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Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely 
linked to Parkinson’s disease, where the G2019S variant has been shown to 
contribute uniquely to both familial and sporadic forms of the disease. LRRK2-
related mutations have been extensively studied, yet the wide variety of cellular 
and network events related to these mutations remain poorly understood. 
The advancement and availability of tools for neural engineering now enable 
modeling of selected pathological aspects of neurodegenerative disease 
in human neural networks in vitro. Our study revealed distinct pathology 
associated dynamics in engineered human cortical neural networks carrying 
the LRRK2 G2019S mutation compared to healthy isogenic control neural 
networks. The neurons carrying the LRRK2 G2019S mutation self-organized 
into networks with aberrant morphology and mitochondrial dynamics, affecting 
emerging structure–function relationships both at the micro-and mesoscale. 
Taken together, the findings of our study points toward an overall heightened 
metabolic demand in networks carrying the LRRK2 G2019S mutation, as well 
as a resilience to change in response to perturbation, compared to healthy 
isogenic controls.
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Introduction

Advances in neural engineering now enable modeling of selected pathological aspects of 
neurodegenerative disease in human neural networks in vitro (Levi et al., 2021; Valderhaug 
et al., 2021; Estévez-Priego et al., 2023). Of particular interest is how neurodegenerative 
pathology may manifest and affect network behavior at the microscale and mesoscale, i.e., 
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before it progresses to affect the entire system. The relevant questions 
are highly challenging or per definition not feasible to address using 
in vivo models, thus advanced neural engineering models represent a 
powerful alternative or complementary approach. A fundamental 
property of such models is that neurons in vitro maintain intrinsic 
behavior of neurons in the brain by self-organizing over time into 
networks of increasing structural and functional complexity 
(Innocenti and Price, 2005; Chiappalone et al., 2006; Giugliano et al., 
2006). By combining custom-designed microfluidics devices (MFDs) 
with microelectrode arrays (MEAs), it is possible to structure multi-
nodal human neural networks with controllable connectivity and 
study both intrinsic network behavior as well as responses to inherent 
or selectively induced perturbations (van de Wijdeven et al., 2018, 
2019; Valderhaug et al., 2019, 2021; Fiskum et al., 2021, 2024; Levi 
et al., 2021; Heiney et al., 2022; Winter-Hjelm et al., 2023; Weir et al., 
2023a,b).

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are 
linked to both late-onset familial and sporadic forms of Parkinson’s 
disease (PD) (Healy et  al., 2008). Although rare, LRRK2 gene 
mutations have been termed a potential “Rosetta stone” of 
parkinsonian disorders as all of the major pathologies related to 
parkinsonism have been observed, in addition to there being end-stage 
variability, within families carrying the same pathogenic variant 
(Trinh et al., 2006). The LRRK2 gene is expressed both in the brain 
and in other tissues throughout the body and is translated into the 
LRRK2 protein, which has enzymatic kinase activity involved in a 
range of cellular processes (Trinh et al., 2006). In a recent proteome 
wide association study of LRRK2 variants from the Parkinsons 
progression markers initiative cohort (PPMI) (Marek et al., 2018) the 
LRRK2 gene was directly linked to the regulation of several 
PD-associated proteins, many of which were subsequently identified 
as enriched in specific endolysosomal pathways, in microglial cells, 
and in immune response (Phillips et al., 2023). Among the LRRK2 
mutations, the particular G2019S variant represents the most 
commonly identified cause of late-onset PD, and has been shown to 

contribute uniquely to both familial and sporadic forms of the disease 
(Di Fonzo et al., 2005; Gilks et al., 2005; Kachergus et al., 2005; Lesage 
et al., 2005; Nichols et al., 2005; Ozelius et al., 2006; Trinh et al., 2006; 
Healy et al., 2008; Moore, 2008; Bouhouche et al., 2017). Moreover, 
this mutation has been shown to result in differential regulation of a 
variety of cellular pathways highly relatable to several aspects of PD 
pathology, among which are axonal guidance, mitochondrial function 
and calcium homeostasis, cytoskeletal transport, lysosomal function, 
cell growth, differentiation, and synaptic function (Habig et al., 2008, 
2013; Ludtmann et al., 2019; Aleknonytė-Resch et al., 2023; Ohtonen 
et al., 2023).

We hypothesized that neural networks carrying the Parkinson’s 
related LRRK2 G2019S mutation would display inherently different 
micro-and mesoscale behaviors compared to isogenic healthy 
controls, both during development and in response to induced 
perturbation. To address this hypothesis, we engineered multi-nodal 
neural networks from iPSC-derived human neural stem cells with and 
without the LRRK2 G2019S mutation using a custom-designed MFD 
(van de Wijdeven et al., 2018, 2019), allowing for investigation of 
structure–function relationships. Specific microtopographies 
embedded in the MFD, including axon tunnels and synaptic 
compartments, allowed for the selective manipulation and targeted 
investigation of neurites and their organelles, as well as their synaptic 
elements, i.e., network sites particularly related to early manifestation 
of neurodegenerative disease pathology. Furthermore, the 
electrophysiological profile of the multi-nodal neural networks from 
each group was evaluated in parallel assays by combining the MFDs 
with an MEA interface.

Monitoring the early network structure and function revealed 
distinct differences both at the micro-and mesoscale between the 
LRRK2 G2019S and healthy control neural networks. Specifically, 
we  found that the LRRK2 G2019S neurons self-organized into 
networks with heightened metabolic demand – exhibiting aberrant 
morphology and containing neuritic mitochondria moving at higher 
speeds, compared to the healthy isogenic controls. Inducing a 
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transient, confined overexcitation in targeted nodes of the neural 
networks further revealed differences in mitochondrial motility and 
neuritic remodeling between the groups. Together with the indicated 
difference in total network correlation profiles 24 h post perturbation, 
these dissimilarities point toward a resilience to change in the LRRK2 
G2019S neural networks.

Materials and methods

Structuring multi-nodal cortical neural 
networks using MFDs with directional 
connectivity

Human induced pluripotent stem cell (iPSC)-derived H9N neural 
stem cells (NSCs) homozygously carrying the LRRK2 G2019S 
(GGC > AGC) mutation (ax0310, Axol Bioscience, Cambridge, 
United Kingdom) and healthy isogenic control iPSC-derived H9N 
NSCs (ax0019, Axol Bioscience, UK) were cultured and expanded on 
0.01% poly-L-ornithine (PLO) (P4967, Sigma-Aldrich, US) and L-15 
laminin (L15 medium, L5521, Sigma-Aldrich) containing 1:60 natural 
mouse laminin (23017015, Thermo Fisher Scientific) and 1:41 sodium 
bicarbonate) coated culture vessels in neural expansion medium 
(ax0030, Axol Bioscience, UK) supplemented with human FGF2 and 
EGF (ax0047 and ax0047X, Axol Bioscience, UK), and kept in a 
standard humidified air incubator (5% CO2, 20%O2, 37°C) (full cell 
culture protocol, as well as further information on each cell line 
available in the Supplementary material). Each MFD was coated with 
the same combination of PLO and L-15 laminin and seeded with 
1.1 × 105 NSCs (37,000 cells per cell chamber), from which point 
synchronous differentiation and maturation of the NSCs into cortical 
neurons was carried out until day 15, using an NSC reagent bundle 
and media (ax0101, Axol Bioscience, UK) in accordance with the 
manufacturer’s protocol.

