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Engineered exosomes enriched 
with select microRNAs amplify 
their therapeutic efficacy for 
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Traumatic brain injury (TBI) and stroke stand as prominent causes of global 
disability and mortality. Treatment strategies for stroke and TBI are shifting from 
targeting neuroprotection toward cell-based neurorestorative strategy, aiming 
to augment endogenous brain remodeling, which holds considerable promise 
for the treatment of TBI and stroke. Compelling evidence underscores that the 
therapeutic effects of cell-based therapy are mediated by the active generation 
and release of exosomes from administered cells. Exosomes, endosomal 
derived and nano-sized extracellular vesicles, play a pivotal role in intercellular 
communication. Thus, we may independently employ exosomes to treat stroke 
and TBI. Systemic administration of mesenchymal stem cell (MSC) derived 
exosomes promotes neuroplasticity and neurological functional recovery in 
preclinical animal models of TBI and stroke. In this mini review, we  describe 
the properties of exosomes and recent exosome-based therapies of TBI and 
stroke. It is noteworthy that the microRNA cargo within exosomes contributes 
to their therapeutic effects. Thus, we provide a brief introduction to microRNAs 
and insight into their key roles in mediating therapeutic effects. With the 
increasing knowledge of exosomes, researchers have “engineered” exosome 
microRNA content to amplify their therapeutic benefits. We  therefore focus 
our discussion on the therapeutic benefits of recently employed microRNA-
enriched engineered exosomes. We also discuss the current opportunities and 
challenges in translating exosome-based therapy to clinical applications.
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1 Introduction

Traumatic brain injury (TBI) and stroke are prominent causes of global disability and 
mortality, and impose a significant social and economic burden (Hyder et al., 2007; Lackland 
et al., 2014; Johnson and Griswold, 2017; Kuriakose and Xiao, 2020; Hering and Shetty, 2023). 
Unfortunately, no effective drugs are available for improving TBI functional recovery, and tPA 
is the only FDA-approved drug as a treatment for acute ischemic stroke (National Institute of 
Neurological Disorders and Stroke rt, PA Stroke Study Group, 1995; Hacke et al., 2008). 
Furthermore, nearly all the phase II/III clinical trials directed towards neuroprotection for TBI 
and stroke have failed (Xiong et al., 2018).
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Recently, attention has shifted towards cell-based neurorestorative 
strategy, designed to augment endogenous brain remodeling after TBI 
or stroke. Cell-based therapy, particularly using bone marrow 
mesenchymal cells (MSCs), has proven to be safe and effective in 
promoting neuroplasticity and neurorestoration, leading to the 
improvement of neurological and cognitive function in animal models 
of TBI and stroke (Chen et al., 2001; Chopp and Li, 2002; Zhang and 
Chopp, 2009; Cox et al., 2011; Nichols et al., 2013; Bonsack et al., 2020; 
Pischiutta et al., 2022; Giovannelli et al., 2023). Paracrine effects rather 
than the direct replacement of injured tissue through stem/progenitor 
cell differentiation underlie the therapeutic benefits of cell-based 
therapy (Chopp and Li, 2002; Phinney and Prockop, 2007; Lai et al., 
2011; Camussi et al., 2013; Xin et al., 2013a; Pischiutta et al., 2022; 
Giovannelli et al., 2023; Zhuang et al., 2023). Signaling pathways in 
the injured brain triggered by paracrine factors released directly or 
indirectly by MSCs have the potential to promote endogenous 
neuronal rewiring and enhance angiogenesis and neurogenesis by 
communication with brain parenchymal cells, and thereby amplify 
brain remodeling, and ultimately improve functional recovery after 
injury (Zhang et al., 2019; Pischiutta et al., 2022; Zhuang et al., 2023).

