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Background: Traumatic brain injury (TBI) is a major cause of morbidity and

mortality, affecting millions annually worldwide. Although the majority of TBI

patients return to premorbid baseline, a subset of patient can develop persistent

and often debilitating neurocognitive and behavioral changes. The etiology of

TBI within the clinical setting is inherently heterogenous, ranging from sport

related injuries, fall related injuries and motor vehicle accidents in the civilian

setting, to blast injuries in the military setting.

Objective: Animal models of TBI, offer the distinct advantage of controlling

for injury modality, duration and severity. Furthermore, preclinical models of

TBI have provided the necessary temporal opportunity to study the chronic

neuropathological sequelae of TBI, including neurodegenerative sequelae such

as tauopathy and neuroinflammation within the finite experimental timeline.

Despite the high prevalence of TBI, there are currently no disease modifying

regimen for TBI, and the current clinical treatments remain largely symptom

based. The preclinical models have provided the necessary biological substrate

to examine the disease modifying effect of various pharmacological agents and

have imperative translational value.

Methods: The current review will include a comprehensive survey of well-

established preclinical models, including classic preclinical models including

weight drop, blast injury, fluid percussion injury, controlled cortical impact

injury, as well as more novel injury models including closed-head impact

model of engineered rotational acceleration (CHIMERA) models and closed-

head projectile concussive impact model (PCI). In addition to rodent preclinical

models, the review will include an overview of other species including large

animal models and Drosophila.

Results: There are major neuropathological perturbations post TBI captured

in various preclinical models, which include neuroinflammation, calcium

dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress,

axonopathy, as well as glymphatic system disruption.
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Conclusion: The preclinical models of TBI continue to offer valuable

translational insight, as well as essential neurobiological basis to examine

specific disease modifying therapeutic regimen.

KEYWORDS

traumatic brain injury (TBI), chronic traumatic encephalopathy (CTE), animal models of
TBI, stress, neuroinflammation, calcium dysregulation, tauopathy

1 Introduction

Traumatic brain injury (TBI) is a significant public health
problem, as there are approximately 1,600,000–3,800,000
concussions/mild TBI being reported annually in the United States
(Peterson et al., 2019; Sanchez et al., 2021). The vast majority of TBI
cases are concussions/mild TBIs (mTBIs) (Langlois et al., 2006).
The remaining TBI subtypes include moderate and severe TBIs,
resulting in significant morbidity and mortality and accounting for
one in every three deaths due to injury (Abdelmalik et al., 2019).
The majority of mTBI patients recover within 10–14 days, but
as per results of the recent Transforming Research and Clinical
Knowledge in TBI (TRACK-TBI) study, 13.5% of participants
with mTBI experience poor cognitive outcome and persistent
postconcussive symptoms (Schneider et al., 2022). TBI is a
highly heterogeneous medical condition, with widely variant
mechanism of injury, including falls, motor vehicle accidents,
sport related concussions, as well as assaults and blast injuries in
a combat setting (Blennow et al., 2016). TBI involves a complex
structural and neuropathological cascade, and is mechanistically
conceptualized to occur in a primary and secondary injury phase
(Davis, 2000; Xiong et al., 2013). The primary injury is the result of
direct mechanical impact involving structural deficits and leading
to contusions, blood vessel damage and subsequent hemorrhage,
as well as axonal shearing injuries (Gaetz, 2004; Cernak, 2005). The
secondary injury, which could start within minutes post-injury,
a delayed complex process leading to chronic neuropathological
changes, including metabolic perturbation, neuroinflammation,
oxidative stress, diffuse axonal injuries, neurovascular changes, and
could ultimately involve neurodegenerative process, depending
on the severity of injury (Greve and Zink, 2009; Cornelius et al.,
2013). The clinical TBI cases are inherently heterogenous due to
variation of location, nature and severity of the primary injury,
as well as age, premorbid medical conditions, genetic background
including APOE4, as well as injury specific parameters (Covington
and Duff, 2021). Animal models of TBI offers a number of distinct
advantages, which include relatively homogenous mechanism of
injury, uniformity in age, sex and genetic background, as well as
predetermined injury parameters corresponding to the designated
injury severity (Xiong et al., 2013). Given the relatively limited
animal life span, one can examine the chronic neuropathological
sequelae, as well as the neurobehavioral deficits. Furthermore,
animal models provide a unique biological substrate to study
potential disease modifying therapeutic regimen for chronic
neurobehavioral and neuropathological sequelae of TBI (Tang
et al., 2020). The current review provides a comprehensive
overview of animal TBI models including rodent models, as well

as Drosophila and large animal models. The rodent animal models
included in this study are the fluid percussion injury (FPI) model
(Xiong et al., 2013), weight drop injury (WDI) model (Feeney et al.,
1981), controlled cortical impact (CCI) model (Dixon et al., 1991),
penetrating ballistic-like brain injury (PBBI) model (Williams et al.,
2005), blast injury (BI) model (Cernak et al., 2011), as well as more
novel rodent injury models, including closed-head impact model of
engineered rotational acceleration (CHIMERA) model (Namjoshi
et al., 2014), and closed-head projectile concussive impact (PCI)
model (Leung et al., 2014). The Drosophila models include the high
impact trauma (HIT) model (Katzenberger et al., 2013), Barekat’s
Bead Ruptor Homogenizer model (Barekat et al., 2016), and the
Drosophila closed head injury (CHI) models (Alphen et al., 2018).
Also included in this review, is a brief overview of large animal
models, including ferrets (Lighthall, 1988), pigs (Duhaime et al.,
2000), swine (Duhaime, 2006), primates (King et al., 2010), as
well as sheep (Dutchke et al., 2016). In addition, there is a brief
overview of combined model of injury of TBI and chronic stress
model, which have real clinical relevance in both civilian and
military population (Fesharaki-Zadeh et al., 2020). There is a final
overarching discussion on the key neuropathological changes post
TBI, which include neuroinflammation, calcium dysregulation,
DAI, as well as glymphatic system perturbations (Figure 1).

2 Animal models of TBI

There are currently 4 cardinal animal preclinical models of TBI
used, which include fluid percussion injury model (FPI), weight
drop injury model (WDI), controlled cortical impact injury (CCI),
and blast/diffuse brain injury model (Chiu et al., 2016; Younger
et al., 2019; Figure 1).

2.1 Fluid percussion injury model (FPI)
model

In the FPI model, animals undergo craniotomy to expose a
portion of the dura, prior to injury being conducted using a fluid
pulse (Xiong et al., 2013). The FPI model has been established as
one of the most widely used methods of inducing injury and has
been used in a variety of animal species including rabbit (Härtl
et al., 1997), dog and sheep (Millen et al., 1985), cat (Povlishock
et al., 1983), pig (Armstead and Kurth, 1994), and especially rodents
including mouse (Carbonell et al., 1998) and rats (Thompson et al.,
2005). The injury involves a locally diffuse injury involving cortical
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FIGURE 1

A schematic diagram of various animal models of TBI covered including rodent, large animals and Drosophila, as well as some of the pathological
hallmarks of TBI. The rodents TBI models include fluid percussion injury (FPI), weight drop injury (WDI), controlled cortical impact (CCI), penetrating
ballistic-like brain injury (PBBI), blast injury (BI), closed-head impact model of engineered rotational acceleration (CHIMERA), and closed-head
projectile concussive impact model (PCI) models. The large animal TBI models include fluid percussion injury (FPI), controlled cortical impact (CCI),
and penetrating craniocerebral gunshot wounds (PCGW) models. The Drosophila models include high impact trauma (HIT), Omni Bead Ruptor-24
Homogenizer model, and Drosophila closed head injury (dCHI) models. Also included are some of the pathological hallmarks of TBI, which are
calcium dysregulation, neuroinflammation, diffuse axonal injury (DAI), mitochondrial dysregulation and oxidative stress, glymphatic system
disruption as well as tauopathy and neurodegeneration (ND). This diagram was produced using Biorender.com.

contusion and diffuse subcortical neuronal injury, induced by a
pendulum striking a piston at the end of a saline-filled cannula (Ma
et al., 2019). The exposed dura of brain is subsequently impacted
via a rapidly accelerating rod, with preset depth of impact. The rod
is controlled by a pneumatic piston or an electromagnetic actuator
(Dixon et al., 1991). Depending the location of injury relative to
sagittal suture, FPI could be further subdivided into lateral FPI
(LFPI) vs. central FPI (CFPI) (Xiong et al., 2013). The LPFI has
the advantage of contrasting the extent of neuronal injury in the
ipsilateral (injured site) and contralateral (non-injured) side of the
brain (Hicks et al., 1996).