Transient excitatory stimulation of 
multi-nodal neural networks using kainic 
acid

Fifteen days post seeding, the multi-nodal neural networks were 
stimulated with kainic acid (KA, ab144490, Abcam, UK) and 
subsequently investigated with live staining assays. KA is a potent 
neuronal excitant, stimulating ionotropic glutamate receptors. 
KA-induced excitotoxicity has been used to model neurodegeneration, 
and depending on concentration, KA-stimulation can lead to 
increased production of reactive oxygen species (ROS), mitochondrial 
dysfunction and apoptosis (Wang et  al., 2005). KA (10 μM) was 
applied to the top cell chamber for 30 min, after which all cell 
chambers were washed three times with Dulbecco’s phosphate 
buffered saline (PBS, 806544, Sigma Aldrich, US) and resupplied with 
media. A flow barrier created by a 10 μL media level difference 
between the stimulated chamber and the non-stimulated chambers 
was used to confine the KA to the top cell chamber only. The same 
procedure was carried out for each cell line using PBS as a sham 
stimulation. Following the 30-min KA stimulation targeting the 
neurons in the top cell chamber of the multi-nodal neural network, 
live microscopy of fluorescently labeled ROS production confirmed 

that the stimulation was successfully confined to the target chamber 
(Supplementary Figures S1A–E). Furthermore, 24 h later both 
stimulated and sham-stimulated (PBS) neural networks from each 
group were assessed using a live/dead viability assay kit, demonstrating 
that the stimulation was sublethal (Supplementary Figures S1F–H).

ROS and live/dead assays

A total ROS assay kit (ex/em 644/665) (C10422, Thermo Fisher 
Scientific, US) fluorescently labeling ROS production was applied to 
verify a cellular response and the confinement of the stimulation by 
fluorescence microscopy (EVOS FL auto 2, Invitrogen, California, US) 
where the microscope was set to image simultaneously in each of the 
MFD chambers every 5 min for 1 h immediately following KA 
stimulation. Analysis of ROS expression was performed using the Fiji 
plugin Particle analyzer. 24 h post KA stimulation, a live/dead 
viability/cytotoxicity kit (MP03224, Invitrogen, US) was applied to the 
neural networks in the MFD. 0.8 μL Ethidium homodimer-1 (2 mM 
in DMSO/H2O 1:4) and 0.4 μL Calcein AM  (4 mM in anhydrous 
DMSO) was diluted in 2 mL PBS and applied to all chambers for 
15 min in 37°C. The fluorescently labeled multi-nodal neural networks 
were then washed with PBS and imaged (EVOS FL auto 2). The 
two-channel fluorescent images from the viability assay were merged, 
adjusted for brightness/contrast, and the cells manually counted using 
the Cell counter Fiji-plugin. The area close to the active zone in the 
MFD was selected for analysis as this area showed better separation of 
the signals due to a consistent lower cell density across all conditions. 
Two areas from each cell chamber were counted in two separate multi-
nodal neural networks (>2000 cells/network) for each condition (KA- 
vs. sham-stimulated) in each group (control vs. LRRK2) 
(Supplementary Figure S1H).

Immunocytochemistry

24 h post KA stimulation (or PBS sham stimulation), multi-nodal 
neural networks from both the isogenic control and LRRK2 groups 
were fixed and used for immunocytochemistry assays to assess the 
neurite and spine morphology. For fixation, 2% paraformaldehyde 
(PFA, 158127, Sigma Aldrich, US) was applied for 15 min followed by 
4% PFA for 10 min and 3 × 15-min washes at room temperature (RT). 
Blocking solution consisting of PBS with 5% normal goat serum 
(NGS) and 0.3% Triton-X (HFH10, Thermo Fisher Scientific, US) was 
applied for 2 h at room temperature and was followed by overnight 
incubation in primary anti-body solution (PBS with 1% NGS, 0.1% 
Triton-X) in 4°C. The following antibodies were used: Rabbit anti-
Piccolo antibody (1:400) (ab20664, Abcam, UK), mouse-anti PSD95 
(1:200) (ab13552, Abcam, UK), rabbit anti-CaMKΙΙ (1:250) 
(ab134041, Abcam, UK), rabbit anti-GRIK5 (1:200) (PA-5-41401, 
VWR, US), rabbit anti-Glutamate receptor 1 (AMPA) (1:500) 
(ab109450, Abcam, UK), mouse anti-MAP2 (1:400) (131,500, Thermo 
Fisher Scientific, US), mouse anti-beta ΙΙΙ tubulin (1:400) (ab119100, 
Abcam, UK), rabbit anti-total alpha synuclein (ab131508, Abcam, 
UK), mouse anti-mitochondria (ab3298, Abcam, UK), and chicken 
anti-neurofilament heavy (1:1000) (ab4680, Abcam, UK). The multi-
nodal neural networks were then washed 3 × 15 min in PBS, and 
incubated for 3 h in secondary antibody solution (PBS with 1% NGS, 
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0.1% Triton-X) in the dark, at RT. A combination of Alexa Fluor™ 
488, 568, 647 secondary antibodies (Thermo Fisher, MA, US) were 
used at a dilution of 1:1000. CytoPainter Phalloidin 647 (1:500) 
(ab176759, Abcam, UK) was added for the final 20 min of incubation, 
and Hoechst (1:10000) was added for the final 5 min before another 
3 × 15-min wash in PBS was conducted. Images used for quantification 
were taken using a Zeiss Axiovert 1A fluorescent microscope (Carl 
Zeiss, Germany) with a 100×/1.3 oil objective or a Zeiss (510 META 
Live) confocal laser scanning microscope with a 63×/1.4 oil objective. 
ImageJ, MATLAB and PowerPoint were used to post-process 
the images.

