conjunctive
cells to look-ahead plasticity, both in terms of the minimum time
window for effective plasticity and the length of the downstream
displacement.

PART 3: LINEAR LOOK-AHEAD WITH CONJUNCTIVE CELLS
In Part 2 we established high pre-to-post-synaptic correlations
between the firing of pairs of conjunctive cells whose SIVs point
in the direction the rat is facing. The final question we will address
is whether transforming these firing correlates, via Hebbian mech-
anisms, to synaptic strength is sufficient to produce linear look-
ahead. Specifically, we activate a set of conjunctive cells as if a rat
is in a fixed location and head-direction and see if this sets up
a step-by-step activation of conjunctive cell cohorts (F groups)
that represent a linear sequence in the direction the rat is fac-
ing. There are four steps to the simulation. First, the hit ratios
calculated during training (Part 2, above) are transformed into
“connection strengths.” Second, the vRat is placed at an arbitrary
location in the environment with a particular head orientation,
and the corresponding subset of the location and directionally
tuned cells activated (firing set F1). Third, the cells that fire in F1
activate their outflow connections. Fourth, each downstream cell
summates the F1 inputs to produce a level of excitation. Fifth, the
downstream cells are rank-ordered by their excitation state, with
the top X% (typically 2%) set to fire (F2). This process is iterated,
with each iteration producing a subsequently activated cohort of
neurons (F2, F3, etc.). The prediction is that each cohort of fir-
ing neurons will form a circular cluster, with the centroid of the
cluster proceeding in a step-wise manner in the direction of the
initial head orientation. A confirmation of this prediction is illus-
trated in Figure 13. A series of six step activations is illustrated.
In each the set of activated conjunctive cells forms a neat circle

Frontiers in Neural Circuits www.frontiersin.org April 2012 | Volume 6 | Article 20 | 8

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Kubie and Fenton Linear look-ahead in conjunctive cells

FIGURE 10 | Connection strength plots. Each plot represents a
conjunctive cell or grid cell tile with a single cell at the center, represented
by a red circle. Surrounding dots represent connections from the central
neuron to other neurons, with the strength of connection depicted by the
size of the circle. The location of each circle represents the shortest
interbump vector (SIV; or phase difference) between the central neuron
and other depicted neurons. For conjunctive cells, all of the neurons
depicted share the same heading preference. These plots come from rigid
modules with 100 evenly spaced phases, with a single cell at each phase
location. As noted above (Figure 5) since we are plotting the set of SIVs
from a single cell, the surface described is a hexagon. Note that each plot
represents a very small subset of total connections in a rigid module. In
these examples 100 connections out of a total of 3,238,200 connections
are shown. The connections are restricted to those: (1) with a particular cell
as an origin (out of 1800) and (2) with terminations on cells with the same
heading preference (out of 18 at each phase location). The plots selected
are representative out of 1800 alternatives. The top three panels (A–C) are
from a simulated 30 min session with 1800 conjunctive cells distributed
across 100 phases with 18 heading preferences at each phase. The bottom

two panels (D,E) are from a simulated 30 min session with 1800 grid cells
in a rigid module. These cells were distributed across 100 phases. For each
phase location, 18 arbitrary directional identifiers were assigned that had
no influence on the cell’s behavior. (A–C) are plots from origin cells with
heading preferences of 160˚, 40˚, and 220˚ respectively. The noteworthy
feature of each plot is that the density of strong connections is near the
center, but displaced from the center. The direction and distance of
displacement is calculated by computing a centroid (center of mass) for
the connections (blue dot). The distance of centroid displacement was
∼25% of the maximal distance to the edge of the hexagon. The direction
of displacement for all three plots is very close to the direction of the
common heading preference for the conjunctive cells. (D) Is a similar plot
from a single grid cell. The directional preference is an arbitrary assignment
made to each cell and does not reflect firing preferences. The point to note
is that all of the connection strengths (black circles) are low. (E) Is a
remapping of the same data, but increasing the dot-scale by a factor of
three. This shows that relatively stronger connections are close to the
central cell. Both panels show that the magnitude of displacement of
centroid from center is almost imperceptible.

with a centroid. The progression of centroid locations produces
a vector moving away from the start location at the angle of the
initial heading direction.

