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The cortico-striatal circuitry in
autism-spectrum disorders: a
balancing act
Jean-Jacques Soghomonian*

Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States

The basal ganglia are major targets of cortical inputs and, in turn, modulate

cortical function via their projections to the motor and prefrontal cortices. The

role of the basal ganglia in motor control and reward is well documented and

there is also extensive evidence that they play a key role in social and repetitive

behaviors. The basal ganglia influence the activity of the cerebral cortex via two

major projections from the striatum to the output nuclei, the globus pallidus

internus and the substantia nigra, pars reticulata. This modulation involves a

direct projection known as the direct pathway and an indirect projection via the

globus pallidus externus and the subthalamic nucleus, known as the indirect

pathway. This review discusses the respective contribution of the direct and

indirect pathways to social and repetitive behaviors in neurotypical conditions

and in autism spectrum disorders.

KEYWORDS
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Introduction

It is well documented that the cortico-striatal projection is altered in experimental
models of Autism Spectrum Disorders (ASD) and in humans with ASD (reviews in
Shepherd, 2013; Fuccillo, 2016; Kuo and Liu, 2019; Masuda et al., 2019; Li and Pozzo-Miller,
2020; Leisman et al., 2023). Imaging studies have found both hyper- and hypo-connectivity
of cortico-striatal projections but most studies at the cellular level in rodent models suggest
that cortico-striatal projections are depressed in ASD (reviews in Shepherd, 2013; Fuccillo,
2016; Masuda et al., 2019; Leisman et al., 2023). Cortico-striato-thalamo-cortical pathways
are organized into distinct parallel limbic, associative and motor circuits (Alexander and
Crutcher, 1990; Haber, 2003; Kim and Hikosaka, 2013; Lee et al., 2020). Limbic circuits
primarily involve projections from the hippocampus, amygdala and limbic-associated
cortices to the ventral-most striatum (i.e., nucleus accumbens) and are involved in reward
and motivational aspects of behavior. Associative circuits primarily involve projections
from prefrontal and other associative cortical areas to dorso-medial striatal regions (and
anterior regions in primates) and have been associated with action-value learning and
goal-directed behavior. Motor circuits primarily involve projections from motor and pre-
motor cortices to dorso-lateral striatal regions (and posterior regions in primates) and have
been associated with automatic movements and habits (e.g., Balleine et al., 2007; Kim and
Hikosaka, 2013). There is also evidence that these circuits interact with each other and may
contribute to several aspects of action-value learning and motor behavior. For instance,
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both the nucleus accumbens and the dorsomedial striatum are
involved in the motivational and performance aspects of cued and
non-cued generated, sequential actions (Fraser et al., 2023). The
cerebral cortex controls basal ganglia outputs by modulating the
activity of the so-called direct and indirect pathways in each of these
circuits (reviews in Surmeier et al., 2010; Lanciego et al., 2012).
Evidence for a contribution of the indirect pathway to repetitive
behaviors in ASD has been discussed elsewhere (i.e., Lovinger,
2017; Tian et al., 2022). The objective in this review is to discuss
the relative contribution of the direct and indirect pathways to
behaviors relevant to ASD.