Image analysis

The fluorescence images of Piccolo-immunolabeled neurites 
were analyzed using a semi-automated process implemented in 
MATLAB and Fiji to count the number of neuritic boutons. Most 
boutons were counted in an automated fashion in MATLAB. Top-hat 
filtering and contrast enhancing using adaptive histogram 
equalization was applied. The contrast-enhanced images were 
binarized using Otsu thresholding; a threshold selection method 
where images are separated into two intensity classes from gray-level 
histograms, namely foreground and background (binarization), and 
salt noise in the binarized images was removed by median filtering. 
Neurite fragments were then joined by morphological closing, and 
any remaining small fragments were removed by hole filling. 
Thinning was then applied to obtain a skeleton of the neurites in the 
image. From this thinned image, endpoint detection was used to 
obtain a preliminary bouton count. The endpoint-labeled images 
were visually inspected and any missed boutons were manually 
counted and added to the final results. The area covered by the 
neurites was calculated by means of the particle analyzer after 
binarization with Otsu thresholding. Together, the boutons counted 
divided by the area covered with neurites created a ratio used for 
statistical analysis. For the measure of co-occurring Piccolo and 
PSD95 immunolabeling, an automatic threshold was applied for 
each channel (Otsu for Piccolo and Triangle for PSD95) in Fiji, the 
thresholded areas selected as ROIs, and areas containing both ROIs 
were selected for particle analysis. A cut-off at 15 μm was set as an 
upper limit, and the number and average size measurement from 
each image were used for statistical analysis.

Dynamics of neuritic mitochondria

To investigate the distribution and dynamics of mitochondria 
in LRRK2 G2019S and isogentic control neural networks, 0.1% 
Tetramethylrhodiamine (TMRM, T668, Invitrogen, US) was 
applied for 30 min at 37°C to all MFD chambers, rinsed in PBS, 
and imaged using a Zeiss 510 META Live confocal scanning laser 
microscope in a heated chamber (37°C). This dynamic 
mitochondria stain is readily sequestered by active mitochondria 
with intact membrane potentials. As a baseline measure, three 
image series were taken every 10 min, where an image was taken 
every second for 1 min.

The number and size of the TMRM-labeled mitochondria within 
the axonal tunnels were extracted using a simple image analysis 

pipeline implemented in MATLAB R2018. First, nonuniform 
background illumination was removed by applying a top hat filter, 
before image segmentation by Otsu thresholding was performed. The 
8-connected components were then extracted from the resulting 
binary image. Artifacts at the edges of the images, which tended to 
be large and elongated, were removed by eliminating components if 
their size exceeded 5 μm2 or eccentricity exceeded 0.995. The number 
of mitochondria was then extracted as the number of remaining 
8-connected components in the image. The size of each detected 
mitochondrion was computed from the number of pixels comprising 
each as-detected component. Additional analysis of fixed samples 
from this experiment were analyzed in Fiji using ROI manager. Two 
channel 100× images of fluorescent mitochondria and total alpha 
synuclein in the neural networks were binarized by Otsu thresholding, 
and the area covered by the fluorescence in each channel was selected 
and measured using the ROI manager. A ratio of the area covered by 
mitochondria/total alpha synuclein was calculated and used for 
statistical analysis in Prism8 (GraphPad, California, United States).

To investigate the mitochondrial motility, a semi-automated 
image analysis process implemented in MATLAB R2020a. As stated 
above, each image series used for the analysis consisted of one image 
taken every second for 1 min, and these image series each spanned 
four microtunnels. Four kymographs were created from each image 
series by isolating each microtunnel in the series. Each row of pixels 
in the kymographs represents the average luminance across the width 
of the tunnel, and these rows were stacked to show the time series 
progression of the luminance along the vertical axis. Filtering was 
applied to reduce the presence of vertical stripes in the kymographs, 
which represent stationary mitochondria. Motile mitochondria were 
then identified as slanted lines in the kymographs, and their speeds 
were calculated as the change in distance along the tunnel (horizontal 
axis in the kymograph) divided by the change in time (vertical axis) 
(Supplementary Movies S1, S2).

Electrophysiological investigation

Using an identical MFD design interfaced with a custom-made 
multielectrode array (MEA) (Supplementary Figure S2), the 
electrophysiological activity of the multi-nodal neural networks 
and their response to KA or sham stimulation were recorded 
through the MEA2100 in vitro headstage, interface system and 
software suite (Multi Channel Systems; Reutlingen, Germany). The 
networks were recorded for 7 min durations immediately before 
KA stimulation (baseline), during stimulation, and at 24 h post-
stimulation (10 kHz sampling rate, Butterworth filtering, 2nd 
order, 300–3,000 Hz band pass, with a spike detection threshold 
of-5 standard deviations from the total signal median). For each of 
the two experimental groups (isogenic control neural networks 
and LRRK2 neural networks), 6 MEA-interfaced multi-nodal 
neural networks were recorded and analyzed (3 PBS sham 
stimulated, 3 KA stimulated). All raw data recordings are published 
in Mendeley Data Repository.1

1 https://doi.org/10.17632/dnjv26msvk.4; https://doi.org/10.17632/92568tpp39.4
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Post-processing and analysis of 
electrophysiological data

Electrophysiological data analysis was performed with 
NeuroExplorer 4 (Nex Technologies, Colorado, United States) and 
MATLAB (MathWorks 2020, Massachusetts, United States). Following 
filtering and spike detection, the spikes were binned (1 ms) and the 
electrodes ordered according to chamber or channel of origin. Mean 
firing rates (MFRs) were estimated across conditions and recording 
time points as spikes per second. As a measure of functional 
connectivity, the cross-correlation was estimated through Pearson’s 
correlation coefficient r for concurrent spiking. First, inactive 
electrodes (< 10 spikes per recording) were excluded before a pairwise 
comparison was performed between all electrodes at a maximum 
signal lag of 100 ms. Non-significant correlations (p > 0.001) were 
excluded to reduce the number of spurious connections. The 
correlations between electrodes were finally selected as peak lag (i.e., 
the correlation between two electrodes could for example peak at 
52 ms delay, where this correlation would then be the final connection 
weight). The total network correlation was computed as the mean r 
across electrodes per recording.

Statistical analyses

For both the LRRK2 group and isogenic control group the number 
of independent multi-nodal neural networks is 6, for both regular 
MFDs and MEA-coupled parallels. All statistical analyses was 
performed and graphed using Prism8 (GraphPad, California, 
United States), and the exact statistical test used in each case is stated 
in the results section. Normally distributed datasets were analyzed 
using parametric tests, while non-parametric tests were used if the 
assumption of normality was violated. n = neural networks, n = images 
(neural networks). For the mitochondrial analysis n = axon tunnels 
(neural networks), n = mitochondria (neural networks). In this study, 
the isogenic control neural networks represent what is considered as 
healthy development and function, and the deviation from it a sign 
of pathology.

Results

Establishment of multi-nodal neural 
networks in microfluidic devices

Neural networks derived from both the isogenic control and 
LRRK2-mutated NSCs were successfully established using the MFDs 
(Figure  1, see also Supplementary Figures S2, S3 for detailed 
microfluidic device layout). Following 15 days of differentiation and 
maturation, the neural networks form both groups showed positive 
immunolabeling of neurons (MAP2), with neuron-specific 
microtubules (beta-ΙΙΙ tubulin) and mature axons (neurofilament 
heavy) containing both pre- and post-synaptic elements (Piccolo and 
PSD95, respectively), as well as expressing calmodulin-dependent 
protein kinase II (CamKII), a marker related to synaptic connectivity 
and long-term potentiation. Importantly, both kainic acid receptors 
(GRIK5) and AMPA receptors (GluR1) were also present 
(Figures 1D,E,I).