Once F2 is activated, will it set off a chain reaction, a series
of activations progressing in a straight line in the initial head-
ing direction? The answer is a partial yes. In almost all cases, the
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FIGURE 11 | Histograms of centroid offset angles for all cells in a

simulation. Recall that Figure 10 illustrates that the displacement centroid
for 3 groups of connections are in the direction of the common heading
preference of the cells. To prepare this figure similar centroid offset
calculations were made for all 1800 possible subsets. Each
centroid-offset-angle was subtracted from the common heading preference
and the results plotted as a histogram. As predicted, common heading
preference and offset angle are very similar. (A) For the conjunctive cell
module, the angle difference clustered around 0, with a maximal deviation
of 27˚. Mean unsigned deviation was 6.7˚. (B,C) Perform similar calculations
on Monte Carlo simulations of direction pairs (B) and grid cell pairs where
heading preference was randomly assigned. For each of these “random”
simulations produced flat distributions, with deviations from 0
averaging ∼90˚.

first set of activation steps remain linear, as seen in Figure 13. In
extended series, however, there can be drift, as seen in Figure 14A.
Most commonly, when drift occurs, the trajectory locks in on a
nearby direction. When a single training session is used, certain
directions are preferred. We feel that these directional preferences
are due to inhomogeneities in the 30-min training session.

Adding a steady head-direction signal at each step is a straight-
forward method that appears to eliminate drift. In the experiments
described above, location and head-direction inputs were turned
“on” to initiate activity, but were “off” in subsequent activity steps.
We feel it is reasonable to leave the head-direction signal “on”

throughout the look-ahead process. This is postulating that the
rat is stationary during look-ahead, with its head pointed in the
look-ahead-direction. Since head-direction cells maintain firing
during stationary behavior (Taube et al., 1990), it seems reason-
able to surmise a tonic head-direction input to the conjunctive
cell module. With head-direction input maintained during each
iterative step in the look-ahead process, drift is effectively elimi-
nated. This is illustrated in Figures 14B–D where an unchanging
head-direction factor was added to the summed excitation at each
step. In each case, trajectories remained steady for up to 40 steps.
We conclude that a tonic head-direction input may be essential for
the look-ahead process.

DISCUSSION
Before discussing the implications of the current work, we would
like to address some of the limitations and qualifications. First, the
model is based on imagined connections among conjunctive cells
and between grid cells and conjunctive cells. As noted above, there
is very little experimental work addressing connectivity within and
across layers of entorhinal cortex. For example, there is no defin-
itive evidence for layer II stellate cell to layer III pyramidal cell
connections (grid cell to conjunctive cell) nor is there evidence
for-or-against conjunctive cell to conjunctive cell connections.
Although each of these connections seems likely, experimental
work is needed.

Second, it should be clear that this model performs “linear
look-ahead” for a single rigid grid cell module. Since, as we have
described, each rigid module is tiled across accessible space, the
result of each step in the linear look-ahead process is not unique;
rather, each step identifies a number of locations corresponding
to the number of tiles. Unique locations can be identified if linear
look-ahead is performed synchronously across several modules
with different grid scales. We are in the process of doing this work.

Third, most of the simulations done for this paper were done
with integration times of 500 ms, far longer than the estimated
50 ms pre-spike integration time for LTP. Shorter pre-spike inte-
gration time windows work, but with decreasing apparent effec-
tiveness. Preliminary tests with a combination of a pre-spike LTP
window and a post-spike LTD window (STDP) suggest these may
be essential for look-ahead plasticity with realistic (shorter) inte-
gration times. It is important to note that Zhou et al. (2005) have
shown both LTP and LTD in slice preparations of entorhinal layer
II/III pyramidal neurons.

Finally, It should be noted that the notion of“linear look-ahead”
is not unique to our work and may be effected through other mech-
anisms. Specifically, Erdem and Hasselmo (2012) have devised a
“linear look-ahead”model based on the phase-interference mecha-
nisms of entorhinal grid cells, with no involvement of conjunctive
cells. The Erdem and Hasselmo model can solve complex nav-
igational problems, such as taking shortcuts and dealing with
detours. An interesting similarity is that both models require con-
tinual head-direction cell firing for optimal operation. We note
that the two mechanisms are not in conflict and may operate
separately or together to add to navigational prowess. In addi-
tion, Navratilova et al. (2012) explore the possibility that con-
junctive cell inputs to grid cells and hippocampal place cells
produce the “look-ahead” component of phase precession. In
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FIGURE 12 | Effects of pre-synaptic spike window and spike-time