Among these paracrine factors, exosomes, endosome-derived 
membrane-bound small extracellular vesicles, play a significant role 
in the intercellular communication (Lai and Breakefield, 2012; Rak, 
2013; Lener et al., 2015; Xin et al., 2021; Zhang Y. et al., 2021, 2023; 
Liu et  al., 2022). Exosomes contain proteins, lipids, mRNAs, 
microRNAs (miRNAs), and long non-coding RNAs. Through the 
transfer of their molecules via endocytosis or ligand-receptor 
interactions, exosomes communicate directly or indirectly with 
endogenous brain cells (Schneider and Simons, 2013). This 
communication may promote neurorestorative effects and improve 
functional outcome after TBI or stroke (Xin et al., 2013a, 2014; Kim 
et  al., 2016; Zhang et  al., 2017b). Contained within the exosome 
cargo, miRNAs are of considerable importance in mediating the 
therapeutic effects of exosomes (Xin et  al., 2013a, 2014; Zhang 
et al., 2019).

In this mini review, we discuss exosome-based treatment as a 
potential neurorestorative therapy for TBI and stroke. We focus on 
recent developments of engineered exosome-based treatment, 
especially specific miRNA enriched exosomes. At the end of this mini 
review, we  discuss the current opportunities and challenges in 
translation of exosome-based therapy to clinical applications.

2 Exosomes properties and 
physiological functions

Exosomes are membrane-bound vesicles derived from 
endosomes, typically measuring ~30–150 nm in diameter (Lai and 
Breakefield, 2012; Rak, 2013). The formation of exosomes is initiated 
through cellular endocytosis or plasma membrane invagination, 
leading to the generation of small intracellular bodies called 
endosomes (Thery et  al., 2002). Early endosomes subsequently 
develop into late endosomes, which contain numerous intraluminal 
vesicles (ILVs) and is often referred to as a multivesicular body 
(MVB). Proteins, mRNAs, miRNAs, and DNAs are directly sorted to 
the MVB from several organelles (Thery et al., 1999). Later, the MVB 
may either fuse with the lysosome, resulting in the degradation of its 
contents, or fuse with the plasma membrane, leading to the release of 

its ILVs into extracellular environment. These vesicles are then called 
exosomes (van Niel et al., 2006).

The cargos and membrane structure of exosomes are determined 
by their birth cells under specific physiological and environmental 
conditions of these cells (Chopp and Zhang, 2015). Under 
physiological conditions, via transfer of their cargo, exosomes, 
secreted by brain cells, maintain or regulate brain function (Kalluri 
and LeBleu, 2020). For example, exosomes derived from neurons 
maintain the integrity of the blood–brain barrier (BBB) by transferring 
miRNA-132 to endothelial cells (Xu et al., 2017); oligodendrocyte 
derived exosomes assist in axonal myelination by delivering myelin 
proteins proteolipid protein (PLP), 2′3’-cyclic-nucleotide-
phosphodiesterase (CNP) and myelin basic protein (MBP) (Kramer-
Albers et al., 2007; Fruhbeis et al., 2013a,b); and astrocyte-derived 
exosomes regulate synaptic plasticity by transporting the miRNA-26 
to synapses (Lafourcade et al., 2016).