LRRK2 G2019S neurons self-organize into 
networks with aberrant neuritic outgrowth 
and mitochondrial dynamics

The morphology of the neurites in the multi-nodal neural 
networks was evaluated by fluorescent labeling of cytoskeletal f-actin 
filaments (Phalloidin), and pre- and post-synaptic markers (anti-
Piccolo and anti-PSD95 antibodies). Here, neurites were observed 
overcrowding the synaptic compartments of the LRRK2 neural 
networks. These thick bundles of neurites required image stacks up to 
44 μm to capture the entirety of the structures. By comparison, the 
neurites in isogenic control networks required 15 μm stacks (Figure 2). 
Within the synaptic compartments of the LRRK2 G2019S neural 
networks neurites were observed crossing perpendicular to the axonal 
tunnels (Figure 2; Supplementary Figure S3). Some neurite bundles 
were observed to protrude into the synaptic inlet and outlet chambers, 
suggesting random neuritic outgrowth (Supplementary Figure S4). 
The neurites of the isogenic control neural networks were less densely 
packed, did not protrude into the inlet and outlet chambers, and 
displayed prominent directional, fasciculated outgrowth (Figure 2). 
These differences in self-organized network morphology and neurite 
outgrowth profile, was consistently observed across all assays 
throughout the experiment, highlighting differences between the 
groups in terms of inter-nodal structural connectivity 
(Supplementary Figure S3).

Mitochondria were labeled with TMRM and visualized live in 
the multi-nodal neural networks. Image stacks (single z-stacks) 
containing all of the TMRM-labeled mitochondria within a 
representative segment of the synaptic compartment were obtained 
for both the LRRK2 (n = 6) and isogenic control (n = 6) neural 
networks. In Figures 3A,B volumetric figures produced from the 
TMRM z-stacks reflects and corroborates the qualitative observation 
made in Figure 2 and Supplementary Figure S3 of highly distinct 
network morphologies, with significant differences in neurite 
profiles between the groups. Height measures calculated from the 
z-stacks showed a statistically significant difference between the 
LRRK2 and control neural networks (two-tailed, independent 
samples t-test, t10 = 7.96, p < 0.0001), with the LRRK2 neural 
networks containing synaptic compartment mitochondria spanning 
on average over 3 times the height of the control neural networks 
(meanLRRK2 = 35.38 μm vs. meancontrol = 10.83 μm) (Figure 3D).

For each neural network, the fluorescently labeled mitochondria 
contained within 145-μm long segments (Figure  4A) of different 
axonal tunnels were used for further analysis. Here, the groups were 
found to contain a small, but statistically significant difference in 
number of mitochondria (Mann Whitney U = 659.6, nLRRK2 = 40(5), 
ncontrol = 48(6), p = 0.0114,), with a median count of 164.5 mitochondria 
per tunnel for the LRRK2 G2019S compared to 136 for the controls 
(Figure 4D). However, as suggested by a supplementary investigation 
of fluorescently labeled mitochondria in fixed samples 
(Supplementary Figure S5), this difference is likely more indicative of 
a greater number of neurites containing mitochondria in the axonal 
tunnels of the LRRK2 G2019S networks rather than a greater number 
of mitochondria being contained within each neurite.

Furthermore, the quality of the live image series from 3 LRRK2 
G2019S and 5 isogenic healthy control neural networks allowed for 
conversion into kymographs and was used for assessing the 
mitochondria dynamics within the axonal tunnels. Each kymograph 
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was generated from 60 images (1 image/s taken consecutively for a 
minute) (Figures 4B,C; Supplementary Movies S1, S2 for example 
kymographs). Investigation of mitochondrial dynamics revealed a 
significantly greater ratio of motile mitochondria in the axonal tunnels 
of LRRK2 G2019S neural networks compared to the healthy controls 
(mean ratio of 0.139 vs. 0.06, t30 = 3.899, ncontrol = 20 (5), nLRRK2 = 12 (3), 
p = 0.0005) (Figure  4E). Furthermore, the individual motile 
mitochondria of the LRRK2 networks were moving at significantly 
greater speeds compared to those of the healthy controls (mean 
1.296 μm/s vs. 0.639 μm/s, Mann Whitney U = 56, ncontrol = 46 (5), 
nLRRK2 = 36 (3), p < 0.0001) (Figure 4G). When it comes to direction of 
movement, the mitochondria of the control neural networks tended 
to be more balanced, with most tunnels displaying a 0.4–0.6 ratio of 
anterograde mitochondrial movement. By contrast, the mitochondria 
of the LRRK2 neural networks had clear directional tendencies, with 
movements skewed either anterogradely or retrogradely (t18 = 2.229, 
ncontrol = 11 (5), nLRRK2 = 9 (3), p = 0.0388) (Figure 4F). Finally, a greater 
percentage of tunnels in the control neural networks displayed 
mitochondria with short, bidirectional movements (fluctuating back 

and forth around the same point) (30.5%) compared to the LRRK2 
neural networks (19.5%). However, this final note is stated merely as 
an observation, as this particular pattern of movement was not 
faithfully captured by the kymographs, and thus might 
be underrepresented.

Transient perturbation reveals significant 
differences in immediate mitochondrial 
response, as well as in neuritic- and 
synaptic remodeling 24-h post 
perturbation between LRRK2 and healthy 
control neural networks

To investigate whether the number of mitochondria was 
influenced by a transient perturbation (KA), the TMRM labeled 
mitochondria contained within the axonal tunnels of both control and 
LRRK2 neural networks were imaged live at baseline and immediately 
after KA or PBS (sham stimulation) addition (Figures 5A,B). The same 

FIGURE 1

Immunocytochemistry of multi-nodal neural networks in microfluidic devices. Following 15  days of NSC differentiation and maturation, 
immunocytochemistry indicated the presence of mature neural networks in the microfluidic device (MFD). (A) Tiled image of a fluorescently labeled 
cortical multi-nodal neural network within a MFD, overlaid by a schematic of the design. (B,C) Brightfield images of the developing multi-nodal neural 
network, showing the area containing the axon tunnels, synaptic compartment, and cell chamber, respectively. (D) Fluorescently labeled LRRK2 
G2019s network with markers for neurons (MAP2, green), neuron specific microtubules (beta-ΙΙΙ tubulin, red), and kainic acid receptors (GRIK5, 
magenta) together with the counterstain Hoechst (blue), with (E) showing equivalent markers in a healthy isogenic control neural network (10  μm scale 
bar). The remaining images show the neural networks fluorescently labeled with markers for (F) neurons (MAP2, red) expressing calmodulin-dependent 
protein kinase 2 (CaMKΙΙ, green), (G) with presynaptic vesicles (Piccolo, green), postsynaptic densities (PSD95, red) and F-actin (Phalloidin, blue) 
expressed in the axon tunnels and synaptic area, (H) neuronal specific microtubules (beta-ΙΙΙ tubulin, red) together with CaMKΙΙ (green), and 
(I) neurofilament heavy (green) together with AMPA receptors (red) and Hoechst counterstain. 50  μm scale bars.
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FIGURE 2

Outgrowing neurites overcrowding the synaptic compartments of the LRRK2 G2019S multi-nodal neural networks. (A,B) Show control neural 
networks fluorescently labeled with pre- and postsynaptic markers (piccolo, green and PSD95, red, respectively) and a cytoskeletal f-actin filament 
marker (Phalloidin, blue). (C,D) Display equivalent images from LRRK2 neural networks with neurites overcrowding the synaptic compartment. (Ci,Di) 
Show 10  μm thick z-stacks compiled into (C,D), respectively. (E,F) Show LRRK2 neural networks labeled with phalloidin, where the volumetric sideview 
(F) demonstrates a neurite bundle thickness of 44  μm. 30  μm scale bar.