The injury typically leads to direct damage to the blood brain
barrier (BBB), cortical tissue loss, acute hematoma and neuronal
injury (Ma et al., 2019). Focal TBI typically leads to primary
axotomy along with ischemic and destructive neuronal changes,
while diffuse TBI results in diffuse axonal injury, referred to
as traumatic axonal injury (TAI) in the preclinical TBI model
setting. Indeed TAI can occur in the absence of focal contusion or
hemorrhage (Kelley et al., 2007). The pathophysiological alterations
in FPI are correlated with the pressure transients, in which upper
mild, moderate or severe types of pressure impulse leads to focal

and diffuse injury, whereas the lower threshold of mild pressure
impulse results in diffuse injury (O’Connor et al., 2011). A mild TBI
is typically defined at the pressure range of 0.9–1.5 atm (13–22 psi)
(Griesbach et al., 2009; Shultz et al., 2011), moderate TBI is at 1.6–
2.5 atm (23–37 psi) (Li et al., 2015; Chitturi et al., 2018), and severe
injury involving pressure above 2.5 atm (37 psi) (D’Ambrosio et al.,
2004; Vitarbo et al., 2004).

The FPI models have been utilized to simulate clinical TBI,
without skull fracture, and involving edema, hemorrhage, and
cortical gray matter changes (Thompson et al., 2005). The primary
injury in FPI models involves contusion, shearing/stretching
of cortical tissue, subdural hematoma and hemorrhage (Alder
et al., 2011). The secondary injury mechanism involves
activation of inflammatory glial cells and neuronal cell death,
or neurodegenerative changes that can start as early as seconds
post-injury at the ipsilateral side of the injury, and occurring
mostly at the cortical sites of injury, hippocampus, thalamus,
striatum and amygdala (Liu et al., 2010; Ma et al., 2019).

As stated prior, FPI models provide the capacity to induced
mild, moderate or severe TBI injuries (Kinoshita et al., 2002; Ma
et al., 2019). The suppression time of reflexes such as pinna, cornea,
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and righting has been established as a marker of neurological
assessment in animal model immediately post FPI (Schmidt and
Grady, 1993). The righting reflex is commonly used an indicator
of injury severity in animal models. The neurobehavioral domains
that are commonly assessed in FPI include the functional outcomes
of motor, cognition, and depression or anxiety-like behaviors. The
injury induced motor deficits in rodents have been assessed by
beam balance, beam walking test, ladder rung walk test, as well
as inclined plane test, rotating pole test, rope grip, and rota-rod
test (Hicks et al., 1996; Alessandri et al., 2002; Clough et al., 2007;
Gold et al., 2013). In FPI models, the location of craniotomy plays
a key role in determining the extent of cognitive deficits. A small
shift of 1–2 mm craniotomy location from the midline FPI can
significantly alter the cognitive outcome, as such midline FPI has
been reported to produce more severe cognitive impairments than
the LFPI (Vink et al., 2001; Ma et al., 2019). Cognitive deficits in
FPI models have been widely reported in rodent blunt TBI models,
based on performance on Morris water maze (MWM) (Deng-
Bryant et al., 2016). Anxiety like symptoms have been reported in
mild LFPI injured animals, as measured by increase in plus maze
time spent in open arms at 24 h post-injury compared to sham
controls, with diminishing effect at 4 weeks post-injury (Shultz
et al., 2011). Depression like phenotype has also been reported in
moderate LFPI models, as measured by novelty suppressed feeding,
forced swim, and social interaction test (Kuo et al., 2013).

One of the potential limitations of the use of the FPI
model, is the current lack of standardized parameters, including
peak pressures, and duration of injuries across laboratories, and
introduce an inherent variability in the injury outcome measures
(Lyeth, 2016). There are also intrinsic challenges and complications
including the potential for infection, given the requirement for
craniectomy using the FPI model (Lifshitz et al., 2016).

2.2 Weight drop injury model (WDI)

The WDI model utilizes the gravitational forces of a free-falling
weight to induce focal or diffuse brain injury (Feeney et al., 1981;
Ma et al., 2019). There are a number of distinct WDI models, which
include Feeney’s WDI, Shohami WDI, Shapira WDI and Marmarou
WDI (Shapira et al., 1988; Foda and Marmarou, 1994). There are
two distinct ways to vary the severity of injury, which includes
altering the weight and height of the object used in WDI (Kalish
and Whalen, 2016).

Feeney’s WDI involves the delivery of impact to the intact dura,
via a craniotomy resulting in cortical contusions, hemorrhagic
lesions, BBB damage, infiltration of immune cells and activation
of glial cells (Dail et al., 1981; Feeney et al., 1981; Uhl et al., 1994;
Bellander et al., 1996; Mikawa et al., 1996; Holmin et al., 1997;
Morales et al., 2005). In the Feeney’s model, injuries generally follow
a specific pattern, commencing with hemorrhaging in the white
matter region near the injury site, progressing to the formation
of a necrotic cavity within 24 h, and subsequently expanding and
evolving over the following 2 weeks (Dail et al., 1981; Feeney
et al., 1981; Xiong et al., 2013). Past studies involving rats have
documented enduring deficits that persist for more than 90 days
(Feeney et al., 1981; Gasparovic et al., 2001).

The Shohami WDI model is a closed head injury (CHI),
which is induced using a weight-drop impact on one side of the

unprotected skull (Shapira et al., 1988; Shohami et al., 1988). This
injury leads to blood-barrier disruption, cerebral edema, persistent
neurological deficits, and neuronal loss (Kalish and Whalen, 2016).
A neurological severity score (NSS), has been utilized to assess for
motor and cognitive deficits post-injury (Shapira et al., 1993). The
NSS score closely approximates the degree of neuropathological
severity (Shapira et al., 1993).

A closed head WDI model was developed by Shapira et al.
(1988), which was further modified by Chen et al. (1996), by fixing
of head of the animal on a hard platform for further modification of
acceleration diffuse injury (Shapira et al., 1988; Chen et al., 1996).

The Marmarou WDI is distinct from Shohami, Feeny,
or Shapira’s models, as it simulates diffuse acceleration
injury, representing a diffuse brain injury seen in falls or car
accidents (Marmarou et al., 1994), resulting in mild to severe
hemorrhage, cell loss, diffuse axonal injury, and astrogliosis
(Albert-Weissenberger et al., 2012). The Marmarou model was
designed to simulate motor vehicle accidental injuries caused by
rotational injuries following linear acceleration injuries ultimately
leading to diffuse/traumatic axonal injury (TAI) (Wang et al.,
2010). In this model, death may result from potential respiratory
depression, and the utilization of mechanical ventilation has
proven to be an effective method for lowering post-injury mortality
rates (Foda and Marmarou, 1994; Marmarou et al., 1994).

The Wayne state model, developed by Kane et al. (2012), uses
a 95 g weight dropped from a height of 1 m onto the head of
an anesthetized mouse, in a suspended position on an aluminum
foil (Kane et al., 2012). The authors examined mice after repeated
injuries, and reported reproducible cognitive deficits due to injury
(Kalish and Whalen, 2016). There was reported active gliosis,
and elevated tau phosphorylation, in the absence of significant
microglial activation, β-amyloid deposition, BBB compromise, or
cortical white matter loss (Kane et al., 2012).

A permutation of Marmarous WDI model is the Maryland
model, which involves frontal acceleration, as well as lateral impact
on a helmet-protected head to mimic football related injuries
(Kilbourne et al., 2009; Viano et al., 2009; Ma et al., 2019). WDI
injury severity, though less systematically studied, is correlated
with weight and height (Ma et al., 2019). To assess the degree of
neurological impairment, the NSS is frequently employed (Flierl
et al., 2009; Yarnell et al., 2016). The NSS is designed to assess for
neurological impairment, alertness, and seeking behavior, and its
score is highly correlated with severity of brain injury (Xiong et al.,
2013). The WDI model leads to learning and memory deficits, as
measured by passive avoidance, Y/T maze, radial water maze, novel
object recognition, fear conditioning, MWM, and Barnes maze. For
affective behavior testing, elevated plus maze or zero maze and
social testing have been commonly utilized, with mixed outcome
(Bodnar et al., 2019).