The mechanisms underlying exosome treatment for brain injury 
involve complex intercellular communication and the delivery of 
bioactive molecules to target cells within the injured brain tissue. 
Exosomes possess anti-inflammatory properties that suppress 
neuroinflammation in the injured brain (Zhang et al., 2015; Yang 
Y. et  al., 2017; Williams et  al., 2020a; Mavroudis et  al., 2023). 
Interacting with immune cells in the brain, such as microglia and 
astrocytes, exosomes modulate the immune response following injury 
(Liu et al., 2023). Exosomes exert neuroprotective effects by promoting 
cell survival and inhibiting apoptosis of injured neurons (Williams 
et al., 2020a; Zhang et al., 2022). Treatment with exosomes derived 
from stem cells stimulate angiogenesis (formation of new blood 
vessels) and neurogenesis (generation of new neurons) in the injured 
brain (Zhang et  al., 2015). In addition, exosomes influence the 
integrity and permeability of the BBB and play a role in promoting 
neuronal plasticity by delivering factors that modulate synaptic 
function and neuronal connectivity (Gao et al., 2018; Williams et al., 
2020a; Xia et al., 2022). Overall, exosome therapy for brain injury 
harnesses a range of molecular mechanisms and pathways to promote 
neuroprotection, tissue repair, and functional recovery. By capitalizing 
on the therapeutic potential of exosomes, researchers aim to develop 
effective treatments for TBI, stroke, and neurodegenerative diseases. 
A detailed overview of the therapeutic effects and mechanisms 
underlying naive and engineered exosome treatment for TBI and 
stroke is provided in following Sections, with a focus on the role of 
miRNAs in mediating exosome function.

3 Exosome-based therapy of stroke 
and TBI

Paracrine mechanisms underlie the MSC-based therapeutic 
effects, where MSCs secrete factors that influence endogenous cells 
(Chopp and Li, 2002; Lai et al., 2011; Camussi et al., 2013; Xin et al., 
2013a). Among these paracrine factors, exosomes are critical to cell-
based therapeutic actions (Xin et al., 2014; Yang Y. et al., 2017; Xiong 
et  al., 2018; Zhang et  al., 2019). Compared to cell-based therapy, 
exosome-based therapy offers several advantages: (1) exosomes have 
a superior safety profile due to low immunogenicity and tumorigenesis 
(El Andaloussi et al., 2013; Xiong et al., 2017); (2) exosome injection 
has low risk of inducing microvascular embolism due to its nano size 
(Xin et al., 2014); (3) exosomes can be safely stored without losing 
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function; (4) nano-sized exosomes are capable of crossing the BBB by 
systemic injection (Chen et al., 2016; Otero-Ortega et al., 2018); (5) 
the cargo of exosomes can be engineered to amplify their therapeutic 
effects (Xin et al., 2017b; Chen and Chopp, 2018).

Pioneering research on MSC-exosome-based treatment has been 
performed in rodent models of stroke and TBI (Xin et al., 2013a; 
Doeppner et al., 2015; Zhang et al., 2015). In the stroke study, systemic 
administration of MSC-exosomes (MSC-Exos) in rats 24 h after 
induction of middle cerebral artery occlusion (MCAO) improved 
their neurological functional recovery, possibly by enhancing neurite 
and vascular remodeling and neurogenesis post stroke (Xin et al., 
2013a). In the TBI study, MSC-Exos administered intravenously 24 h 
after TBI promoted neurovascular remodeling, neurogenesis, and 
sensorimotor and cognitive functional recovery in TBI rats (Zhang 
et al., 2015). Importantly, MSC-Exos and MSC treatments resulted in 
equivalent functional improvements in mice post-stroke (Doeppner 
et al., 2015). Increasing numbers preclinical studies have shown that 
exosome-based treatment can promote neuroplasticity and 
neurorestoration by increasing neurite remodeling (Xin et al., 2013a; 
Otero-Ortega et  al., 2017), axonal sprouting (Otero-Ortega et  al., 
2017; Xin et  al., 2017a), synaptogenesis (Xin et  al., 2017a), and 
angiogenesis and neurogenesis (Zhang et  al., 2020), ultimately 
improving functional outcomes in stroke and TBI animals (Zhang 
et al., 2017b, 2020; Dumbrava et  al., 2022; Zhang R. et  al., 2023). 
MSC-Exos also promoted neurological functional recovery and brain 
tissue remodeling in aged stroke rats (Dumbrava et  al., 2022). In 
addition to neurorestorative effects, exosomes have neuroprotective 
effects, such as reducing lesion volume in TBI (Zhang W. et al., 2021) 
or ischemic core (Liu et al., 2021), suppressing cell apoptosis (Zhang 
W. et al., 2021), and mitigating neuroinflammation (Zhang R. et al., 
2023). These preclinical data demonstrated the great therapeutic 
potential of exosome-based therapy for stroke and TBI.