FIGURE 3

Volumetric comparison of LRRK2 and control neurites crossing the synaptic compartment. (A,B) Show volumetric figures obtained from z-stack 
images of neurites after TMRM labeling. (A) LRRK2 neurites (height  =  44  μm). (B) Healthy control neurites (height  =  9  μm). (C,E) Show single slices within 
a z-stack from (A,B), respectively. (D) Graph showing a three-fold mean height measure of volumetric figures (p  <  0.0001). 30  μm scale bar.
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area of the same axonal tunnels was imaged at each timepoint for each 
network. A significant difference was found by Wilcoxon matched-
pairs signed ranks test [pairs = 24 (3), p = 0.0432] for the control neural 
networks, with a reduced number of mitochondria measured after the 

KA stimulation, but not for the LRRK2 networks [pairs = 24 (3), 
p = 0.1578]. For the networks receiving sham stimulation, significantly 
more mitochondria were found at the section timepoint for the 
LRRK2 neural networks [pairs = 16 (2), p = 0.029], while no difference 

FIGURE 4

Comparison of mitochondrial distribution and dynamics in LRRK2 vs. healthy control neurites. (A) Shows an axonal tunnel containing TMRM labeled 
mitochondria. (B,C) representative kymographs from a healthy control and LRRK2 neural network, respectively. Slanted lines indicate motile 
mitochondria. (D) Difference in number of TMRM labelled mitochondria (p  =  0.0114), in (E) ratio of motile mitochondria within the axon tunnels 
(p  =  0.0005), and in (F) directionality (p  =  0.0388) between TMRM-labeled mitochondria in LRRK2 vs. healthy control neurites. (G) Difference in speed of 
individual motile mitochondria of LRRK2 and control neural networks (p  <  0.0001). *p  <  0.05, ***p  <  0.0005, ****p  <  0.00005, (box and whiskers are 
minimum to maximum, all data points included), and n  =  axon tunnels (neural networks) for all panels, except for (G) where n  =  motile mitochondria 
(neural networks). Speed  =  Δhorisontal axis/Δ vertical axis, 20  μm scale bar.

FIGURE 5

Immediate mitochondrial response following transient perturbation. (A) The healthy control neural networks were found to contain significantly fewer 
mitochondria immediately after KA stimulation compared to the baseline (p  =  0.0432), while the LRRK2 neural networks, (B) showed no such difference 
after KA stimulation. After sham stimulation, however, the LRRK2 neural networks showed a statistically significant difference (p  =  0.029), with more 
mitochondria being measured after PBS addition. (C,D) Show the ratio of motile vs. stationary mitochondria measured at baseline and immediately 
after KA or PBS addition, for the control and LRRK2 networks, respectively. No significant difference was found after PBS or KA stimulation for the 
control networks, while the LRRK2 networks showed a significant reduction in motile mitochondria after the KA stimulation only (p  =  0.0155) Graphs 
shown in (A–D) are box and whisker plots (min to max bars, all data points included). * p  < 0.05, n  =  axon tunnels (neural networks).

https://doi.org/10.3389/fncel.2024.1366098
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Valderhaug et al. 10.3389/fncel.2024.1366098

Frontiers in Cellular Neuroscience 09 frontiersin.org

was found for the healthy control neural networks [pairs = 24 (3), 
p = 0.214]. The mitochondrial motility (ratio of motile vs. stationary 
mitochondria) was also assessed at these timepoints (Figures 5C,D). 
No significant difference was found after perturbation or sham 
stimulation for the control neural networks [paired t-test, two tailed: 
p = 0.0613, t = 2.084, df = 11 (3) for the PBS condition, and p = 0.1171, 
t = 1.715, df = 10 (3) for the KA condition]. However, the LRRK2 
networks showed a significant reduction in motile mitochondria after 
the KA stimulation only [paired t-test, two-tailed, p = 0.0155, t = 3.179, 
df = 7 (2)].

24 h post perturbation or sham stimulation, high-magnification 
microscopy images of the multi-nodal neural networks 
fluorescently labeled with pre- and postsynaptic markers (anti-
Piccolo and anti-PSD95) were used for morphological 
investigations of the neurites in the synaptic compartment, and for 
quantification of synaptic contacts (Figures  6A–F). Prominent 
morphological differences were observed in the healthy isogenic 
control neural networks following perturbation compared to the 
sham condition. The healthy controls had substantially fewer 
synaptic boutons (medianKA = 6.32 vs. medianPBS = 10.24, 
p = 0.0004), and substantially larger synaptic contact areas 
(medianKA = 1.651 μm vs. medianPBS = 0.1915 μm, p = 0.0017) after 
KA (Figures 6C,D). Due to the sheer volume of neurites in the 
LRRK2 neural networks it was not feasible to investigate the 
morphology of single neurites (counting the synaptic buttons) for 
comparison (Figure 6E). To evaluate the synaptic contact size, the 
bottommost image slice from each image-stack was used for 
quantification. No significant difference was found in the size of 
synaptic contact area between the KA and PBS condition 

(medianKA = 0.1060 μm vs. medianPBS = 0.1190 μm, p = 0.9506) of 
the LRRK2 G2019S neural networks (Figure 6F).

The electrophysiological activity of 6 multi-nodal neural networks 
from each group (ncontrol, nLRRK2 = 6) was also investigated using MFDs 
interfaced with MEAs in parallel assays. At 15 days post seeding, 
electrophysiological recordings were obtained for all networks were 
immediately before (baseline) and at 24 h after administration of PBS 
or KA. As a basic functional evaluation, the average mean firing rate 
and total cross-correlations were calculated. The healthy isogenic 
Control + KA group displayed very low mean firing rates (MFRs) 
measures at both timepoints (MFRbaseline = 0.082 ± 0.249 spikes/s and 
MFR24h post = 0.011  ±  0.012 spikes/s). However, all other groups 
displayed comparable baseline MFRs, within the range of 0.953–1.143 
spikes/s and with standard deviations between 1.764–1.963. At 24 h 
after PBS or KA, all networks displayed the same trend, with lower 
MFRs, compared to baseline (0.393–0.499 spikes/s ± 0.921–1.019). No 
statistically significant difference in MFR was found by two way 
repeated measures ANOVA [F(3,16) = 0.066, p = 0.977] (Figure 6G).