The WDI models effectively simulate focal or diffuse TBIs and
provides the capacity to induce graded DAIs. Given the potential
for rebound impacts and variations in impact velocity, the WDI
model inherently exhibits a certain degree of heterogeneity (Ma
et al., 2019). The major advantage of the WDI model is its ability
to provide a simple and relatively inexpensive way to reproduce
graded DAI. However, there is also a risk of rebound impact and
variation of impact velocity, in turn limiting the accuracy of injury
severity (Ma et al., 2019). There are inherent limitations to the WDI
model, which includes variations in direct vs. indirect impact to the
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skull, impact location, mobility of the head, the surface on which
the animal is positioned, as well as projectile shape and material
(Bodnar et al., 2019).

2.3 Controlled cortical impact model
(CCI)

In the CCI model, the brain is impacted via surgically exposed
dura by a rapidly accelerated rod with preset computer guided
depth of impact (Ma et al., 2019). The rod comes in different
size and shape variation depending on species involved, and is
manipulated by a pneumatic piston or an electromagnetic actuator
(Dixon et al., 1991). The impact leads to blood-brain barrier
damage, cortical encephalomalacia, and subdural hematoma. The
distinct advantage of the CCI model is the ease of which mechanical
factors, including time, velocity and depth of impact, can be
manipulated (Mao et al., 2006; Wang and Ma, 2010). The CCI
model leads to significant cortical contusion and neurodegenerative
changes within the ipsilateral cortical site. The CCI model has also
been modified into closed skull injury, as well as repetitive mild
TBI model (rmTBI) (Smith and Hall, 1996; Tang et al., 2020). The
newer iterations of the CCI model, has expanded our collective
understanding of cellular, biochemical, and molecular mechanisms
of brain injury, by controlling parameters such as depth and
velocity of impact (Osier and Dixon, 2016; Fesharaki-Zadeh et al.,
2020).

The CCI model utilizes the stereotaxic apparatus and
electromagnetic actuator to simulate a range of immune-
histological and behavioral outcomes due to mild, moderate and
severe TBI injuries. Depth and velocity of the impactor are the
cardinal parameters determining the severity of injury in the CCI
model (Yu et al., 2009; Washington et al., 2012). The depth of
injury is an especially robust parameter to manipulate the severity
of injury, ranging from mild to severe. Washington et al. (2012)
simulated brain injury at depth of 1.5 mm, 2.0 mm, and 2.5 mm and
a preset velocity of 5.25 m/s, to produce a model of mild, moderate
and severe TBI. A similar study by Wang et al. (2016), used different
velocity (velocity of 3.5 m/s) and depth (0.2, 1.0, and 1.2 mm,
respectively) parameters to induce mild, moderate and severe TBI.
The neurological deficits in CCI injury in rodents, including deficits
in spatial memory tasks such as MWM, is highly correlated with
severity of injury (Marklund and Hillered, 2011). Neurocognitive
deficits post CCI injury has also been shown to be persistent up
to one year post-injury due to great heterogeneity of proposed CCI
models, there are recent efforts to standardize the injury parameters
(Siebold et al., 2018). Another distinct advantage of the CCI model,
is a lack of risk of rebound injuries (Xiong et al., 2013).

2.4 Penetrating ballistic-like brain injury
model

Penetrating ballistic-like brain injury (PBBI) is induced by
transmission of projectiles with accompanying high energy and
shock waves, leading to formation of temporary cavity in the
brain (Williams et al., 2005). The injury sequelae is dependent
on the specific anatomical path of the projectile, as well as

the corresponding energy discharge (Williams et al., 2006a,b).
Experimental PBBI simulate gunshot wounds, and have been
conducted in cats, as well as rodents (Carey et al., 1989, 1990;
Davis et al., 2010).

Penetrating ballistic-like brain injury (PBBI) injury leads
to significant gray and white matter damage, brain edema,
seizures, cortical spreading depression and accompanying
neuroinflammation, and subsequent neurocognitive and
sensorimotor impairment (Williams et al., 2007). There are
more novel, non-fatal variation of PBBI model that involve a
modified air rifle using a pellet (Plantman et al., 2012). This
injury model leads to cavity formation, white matter degeneration,
hemorrhage, edema and accompanying gliosis. To simulate the
ballistic effect of the injury, a PBBI rat model has been developed to
represent immediate and subacute changes in intracranial pressure
(ICP) (Wei et al., 2010), as well as BBB permeability changes
and brain edema. Persistent neurofunctional changes include
persistent motor deficits, as measured by performance on balance
beam and rotarod task, and cognitive changes, reflected by spatial
learning impairment in MWM task (Shear et al., 2010, 2011),
which are correlated with injury severity. Similar to other animal
brain injury models, the PBBI model leads to parenchymal edema,
increased ICP, white matter injury and persistent inflammation
(Williams et al., 2006a, 2007). PBBI has also been shown to lead to
activation of inflammasome, based on expressions of IL-1β, and
IL-18 (Lee et al., 2018). Distinctly, PBBI model leads to extensive
intracerebral hemorrhage due to penetrating nature of injury.
The PBBI model has the unique capacity to capture the temporal
ballistic brain injury, and can effectively simulate moderate to
severe brain trauma in a combat setting (Xiong et al., 2013).

2.5 Blast injury model

Many military servicemen have experienced blast injuries,
without overt TBI (Warden, 2006; Benzinger et al., 2009). Blast-
induced traumatic brain injury (bTBI) has been called the
“signature wound” of the Afghanistan and Iraq conflicts. While
it has been mostly a significant military based health issue, it
can certainly be a civilian health threat (Hicks et al., 2010).
There are many iterations of bast wave animal models, mostly
involving rodents (Bauman et al., 2009; de Lanerolle et al.,
2011). The blast injury utilizes a compression-driven shock tube,
and animals are placed inside a Kevlar thoracic protective vest,
which in turn encases the thorax and part of the abdomen and
significantly reduces air blast mortality, and diminished axonal
fiber degeneration (Long et al., 2009). The most basic form of
blast wave has been described as Friedlander waveform in the
driven chamber, quantified by a pressure sensor, and can vary
based on distance from membrane, as well as angle of the tubing
(Cernak et al., 2011; Wang et al., 2016). Blast injury has a distinct
pathophysiological pattern, which include diffuse cerebral edema,
extreme hyperemia, delayed vasospasm, as well as DAI, as reported
in rats studies (Garman et al., 2011).

Prior studies using low intensity blast injury, have also reported
increases in ICP and persistent cognitive deficits, including
social recognition, spatial memory and motor coordination
(Säljö et al., 2009). Blast-exposed mice have been reported to
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display phosphorylated tauopathy, myelinated axonopathy,
microvasculopathy, persistent and chronic neuroinflammation
in the absence of overt tissue damage and hemorrhage
(Goldstein). Head immobilization also plays a major role, as
it has been shown to prevent blast injury-induced memory
and neurobehavioral deficits (Bhattacharjee, 2008). Clinically,
blast injuries have been described previously as “shell shock.”
The survivors of the blast injury presented with symptoms of
insomnia, vertigo, and persistent memory deficits, with 36%
of the group displaying abnormal electroencephalogram (EEG)
signals (Cernak et al., 1999). Blast injuries are proposed to
involve transferred kinetic energy, leading to low-frequency
stress waves, involving rapid physical movement, in turn leading
to displacement and deformation of the medium (Cernak,
2015).

Given the prevalence and nature of mTBI in a combat
setting, there is an urgent need to explore the underlying
pathophysiology of low-intensity blast (LIB)-induced brain
injury. The LIB model typically utilizes exposure to magnitude
46.6 kPA and a maximum of 8.7 PSI (aka 60 kPA)/ms blast,
as opposed to > 100 kPA in the case of moderate to high
intensity blast (Song et al., 2018a, 2019). Despite the lack of
mortality or gross macroscopic injuries, there are measurable
neurobehavioral deficits, diminished mitochondrial fission-
fusion activities, bioenergetic failure, increased oxidative stress,
diminished levels of mitophagy, acute increase in compensatory
respiratory activity, as well as axonal myeline injury (Song et al.,
2018c). The myelinated axonal injury has been more pronounced
in the subacute 7 days post-injury (DPI), as opposed to the
chronic 30 DPI (Song et al., 2018b). A single LIB exposure has
been shown to lead to increased levels of total tau, p-tau, and/or
Aβ. Furthermore, the density of asymmetrical synapses was
significantly diminished in the cortex of blast animals. Synaptic
loss could be the secondary effect of diffuse axonal injury, and as
shown in a rat model of CCI (Gao et al., 2011), it could be more
of an initial acute/subacute response, as per prior studies (Scheff
et al., 2005).