dependent plasticity (STDP) patterns on connection strength. The top
row uses the hit ratio synaptic weighting method while the bottom row
uses a STDP method. All plots are for an identical 60 min Training session.
The preference angle for all cells is 60˚, so a perfect displacement will be at
a 60˚ angle from center. Each plot depicts the centroid (center of mass) for
the strength of connection between one neuron and 48 other neurons
with the same heading preference (60˚). The set of depicted weightings for
each plot is truncated to a circle, and cells with connection strengths

below a threshold are not displayed. The central cell is a red dot, and the
centroid is a blue circle. For this representative set, the angle of centroid
offset improves with greater pre-synaptic integration time, but all are less
than chance (90˚). The distance of centroid displacement also increases
with integration time. The second row depicts the connection strengths of
the same neuron pairs, where strength is a produced by a spike-time
dependent plasticity rule (LTP–LDP). With a STDP learning rule errors are
generally smaller, centroid displacement distances are larger, and are less
affected by integration time.

FIGURE 13 | A trained module of 1800 conjunctive cells was tested

for linear look-ahead. As described in methods, F1 is a set of
conjunctive cells that fire in the rat’s initial orientation, in this case the
upper left of a rectangular tile, with a head orientation of 315˚ (black dot).
Panels labeled Steps 1 through 6 are the sets of conjunctive cells
activated from the previous set of firing neurons. F2 is activated from F1
(initial conditions), F3 from F2, etc. Each violet dots represents a

conjunctive cell that fires in that step, with the protruding line
representing the cell’s preferred heading direction. (Multiple lines
represent multiple cells). Note that for each step, the set of firing cells
remains a circular cluster. The blue dot is the centroid (center of mass) of
the firing cells. Faint red dots are the entire path for the six steps. It’s
clear that with each step the centroid progress in the direction of head
orientation.
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line with our thinking, the authors of each of these studies pro-
pose an entorhinal-based look-ahead process as a mechanism for
anticipating future locations.

The motivation for this work was an effort, stated in a previ-
ous paper, to find mechanisms for computing vectors – straight
line paths – between an animal’s current location and a previously
visited goal (Kubie and Fenton, 2009). The constraints were that
the animal must have performed journeys connecting these two
locations, but the animal need not have visited locations along the
direct path. Figure 2 (modified from a figure in the earlier paper)
represents these constraints, and shows how a vector-navigational
system could, in principle take efficient paths across unvisited
regions of space. The vector-navigation system hypothesized in
the Kubie and Fenton (2009) model relied on path integration
and speculated that such a mechanism might reside in entorhinal
cortex. The current study explores the possibilities of vector-based
navigation among known neuronal types in entorhinal cortex.
With only two key additional assumptions, specifically that grid-
like cells are organized in rigid modules and that the synaptic
connections within a module are established in accord with Heb-
bian learning rules, we explored how grid cells and conjunctive
cells could produce a mechanism termed “linear look-ahead.” The
reason for this is that the regular arrangement of grid cell and
conjunctive cell firing bumps implicitly fills unvisited regions of
space with predicted firing patterns. Figure 2 illustrates a spatial
pattern that covers both visited and unvisited regions of space.
Implicit is that both grid cells and conjunctive cells have predicted
firing properties as animal first explores, or vicariously explores,
unvisited regions of space.

Exploiting linear look-ahead, an animal can, in principle, sit in
one spot and take a hypothetical path across unvisited regions of
space in search of goals. The process might go something like this.
The animal sits in one region of space with a goal, represented by
place cell activation and an associated sensory input also activated.
In the start location the rat can explore potential direct paths to

FIGURE 14 | In panel (A) the initial position had a head orientation of

130˚. For the first eight steps the centroid location progressed at
approximately a 130˚ angle, but in subsequent steps the direction drifted
and stabilized at about 180˚. In (B–D) head-direction stabilization was added
(see Materials and Methods). We find that with head-direction stabilization
the linear look-ahead mechanism progresses continuously in the initial
heading direction.

the goal. Through the process of linear look-ahead it can activate
a series of conjunctive cells, grid cells, and place cells to see if any
of the patterns matches the goal pattern. If a goal match is found
in the look-ahead process then the current state of “look-ahead”
would represent the direct path to the goal. In brief, the linear
look-ahead process implemented in conjunctive cells is a viable
candidate for vector-based navigation.