Furthermore, the total network correlation (Pearson’s r) was 
calculated for each group, where the relative change in Pearson’s r 
between the baseline and 24 h timepoint is displayed graphically in 
Figure  6H. Repeated measures two way ANOVA revealed no 
statistically significant differences in total network correlation 
following either KA or sham stimulations [F(3, 16) = 0.149, p = 0.929]. 
Nonetheless, with the notable exception of the isogenic Control + KA 
group, which had a decrease in total network correlation (to 70%, 
from rbaseline = 0.013 to r24h post = 0.009), all groups displayed an increase 
in total network correlation at the 24 h post timepoint compared to 
their baselines: ControlPBS to 459% (from rbaseline = 0.004 to r24h 

FIGURE 6

Neural network response 24  h after perturbation. (A–F) show data from cortical neural networks fluorescently labeled with pre- (Piccolo, green) and 
postsynaptic (PSD95, red) markers 24  h post KA or sham (PBS) stimulation. Control neural networks from the KA and PBS condition are shown in (A,B), 
respectively. Similarly, (E) shows an LRRK2 neural network from the KA stimulated condition, illustrating the lower level of morphological detail 
available due to the density of neurites. (C) Shows a significant reduction in neuritic boutons (p  =  0.0004) an (D) significant enlargement in synaptic 
contact size (Piccolo/PSD95 co-occurrence) (p  =  0.0017), 24  h post KA stimulation compared to sham stimulation (PBS) in the healthy control 
networks. (F) No significant difference was found in synaptic contact size between the KA and sham stimulation condition in the LRRK2 networks. 
(G) Displays a bar graph of mean firing rate (with SD bars) measured in the MEA-coupled MFDs for each group at baseline and 24  h post perturbation. 
No statistically significant difference was found (p  =  0.977). (H) Line graph displaying the relative change in total network correlation (Pearson’s r) from 
baseline to 24  h post stimulation, with no statistically significant difference found (p  =  0.929). For (C,D,F) n  =  images (neural networks), ns p  > 0.05, 
**p  <  0.005, ***p  <  0.0005 (median with range bars, all data points included). 10  μm scale bars.
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post = 0.019), LRRK2PBS to 148% (from rbaseline = 0.008 to r24h post = 0.013), 
and LRRK2KA to 114%, (from rbaseline = 0.006 to r24h post = 0.008).

Discussion

Studies using both in vitro and in vivo models of PD suggest 
that axonal dysfunction and synaptic alterations represent the 
earliest detectable signs of the disease (MacLeod et al., 2006; Cheng 
et al., 2010; Dagda et al., 2014) and that initiation of pathology at 
the axon terminals might signify the start of the retrograde 
degeneration of the neurons (Tagliaferro and Burke, 2016; Sheehan 
and Yue, 2018). Although extensively reported on Smith et  al. 
(2005), West et al. (2005), MacLeod et al. (2006), Smith et al. (2006), 
Plowey et  al. (2008), Gillardon (2009), Dachsel et  al. (2010), 
Meixner et al. (2011), Cherra et al. (2013), Habig et al. (2013), and 
Sepulveda et al. (2013), the specific involvement of the LRRK2 gene 
in neurite process morphology remains obscure. We  found the 
LRRK2 G2019S neural networks to have a much greater volume of 
neurites within the axonal tunnels and synaptic compartments, as 
well as random outgrowth profiles compared to the healthy isogenic 
control. This result was corroborated through several different 
imaging approaches, i.e., immunocytochemistry, bright field 
microscopy, Calcein-AM labeled cells, as well as live imaging of 
TMRM labeled mitochondria. In contrast to our findings, the 
specific G2019S PD-associated LRRK2 mutation has generally been 
found to result in a progressive reduction of neurite length and 
branching (West et al., 2005; Greggio et al., 2006; MacLeod et al., 
2006; Smith et  al., 2006; Plowey et  al., 2008; Chan et  al., 2011; 
Nguyen et al., 2011; Winner et al., 2011; Sanchez-Danes et al., 2012; 
Cherra et al., 2013; Reinhardt et al., 2013; Dagda et al., 2014; Qing 
et  al., 2017), due to an increase in kinase activity (with one 
exception demonstrating non-impaired neurite morphology 
(Dachsel et  al., 2010)). Moreover, knockdown and knock-out 
models resulting in LRRK2 deficiencies present with a progressive 
increase in neurite length in some studies (MacLeod et al., 2006; 
Dachsel et  al., 2010; Winner et  al., 2011; Habig et  al., 2013; 
Sepulveda et al., 2013), while others find the opposite (Gillardon, 
2009; Meixner et al., 2011).

The morphology of neurites and plasticity of synapses is 
affected by mitochondrial function as the availability of 
mitochondria is both essential and limiting for the support and 
maintenance of these structures (Li et  al., 2004). A loss or 
impairment in dendritic mitochondria is a central feature of PD 
pathogenesis (Bose and Beal, 2016; Verma et al., 2017; Singh et al., 
2019), and other studies on the particular LRRK2 G2019S variant 
have indicated compromised mitochondrial function (Cooper 
et al., 2012; Sanders et al., 2014; Hsieh et al., 2016; Schwab et al., 
2017; Bose and Beal, 2019; Ludtmann et  al., 2019). Here, the 
mitochondrial dynamics analysis showed that the LRRK2 G2019S 
neural networks contained about twice the ratio of motile 
mitochondria (mean 0.139 vs. 0.06), moving at about twice the 
speed (mean 1.296 μm/s vs. 0.639 μm/s), and with clear directional 
tendencies, compared to the mitochondria of the healthy isogenic 
control neural networks. Our baseline measurements thus point 
toward an overall higher metabolic cost of LRRK2 G2019S neural 
networks compared to healthy isogenic controls. These 
measurements are in line with the results from two other 

comparable studies, which also found an increase in mitochondrial 
motility in iPSC-derived neurons carrying the G2019S LRRK2 
mutation compared to controls (Cooper et al., 2012; Schwab et al., 
2017). Although their study was performed after 4–5 weeks of 
differentiation, Cooper et  al. also reported an increase in 
mitochondrial velocity, with the LRRK2 mitochondria moving at 
about 0.7 μm/s versus 0.4 μm/s for the controls (Cooper et  al., 
2012). Moreover, in a study by Othonen and colleagues, RNA 
sequencing of microglia-like-cells (iMLCs) derived from iPSCs 
carrying the LRRK2-G2019S mutation showed alterations in 
pathways related to oxidative stress, which resulted in deficits in 
mitochondrial respiration (Ohtonen et  al., 2023). In further 
support of our findings, these authors also report a higher oxygen 
consumption rate in LRRK2-G2019S carrying iMLCs compared to 
isogenic controls, resulting in higher respiration at the basal state.