Cortical control of striatal neurons

The direct pathway involves a projection from medium spiny
neurons (dMSNs) to the globus pallidus internus (Gpi or rodent
entopeduncular nucleus) and pars reticulata of the substantia nigra
(SNr) and a projection from medium spiny neurons (iMSNs)
to the globus pallidus externus (Gpe or rodent globus pallidus)
(review in Lanciego et al., 2012). It is noteworthy that MSNs of
the nucleus accumbens primarily project to limbic regions and
the ventral pallidum and mesencephalon (review in Groenewegen
et al., 2016). In addition, dMSNs exert a key control on both
the ventral pallidum and ventral mesencephalon while iMSNs
primarily project to the ventral pallidum (Kupchik et al., 2015).
Based on the circuitry, the concept of direct and indirect pathway
in the nucleus accumbens has been re-evaluated (Kupchik et al.,
2015). Dopamine is a key modulator of excitatory corticostriatal
and thalamostriatal projections. It enhances the responsiveness
of dMSNs to glutamatergic inputs by binding to dopamine D1
receptors whereas it depresses the responsiveness of iMSNs by
binding to D2 receptors (Cepeda et al., 2001; Surmeier et al.,
2010; Planert et al., 2013). Some striatal projection neurons co-
express the two types of receptors and/or the D3 receptor but their
function is unclear (Gagnon et al., 2017; Gayden et al., 2023 also
reviewed in Soghomonian, 2016). Current evidence indicates that
the basal ganglia direct and indirect pathways are components of
different cortico-striatal circuits, which may play distinct roles in
ASD behavioral phenotypes. Earlier gene expression studies have
shown that the sensorimotor cortex preferentially activates iMSNs
(Berretta et al., 1997; Parthasarathy and Graybiel, 1997; Miyachi
et al., 2005). Recent studies using genetically engineered viral
tracers in rodents show that dMSNs neurons receive preferential
projections from secondary motor, secondary visual, and limbic
cortices while iMSNs receive input preferentially from motor
cortical regions (Wall et al., 2013; Lu et al., 2021). Both the limbic
and motor cortices are involved in ASD behaviors (Nebel et al.,
2014; Subramanian et al., 2017; An et al., 2021). Cortico-striatal
projections arise from two distinct populations of pyramidal-
tract and intra-telencephalic neurons. ASD has been indirectly
linked to an imbalance between these two projections (Shepherd,
2013) and morphological differences have been documented in
some pyramidal-tract neurons in a ltgb3-mouse model of ASD
(Celora et al., 2023). Inhibition of pyramidal-tract neurons reduces
drug-induced conditioned taste aversion while inhibition of intra-
telencephalic neurons increases drug-induced conditioned place
preference, suggesting a different contribution to reward and

aversion (Garcia et al., 2021). Altogether, these data suggest that
dMSNs and iMSNs, integrate signals from several regional and
cellular cortico-striatal sources but how this integration occurs is
still poorly understood.

Several studies have found decreased amplitude and/or
frequency of mEPSCs and field population spikes, altered ratio
of NMDA/AMPA receptors and altered glutamate-dependent LTP
and LTD, in the striatum of ASD rodent models (Peça et al.,
2011; Wang et al., 2017; reviews in Kim et al., 2016 and Li and
Pozzo-Miller, 2020) and imaging studies have reported reduced
fronto-striatal connectivity, as measured in Shank3 mutant mice
(Pagani et al., 2019). Proton magnetic resonance spectroscopy
studies have also documented decreased cortico-striatal glutamate
levels in ASD subjects and in rodents with mutations of the ASD-
implicated gene, neuroligin 3 (Horder et al., 2018). Decreased ratio
between cortical glutamate and GABA is associated with social
behavior deficits in Cntnap2 mutant mice, another ASD model
(Park et al., 2022) although another study failed to detect changes
in GABA or glutamate levels in the sensory or sensorimotor cortex
in ASD compared to neurotypical adults (Kolodny et al., 2020).
There is also conflicting information regarding the activity of
limbic-striatal circuits in ASD with evidence for increased limbic
flow in cortico-limbic-striatal connectivity (Whi et al., 2020) and
decreased metabolic activity in cortical limbic regions (Haznedar
et al., 2000). It is unclear if these apparently conflicting reports are
based on methodological differences or other variables. Different
frontal cortico-striatal circuits contribute to ASD behaviors (review
in Leisman et al., 2023). Interestingly, when ASD subjects
are subdivided into groups exhibiting low and high repetitive
behaviors, high repetitive behaviors are associated with increased
limbic but reduced sensori-motor cortico-striatal connectivity
(Abbott et al., 2018), consistent with the hypothesis that distinct
cortico-striatal circuits are differentially impaired in relation to
ASD-related behaviors.