Following the rodent studies, exosome-based therapy has been 
further evaluated in large animal models. In a swine model of severe 
TBI and hemorrhagic shock (HS), early (1 h after shock)-single-dose 
MSC-Exos-treated animals experienced significantly less functional 
impairment and faster neurological functional recovery, resulting 
from reduced brain lesion, inflammation, and apoptosis, as well as 
promoted neural plasticity (Williams et  al., 2020b). In a series of 
studies using an adult rhesus monkey model with cortical injury, 
MSC-Exos treatment achieved increased functional recovery of grasp 
pattern with reduced latency to retrieve a food reward compared to 
saline treatment (Moore et al., 2019; Go et al., 2020, 2021). These 
therapeutic effects were attributed to the neuroprotection and 
neurorestoration effects of MSC-Exos, by reducing neuroinflammation 
(Go et  al., 2020) and suppressing damage to oligodendrocytes to 
improve the myelin maintenance (Go et al., 2021). This cortical injury 
model in the monkey is highly related to stroke in human due to the 
similarity of fine motor function of hand and digits between human 
and monkey.

In addition to MSCs, exosomes derived from other cell types also 
induce neurorestoration and improve functional outcomes. For 
example, neural stem cell (NSC)-derived exosomes reduced 
inflammatory response, ameliorated brain injury, and improved 
motor functional recovery in stroke mice (Zhang R. et  al., 2023); 
astrocyte-derived exosomes protected mice and rats against 
TBI-induced neuronal cell loss/apoptosis and oxidative stress, thereby 
alleviating functional impairment (Zhang W. et al., 2021). The cargos 

of exosomes are closely related to their parent cells and mediate their 
therapeutic effects in stroke and TBI treatment (Zhang et al., 2019). 
However, the most effective types of cell-derived exosomes for the 
treatment of stroke or TBI have not yet been determined (Lener 
et al., 2015).

In summary, the data from rodent and large animal studies 
suggest that exosome-based therapy provides beneficial therapeutic 
effects post stroke and TBI, including neurorestoration and 
neuroprotection (Table 1).

4 MiRNAs in exosomes are critical to 
therapeutic effects

As noted, exosomes can alter recipient cells’ function via transfer 
of their cargo. Systemic administration of liposomes, consisting of 
lipid components of exosomes but without proteins and genetic 
materials, had no therapeutic benefits compared to naïve MSC-Exos 
treatment, indicating that the therapeutic effects of exosomes are 
derived from the cargo of exosomes (Zhang et al., 2017b). Among the 
exosomal cargo, miRNAs play a substantial role in therapeutic effects 
of exosomes.

MiRNAs are small (22 nucleotides in length), evolutionary 
conserved, non-coding RNA molecules (Macfarlane and Murphy, 
2010; O'Brien et al., 2018). The biogenesis of most miRNAs is initiated 
from the transcription of a DNA sequence, and transcribed primary 
miRNAs are subsequently processed into precursor miRNAs and 
mature miRNAs (O'Brien et  al., 2018). Each miRNA is a master 
molecular switch, which regulates the gene expression of hundreds of 
mRNAs at post-transcriptional level by binding to complementary 
sequences on mRNA, consequently causes the cleavage of mRNAs or 
translation repression (Cai et al., 2009; Macfarlane and Murphy, 2010).