Figure 15 is a simplified schema of layers 2 and 3 of entorhi-
nal cortex illustrating how these two cell types might interact.
According to this scheme:

1. Grid cells (predominantly layer II) and conjunctive cells (layer
III) have reciprocal connections, such that there are corre-
sponding grid cell/conjunctive cell sets. “Descending” and
“ascending” connections can be activated independently (as
far as we know, reciprocal connections have not been phys-
iologically established, although cell morphology makes the
connections likely (Lorente deNo, 1933; Canto et al., 2008).

2. Conjunctive cells have network processing that can produce
linear look-ahead.

3. Grid cells have (indirect) reciprocal interactions with hip-
pocampal place cells such that grid cells can update place cell
firing and sensory information from place cells can update grid
cell firing (van Strien et al., 2009).

4. Each of these connection sets is gated. That is, connection sets
can be turned off or on such that some processes can operate
without the interference of others.

With this scheme in mind, we can envision several functions
for linear look-ahead. First, “long-distance” linear look-ahead, as
described above, would be described as: (1) initial activation of

FIGURE 15 | Schematic of grid cells (layer 2 EC) and conjunctive cells

(layer 3 EC). We hypothesize vertical integration and interaction between
overlying layer 2 grid cells and deeper layer 3 conjunctive cells. Additionally,
the conjunctive cells are interconnected to provide the “linear look-ahead”
described in the paper. Each of the arrows can operate independently. The
grid cell projection to conjunctive cells “sets up” the conjunctive cells to be
in register with grid cells and sensory cues from the environment. If this
influence is reduced and inter conjunctive cell interaction turned on (along
with head-direction input) the conjunctive cell layer can process linear
look-ahead, to predict locations ahead of the animal’s nose. Finally, the
conjunctive cell layer projects to the grid cell layer, permitting the grid cells
to reflect the look-ahead mechanism. We see three functions of linear
look-ahead. First, the mechanism can do long-distance look-ahead while the
animal is stationary to predict distance locations. Second, the mechanism
can do short-distance look-ahead, providing continual update while the rat
is in motion. Finally, the mechanism can add to the cohesion of both
conjunctive cells and grid cells, making a rigid network even more rigid.
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conjunctive cells from grid cells at the start location followed by a
disconnection (arrow 1); (2) simultaneous activation of conjunc-
tive cell linear look-ahead (arrow 2); and the conjunctive-to-grid
cell connection (arrow 3) to look for a match at the goal.

“Short-distance linear look-ahead”might be the mechanism for
continuously updating the conjunctive cell/grid cell representation
during active navigation. According to this notion, during navi-
gation, when there is a velocity signal, there is a constant cycle of
arrows 1, 2, and 3 in Figure 15. The grid cells representing the rat’s
current location (which may be reinforced by sensory cues) excite a
corresponding set of conjunctive cells; (2) conjunctive cells trigger
a set of “downstream” conjunctive cells in advance of the animal’s
current location on its path; (3) the “downstream” conjunctive
set excites the corresponding “downstream” set of grid cells. In
support of this notion is the stationary property of attractor net-
works. Several authors have noted that if the grid cell networks
functions as an attractor system it require an external drive to
update during locomotion (McNaughton et al., 2006; Giocomo
et al., 2011; Sreenivasan and Fiete, 2011). An asymmetrical input,
such as provided by conjunctive cells, could provide that drive.

A third function is that linear look-ahead might contribute to
establishing and maintaining the rigidity of grid cell and conjunc-
tive cell modules. In creating patterns of synaptic strengthening
among conjunctive cells, we assumed a priori rigid modules. What
if the modules were initially only slightly rigid? We imagine that it
might take extensive experience for sufficient co-incidence of the
firing patterns for rigidity to emerge based on Hebbian learning
rules, but nonetheless the patterns would still emerge (Langston
et al., 2010; Wills et al., 2010). After synaptic strengthening occurs,
the short-distance linear look-ahead mechanism will reinforce
rigid relationships among conjunctive cells. Even partially imple-
mented linear look-ahead will reinforce the SIV patterns of neigh-
borliness and direction. This will, in turn, strengthen conjunctive
cell mediated linear look-ahead.

In summary, linear look-ahead operating within the hippocam-
pal formation may have utility at three distinct spatio-temporal
scales. First, the long spatial and temporal time scales are in
accord with our goal of understanding how linear look-ahead
could be implemented to navigate environments with unfamiliar
expanses. Second, on the shorter scales of the next locomotor steps,
linear look-ahead may provide a means for overcoming represen-
tational inertia by updating the representation as the animal moves
through space. The third scale is that of synaptic plasticity and may
be most relevant for the development of grid-like cell modules.
Beyond our initial intent, linear look-ahead may have fundamental
importance to the operations of the spatial representation system.