Role of dMSNs and iMSNs in
avoidance and social behaviors

Social and goal-directed behaviors involve the activation of
brain reward circuits (e.g., Báez-Mendoza and Schultz, 2013),
which are implicated in ASD (i.e., Scott-Van Zeeland et al.,
2010; Dichter et al., 2012; Kohls et al., 2013). Current evidence
indicates that activation of dMSNs facilitates the acquisition of
reward-based and goal-directed behaviors while activation of
iMSNs facilitates avoidance as well as the ability to shift goal-
directed behaviors in response to changes in external and/or
internal cues (review in Nakanishi et al., 2014). For instance,
toxin-induced lesion of dMSNs, but not iMSNs, in the nucleus
accumbens impairs preference for natural rewards, and reward-
based learning (Hikida et al., 2010, 2016; Yawata et al., 2012),
and loss of dMSNs in the dorsal striatum impairs goal-directed
learning (Peak et al., 2020). Consistent with these data, the blockade
of excitatory dopamine D1 receptors in the nucleus accumbens
impairs the acquisition of appetitive rewards (Hikida et al., 2013).
Conversely, toxin-induced loss of iMSNs, but not dMSNs, in the
nucleus accumbens, impairs learning flexibility and the acquisition
of a new task strategy in a reward-based learning visual task
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TABLE 1 Summarizes the data documenting the distinct role of dMSNs and iMSNs in the nucleus accumbens and dorsal striatum in reward and
avoidance behavior.

Table 1 Reward-based
and avoidance behavior

Manipulation Outcome Reference

Direct pathway in nucleus accumbens Reversible ablation impairs learning of an appetitive reward Hikida et al., 2010

Reversible ablation impairs visually-guided or direction-dependent
reward-based learning

Yawata et al., 2012

Antagonism of D1 receptors in contralateral
dMSN- ablated rats

blocks acquisition of appetitive reward but not
expression once established

Hikida et al., 2013

Direct pathway in dorsal striatum Chemogenic inhibition Impairs goal-directed learning Peak et al., 2020

Indirect pathway in nucleus
accumbens

Reversible ablation Impairs learning of avoidance behavior to an
electric shock

Hikida et al., 2010

Reversible ablation Impairs behavior-shifting and increases task
perseveration

Yawata et al., 2012

Stimulation of D2 receptors or antagonism of
A2a in contralateral iMSNs-ablated rats

impairs acquisition and expression of avoidance Hikida et al., 2013

Indirect pathway in dorsal striatum Chemogenic inhibition Impairs flexibility during reversal of
action-outcome task

Peak et al., 2020

Light grey rows show data for dMSNs while darker grey rows show data for iMSNs.

(Yawata et al., 2012), an effect reproduced by pharmacological
stimulation of inhibitory dopamine D2 receptors (Yawata et al.,
2012). Furthermore, inhibition of iMSNs in the dorsal striatum
impairs the updating of goal-directed learning (Peak et al., 2020)
and pharmacological activation of inhibitory D2 receptors impairs
conditioned avoidance to an aversive electric shock (Hikida et al.,
2013). The key results discussed in this paragraph are summarized
in Table 1.