Through genetic approaches, many studies have demonstrated 
that miRNAs contribute to the therapeutic effect of exosomes 
(Mateescu et  al., 2017). Dicer, a ribonuclease, is involved in the 
production of mature miRNAs. Conditional knockout of Dicer 
(Dicer/Cko) in adult neural progenitor cells (NPCs) substantially 
reduced cellular miRNAs, and impaired neurogenesis and cognitive 
function in Dicer/Cko mice, while administration of cerebral 
endothelial-derived exosomes carrying mature miRNAs restored 
neurogenesis and cognitive function (Zhang, R. L. et  al., 2017). 
Another example is Argonaute 2 (Ago2), a primary miRNA machinery 
protein required for packaging miRNAs into exosomes and 
performing activities in the recipient cells (Gibbings et  al., 2009). 
MSC-Exos promoted the axonal growth for cortical neurons while 
attenuation of Ago2 protein in MSC-Exos abolished their effect on 
axonal growth (Zhang et al., 2017a). Attenuation of Ago2 protein in 
MSCs reduces miRNAs in MSC-Exos and reduces exosome treatment-
induced beneficial effects in TBI recovery (Zhang Y. et  al., 2023). 
Collectively, these studies indicate that therapeutic benefits of 
exosomes are substantially attributed to their miRNA cargo.

5 Engineered exosomes to amplify 
therapeutic benefits

Since miRNAs significantly contribute to the exosome’s 
therapeutic benefits, the use of engineered exosomes with enriched 
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specific miRNAs for the treatment of stroke and TBI is under active 
investigation in order to amplify their therapeutic benefits. Generally, 
designing miRNA enriched engineered exosomes begins with brain 
miRNA profiling after stroke or TBI (Deng et al., 2019; Zhuang et al., 
2023). Dysregulation of miRNA expression is related to 
neurodegenerative diseases and brain injuries, including stroke and 
TBI (Pan et al., 2017; Atif and Hicks, 2019). MiRNA microarray and 
next-generation sequencing platform are employed to quantify 
miRNA expression profiles in brain tissue, blood, and cerebrospinal 
fluid of animal models and humans with stroke or TBI (Redell et al., 
2010; Di Pietro et al., 2017; Pan et al., 2017). After comparing these 
miRNA profiles with those from healthy animals or humans, 
researchers apply bioinformatic analysis to identify specific 
microRNAs that play crucial roles in neuroprotection, 
neuroregeneration, and anti-inflammatory responses, and anticipate 
the candidate gene targets of these miRNAs to determine if they may 
be a target for stroke or TBI treatment (Zhuang et al., 2023). Then, 
researchers tailor the composition of engineered exosomes to carry 
these microRNAs for precise targeting of pathways involved in TBI 
and stroke recovery by altering the genetic character of cells, e.g., by 
transfection or electroporation miRNA mimics (agomir) / inhibitors 
(antagomir), finally generating specific miRNA enriched/decreased 
engineered exosomes (Wen, 2016; Sun et al., 2018). Recently published 
research about miRNAs enriched exosomes for the treatment of brain 
diseases is listed in Table 2.

The therapeutic potential of miRNAs enriched engineered 
exosomes derived from MSCs in stroke rodent model was first 
documented in 2013 (Xin et al., 2013b). In 2017, three engineered 
exosomes with elevated miRNAs were developed and provided an 

increased therapeutic effect on neurological recovery compared with 
naïve exosomes (Xin et al., 2017a,b; Yang J. et al., 2017). Systemic 
administration of MSC-Exo-17-92 in a rat MCAO model at 24 h after 
induction of stroke significantly improved sensorimotor functional 
recovery and enhanced neurogenesis, neurite plasticity, and 
oligodendrogenesis compared to naïve exosome treatment. This 
enhanced therapeutic benefit was attributed to downregulation of 
phosphatase and tension homolog (PTEN), and subsequent activation 
of the P13K/phosphorylated mammalian target of rapamycin (mTOR) 
signaling pathways targeted by the miRNA-17-92 cluster (Xin et al., 
2017a). In another rodent study, MSC-Exo-133b treatment increased 
secondary release of exosomes from astrocytes and promoted neurite 
outgrowth and plasticity and functional recovery in stroke rats (Xin 
et al., 2017b). MSC-Exo with elevated miRNA-124 (MSC-Exo-124) 
with rabies virus glycoprotein (RVG) fused to the exosomal protein 
lysosome-associated membrane glycoprotein 2b (Lamp2b) delivered 
miRNA-124 more efficiently to the infarct site, and further promoted 
cortical neurogenesis in a mouse model of ischemic stroke (Yang 
J. et al., 2017).