METHODS
GRID CELLS AND CONJUNCTIVE CELLS
The computational method is organized around a set, or sets, of
neurons in a rigid module. The end result is that the program
produces an excitability map for each grid cell or conjunctive cell
that covers the surface of the apparatus. Grid bump size, grid scale,
and grid orientation can be varied. Excitability maps are organized
around the tile. Although a number of tile shapes are equivalent
(parallelogram, rectangle, hexagon) the program uses a rectangu-
lar tile with a 0.86 × 1.0 aspect ratio. Grid scale sets the width of

the tile. Grid cell distribution is the number of distinct phases per
tile, with each phase occupying a single unique tile position. In the
current study, phases were evenly distributed across the tile surface
in 49 (7 × 7), 64 (8 × 8), or 100 (10 × 10) locations. For a given
neuron, phase can be thought of as a rectangular tile with a dot at
the phase location.

A single “bump surface” is used for all excitability maps in a
simulation. This surface is a 2D Gaussian with a value 1.0 at center
that drops to a cut-off at 0.05. The fall-off rate of the Gaussian
determines the size of grid bumps.

A neuron’s excitability map is created in two steps. First, the
tile with the neuron’s phase is tessellated across the surface of the
apparatus; the tessellation pattern has alternate rows offset by half
the tile width creating a “brick wall” of the rectangular tile pattern
(Figure 4A). Next, the “bump surface” is repeatedly added, cen-
tered on the phase location of each tile. The resulting excitability
map resembles a smooth grid cell rate map. Values vary from 1.0
at bump centers to 0 between bumps.

Each conjunctive cell, in addition to having an excitability map,
has a preferred heading direction. Typically, preferred heading
directions are grouped in 20˚ bins, but all directions are possible.

Paths are computed in a virtual rectangular enclosure
1.8 m × 1.8 m. The enclosure is divided into 25600 × 25600 square
pixels with sides of 0.7 mm. Virtual rats move at a constant run-
ning speed of 20 cm/s. The vRat’s location is sampled at 10 ms,
making each step 28 pixels in the vRat’s current direction. After
each step current direction is updated by a random factor rang-
ing between +3˚. When the vRat encounters a wall, direction is
updated as a random direction that takes the rat to a position
within the apparatus.

During path execution the firing of grid cells, conjunctive cells,
and head-direction cells is updated with each virtual step, based
on the rat’s location and head-direction. For a grid cell, firing is
determined by an excitation equation:

Excitation = excitability
(
x , y

) × RF

where
x and y are the rat’s location
excitability() = the apparatus excitability map for that cell
RF = a uniform random value between 0 and 1.0

A grid cell fires if

Excitation > GridCellThreshold

where GridCellThreshold is a value set to obtain a mean firing rate
of 5 AP/s for grid cells.

For conjugate cells, an additional factor, the “heading direction
factor” (HDfactor) is also computed.

a′ = ∣∣CurrentHeadingAngle − Heading PrefenceAngle
∣∣

hw =“heading width”: changes the width of the curve. Default is
0.5.
HDfactor – heading direction factor is a value ranging from 0 to 1
if(a′/hw) > 180 then HDfactor = 0 else
HDfactor = cos(a′/hw + 1)/2
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With a “heading width” (hw) of 0.5 the cosine fall-off will reach
zero 90˚ from peak. Lower hw values create sharper tuning curves.

Adding the HDfactor to the excitation equation:

Excitation = excitability(x , y) × RF × HDfactor

where HDfactor is computed as defined above.
a conjunctive cell fires if

Excitation > ConjCellThreshold

where ConjCellThreshold is a value set to obtain a mean firing rate
of 5 AP/s.

Finally, head-direction cell firing is computed identically to
conjunctive cells, but without an excitability map.

Connections are objects that connect neurons. A connection
has an “origin” cell and a “termination” cell. A connection can also
store values of “hits” and “misses.” During path execution, when
a cell fires, all of the connections that have the cell as a “termina-
tion” are queried. If the origin cell has fired within the set time
window (typically 500 ms) the hits value is incremented; if the
origin cell did not fire within the time window, the connection’s
misses parameter is incremented. In simulations, all cells of a mod-
ule are connected; therefore, if there are 882 Grid Cells (49 phase
locations; 18 cells per location), there are 777,924 connections.
During training sessions, connections do not influence neuronal
firing; they simply collect information. A connection with a high
hit ratio [hits/(hits + misses)] has high correlated firing. If Heb-
bian learning rules are applied, connections with high hit ratios
will be strengthened.