Social behavior deficits in ASD may likewise involve an
imbalance between dMSNs and iMSNs. Activation of the ventral
tegmental-nucleus accumbens projection in control rodents
facilitates social approach via the activation of dopamine D1
receptors (Gunaydin et al., 2014). In the zebrafish, social approach
is paralleled by an increase in dopaminergic activity (Mahabir
et al., 2013) while blockade of dopamine D1 receptors impairs
social preferences (Scerbina et al., 2012). Targeted loss of the
endocannabinoid receptor-mediated signaling pathway in the
dorsal striatum, but not the nucleus accumbens, impairs social
behavior, an effect reproduced by a targeted loss of the signaling
pathway in dMSNs but not iMSNs (Shonesy et al., 2018). Loss of
dMSNs in the accumbens nucleus, but not the dorsal striatum,
also blunts social behavior (Le Merrer et al., 2024). Interestingly,
the detrimental effect of loss of dMSNs on social behavior in mice
can be reversed by the pharmacological inactivation of iMSNs
(Le Merrer et al., 2024), suggesting a complementary role of the
two pathways. This conclusion is also supported by evidence that
optogenetic activation of iMSNs in the nucleus accumbens of
stress-naïve mice induces social avoidance following a subthreshold
exposure to a social defeat stressor while chronic social defeat stress
is paralleled by a decreased activity of dMSNs that parallels social
avoidance (Francis et al., 2015). Conversely, pharmacogenetic
inhibition of iMSNs increases social interaction in social-stressed
resilient mice (Francis et al., 2015). A contribution of iMSNs
neurons to social behavior is further supported by studies on Gpr88,
an orphan G-protein-coupled receptor intensely expressed in the
striatum. Global Gpr88 knockout mice show increased locomotion,
stereotypies and motor learning deficits (Quintana et al., 2012) and
conditional knockout of the GABA-synthetizing enzyme, Gad67, in
Gp88-expressing neurons is associated with social approach and
object recognition deficits (Zhang et al., 2014). Selective deletion

of Gpr88 in iMSNs, but not dMSNs, facilitates social approach
(Meirsman et al., 2019). Interestingly, loss of dopamine D2
receptors in the dorsal striatum, which would presumably result
in increased iMSNs activity, blunts social behavior (Lee et al.,
2018) and optogenetic activation of nigro-striatal projections to
the dorsal striatum impairs social preference (Lee et al., 2018),
suggesting that activation of iMSNs or dMSNs in the nucleus
accumbens has a distinct and possibly opposite effect on social
behavior than activation in the dorsal striatum. In any case, these
studies indicate that both dMSNs and iMSNs in the nucleus
accumbens and dorsal striatum contribute to modulate social
behavior. Because the nucleus accumbens is a key component
in the limbic reward circuitry, its role in the modulation of
social behaviors is not surprising. However, evidence reviewed
here, as well as other studies (e.g., review in Báez-Mendoza and
Schultz, 2013), indicate that the dorsal striatum also controls social
behaviors. The dorsal striatum responds to reward and punishment
signals and is involved in motivated behavior (Delgado et al.,
2003) and tonically-active neurons in the limbic, associative and
motor regions of the striatum respond to reward-associated stimuli
(Marche et al., 2017). It is possible that the contribution of the
dorsal striatum to social behavior involves a processing of reward
as well as contingency- and motor-related signals. However, it is
unclear how the information processed by limbic, associative and
motor basal ganglia circuits is integrated in order to implement
successful social behaviors.

The hypothesis that ASD behaviors are associated with
depressed cortico-striatal inputs is supported by studies in Shank3B
mutant mice (Peça et al., 2011) and adult restauration of Shank3
rescues both behavioral phenotypes and the depression in MSNs
excitability (Mei et al., 2016). In addition, in Shank3 mutant mice,
optical stimulation of dopamine VTA neurons, which primarily
stimulate ventral striatum dMSNs, reverses social approach deficits
(Bariselli et al., 2016). Similarly, impaired social behavior in the
valproate model of ASD, is associated with an altered activity of
dMSNs in the dorso-medial striatum (Di et al., 2022). A specific
contribution of iMSNs to social behavior differences in ASD
remains to be documented but, based on studies described here, one
can hypothesize that an imbalance toward depressed dMSNs and/or
enhanced iMSNs in the nucleus accumbens contributes to social
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deficits (Figure 1). Interestingly, a recent study suggests that too
low or too high activation of dMSNs by D1 receptors in the nucleus
accumbens impairs social behaviors (Tzanoulinou et al., 2022).
This raises the intriguing possibility that the direction of altered
activation of cortico-striatal projections may be less relevant to ASD
behaviors than the magnitude of changes in the activity of dMSNs
or iMSNs. The results described in the preceding paragraphs on
social behavior are summarized in Table 2.