2.6 Closed-head impact model of
engineered rotational acceleration
(CHIMERA) model

Closed-head impact model of engineered rotational
acceleration (CHIMERA) is a relatively novel model of TBI.
The model was developed to simulate the majority of clinical
mild TBI cases (Namjoshi et al., 2014). CHIMERA model is
uniquely designed to integrate biomechanical, behavioral and
neuropathological analyses using a preset defined energy with
unconstrained head motion. CHIMERA model has shown
excellent reproducibility using two impacts separated by 24 h, as
captured by comparable repeated measures of head trajectory,
linear velocity and acceleration, head displacement, angular
velocity and acceleration and angle of impact on two consecutive
days. A major limitation of CHI and CCI models is that the
injury parameters including mechanical loading, method used
for mechanical loading, and animal’s head response to injury
are often not well-controlled, and these factors in turn lead to

considerable experimental variation in neurobehavioral, and
immunohistological outcomes. Repeated CHIMERA based
injuries was reported to lead to prolonged loss of righting
reflex, neurocognitive and motor deficits, as well as anxiety-like
behavior. The repeated CHIMERA brains showed measurable
inflammatory response based on heightened IL1β and TNFα

signals, as well as enhanced tau phosphorylation (Namjoshi
et al., 2014). Namjoshi et al. (2014, 2017), reported CHIMERA
induced increases in righting time, neurological severity, as well as
persistent motor deficits and anxiety like behavior. Furthermore,
the authors reported post-TBI persistent microgliosis, based
on heightened Iba1 levels, in several major white matter tracts
including the optic tract, olfactory nerve layer, corpus callosum,
and brachium of superior colliculus. There was also a reported
significant astrocytic activation in the corpus callosal area,
based on enhanced GFAP signal. There were also significant
energy dose-dependent increases in axonal damage in the major
white tracts based on increased silver staining update, which
demonstrated a persistent increase over the 14 days following
the injury within the corpus callosal tracts. However, there were
no reported significant changes in total tau, phosphorylated tau,
or the ratio of phosphorylated tau:total tau (Namjoshi et al.,
2017).

Closed-head impact model of engineered rotational
acceleration (CHIMERA) model has offered versatility in
terms of controlled severity of injury, ranging from 0.7 joules
simulating a mild TBI model to 2.5 joules simulating a more
severe injury types, based on robust acute neurological deficits,
enhanced plasma total tau and neurofilament-light levels, increased
pro-inflammatory markers, microgliosis and BBB compromise
(Bashir et al., 2020). Repeated CHIMERA model has been shown
to be a useful translational model for chronic neurobehavioral
sequelae of rmTBI, including profound inhibition of extinction
of fear memories, consistent with features of posttraumatic stress
disorder (PTSD), as well as chronic microgliosis, axonal injury and
astrogliosis (Cheng et al., 2019). Analogous repetitive CHIMERA
model in rats has been reported to result in impulsivity using
delayed discounting task, as well as neuropathological changes
comprised of white matter inflammation, tau immunoreactivity
and degeneration involving the optic tract and corpus callosum,
and prominent gray matter gliosis in the olfactory tubercle
(Vonder Haar et al., 2019). A higher intensity CHIMERA model,
“modCHIMERA,” using two injury severity levels 1.7 and 2.1
joules, resulted in persistent neurobehavioral deficits, including
decreased spontaneous behavior, spatial learning and memory
deficits, and socialization at 1 month, as well as significant
microglial activation in cortical and subcortical areas including
hippocampus and lateral septal nucleus (LSN) and significant
axonal injury manifested by increased β-APP accumulation in
the major white matter tracts including corpus callosum (CC),
anterior commissure (AC), hippocampal commissure (HC), and
fimbria (Sauerbeck et al., 2018). CHIMERA model has also been
more recently applied to gyrencephalic ferrets, also reporting
axonal injury based on enhanced APP signal, and neurofilament
M (RMO) levels, as well as increase in tau phosphorylation AT180
at the base of the sulci by using a higher intensity impact, in
turn offering a possible CTE animal simulation (Krieg et al.,
2023).
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2.7 Closed-head projectile concussive
impact (PCI)

The projectile concussive impact (PCI) model was developed
at Walter Reed Army Institute of Research (WRAIR), which
simulates a closed-head impact (Chen et al., 2012; Leung et al.,
2014; Michalovicz et al., 2023). The PCI device is comprised of
an elevated platform, which can be adjusted to different heights,
and situated above a heating unit. In order to launch a projectile,
microcentrifuge tubes filled with dry ice and tightly sealed. The
capped tubes are vertically inserted into the heating unit. Upon
applying heat to the microcentrifuge tubes, it triggers a rapid
sublimation of the dry ice, resulting in a mounting of internal
pressure, in turn forcing the cap to burst off the tube and launch
as an intact projectile (Chen et al., 2012). The severity of PCI
model can be adjusted based on the material and mass of the
ball-bearing projectile. One of the primary advantages of the
PCI model is the ability to inherent ability to control, reproduce
and quantify the mechanical forces used to induce the injury.
Additional distinct advantages of the PCI model include high
throughput capacity, relatively basic design and ease of fabrication
(Leung et al., 2014). Rodents undergoing PCI injury, have shown to
have more neurobehavioral deficits using a revised neurobehavioral
severity scale (NSS-R), as well as delayed righting reflex, up to
30 min depending on the severity of the injury (Leung et al., 2014).
Depending of the severity of injury (mild vs. severe TBI), varying
degree of neuroinflammation can be induced, with the severe
TBI (sTBI) inducing a significant rise in inflammatory cytokine
mRNAs in multiple cortical regions including the hippocampi
and cerebellum within 6 h of injury, along with pronounced
gliosis. In addition, elevated level of cortisol, vascular endothelial
growth factor (VEGF), indicative of a weakened blood brain barrier,
as well as decreased level of acetylcholine has been reported.
The mTBI model was shown to have an intermediate level of
neuroinflammatory state (Michalovicz et al., 2023). Due to likely
combined linear and rotational injury, there are reported acute
increases in ß-APP staining, indicative of tissue deformation and
DAI (Leung et al., 2014).

Although the majority of animal TBI models have focused on
rodent models, other animal models provide their own unique
vantage points, as described in the following section. Additional
TBI models include Drosophila, as well as large animal models as
described. The Drosophila model offers the advantage of studying
a complex phenomenon in relatively narrow time span, whereas
the large animal models offer a potentially closer proximation to
clinical TBI studies. The following section offers a brief overview of
these major TBI models.

3 Drosophila models of TBI

Drosophila melanogaster fly model provides a unique substrate
to study TBI. The fly genome is comprised of 13500 genes, with
approximately 70% of genes also recognized in human brain
diseases (Jeibmann and Paulus, 2009). The Drosophila brain is
quite similar with that of mammals, with analogous neuronal
population groups and neurotransmitters (McGurk et al., 2015),
in turn providing the necessary biological substrate to study

neurodegenerative diseases such as Huntington’s disease, motor
neuron disease, as well as Parkinson’s disease and Alzheimer’s
disease (AD) (Moloney et al., 2010). There are a number of notable
advantages that the fly TBI model would provide, which include the
ability to use a large number of animals, which can be both rapidly
and relatively inexpensively examined to assess for correlations
between injures and outcomes, studying the underlying molecular
and genetic pathways that are activated post-injury, as well as
studying the relevant outcomes over the entire lifespan of the flies
(Katzenberger et al., 2013). The fly brain is organized into three
distinct regions, including the protocerebrum, deutocerebrum and
tritocerebrum, which are analogous regions to forebrain, midbrain
and hindbrain in humans (Reichert, 2005).

Katzenberger et al. have developed a “high-impact trauma”
(HIT) device, which is comprised of a metal spring attached at
one end to a wooden board, with the free end position over a
polyurethane pad. There is a standard plastic vial, which contains
unanesthetized flies, which are position at the bottom of the
vial by the aid of a stationary cotton ball, in tun connected to
the free end of the spring. Once the spring is deflected and
released, the vial would impact the polyurethane pad, resulting
in delivery of a mechanical force as the flies contact the vial and
rebound (Katzenberger et al., 2013). There is an inherent lack
of penetrating injuries and randomness of the injured region,
which also simulate a closed-head TBI in human population. The
HIT device can also be adjusted by varying the extent of the
spring deflection or number of strikes. Compared to uninjured
flies, flies that received one strike had a significantly reduced
median as well as maximum lifespan, with additional strikes
leading to further diminution of median and maximum lifespan,
in turn suggesting subthreshold injuries can indeed lead to long
term secondary injury consequences. The authors also reported
significantly worse neurodegenerative outcomes in older flies,
manifested by appearance of vacuolar lesions in the brain neuropil
region. There were no discernible mortality difference between the
male and female flies (Katzenberger et al., 2013). These findings
are concordant with the previously reported lack of difference of
long term mortality outcome between male and female TBI patients
(Coimbra et al., 2003).