Currently, select exosomal miRNAs from different cell lines have 
been verified to mediate neurorestorative function via promoting 
neurogenesis, angiogenesis, axonal remodeling, and neuronal 
plasticity (Wang et al., 2020; Nasirishargh et al., 2021). For example, 
miRNA-126 can regulate vascular integrity and promote angiogenesis 
via activating vascular endothelial growth factor receptor 2 (VEGFR2) 
(Wu et  al., 2016). In a diabetic stroke mouse model, miRNA-126 
enriched exosomes derived from endothelial progenitor cells (EPC-
Exo-126) were rapidly taken up by brain neurons, endothelial cells, 
astrocytes, and microglia in the peri-infarct area after treatment, 

TABLE 1 Selected recent studies of exosomes for treatment of stroke and TBI.

Disease Animal model Source of exosome Therapeutic effects References

Stroke Aged rat MCAO MSCs Improvement in neurological functional recovery and 

brain tissue remodeling

Dumbrava et al. (2022)

Mice MCAO Neural stem cells (NSCs) Reduction in inflammation; neuroprotection and 

improvement in functional recovery

Zhang R. et al. (2023)

Rat MCAO Health rat serum Neuroprotection Huang et al. (2022)

Rat MCAO BMSCs Reduction in brain infarct area and inflammation; 

improvement in neurological function

Liu et al. (2021)

Mice MACO BMSCs Reduction in neuronal cell damage; facilitating 

angiogenesis

Xiao et al. (2023)

Porcine MACO hNSCs Reduction in edema, neuroprotection, functional 

recovery

Webb et al. (2018)

Rhesus monkey MSCs Fine motor recovery improvement, reduction in 

neuroinflammation and myelin damage

Go et al. (2020, 2021); Moore et al. 

(2019)

TBI Rat weigh-drop Human adipose mesenchymal 

stem cell

Suppression in neuroinflammation; improvement in 

neurogenesis

Chen et al. (2020)

Rat CCI Astrocyte Alleviation in neurobehavior and cognitive deficits; 

neuroprotection

Zhang W. et al. (2021)

Rat CCI MSCs Improvement in sensorimotor and cognitive function; 

promotion in angiogenesis and neurogenesis; reduction in 

cell loss and neuroinflammation

Zhang et al. (2020)

Swine hMSCs Attenuation in neurologic injury, promotion in neural 

plasticity

Williams et al. (2020b)
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which more effectively promoted neurogenesis and angiogenesis than 
the naïve EPC-Exo, and enhanced functional recovery post-stroke 
(Wang et al., 2020). Engineered exosomes have also been applied to 
TBI treatment via boosting neurorestoration. Intravenous 
administration of MSC-Exo-17-92 to rat after 24 h of TBI significantly 
increased neurogenesis and angiogenesis in the hippocampus, which 
promoted neuronal functional recovery (Zhang Y. et  al., 2021); 
MSC-Exo-124 elevated hippocampus neuronal proliferation and 
differentiation after TBI in rats, possibly by inhibiting the 
inflammation via regulating the TLR4 pathway (Yang et al., 2019).