The role of dMSNs or iMSNs in ASD behaviors has been
mainly inferred from studies that manipulate these two populations
as homogenous entities. However, recent evidence suggests that
different subsets of dMSNs and/or iMSNs neurons may play
different roles in ASD-related behaviors. Rewarding stimuli inhibit
nucleus accumbens dMSNs that project to the ventral pallidum
but excite nucleus accumbens dMSNs that project to the ventral
mesencephalon (Liu et al., 2022). On the other hand, only
stimulation of dMSNs that project to the ventral pallidum results in
place aversion (Liu et al., 2022). The possibility that different subsets
of dMSNs or iMSNs as well as subsets of basal ganglia output
neurons are involved in specific and different aspects of behavior
is also supported by evidence that behavior-active dMSNs but
behavior-inactive iMSNs encode for natural behaviors in the rodent
(Varin et al., 2023) or that both increased or decreased activation of
SNr projections can facilitate avoidance behavior (Hormigo et al.,
2016; Almada et al., 2018). Thus, elucidating the exact contribution
of dMSNs and iMSNs to social behaviors and their contribution
to ASD calls for studies that can discriminate between subsets
of neurons in each of these two major subpopulations of striatal
efferent neurons.

Contribution of striatal circuits to
repetitive behavior

Altered cortico-striatal connectivity has been associated with
restricted repetitive behaviors in ASD (review in Wilkes and
Lewis, 2018) and repetitive behaviors in several rodent models
of ASD are associated with depressed glutamatergic activity in
the striatum (reviewed in Kuo and Liu, 2019). Current evidence
suggests that excessive repetitive behavior involves an imbalance
between dMSNs and iMSNs. Using a DREADD approach in the
Shank3 mutant mouse, excessive repetitive grooming behavior is
reversed by selectively enhancing the activity of iMSN (Wang
et al., 2017). Altered activity of iMSNs is also associated with
repetitive behavior in the valproate model of ASD (Di et al., 2022).
Spontaneous stereotypies in the deer mice are negatively correlated
with enkephalin content, a marker of iMSNs but not dMSNs,
and administration of an adenosine agonist, which stimulates
iMSNs, attenuates repetitive behavior (Tanimura et al., 2010).
Environmental enrichment in the deer mouse attenuates excessive
grooming and this effect is paralleled by increased metabolic
activity and dendritic spine density in the Gpe and the STN
(Bechard et al., 2016), emphasizing the contribution of the basal
ganglia indirect pathway to repetitive behaviors (further discussed
in the following section). Deletion of Gpr88 in iMSNs, but
not dMSNs, increases locomotion and stereotypies and decreases
anxiety whereas deletion in dMSNs results in a deficit in motor
habituation in a rotarod task (Meirsman et al., 2019). Other studies,

however, indicate that dMSNs are also implicated in repetitive
behavior. Mutations of different neuroligin-3, another ASD-
associated gene, enhance repetitive motor routines via an effect on
dMSNs but not iMSNs (Rothwell et al., 2014). Although the dorsal
striatum is traditionally considered a key player in the generation of
automatic repetitive movements, there is evidence that the nucleus
accumbens also influences these behaviors in neurotypical brains
and in ASD. For instance, the selective deletion of neuroligin-
3 in dMSNs of the nucleus accumbens, but not dorsal striatum,
nor deletion in iMSNs, reproduces the effect of the mutation on
repetitive behavior as measured using a rotarod test (Rothwell
et al., 2014). This effect is paralleled by a decreased synaptic
inhibition of dMSNs (Rothwell et al., 2014). Similarly, impairment
of the endocannabinoid pathway in nucleus accumbens dMSNs
results in excessive repetitive grooming (Shonesy et al., 2018) and
inactivation of dMSNs in the nucleus accumbens, but iMSNs in
the dorsal striatum, induces stereotypies (Le Merrer et al., 2024).
A contribution of the nucleus accumbens to repetitive behaviors
appears consistent with recent evidence that both the nucleus
accumbens and the dorsal striatum are implicated in the generation
of sequential movements (Fraser et al., 2023). In addition to an
imbalance between dMSNs and iMSNs, there is evidence that
different subdivisions of the striatum may contribute differently
to repetitive behavior. Indeed, excessive grooming behavior has
been associated with an imbalance between striosome and matrix
striatal compartments (Kuo and Liu, 2020; Ferhat et al., 2023).
Altogether, these studies indicate that excessive repetitive behaviors
involve an imbalance between iMSNs and dMSNs, with most
studies supporting the hypothesis that depressed iMSNs activity
and/or excessive dMSNs activity contributes to excessive repetitive
behaviors.