In addition to the HIT model, Barekat et al. (2016) introduced
an alternative model of Drosophila TBI using the Omni Bead
Ruptor-24 Homogenizer platform. The injury parameters used
included intensity [meters/second, (m/s)], duration (s), and
number of injury bouts. The Bead Ruptor Homogenizer model
was also shown to induce altered sleep/awakening cycle-related
behavior, concordant to what has been reported in the clinical
population (Barekat et al., 2016).

An additional Drosophila model was designed by Allada lab,
using Drosophila closed head injury (dCHI) (Alphen et al., 2018).
The dCHI involves delivery of preset, non-penetrating strikes to
the heads of un-anesthetized flies, using the forward movement
of a brass block. The Drosophila to be injured is immobilized and
placed in a modified 200 ml pipette in front of the block. The dCHI
model induces analogous TBI phenotype, including increased
motor deficits, neuronal cell death, increased mortality, and altered
sleep/wake cycle (Alphen et al., 2018). A modified dTBI model
involves using a piezoelectric actuator that rapidly compresses
the head of Drosophila with precision (Saikumar et al., 2020).
dTBI caused dose dependent and long-lasting neurological deficits,
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including deficits in righting reflex, climbing, and diminished
life span. There was associated neurohistological characteristic
hallmarks of injury including disruption of the glial process,
oxidative stress, as well as increased brain vacuolization (Saikumar
et al., 2020).

4 Large animal models of TBI

Rodent TBI models cannot adequately address the appropriate
modeling for biomechanical and physiological parameters of
injury, given the fact that rodents have largely lissencephalic brains,
whereas humans have gyrencephalic brains. The presence of gyri
can significantly affect the movement of the brain within the skull,
and lead to more brain deformation (Finnie, 2001; Vink, 2018).
The maximum mechanical stress in brain injuries is experienced
far away from the surface of the brain, and at the depth of
the sulci, which is also concordant with the neuropathological
description of chronic traumatic encephalopathy (CTE), defined by
tau phosphorylation deposits in the peri-vascular and sulci regions
(Barrio et al., 2015; McKee et al., 2015).

The majority of earlier large animal studies involved models
with direct brain deformation in an attempt to replicate clinical
TBI (Vink, 2018). One such model was the fluid percussion injury
(FPI) used in cats (Sullivan et al., 1976), with its subsequent use in
dogs, and sheep (Millen et al., 1985), swine (Solomon et al., 2011),
as well as rabbits (Härtl et al., 1997) and finally rodents (Dixon et al.,
1987; McIntosh et al., 1987). There was a subsequent development
of an alternative model, using controlled cortical impact (CCI)
utilized in ferrets (Lighthall, 1988), pigs (Duhaime et al., 2000;
Manley et al., 2006), swine (Zheng et al., 2014) primates (King
et al., 2010), as well as sheep (Dutchke et al., 2016). CCI models
in piglets have also been utilized in order to assess for peripheral
biomarkers, as well as translational interventions (Margulies et al.,
2015). The primate CCI model, involved impact to the right frontal
cortex, with reported neuronal loss, vascular disruption, edema and
resultant inflammatory process. The non-human primate studies
also provide means of assessment for fine motor and sensory
outcomes, which are not available in rodent models. Blast injury
was first utilized in rabbits to study cardiac and lung function post-
injury (Clemedson and Hultman, 1958), prior to its use to model
TBI (Cernak, 2015). Penetrating craniocerebral gunshot wounds
(PCGWs) have also been modeled in cats (Carey et al., 1989, 1990),
primates (Crockard et al., 1977), as well as rats (Nakao et al.,
2010). Given the high mortality rate of PCGW model, an alternative
bilateral frontal lobe PCGW was also established in swine, with a
lowered mortality rate (Lu et al., 2015).

Rotational injury is a well-known mechanism of TBI, as
previously explored (Smith et al., 1997; Smith et al., 2000).
There is a well-established and clinically relevant swine model
of concussion, which induces evolving axonal injury using a
HYGE device, a pneumatic actuator able to convert linear
motion to angular (rotational) motion (Song et al., 2022). The
swine rotational injury was demonstrated to involve significant
axonal pathology, characterized by swollen axonal bulbs with
neurofilament accumulation (Browne et al., 2011). The HYGE
Swine TBI model led to significant loss of voltage gated sodium
channels (NaChs), and their associated anchoring proteins at the

nodes of Ranvier (NOR). Furthermore, there were significant
accumulation of amyloid precursor protein (APP) across the
white matter (Song et al., 2022). The swine TBI model offers
a robust translational simulation for DAI (Cullen et al., 2016;
Zhan et al., 2022).

There are a few challenges involving the use of large animals
for TBI studies, which include a relatively larger expense, in terms
of both cost, as well as holding facilities. There is also the need for
higher level of care for larger animals, given their inherent longer
life span, in turn, requiring more specialized care, both before and
after trauma. However, the study of TBI in large animals provide
an advantageous perspective of closer cortical injury simulation
to the clinical population, as well as the possibility of unique
neurodevelopmental studies post-TBI (Duhaime, 2006; Pareja et al.,
2016; Vink, 2018).

5 Combined stress and TBI models

Risk factors associated with worsened clinical outcomes
post TBI include older age at the time of injury, limited
educational background, lower socioeconomic status, as well as
prior psychiatric illnesses including PTSD, depression and anxiety
(Lupien et al., 2009; Nugent et al., 2011; Sanchez et al., 2021). Prior
studies have also shown that TBI increases the probability of PTSD
(Bryant, 2011; Yurgil et al., 2014; Spadoni et al., 2018), as well
as depression (Rosenthal et al., 1998; Maller et al., 2010; Lavoie
et al., 2017) and anxiety (Moore et al., 2006; Mallya et al., 2015;
Osborn et al., 2016). There are a number of combined preclinical
stress and TBI models that have been proposed (Kwon et al.,
2011; Xing et al., 2013; Ojo et al., 2014; Sierra-Mercado et al.,
2015; Davies et al., 2016; Fesharaki-Zadeh et al., 2020). Fesharaki-
Zadeh et al. (2020) examined the interaction of TBI and PTSD,
using the preclinical models of closed head injury and Chronic
Variable Stress, respectively. The result of the study demonstrated
an asymmetrical and synergistic relationship between TBI and
PTSD. More specifically PTSD proceeding TBI (CVS → CHI)
lead to a more severe phenotype, based on performance on
various neurobehavioral assays. Furthermore, the CVS → CHI
group had heightened degree of inflammation, based on Iba1
immunohistological signal in hippocampal regions, with strong
degree of correlation between heightened neuroinflammation and
neurobehavioral deficits (Fesharaki-Zadeh et al., 2020; Figure 2).
These findings are also in parallel with the larger paradigm of the
global neuroinflammatory effects of chronic stress proceeding TBI.

There is a growing body of preclinical and clinical literature
reporting worse neurocognitive and neurodegenerative outcomes
in animals exposed to early life stress prior to TBI injury (Diaz-
Chávez et al., 2020; Catale et al., 2021; Sanchez et al., 2021;
Catale et al., 2022), with the clinical literature reporting mixed
results (Lajud et al., 2021). The result of worsened outcome
due to chronic stress could be the result of activation of HPA
(hypothalamic-pituitary-adrenal), as well as SNS (sympathetic
nervous system) (Nusslock and Miller, 2016), and microglial
activation (Kosten et al., 2012; Nusslock and Miller, 2016; van
Bodegom et al., 2017; Johnson and Kaffman, 2018). Chronic stress
either in the form of stress exposure prior to TBI or in the
neurodevelopmental setting, would “prime” a neuroinflammatory

Frontiers in Cellular Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2024.1371213
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-18-1371213 April 9, 2024 Time: 17:18 # 9

Fesharaki-Zadeh and Datta 10.3389/fncel.2024.1371213

FIGURE 2

Chronic variable stress proceeding close head injury (CVS→ CHI), a rodent C57BL/6J model for PTSD preceding TBI, resulted in (A) increased
Iba-1+ Cell Number in Multiple Hippocampal Regions, including dentate gyrus (top panel), CA3 (middle panel) and CA1 (bottom panel).
(B) Corresponding Iba-1+ Cell Numbers are shown here, indicating significantly enhanced neuroinflammatory response in dentate gyrus, CA3 and
CA1 regions. Images are based on study completed by Fesharaki-Zadeh et al. (2020). ∗p < 0.05 and ∗∗∗p < 0.0005.

response prior to injury, and in turn lead to more severe
neurobehavioral and neurodegenerative outcome (Nusslock and
Miller, 2016; Tang et al., 2020). A recent study involved prevention
of microglial/macrophage activation using GW2580 treatment, a
microglial activation inhibitor without microglial ablation. The
rodents treated with GW2580, had significantly improved outcome
based on overall reduced microglial/macrophage activation,
diminished mortality and improved functional recovery and
outcome (Catale et al., 2021). These results suggest that early
treatment focused on neuroinflammation, could play a key role
in modifying the probability of developing neurodegenerative
disorders including Alzheimer’s disease and chronic traumatic
encephalopathy (CTE) (Fesharaki-Zadeh, 2023). The asymmetrical
synergistic interaction of chronic stress and TBI has been utilized to
create models of repetitive mild TBI and chronic stress to simulate
neurodegenerative tauopathy like CTE, and examine potential
disease modifying therapeutic using Fyn kinase inhibition via
modulation of tau phosphorylation (Tang et al., 2020; Figure 3).