Many exosomal miRNAs also play a neuroprotective role in stroke 
and TBI (Panaro et al., 2020). MiR-124, the most highly expressed 
miRNA in the central nervous system (CNS), is significantly altered 

in the acute, sub-acute and chronic phase post-TBI (Li et al., 2019; Ge 
et  al., 2020; Zhuang et  al., 2023). Microglia derived Exo-124-3p 
(Microglia-Exo-124-3p) alleviated neurodegeneration by reducing 
neurite branch loss and inhibiting β-amyloid (Aβ) by targeting the 
Rela/ApoE signaling pathway in a mouse repetitive (r)TBI (Ge et al., 
2020); MSCs-derived Exo-124-3p (MSCs-Exo-124-3p) reduced 
neuronal cell death and minimized the lesion volume post-TBI in rats 
likely via attenuating posttraumatic glutamate-mediated excitotoxicity 
by downregulating p38MAPK expression (Zhuang et  al., 2023). 
Additionally, engineered exosomes, e.g., MSC-Exo enriched with 
miRNA-138-5p (MSC-Exo-138-5p), miRNA-145, (MSC-Exo-145), 
miRNA-21-5p (MSC-Exo-21-5p), and adipose-derived stem (ADSCs) 
derived exosomes enriched with miRNA-30d-5p (ADSC-Exo-30d-5p) 

TABLE 2 Studies of miRNA-enriched exosomes for treatment of neural injuries.

Disease Animal 
model

Source of 
exosome

miRNA enriched Amplified therapeutic effects 
(compared to naïve exosomes)

References

Stroke Rat MCAO MSCs miRNA-17-92 Enhancement of axon-myelin remodeling and 

functional recovery

Xin et al. (2021)

Rat MCAO MSCs miRNA-17-92 Increasement of neural plasticity and 

functional recovery

Xin et al. (2017a)

Rat MCAO MSCs miRNA-133b Improvement of functional recovery and 

brain plasticity

Xin et al. (2017b)

Mice Endothelial 

progenitor cells 

(EPCs)

miRNA-126 Attenuation of acute injury and promotion of 

functional recovery

Wang et al. (2020)

Rat MCAO MSCs miRNA-145 Decreasing infarct area in MCAO rat Zhou et al. (2022)

Mice MCAO Neural progenitor 

cells (NPCs) and 

EPCs

miRNA-210

miRNA-126

Reduction of cell apoptosis and ROS 

production; promotion of neurite outgrowth

Xu et al. (2023)

Rat MCAO Adipos-derived 

stem cells (ADSCs)

miRNA-30d-5p Neuproprotection; Reduction of 

neuroinflammation

Jiang et al. (2018)

Mice MCAO BMSCs MiRNA-138-5p Reduction of neurological impairment and 

inflammatory response

Deng et al. (2019)

TBI Rat CCI MSCs miRNA-17-92 Reduction of neuroinflammation; 

neuroprotection; enhancement of 

angiogenesis and neurogenesis

Zhang Y. et al. (2021)

Rat CCT MSCs miRNA-124 Reduction of neuroinflammation; 

improvement of neurogenesis and functional 

recovery

Yang et al. (2019)

Mice rmTBI Microglia miRNA-124-3p Alleviation of neurodegeneration; 

improvement of cognitive outcome

Ge et al. (2020)

Rat CCI BMSCs miRNA-124-3p Neuroprotection; improvement of cognitive 

outcome

Zhuang et al. (2023)

Mice rmTBI microglial miRNA-124-3p Inhibition of neuronal autophagy; reduction 

of never injury

Li et al. (2019)

Rat ICH MSCs miRNA-133b Neuroprotection Shen et al. (2018)

Intracerebral 

hemorrhage (ICH)

Rat ICH BMSCs miRNA-146a-5p Reduction of neuronal apoptosis and 

inflammation

Duan et al. (2020)

ICH Mice BMSCs MiRNA-193b-3p Attenuation of neuroinflammation and 

neurobehavioral impairments

Lai et al. (2020)

Subarachnoid 

hemorrhage (SAH)

Rat SAH MSCs miR-21-5p Neuroprotection Gao et al. (2020)
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provided neuroprotection after neural injury (Jiang et al., 2018; Deng 
et al., 2019; Gao et al., 2020; Zhou et al., 2022). For example, the 
treatment of MSC-Exo-138-5p reduced apoptosis of astrocytes in 
ischemic stroke mice (Deng et  al., 2019); ADSC-Exo-30d-5p 
significantly reduced infarct volume and neuronal apoptosis in stroke 
rats (Jiang et al., 2018).