The globus pallidus and subthalamic
nucleus in ASD behaviors

Imaging studies show that high ASD scores are associated with
decreased Gpe volume, shape or neuronal volume (Wegiel et al.,
2014; Sussman et al., 2015; O’Dwyer et al., 2016; Schuetze et al.,
2016; however, see also Sato et al., 2014). Excessive repetitive and
stereotyped behaviors are inversely correlated with Gpe volume in
ASD children 3–4 years of age (Estes et al., 2011). Two distinct
subpopulations of neurons are present in the GPe. One expresses
the calcium-binding protein parvalbumin (PV +) and preferentially
targets the STN and SNr while a smaller subpopulation expresses
the transcription factor, Npas1 and preferentially projects to the
striatum (Hegeman et al., 2016; Courtney et al., 2023). A small
population of PV + neurons also project to low threshold spiking
NPY and fast spiking PV + striatal interneurons (Saunders et al.,
2016; Courtney et al., 2023), providing a route for feedback control
of MSNs. PV + GPe neurons receive a major input from iMSNs
whereas Npas1 + neurons receive an input from dMSNs (Ketzef and
Silberberg, 2021) and a direct input from the motor cortex (Karube
et al., 2019). PV + neurons slow or pause firing when the cerebral
cortex is in an upstate (Ketzef and Silberberg, 2021), consistent
with a major inhibitory role of cortico-striatal projections onto Gpe
neurons. Recent evidence indicates that the density of perineuronal
nets is decreased in the Gpe and Gpi in post-mortem ASD brains
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FIGURE 1

Illustrates hypothetical changes in the direct and indirect basal ganglia motor circuit associated with excessive repetitive behaviors in ASD and
hypothetical changes in the limbic circuit associated with social deficits. (A) Canonical circuitry of the motor basal ganglia circuit. (B) Hypothetical
changes in the motor circuit in ASD. Excessive repetitive movements would involve dysfunctional inhibition of PV + Gpe neurons by iMSNs, which
provide inhibitory input to the STN. This would contribute to a deficient STN excitatory output. A possible depression of the excitatory hyper-direct
pathway from the motor cortex to the STN may further contribute to depress the STN output. Although there is some evidence for depressed motor
cortico-striatal input in ASD, the physiological impact of ASD on the activity of dMSNs and iMSNs in the dorsal striatum is still unclear (question mark)
(C) hypothetical changes in the limbic striatal circuit in ASD. In the nucleus accumbens, depressed dMSNs activation relative to iMSNs may
contribute to social behavior deficits. The impact of ASD on limbic-associated inputs onto striatal MSNs in the nucleus accumbens remains unclear
(question mark). V.Mes, ventral mesencephalon. Blue lines are presumably excitatory. Red lines are presumably inhibitory. Brown lines are modulated
by an interplay of inhibitory/excitatory mechanisms and the effects of ASD on these projections are not fully characterized. In addition, the targets of
the ventral pallidum and ventral mesencephalon are diffuse and can modulate multiple regions that may also contribute to social differences in ASD.
Broken lines indicate depressed projection.