Connections are depicted in hit ratio maps. Hit ratio maps have
a single cell at center and connections depicted spreading from the
center. The distribution of connections is determined by the SIV
from center cell to the connected cell. The surface formed by the
set of these connections is a hexagonal tile. (This is because the
set of SIVs from a single cell is a hexagonal tile with the cell at
center). The magnitude of the hit ratio is depicted as the radius of
a circle. For conjunctive cells hit ratio maps are typically limited to
the set of conjunctive cells sharing a single directional preference.
For grid cells, the distribution of connections can be made for a
single grid cell, for each SIV, or as the average of identical SIVs
emanating from the central cell.

Three methods have been used for computing connection
strengths: Hit ratio, Correlation 1, and a STDP (spike-timing
dependent plasticity). The hit ratio method is as described above.
The computed hit ratio for a connection is used as connection
strength. Correlation 1 is a binomial correlation between the firing
of the pre-synaptic cell in the pre-spike-time window and the fir-
ing of the post-synaptic cell. (Empirically, the correlation between
Correlation 1 and hit ratio is consistently above 0.99). To compute
the STDP value we calculate Correlation 2, a correlation between
the firing of pre-synaptic cell in a time window after the post-
synaptic cell fires. STDP for a given connection is (Correlation
1–Correlation 2). The STDP measure is conceptually equivalent
to LTP–LTD, for a given synapse, where the LTP and LTD time
windows have identical length (Bi and Poo, 1998).

After training sessions have been completed, connections can
be turned on and used to drive conjunctive cells. Two methods
have been used. The first is a conjunctive cell-only mechanism.

1. Initial state. A vRat with a set of conjunctive cells is placed in a
location in the environment with its head pointing in a partic-
ular direction. Using the mechanism described above, the set
of conjunctive cells that fire is determined. A “set of firing cells”
is called a firing set (FS). This first set is FS(1).

2. cyclic firing
a. The connections that have FS(1) as origin are queried. For

each of these, the strength of the hit ratio is added to a value
in the termination cell called “excitation.”

b. The cells in the module are sorted based on their stored
“excitation value.”

c. The top 2% of cells with highest excitation values are set to
fire. The threshold value is typically 3%. These become the
next set of firing cells [FS(2)].

d. All excitations are reset to 0 and the process is repeated,
starting at 2a, with FS(n + 1) replacing FS(n).

The second mechanism is termed “conjunctive plus head-
direction stabilization.” As the name suggests, a head-direction
value is included in calculating the excitation of each cell at as
part of step 2b. The head-direction factor uses the formula above
for computing the deviation of head-direction preference from
head-direction in the initial state.

For each step in the cycle, the vRat’s represented location is
computed in a two-step process. First, the rat’s last location is
taken as a first estimate. We compute the center of mass for the
SIVs from the first estimated location to each cell in the current
firing set and term this the “correction vector.” The computed
location is the “first estimate”+ the “correction vector.” This gives
both the estimate of the animal’s location on the tile and in the
full environment.
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SUPPLEMENTARY MATERIAL
The Movie S1 for this article can be found online at http://
www.frontiersin.org/Neural_Circuits/10.3389/fncir.2012.00020/
abstract

Movie S1 | video simulation of the firing from 1800 conjunctive cells, all

from a single module. The phases are distributed to 100 different locations (10
rows, 10 columns) distributed evenly across a rectangular tile. The path map on
the right shows the vRat’s location within a 1.8 m square chamber at the time of
the frame. Rectangular “tiles” are superimposed on the chamber floor. The
firing of cells is depicted on the left, with an individual cell’s spikes distributed in
phase-space on the rectangular tile. When a cell fires within a 200 m of the
frame time, a circular dot is placed in the cell’s phase location. The color and the
direction of the “stick” emerging from the dot indicate the cell’s heading
preference. When several cells with the same phase fire in a time sample,
several “sticks” emerge from the dot. Gray half-tiles are replicated around the
central tile to enhance visualization of the circular firing cluster. When the movie
is viewed, the set of cells firing cells forms a circular cluster that travel across
the tile like a swarm of bees. The heading preference within the cluster falls
within a tight range.
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