Interestingly, previous studies investigating neuronal axonal 
transport kinetics, both in vitro and in vivo (Lewis et al., 2016), as 
well as in networks structured using microfluidic devices (Moutaux 
et al., 2018), have found mitochondrial dynamics to decrease with 
neural network maturation and development, and mitochondrial 
immobilization and stability to be important hallmarks of mature 
axons. Thus, the in vitro neural network traits displayed by the 
LRRK2 G2019S networks in our study are more prominent at very 
early time points in general network development. This might 
further suggest an impairment in network development, a notion 
supported by our observation of differential growth cone profile at 
very early stages of LRRK2 G2019S neuron differentiation compared 
to controls. Altered neural growth cone morphology and number 
has been found by others after knocking down LRRK2 (Habig et al., 
2013). Importantly, the growth cone has pronounced influence on 
mitochondrial transportation, as nerve growth factor (NGF) 
signaling from immature axons regulates mitochondrial motility 
(Morris and Hollenbeck, 1993; Chada and Hollenbeck, 2003; Chada 
and Hollenbeck, 2004; Saxton and Hollenbeck, 2012). Furthermore, 
impaired axonal growth and guidance would explain what is 
observed as aberrant (and consequently inefficient) network wiring 
in the LRRK2 G2019S networks, with large numbers of neurites 
crossing perpendicular to the axonal tunnels in the synaptic 
compartment. Based on the general structure–function 
relationships of neural networks (Valderhaug, 2020), resulting 
aberrant wiring might again affect neurotransmission efficacy, 
causing less efficient signal propagation within the network, again 
affecting the overall energy status of the neuron and consequently 
the motility and distribution of mitochondria (Saxton and 
Hollenbeck, 2012).

Taken together, the baseline results indicate that the LRRK2 
G2019S neurons self-organize into multi-nodal neural networks 
with inefficient wiring (aberrant neurite morphology) as well as 
increased mitochondrial dynamics, relative to the healthy isogenic 
control neural networks. Thus, both micro-and mesoscale baseline 
features point toward an overall heightened metabolic cost 
associated with the LRRK2 G2019S mutation, suggesting a network 
phenotype more vulnerable to perturbation.

The multiple-hit hypothesis of PD suggests that the development 
of the disease results from a combination of factors, rather than a 
single cause. This hypothesis aligns with the understanding that PD 
is a complex neurodegenerative disorder with a multifactorial 
etiology, encompassing genetic predispositions, environmental 
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exposure, and their interactions may contribute to the onset and 
development of the disease (Carvey et al., 2006; Sulzer, 2007; Patrick 
et al., 2019). Based on our baseline results and the variability in 
disease progression in patients with LRRK2 G2019S associated PD, 
it is reasonable to assume that some phenotypic expression of the 
mutation may become apparent only following a significant or 
stressful challenge (Benson et al., 2018). Following the transient 
perturbation (KA) in our study, the healthy isogenic control neural 
networks revealed greater responses in almost all measures: a 
significant immediate reduction in number of neuritic 
mitochondria, as well as a more prominent modification in neurite 
morphology and synaptic remodeling, and the only measured 
decrease in total network correlation, 24 h post stimulation, relative 
to the LRRK2 neural networks. The mitochondrial motility was the 
only measure in which the LRRK2 neural networks displayed a 
greater response, with a significant reduction in mitochondrial 
motility immediately following perturbation, while the control 
neural networks showed no change.

The highly significant difference found in neurite morphology 
in the control neural networks with a retraction/reduction of 
boutons observed in the synaptic chambers 24 h post KA 
stimulation, suggests neurite remodeling in response to the 
transient perturbation. At the same time, the number of synapses 
(co-occurrence of pre- and post-synaptic markers) in the control 
neural networks was not significantly altered, but the size of their 
overlapping area was, with much larger synaptic areas measured 
24 h after overexcitation. This rapid activity-dependent alteration in 
dendritic spine morphology is likely an expression of a regular 
mechanism for converting short-term synaptic activity to long term 
lasting changes in connectivity and function. In line with our 
baseline measurements, the size range of the postsynaptic density 
is usually within 0.2–0.5 μm, and can be localized to both spiny and 
non-spiny structures. Furthermore, this area contains both the 
kainate and AMPA receptors (Sheng, 2001), i.e., glutamatergic 
receptors targeted by our stimulation. During synaptic plasticity, 
the PSD increases in size in response to potentiation events, and the 
glutamate receptors contained within can be modulated by neural 
activity on a timescale from minutes to weeks (Sheng, 2001). In 
contrast to the observed structural changes in the control neural 
networks, no significant alteration in synaptic number or size was 
found in the synaptic compartment of the LRRK2 mutated neural 
networks 24 h after KA stimulation, suggesting impaired 
synaptic plasticity.

Importantly, this goes hand in hand with our electrophysiology 
results, where the KA-stimulated isogenic control neural networks 
were the only ones to display a relative decrease in total network 
correlation at the 24 h post timepoint as well, while all other 
conditions displayed a relative increase. Measures of MFR were 
comparable at all analyzed timepoints. This is in line with the 
findings of another highly relevant study, where the average 
neuronal activity per se was found not to be sufficiently informative 
to reveal disease-related alterations (Carola et al., 2021). As the 
transient excitatory event indiscriminately excites related 
connections that are both functional and non-functional, and likely 
produces activity-dependent synaptic modifications at both local 
and distal network sites (Bi and Poo, 2001), a decrease in total 
correlation could be  expected after a “healthy” plastic network 
response to such an event.

Furthermore, other studies have found increased vulnerability 
to oxidative stress, higher levels of mtDNA damage, and impaired 
mitochondrial movement as a result of the G2019S mutation, 
indicating compromised mitochondrial function (Cooper et al., 
2012; Sanders et al., 2014; Hsieh et al., 2016; Schwab et al., 2017; 
Bose and Beal, 2019). Our baseline measurements indicated 
mitochondrial activity of greater metabolic cost for the LRRK2 
neural networks, which in turn would make these networks more 
vulnerable to perturbation. As already noted, alterations in 
mitochondrial function in turn affect the plasticity of synapses and 
morphology of neurites (Li et al., 2004). The energy status of the 
neuron greatly affects the motility and distribution of mitochondria 
(Saxton and Hollenbeck, 2012), and a relocation of the mitochondria 
toward either the soma or the presynaptic terminal during or 
following an overexcitation event is to be  expected as this 
corresponds to the locations of greatest metabolic demand at the 
time. This fits with our investigations, where a reduction in number 
of mitochondria was found in the neurites of the control neural 
networks immediately following the induced excitatory event. The 
motility ratio of these mitochondria in turn remained unchanged, 
likely reflecting a regular response with mitochondria being 
recruited to other areas with greater metabolic demand. The LRRK2 
neural networks on the other hand showed the opposite result, with 
no change in number of mitochondria and a significant decrease in 
mitochondrial motility immediately after the excitatory event. This 
fits well with our finding of substantial neurite and synaptic 
remodeling in the control neural networks only, as the mitochondria 
of the LRRK2 neural networks seemingly become less mobile in 
response to the perturbation rather than being efficiently recruited 
for energy metabolism and remodeling at the stimulated synapses. 
This also aligns well two recent in vivo studies, where the LRRK2 
G2019S mutation was linked to impaired experience-dependent 
plasticity (Matikainen-Ankney et  al., 2018), abnormal synaptic 
changes and a lack of adaptive change in intrinsic excitability 
(Guevara et al., 2020), in response to social stress.