6 Neuropathological sequelae of TBI

Over the last few decades, the neuropathology of TBI-related
degeneration is beginning to be deciphered in postmortem human
tissue. Critical insights have been gleaned from rodent TBI
and chronic traumatic encephalopathy (CTE) models, especially
region-, circuit-, and cell-type specific molecular abnormalities that
trigger the pathological sequelae. In particular, epidemiological and
clinical studies have revealed shared pathological features between
repeated mild TBI and Alzheimer’s disease (AD) (Blennow et al.,
2016; Washington et al., 2016; Mendez, 2017), culminating in the
development of dementia, including increased risk for cerebral
atrophy, CTE and even Parkinson’s disease (PD). For example,
analysis of large cohorts of individuals during lifetime have revealed
that single mild TBI was associated with ∼20% greater risk for the
development of dementia (Fann et al., 2018). These studies have
reinforced the notion that TBI is not merely an acute event but has

long-term ramifications that is associated with chronic disability
(Wilson et al., 2017). The pathological alterations in TBI and CTE
include the manifestation of hyperphosphorylation of tau leading
to the formation of neurofibrillary tangles (NFTs) as a result of
mitochondrial dysregulation, calcium dysfunction, and activation
of inflammatory cascades, involving cortical sulci and perivascular
regions in the early stages, and more global parenchymal areas
in the more advanced stages (McKee et al., 2015). The following
sections will highlight recent developments in the field pertinent to
these areas.

6.1 Tau pathology

Tau is microtubule-associated protein tau (MAPT) that plays a
critical role in the movement of cargo proteins throughout neurons
and stabilization of microtubules, particularly within neurons.
Under pathological conditions, tau is subject to several post-
translational modifications (PTMs) including phosphorylation.
Hyperphosphorylation of tau results in disassociation of tau
from microtubules, translocation to dendrites within neurons,
oligomerization and the generation of intracellular NFTs. Studies
have revealed that even a single episode of TBI in∼30% of subjects
led to the NFT pathology and the onset of dementia (Johnson et al.,
2012; Zanier et al., 2018). Histological examination of CTE patients
with repeated trauma has revealed focal perivascular accumulation
of hyperphosphorylated tau as NFTs within neurons, neuropil
threads and astrocytic tangles, with a heightened propensity
within the depths of cortical sulci. Clinically, patients with CTE,
originally referred to as “punch-drunk syndrome” or “dementia
pugilistica,” are characterized by mood and behavioral disorders
and cognitive impairment (McKee et al., 2010; Omalu, 2014). The
presence of phosphorylated tau lesions has been categorized as the
minimum threshold requirement for CTE diagnosis. The general
histopathological pattern of NFTs in CTE include several brain
areas, including the neocortex, thalamus, brainstem and rarely,
spinal cord. Pathology emerges focally and in discrete patches in the
sulci of the neocortex, oftentimes in the superior and dorsolateral
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FIGURE 3

Representative images of cortical PHF-1 staining for phosphorylated-tau involving the peri-lesional, 05–1 mm medial to injury sites of 7.5 months
old wild type C57BL/6J rmTBI/stress (Inj) mice treated with either vehicle vs. AZD0530 vs. (A), and the corresponding quantification of PHF-1 (paired
helical filaments-1) positive area (B). Representative images of total Tau staining in the same three groups of mice with corresponding quantification
of total Tau positive area (Panels C,D). As shown, AZD0530 treatment resulted in modification of tau phosphorylation in the AZD treated injured
animals, with no modification effect on the total tau levels. Images are based on the study completed by Tang et al. (2020). ∗p = 0.0077 and ∗∗p =
0.0046.

prefrontal cortex, but increasing in prevalence and spreading to
temporal and parietal cortices as the degeneration progresses.
With advanced stage of disease, NFTs are expressed extensively
with the most intense staining pattern in the sulci with neuronal
loss, accompanied by white matter pathology, glial tau pathology
and gliosis, exhibiting a distinct pattern. The magnitude of tau
pathology in TBI and CTE has been found to be correlated with
age, duration and severity of head impact injuries, clinical signs and
symptoms and survival after injury.

However, the spatial and temporal progression of NFT
pathology in CTE is distinct and different from AD. In AD, tau
pathology first arises in the brainstem nuclei projecting broadly to
the cerebral cortex (e.g., noradrenergic locus coeruleus) and in the
cerebral cortex emerges in the transentorhinal region (TRE) and
then in superficial cellular layers of the entorhinal region (ER) early
in the course of the illness inducing degeneration (Braak et al., 2011;
Braak and Del Tredici, 2014). Tau pathology then extends to deeper
layers of the ER and arises in the interconnected hippocampal
formation and association cortices, sparing primary sensory and
motor fields untouched until late-stage disease. Recent cryo-EM
studies have revealed that the 3D conformation of tau filaments in
CTE is distinctly different from AD and Pick’s disease, suggesting
that the mechanisms that lead to tau trafficking and aggregation
might be uniquely different in various types of dementia (Falcon
et al., 2019). Furthermore, there is a general absence of tau in
perivascular astrocytes in sulcal depths in AD.

Several studies in human and in rodent TBI models are
beginning to unravel the phosphorylation PTM landscape,
compared to other forms of dementia. The studies have revealed
shared and unique p-tau epitopes on tau in patients with
acute and repeated TBI. For example, histopathological studies
in CTE patients have highlighted phosphorylation at Thr175,
Ser422, Ser199, Ser202, Thr205 and Thr231 as important in the
pathogenesis of neurodegeneration (Mufson et al., 2016; Puvenna

et al., 2016; Moszczynski et al., 2018). However, future studies are
needed to delineate the presence of p-tau epitopes that are emerging
as fluid-based biomarkers in AD, e.g., Thr181 and Thr217, early,
soluble p-tau sites that cause detachment of tau from microtubules,
e.g., Ser214, and other p-tau sites that enhance tau seeding capacity,
e.g., Ser262. In addition to phosphorylation, additional studies need
to dissect the contribution of other PTM, such as acetylation and
ubiquitination, and how they uniquely predispose alterations in
the conformational state of tau to mediate propagation within
afflicted brain circuits. Animal models of TBI/CTE in conjunction
with postmortem human studies will be crucial for these future
directions for the field.

In addition to tau pathology, there is the concurrence of other
pathological phenomena in TBI/CTE, including beta-amyloid
plaques, cerebral amyloid angiopathy, Lewy body disease, and TDP-
43 proteinopathy which has been shown to increase in likelihood
across age-span (Stein and Crary, 2020). These pathological
alterations persist for months to years after acute TBI, suggesting
that physical insults could trigger a pathogenic sequence of events
that culminate in behavioral impairments (Goldstein et al., 2012;
Johnson et al., 2012, 2013).