TABLE 2 Summarizes the data documenting the distinct role of dMSNs and iMSNs in the nucleus accumbens and dorsal striatum in social behavior.

Table 2: Social behavior Manipulation Outcome Reference

dMSNs in nucleus
accumbens

• Targeted deletion • impairs social preferences-deficits-restored by
pharmacological inhibition of iMSNs

Le Merrer et al., 2024

• Optogenetic stimulation
• Pharmacogenic inhibition

• Promotes social interaction in social-stressed mice
• Decreases social interaction in social-stressed-resilient
mice

Francis et al., 2015

• Optogenetic stimulation of VTA-NAc projection
• Optogenetic inhibition of VTA-NAc projection

• Increases social preferences
• Decreases social preferences

Gunaydin et al., 2014

• Chemogenic inhibition
• Downregulation of Shank3 (paralleled by dMSNs
hyperexcitability)

• Impairs social preferences
• Impairs social preferences

Tzanoulinou et al.,
2022

dMSNs in
dorsal striatum

• Optogenetic stimulation of DA projections • Reduces social preferences Lee et al., 2018

• Chemogenic inhibition in valproate-treated mice
• Activation in control mice

• Increases social interaction
• Mimics social deficits

Di et al., 2022

• Targeted deletion • Impairs motor skills but no effect on social preferences Le Merrer et al., 2024

• Disruption of endocannabinoid pathway • Impairs social interactions-reproduced by selective
disruption in the dorsal striatum

Shonesy et al., 2018

iMSNsin nucleus accumbens • Optogenetic stimulation • Impairs social interaction in social-stressed mice Francis et al., 2015

iMSNsin dorsal striatum • Loss of D2 receptors (expected to enhance
iMSNs activity)

• Impairs social preferences Lee et al., 2018

• Chemogenic activation in Valproate- mice • No effect on social behavior but alleviates repetitive
behavior

Di et al., 2022

iMSNs
striatum-wide

• Loss of Gpr88 • Increases social interaction Meirsman et al., 2019

Light grey rows show data for dMSNs while darker grey rows show data for iMSNs.

(Brandenburg and Blatt, 2022). Perineuronal nets play a key role
in the closure of critical periods, synaptic plasticity and neuronal
activity and impaired perineuronal nets formation is paralleled by

decreased GABAergic inhibition (Sorg et al., 2016; Fawcett et al.,
2019). A deficit in perineuronal nets around PV + neurons in ASD
would likely impair cortico-striatal inhibition of PV + neurons and
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may lead to Gpe hyperactivity. In keeping with earlier evidence that
Gpe lesions disrupt grooming in rodents (Cromwell and Berridge,
1996), the possibility that excessive Gpe activity, secondary to a
deficit in iMSNs-dependent inhibition, is involved in ASD deserves
further investigation.

Excessive repetitive behaviors and stereotypies in ASD may also
be linked to depressed STN activation. High-frequency stimulation
of the STN dampens excessive grooming in ASD mutant mice
models (Chang et al., 2016) and reduces stereotypies induced by
the infusion of a GABA antagonist in the monkey Gpe (Baup
et al., 2008). On the other hand, cytochrome oxidase activity in
the STN is significantly lower in mice that exhibit high level
stereotypies and is negatively correlated with the frequency of
stereotypy (Tanimura et al., 2010, 2011). Repetitive behavior in C58
inbred mice is paralleled by fewer dendritic spines and decreased
cytochrome oxidase levels in the STN (Lewis et al., 2018) and
toxin-induced loss of the excitatory hyper-direct pathway from
the motor cortex results in motor hyperactivity in mice (Koketsu
et al., 2021). The hypothesis that depressed STN activity plays
a role in excessive repetitive movements or stereotypies in ASD
is also supported by pharmacological studies (Muehlmann et al.,
2020). In addition to its role on repetitive behavior, depressed STN
activity in ASD may also contribute to social deficits as loss of
the STN in rats impairs social interaction (Reymann et al., 2013).
Based on the evidence discussed above, one can propose a model in
which excessive repetitive behaviors in ASD may involve deficient
striato-Gpe inhibition leading to enhanced activity of the Gpe-STN
projection and over-inhibition of the STN in motor basal ganglia
circuits (Figure 1).