Chronic neuroinflammation aggravates neurodegeneration and 
impedes neuronal repair after stroke and TBI (Xiong et al., 2018). 
Several miRNA-enriched exosomes are designed to regulate 
neuroinflammation. MSC-Exo-145 promoted the conversion of 
microglia from a pro-inflammatory M1 to an anti-inflammatory M2 
phenotype in vitro, possibly by downregulating FOXO1 (Zhou et al., 
2022). ADSC-Exo-30d-5p regulated the neuroinflammation by 
suppressing autophagy, M1 polarization of microglial cells, and 
inflammatory cytokines in vitro and in vivo, which reduced infarct size 
in stroke rats (Jiang et  al., 2018). Moreover, MSC-Exo- and 
microglia-Exo-124 treatment promoted M2 polarization of microglia, 
and inhibited autophagy and inflammatory cytokines in a TBI rodent 
model (Li et al., 2019; Yang et al., 2019).

Looking forward, miRNA-enriched engineered exosomes could 
be further modulated to enhance treatment efficiency and amplify 
therapeutic effects. For example, miRNA-enriched exosomes could 
incorporate targeting strategies to enable site-specific drug delivery; 
engineered exosomes could carry multiple miRNAs to target different 
injury mechanisms after neural injury.

In summary, these preclinical data suggest that modulating 
miRNAs content of exosomes is a feasible and promising means to 
amplify the therapeutic effects of exosomes for the treatment of stroke 
and TBI, as well as degenerative diseases.

6 Discussion

Exosomes play a substantial role in intercellular communication. 
By transferring their cargo, exosomes can induce neurorestorative and 
neuroprotective effects via regulating genes and protein expression in 
target cells or tissues post-injury. Collectively, data from preclinical 
studies indicate that exosome-based therapy could promote 
neuroplasticity, reduce impairments, and accelerate functional 
recovery in animal models of stroke or TBI. Although the mechanisms 
that underlie the benefits are not fully understood, exosome-based 
approach as potential therapy for stroke and TBI is under active 
investigation (Zhang et al., 2019). Engineered exosomes with modified 
cargos are designed to amplify the therapeutic efficacy, in which 
specific miRNAs enriched engineered exosomes stand in the spotlight 
and provide better therapeutic efficacy than naïve exosomes.

Although the data from preclinical proof-concept studies are 
promising, there are several challenges in the translation of exosome-
based therapy to clinical application. Firstly, a greater understanding 
of the mechanism of exosomes action is needed. This will secure the 
safety of exosome-based therapy and be the foundation of designed 

engineered exosomes. Secondly, standardization of exosome isolation, 
scale-up production, characterization, and cargo analysis methods are 
necessary for human clinical trials (Lener et al., 2015). Thirdly, the 
determination of optimal dose, therapeutic windows and cell sources 
of exosomes are crucial for successful clinical translation (Xiong et al., 
2017). Performance of safety studies for using exosomes must be fully 
investigated, such as oncogenic potential studies (Jayaraman et al., 
2017; Latchana et al., 2017; Zhang H. et al., 2017). It is because many 
miRNAs also are closely linked with oncogenesis (Chen et al., 2013; 
Zhang H. et al., 2017). Therefore, studies should be performed to 
ensure that the restorative exosomes would not further induce tumor 
growth. Collectively, further preclinical studies of cell source selection, 
scale-up production, safety, dose–response, time window, 
administration routes, cargo analyses, and mechanisms of naive and 
engineered exosomes are required before effective and safe 
clinical translation.
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