6.2 Calcium dysregulation

Calcium signaling is widely recognized as a critical determinant
of synaptic plasticity, acting as a second messenger to regulate
a myriad of physiological processes and intracellular signal
transduction pathways. Several lines of evidence have revealed
that calcium dysregulation in neurons has been hypothesized as
key etiological driver of neuropathology in TBI. Calcium entry
within neurons occurs through multiple sources: (1) receptor-
operated calcium channels (ROCs), e.g., N-methyl-d-aspartate
(NMDA) receptors, that are activated by endogenous ligand
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glutamate, which drives calcium influx from the extracellular space
into the cytosol; (2) voltage-gated calcium channels (VGCCs)
that under depolarized conditions, e.g., as a result of Na+

entry through ion channels or due to Ca2+ influx through
ROCs; (3) calcium-induced calcium release from intracellular
stores located on the endoplasmic reticulum (ER). This occurs
through inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores,
and ryanodine-sensitive Ca2+ stores. IP3-sensitive Ca2+ stores
can be activated by G protein-coupled receptors such as Group
I metabotropic glutamate receptors (mGluRs) or muscarinic
acetylcholine receptors, which activates phospholipase C (PLC),
which in turn cleaves phosphatidylinositol biphosphate (PIP2),
causing the release of diacylglycerol (DAG) and IP3. In addition
to the canonical mechanisms, additional pathways include store-
operated or second-messenger-operated channels (SOCs/SMOCs)
that drive calcium influx when intracellular calcium levels
are diminished. Another source of calcium occurs through
transient receptor potential channels (TRPCs) that are located
on the plasma membrane which are thought to contribute
to calcium induced calcium release (CICR) in neurons. Due
to the multiple routes that permit the elevation of calcium
within intracellular compartments, there are several homeostatic
mechanisms to constrain calcium within specific subcellular
compartments. This includes calcium-binding proteins, e.g.,
calbindin and parvalbumin, to sequester excessive Ca2+ within
the cytosol. There are mechanisms that also promote extrusion
of Ca2+ from the intracellular space to the extracellular space via
membrane pumps such as the plasma membrane Ca2+-ATPase
(PMCA), and the Na+/Ca2+ exchanger which is activated by
elevated levels of Ca2+ and is dependent on the Na+ gradient,
regulated by the membrane Na+/K+ ATPase. Finally, intracellular
organelles such as the ER, including specialized pumps such as
the sarcoplasmic–endoplasmic reticulum Ca2+-ATPase (SERCA)
on the ER membrane, and mitochondria play important roles
in buffering excessive calcium, but calcium overload in these
organelles can abrogate their function.

Mechanical injury from TBI can produce shearing forces that
can alter the biophysical properties of calcium channels that
regulate intracellular calcium influx. For example, experimental
studies in vivo in TBI models and in vitro studies have revealed
greater permeability of calcium-regulatory channels following
mechanical injury. The upregulation of calcium conductance
within neurons is likely a key mediator of secondary damage
resulting in activation of signaling pathways that perturb calcium
homeostasis. Consistent with this idea, acute and chronic injury
in TBI is associated with activation of calcium-dependent cysteine
proteases such as calpain-2, which is induced by high levels of
intracellular calcium (Liu et al., 2014; Kobeissy et al., 2015). The
activation of calpain-2 is associated with numerous downstream
consequences, including the cleavage of cytoskeletal proteins into
stable proteolytic fragments that can be captured as fluid-based
biomarkers (Saatman et al., 2010). Activated calpains can aberrantly
cleave several proteins that are critical for the integrity of neurons,
such as spectrin, tubulin, tau, microtubule-associated protein, and
neurofilaments (Wang and Po-Wai, 1994). Calpain-2 activation
might exacerbate tau pathology as TBI mouse models have revealed
calpain-2 activation resulted in increased tyrosine phosphorylation
of kinase c-Abl at Tyr245, resulting in increased kinase activity
and phosphorylation of tau at Tyr394 (Wang et al., 2017).

Likewise, RNA-sequencing analyses in postmortem human studies
have yielded evidence of a downregulation of PPP3CA, which
encodes for calcium-dependent calmodulin-stimulated protein
phosphatase, in patients with CTE compared to healthy subjects,
and these patterns were inversely correlated with phosphorylation
of tau at Ser202/Thr205 (Seo et al., 2017).

Calpains can alter synaptic plasticity by degrading membrane
proteins such as glutamate receptors and transporters and can also
modulate the function of protein kinases and phosphates. Calpain
activation might play an important role in pathological cascades
such as diffuse axonal injury, as calpain-mediated proteolysis of
spectrin has been detected acutely after injury. Assessment of
calpain-mediated N-terminal fragment of spectrin in fluid-based
measures such as blood were found to be acutely elevated after
injury and predicted the long-term functional effects of the injury
in patients with TBI, including professional athletes suffering
from concussions (Siman et al., 2013, 2015). Recent studies have
revealed that calpain-2 conditional knockout mice are protected
against the pathological consequences of repeated mild TBI and
that genetic deletion or pharmaceutical inhibition of calpain-2
prevented alterations in the subcellular localization of TDP-43.

Elevation in intracellular calcium in TBI is also associated
with activation of caspases, another family of cysteine proteases.
Caspase activation following trauma can lead to the proteolytic
processing of several proteins that could result in the onset
of apoptotic cascades and associated downstream pathological
consequences. Sufficient buildup of intracellular calcium also
results in the activation of endonucleases following TBI, which can
induce DNA damage by altering heterochromatin configurations
within the nucleus (Trump and Berezesky, 1995; McConkey and
Orrenius, 1996). Furthermore, injury results in the activation of
phospholipases, such as PLC and cPLA2 that leads to the generation
of arachidonic acid, which in turn can increase membrane
permeability and elevate levels of reactive oxygen species (ROS).
This is turn can lead to cellular damage by peroxidation of
lipid membranes, DNA and various signaling proteins (Dhillon
et al., 1995, 1999). Following brain injury, results have suggested
an increase in expression of DAG and protein kinase C (PKC),
key drivers of secondary calcium signaling, which can directly
interact with ROCs and VGCCs to further amplify calcium influx
into the intracellular space within neurons. Concomitant data
have purported that signaling via G protein-coupled receptors
that increase Ca2+ by IP3 generation appears to be dysregulated
after TBI in vivo (Delahunty et al., 1995) and with in vitro
studies using mechanical injury paradigms (Rzigalinski et al.,
1998; Weber et al., 1999). Similarly, calmodulin-dependent protein
kinase II (CaMKII) expression levels are increased following
TBI, which in turn, can alter the permeability of glutamate
receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid receptors (AMPARs), within the synaptic active zone. The
multiple mechanisms that exacerbate calcium dysfunction within
neurons in TBI lead to impairments in synaptic plasticity as
indicated by various studies showing deficits in long term
potentiation (LTP) in TBI mouse models (Sick et al., 1998; Albensi
et al., 2000; Sanders et al., 2000; Albensi, 2001; Schwarzbach et al.,
2006). These studies highlight how calcium signaling is perturbed
under conditions of TBI to impair physiological properties of
neurons.
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6.3 Mitochondrial dysfunction and
oxidative stress

A key driver of downstream injury cascades in TBI involves
mitochondrial impairments and the generation of oxidative stress
(Hakiminia et al., 2022). This is mediated, at least in part, by
exacerbated intracellular calcium signaling via TBI-induced events,
but could be by intrinsic abnormalities in mitochondria. For
example, the structural and functional integrity of mitochondria
are compromised in TBI, as indicated by disruptions in the
electron transfer chain and mitochondrial membrane potential.
Mitochondrial dynamics involving fission and fusion events are
abrogated in TBI, resulting in a decrease in mitochondrial
size and elevated dynamin-related protein 1 (Drp1) localization
to mitochondria (Fischer et al., 2016). This in turn, causes
mitochondrial depolarization and depleted ATP production,
compromising mitochondrial function within neurons (Ladak
et al., 2019). Suppression of Drp1 with mitochondrial division
inhibitor-1, rescued the decrement in mitochondrial length,
thereby preventing hippocampal neuron apoptosis, and enhancing
cognition in TBI (Fischer et al., 2016). Excessive intracellular
calcium results in calcium overload of mitochondria, subsequently
resulting in the generation of reactive oxygen species (ROS).

Reactive oxygen species (ROS) can induce a myriad of
pathophysiological events, including the synthesis and release
of inflammatory cytokines, compromising the integrity of the
blood-brain barrier, and with more pronounced changes causing
widespread pathological changes, including cerebral perfusion,
ischemia and edema (Mendes Arent et al., 2014; Najem et al.,
2018). The activation of these deleterious pathways can invoke
apoptotic and necroptosis pathways. For example, TBI is associated
with the upregulation of necroptosis pathways, such as receptor-
interacting protein kinase 3 (RIPK3) and mixed lineage kinase
domain-like protein (MLKL) (Liu et al., 2018; Ni et al., 2019).
Inhibition of necroptosis pathways with necrostatin-1 attenuated
tissue damage and enhanced functional outcomes in the controlled
cortical impact TBI model deficient in TNF-α and Fas (You et al.,
2008). Histopathological analysis in postmortem human tissue in
TBI patients in the peri-ischemic zone (PIZ) of traumatic cerebral
contusions has further defined increases in Bax, Bcl-2 and caspase-
3 (Nathoo et al., 2004). Furthermore, postmortem evaluations in
the pericontusional zone of TBI patients revealed an upregulation
of apoptosis with TUNEL-positive staining, and these alterations
were associated with poorer prognosis after TBI (Miñambres et al.,
2008). The destabilization of mitochondria and generation of
oxidative stress could ultimately also promote disruptions in the
autophagy-lysosomal pathways (Clark et al., 2008; Lai et al., 2008).