Dopamine control of cortico-striatal
inputs and ASD behavioral
phenotypes

Gene variants associated with dopaminergic markers and
receptors have been identified in ASD (De Krom et al., 2009; Staal
et al., 2012; Gangi et al., 2016; Mariggiò et al., 2021). Several ASD
animal models show increased gene expression of dopamine D2
receptors in iMSNs (Maisterrena et al., 2022 Chhabra et al., 2023;
reviewed in Gandhi and Lee, 2021). Increased striatal levels of
dopamine D2 receptors was documented in Rett syndrome (Chiron
et al., 1993) and more recently, increased striatal D2 receptor
gene expression has been reported in ASD post-mortem brains
(Brandenburg et al., 2020). In mice, knock-down of neuroligin
2, another ASD-associated gene, results in a reduction in the
density of dopaminergic synapses and an increase in the number
of GABAergic synapses onto MSN (Uchigashima et al., 2016).
In the valproic model of ASD, dopamine levels are decreased
and dopamine turnover is increased in the dorsal striatum
while dopamine receptor expression is increased in the nucleus
accumbens (Maisterrena et al., 2022). These convergent findings
suggest that altered dopaminergic modulation of corticostriatal
inputs onto MSNs is a key pathophysiological feature of ASD.
Extensive loss of striatal dopaminergic innervation in models of
Parkinson’s disease is paralleled by an increased gene expression of
D2 receptors and an increased excitability of iMSNs (Surmeier et al.,
2010; review in Soghomonian, 2016). Thus, increased expression

of D2 receptors in iMSNs in ASD could be compensatory to a
decreased dopaminergic input. Consistent with this possibility, in
ASD, fluoro-DOPA uptake is decreased in the striatum and medial
prefrontal cortex (Ernst et al., 1997; Schalbroeck et al., 2021) and
phasic dopamine release is reduced in the striatum in response
to a monetary incentive task (Zürcher et al., 2021). Attention
deficit hyperactivity disorder, a common co-morbidity in ASD,
is paralleled by decreased tonic and increased phasic dopamine
release (Badgaiyan et al., 2015). In contrast to these studies, no
changes in dopaminergic activity were detected in other studies
of ASD (Dichter et al., 2012; Pavãl, 2017; Wang et al., 2017;
Schalbroeck et al., 2021). Thus, current research suggests that an
impairment in striatal dopaminergic activity in ASD would involve
subtle metabolic changes in release mechanisms, which may explain
the conflicting results reported in the literature.

Concluding remarks

Current research in rodent models and in ASD subjects
suggests that altered cortico-striatal projections in ASD contribute
to social and repetitive behaviors deficits via a dysregulation of
dMSNs and iMSNs in limbic, associative and motor basal ganglia
circuits. Altered dopaminergic activity would further contribute to
an imbalance in the coordinated modulation of dMSNs and iMSNs.
Evidence discussed in this review suggests that social behavior
deficits in ASD may involve a tilted balance toward increased
activity of dMSNs relative to iMSNs in the nucleus accumbens
while excessive repetitive behaviors may involve a tilted balance
toward decreased activity of iMSNs relative to dMSNs in the
dorsal striatum. Whether such imbalances differentially involve
changes in pyramidal-tract and intra-telencephalic cortico-striatal
projections onto dMSNs and iMSNs is unclear and deserves further
attention. In addition, although a contribution of the ventral
and dorsal striatum to social and repetitive behaviors has been
documented, it remains to be determined if these regions play
competing or synergistic roles in these behaviors.
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