The reduced motility and unaltered number of active 
mitochondria observed in the neurites of the LRRK2 neural 
networks could be a consequence of the aberrant structural network 
wiring, with altered signal propagation leading to impaired 
recruitment of mitochondria, and/or it could be due to impaired 
mitochondrial transport and/or function. Nevertheless, together, 
the baseline elevated metabolic cost and the lack of both structural 
and functional network alterations following perturbation, 
produces a network seemingly resilient to change, associated with 
the LRRK2 G2019S mutation. In the long term, this inefficient and 
energy-demanding phenotype renders the network more vulnerable.

Although graph-theory based analyses were beyond the scope 
of the current study, our findings are highly relevant in the context 
of other studies where this type of analysis was applied to either 
electrophysiology or fluorescent calcium imaging data. Exaggerated 
small-worldness, in particular, is a network structure associated 
with high metabolic cost, and inefficient, noisy information transfer 
between network regions (Bassett and Bullmore, 2017). Prominent 
small-world organization has been identified to underly the 
metabolic patterns and pathological alterations in brain network 
structure and function of PD-patients using neuroimaging data 
(Niethammer and Eidelberg, 2012; Ko et al., 2018; Schindlbeck and 
Eidelberg, 2018; Schindlbeck et  al., 2019). Additionally, recent 
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findings by our group using in vitro electrophysiological recordings 
from human neural networks with inherent neurodegenerative 
pathology show that small-world propensity associates with 
increased metabolic demands (Fiskum et al., 2024). This renders 
neural networks with predisposing genetic mutations particularly 
vulnerable to neurodegenerative processes, which can 
be precipitated by transient external perturbation. Furthermore, 
when compared to GBA variants of PD, the phenotypically slower 
progression of disease at early stages in LRRK2-PD can be explained 
by the gain of functional connections found in central network 
cores (linking the cerebellum and putamen), which could 
compensate and provide robustness against early symptomatic 
expression in prodromal stages (Schindlbeck et al., 2019). In line 
with this, in a relevant in vitro study by Carola and colleagues 
(Carola et al., 2021), information theory analysis was applied to 
fluorescence calcium imaging data. It showed that LRRK2 PD 
neural networks to have large, strongly linked functional 
communities, with lower average connectivity, ultimately producing 
a tendency toward greater synchrony. Thus, the overall network 
resilience to change in response to perturbation displayed by the 
LRRK2-G2019S neural networks in our study, compared to the 
healthy controls, reflects both underlying impairments and 
compensatory mechanisms.

Summary

In summary, our study points toward an overall heightened 
metabolic demand, with aberrant morphology and mitochondrial 
dynamics, related to the G2019S LRRK2 mutation. Furthermore, these 
alterations seem to cause a network resilience to perturbation at early 
time points, as transient excitation revealed a lack of neurite 
remodeling- and synaptic plasticity response in LRRK2 G2019S 
mutated neural network compared to healthy isogenic controls. 
Whether such a resilience is adaptive or maladaptive, compensatory 
or pathological might depend on the experimental timeframe, and 
might cause different functional outcomes depending on PD disease 
stage. Thus, advanced multidisciplinary approaches such as ours, 
where several relevant methodologies are combined, are needed if 
we are to progress the field. The ability to recapitulate the relevant 
structural and functional dynamics of these networks at the microscale 
and mesoscale level opens up for entirely new avenues in modeling 
PD, and by the same token, other neurodegenerative diseases, 
including amyotrophic lateral sclerosis and Alzheimer’s disease. As 
such, the advanced modeling approach and new findings presented in 
this study are highly relevant in the quest for elucidating underlying 
disease mechanisms. Equally importantly, the relevant insights are 
fundamental for formulating new hypotheses, as well as identifying 
time window(s) and mode(s) of therapeutic intervention, with a view 
to clinical translation.

Future perspectives

Interestingly, in a recent seminal study using alpha-synuclein 
seed amplification assay (SAAs) to diagnose PD with a staggering 
93% accuracy, the LRRK2 PD subgroup had one of the lowest 
proportions of positive SAA test (67.5%) (Siderowf et al., 2023). This 

finding echoes the 1/3 frequency of LRRK2 PD individuals reported 
to lack alpha-synucleinopathy (Lewy pathology) in post-mortem 
studies (Kalia et  al., 2015; Schneider and Alcalay, 2017), and 
represents a peculiarity in disease etiology which warrants further 
elucidation. In this context, we have shown in a previous study that 
this approach can be used to investigate the early functional changes 
associated with alpha-synuclein proteinopathy in engineered human 
neural networks (Valderhaug et al., 2021). It is thus highly feasible 
and relevant to combine such advanced multidisciplinary approaches 
to investigate the micro-and mesoscale aspects of LRRK2 human 
neural networks with a focus on the effect and development of 
alpha-synucleinopathy in the future. Furthermore, analogs of the 
validated PD network biomarker – PDRP (Parkinsons disease 
related pattern) (Niethammer and Eidelberg, 2012) and PDCP 
(Parkinsons disease cognitive pattern) (Schindlbeck and Eidelberg, 
2018)– could be applied to the electrophysiological data using graph 
theory, and utilized to investigate disease specific network patterns, 
such as small-worldness (Bassett and Bullmore, 2017; Ko et al., 2018; 
Schindlbeck et al., 2019; Valderhaug et al., 2019; Valderhaug, 2020; 
Fiskum et  al., 2024), in advanced cellular models based on 
engineered neural networks. Furthermore, fluorescence imaging can 
be applied to enable to visualize neuronal activity for functional 
characterization in such disease models. Such an approach was 
successfully applied in the aforementioned study by Carola and 
colleagues (Carola et al., 2021). Using information theory to analyze 
calcium activity data, revealed distinct activity patterns separating 
iPSC derived neuronal cultures from those of LRRK2 PD patients 
from isogenic controls and healthy donors. Furthermore, 
combination of calcium imaging with MEA-based electrophysiology 
can in future studies provide a more comprehensive profile of 
network dynamics at high spatial and temporal resolution, 
respectively. Such modeling approaches may thus provide a means 
to pinpoint structural and functional network sources that might 
be  causally related to phenotypic variation, for instance in 
treatment response.
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