6.4 Activation of inflammatory pathways

The inflammatory mechanisms that result from acute and
chronic brain injury is mediated by both innate and adaptive
immune system responses. Although the temporal sequence and
the involvement of specific components of the immune system
are currently under investigation, several preclinical studies in
rodent TBI models have illuminated the role of specific cell-types
in the cascade. Following acute injury, cytokines, chemokines, and

damage-associated molecular patterns (DAMPs) are thought to
involve recruitment of various key cell-types. This directly involves
the recruitment of neutrophils that constrain the site of injury
and facilitate the elimination of damaged cells and cellular debris.
This is associated with the recruitment of microglia and astrocytes
acutely to perform neuroprotective roles, oftentimes within 3–
5 days post-injury. At later time points, T and B cells are involved
to partake in restorative roles (McKee and Lukens, 2016).

Damage-associated molecular patterns (DAMPs) are released
under conditions of cellular stress to initiate an inflammatory
cascade. This involves the activation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) inducing kinase (Lee
et al., 2013), in conjunction with key proinflammatory cytokines
TNF-α and IL-6 (Hang et al., 2005). Studies in rat models of
TBI and in human subjects have shown high expression of
High Mobility Group Box 1 protein (HMGB1), a protein that
binds to TLR4 and propels activation of inflammatory pathways
(Gao et al., 2012). Intriguingly, anti-HMGB1 targeting therapies
are being pursued as a mechanism to attenuate inflammatory
pathways and ameliorate the breakdown of the blood-brain
barrier (BBB) following injury (Okuma et al., 2012). This is
accompanied by the upregulation of pathways that mediate antigen
presentation [e.g., major histocompatibility complex (MHC) II],
phagocytosis related pathways such as C3, C4 and FCGR4,
CD86 (Lagraoui et al., 2012), pathways that promote pro-
inflammatory cytokines (e.g., IL-10, IL-6, IL-2, IFN-γ, IL-1β)
and chemokines expression (e.g., CXCL4, CCL4, CCL2). For
example, studies in TBI have shown IL-1β is upregulated in
subjects with serious injuries for 24 h, and correlated with
decreased long-term functional outcomes (Hayakata et al., 2004).
Studies in rodents have shown that antagonism of IL-1β results
in a reduction in anatomical and functional consequences of
neuroinflammation (Jones et al., 2005). Similar studies conducted
for IL-18 have identified this cytokine as being expressed early
in TBI and administration of a specific inhibitor for IL-18 in
mice showed a significantly improved neurological recovery by
7 days, accompanied by attenuated intracerebral IL-18 levels (Yatsiv
et al., 2002). Findings have shown that early administration of
anti-inflammatory cytokines, e.g., IL-10 and TGF-β, can ameliorate
the neurological effects in different TBI models (Knoblach and
Faden, 1998; Maas et al., 2008). Furthermore, a critical driver
of inflammation involves inflammasome activation in TBI (Liu
et al., 2013), and studies in human subjects have shown that
inflammasome components are detected in cerebrospinal fluid
(CSF) are associated with worse clinical outcomes (Adamczak et al.,
2012).

6.5 Neurodegeneration involving diffuse
axonal injury (DAI)

Postmortem studies in human subjects have revealed diffuse
axonal injury (DAI) as a common neuropathological feature of
exacerbated TBI, including Wallerian-like degeneration following
injury with white matter atrophy. In recent studies, human and
animal studies have also linked DAI as a key pathological substrate
of concussion (Smith and Meaney, 2000; Meaney and Smith,
2011; Johnson et al., 2013; Smith et al., 2013). TBI has been
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shown to generate toxic tau epitopes and Aβ in degenerating
axons, although the precise molecular mechanisms that lead to
these interactive phenomena have yet to be elucidated (Goldstein
et al., 2012; Johnson et al., 2012; Tagge et al., 2018). Physical
injury has been hypothesized to create shearing forces that
abrogate the function of the cytoskeleton network, eventually
inducing microstructural breaks that reduce the efficacy of axonal
transport. This could lead to the mislocalization of key components
of Aβ generation in the axonal swellings, including amyloid
precursor protein (APP) and enzymes that cleave APP such as
beta secretase 1 and presenilin 1. This is believed to lead to
the intracellular production of Aβ that is released to produce
extracellular Aβ plaques. Similarly, mechanical shearing forces
can lead to detachment of pathogenic tau from microtubules
which mediates hyperphosphorylation and aggregation of cis
phosphorylated tau.

6.6 Glymphatic system disruption

The brain clearance involves the removal of waste via multiple,
overlapping networks which include active and passive transport
via the blood brain barrier, diffusion and the glymphatic system.
The glymphatic system is comprised of subarachnoid cerebrospinal
fluid flowing into the brain adjacent to arteries, mixing with
the brain interstitial fluid (ISF) with subsequent outflow along
cerebral venous system (Butler et al., 2023). Compromised
glymphatic system clearance has been associated with toxic protein
accumulation, including Aβ and tau, in turn potentially leading to
development of Alzheimer’s disease (Tarasoff-Conway et al., 2015).
The clearance of toxins and waste is particularly compromised in
TBI, in which various neuronal debris including Aβ and tau have
to be cleared. Such disruption has formed one of the correlational
hypotheses linking TBI and increased risk of Alzheimer’s disease
and various neurodegenerative disorders (Johnson et al., 2010).
A novel imaging technique, referred to as diffusion tensor imaging
along perivascular spaces (DTI-ALPS), has been utilized to assess
glymphatic system disruption post TBI. DTI-ALPS based findings
post subacute TBI support a correlation between disease severity
based on blood levels of neurofilament light protein (NfL), a highly
sensitive TBI biomarker, and glymphatic system disruption (Butler
et al., 2023). The role of aquaporin 4 (AQP4) in immediate brain
damage within 72 h of injury has been examined and shown to
be altered in rodent TBI studies, in turn suggesting its role in
ISF transport (Liu et al., 2020). Recent evidence also shows the
glymphatic exchange to be significantly enhanced during sleep,
and suppressed during normal wakefulness hours (Xie et al.,
2013). These findings support a potential bidirectional relationship
between TBI, sleep disruption and glymphatic clearance (Piantino
et al., 2019). The emerging studies linking TBI, glymphatic
disruption, sleep and risk of neurodegenerative disorders support
a complex dynamic association between specific trauma induced
physiological perturbation and chronic neuropathological changes.
Hence the glymphatic system integrity and functioning post-injury
would likely serve as a robust biomarker of TBI severity and a
predictive marker for potential neurodegenerative sequelae (Peters
and Lyketsos, 2023).

7 Conclusion and perspective

As per Center of Disease Control and Prevention (CDC), TBI
resulted in 223,000 hospitalizations and 64,300 deaths in 2020
(Peterson et al., 2022). As TBI remains to be a major cause of
morbidity and mortality worldwide, there is increasing demand
on enhancing our collective understanding of the underlying
pathophysiology and chronic neuropsychiatric sequelae post TBI.
Given the inherent complexity and heterogeneity of TBI, the
animal models of TBI have created an essential biological substrate
in which various biomechanical parameters, including severity
of injury and timeline of the injury and post-injury analysis,
could be controlled, manipulated and comprehensively studied.
Moreover, the animal models of TBI have created the opportunity
to examine various disease modifying therapeutic agents with
significant translational value. As there are currently no US Food
and Drug Administration (FDA)-approved and specific regimen
for TBI induced neurocognitive and neuropsychiatric sequelae
(Fesharaki-Zadeh, 2023), there is an ever-increasing necessity for
evolving the current TBI models with the ultimate goal of the
closest possible and accurate disease simulation. The development
of recent TBI models, including CHIMERA, is one such pertinent
case. The evolving field of biomarker studies of TBI in conjunction
with expanding studies of animal models of TBI, would provide
a necessary complementary development that would provide the
essential translational tool for future novel therapeutic modalities.
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