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Peripheral nerve injury (PNI) is a structural event with harmful consequences 
worldwide. Due to the limited intrinsic regenerative capacity of the peripheral 
nerve in adults, neural restoration after PNI is difficult. Neurological remodeling 
has a crucial effect on the repair of the form and function during the regeneration 
of the peripheral nerve after the peripheral nerve is injured. Several studies have 
demonstrated that acupuncture is effective for PNI-induced neurologic deficits, 
and the potential mechanisms responsible for its effects involve the nervous 
system remodeling in the process of nerve repair. Moreover, acupuncture 
promotes neural regeneration and axon sprouting by activating related 
neurotrophins retrograde transport, such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), 
N-cadherin, and MicroRNAs. Peripheral nerve injury enhances the perceptual 
response of the central nervous system to pain, causing central sensitization and 
accelerating neuronal cell apoptosis. Together with this, the remodeling of synaptic 
transmission function would worsen pain discomfort. Neuroimaging studies have 
shown remodeling changes in both gray and white matter after peripheral nerve 
injury. Acupuncture not only reverses the poor remodeling of the nervous system 
but also stimulates the release of neurotrophic substances such as nerve growth 
factors in the nervous system to ameliorate pain and promote the regeneration 
and repair of nerve fibers. In conclusion, the neurological remodeling at the 
peripheral and central levels in the process of acupuncture treatment accelerates 
nerve regeneration and repair. These findings provide novel insights enabling the 
clinical application of acupuncture in the treatment of PNI.
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1. Introduction

Peripheral nerve injury caused by compression, traction, ischemia, 
and laceration can cause motor impairment of the limb, disuse atrophy 
of the limb muscles, and other nutritional disorders and sensory 
disturbances in the damaged innervated areas. With a 13–23 per 
100,000 person-years estimated incidence rate, peripheral nerve 
damage (PNI) can cause sensory loss, persistent discomfort, motor 
impairment, or even amputation (Asplund et al., 2009; Sullivan et al., 
2016). The most popular nerve injury categorization system is 
Seddon’s original one based on neurophysiological alterations: grade 
1 nerve damage is a neurapraxia disease, grade 2 is axonal 
degeneration, and grade 3 is nerve transection. Peripheral nerve injury 
functional recovery is a slow process. The amount of time required for 
functional reconstruction and neural regeneration may be the reason 
for this, but the treatment method used also may be a factor in how 
long it takes to recover. Before the nerve injury becomes irreparable, 
early detection enables the start of neuroanastomosis, a suitable 
rehabilitation program, and adjustment of biomechanics, all of which 
benefit to encourage nerve repair. For instance, peripheral nerve 
injuries are more frequent in the upper extremities than the lower, 
tend to be  sport-specific, and frequently include a biomechanical 
component. According to earlier research, people with peripheral 
nerve injury of the upper limbs did not have a high quality of life 
because of the acute neuropathic pain and potential for impairment 
(Pan et  al., 2019). At present, there are gradually reconstructive 
operations clinically, but many patients experience a loss of their 
upper limbs’ normal function after the operation. Long-term nerve 
injury and inability to recover will also result in a lifetime impairment 

of patients. Therefore, further postoperative recovery is required to 
treat them (Bruyns et al., 2003; Magistroni et al., 2020). The main 
strategies for the treatment of PNI include pharmacologic 
interventions, behavioral therapy, physical stimulation, and supportive 
therapy in addition to surgery. In the numerous interventions for 
peripheral nerve injury, we need to carry out precision treatment 
according to the patient’s condition. Among them, acupuncture has 
its unique advantages in that acupuncture plays an important role in 
anti-inflammation, analgesia, and speeding up nerve repair. This 
makes the sequence of postoperative rehabilitation treatment of 
patients can be acupuncture first and rehabilitation manipulation later, 
to reduce the pain during rehabilitation manipulation and maximize 
the analgesic efficiency of acupuncture. Moreover, acupuncture is a 
safe, effective, and less painful treatment method. But there is still 
much uncertainty about how acupuncture works in PNI.

Acupuncture is a procedure involving the insertion of a fine 
needle into the skin or deeper tissues at specific locations of the body 
(acupoints) to prevent and treat diseases. Several lines of 
neuroanatomical and neurological evidence have demonstrated the 
abundant distribution of nerve endings in human meridians and 
acupoints, and the involvement of the nervous system is indispensable 
for the effects of acupuncture. Acupuncture is regarded as a potential 
adjuvant treatment for acupuncture analgesia, neural regeneration, 
and functional restoration in addition to conventional therapy of 
nerve anastomosis (Hao et al., 1995; Balogun et al., 1998; Zhang et al., 
2018). Some studies showed that electroacupuncture (EA) helped 
individuals with peripheral nerve injuries improve their motor or 
sensory function (Dimitrova et  al., 2017). Some researchers have 
indicated that rehabilitation training together with Jiaji 
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electroacupuncture can greatly facilitate the recovery of muscle group 
function and improve the quality of life of patients with upper limb 
peripheral nerve injury (Li H. et al., 2021). With the rapid development 
of research on acupuncture’s central effect, accumulating evidence 
showed acupuncture or electro-acupuncture also played a key role in 
brain remodeling, which suggested a potentially positive impact on 
axon regeneration and synapse formation (Xiao et al., 2018). Some 
research suggests acupuncture and electroacupuncture can encourage 
nerve regeneration and enhance nerve function (Inoue et al., 2003; Lu 
et al., 2008; Chen et al., 2013). What’s more, acupuncture is green and 
harmless, which has this beauty, that accelerates the recovery 
after PNI.

Research on the mechanism of acupuncture in peripheral nerve 
injury is currently mostly concentrated at the level of individual 
molecules and/or signaling cascades. Acupuncture has the potential 
to control a complex network of several signaling molecules and 
pathways due to the wide range of interaction communication that 
exists between various signaling pathways. This notion is in line with 
acupuncture’s holistic regulation features, which involve numerous 
targets, linkages, techniques, and levels. And more research is needed 
to describe how acupuncture affects this intricate network. Therefore, 
this paper reviews the effects and mechanisms of acupuncture on 
nerve regeneration and repair from the perspective of nervous 
system remodeling.

2. Clinical efficacy of acupuncture or 
electro-acupuncture on nerve 
regeneration of PNI patients

Acupuncture or EA affects nerve system according to several 
studies. Researchers showed that low-intensity ES at the ST36 site 
could activate brainstem vagal efferent neurons or drive catecholamine 
release from adrenal glands to achieve the target that suppressed 
systemic inflammation induced by bacterial endotoxins (Liu et al., 
2021). Some results suggested that electroacupuncture may be able to 
modulate extracellular adenosine triphosphate (ATP) levels in the 
prefrontal cortex of depressive-like maternal separation rats, 
potentially contributing to its antidepressant effects (Zheng et  al., 
2023). It is demonstrated that EA pretreatment resulted in increased 
ambient endocannabinoid (eCB) levels and subsequent activation of 
ischemic penumbral astroglial cannabinoid type 1 receptors (CB1R) 
in a middle cerebral artery occlusion (MCAO) model which led to 
moderate upregulation of extracellular glutamate that protected 
neurons from cerebral ischemic injury (Yang et al., 2021). Researchers 
found that EA markedly improved acute lumbar sprain, and EA better 
improved the rehabilitation and regeneration of force-displacement 
values and temperature index of the infrared thermogram of the 
muscle (Fan and Wu, 2015). Acupuncture or EA has been found to 
have a beneficial clinical effect in treating PNI, according to some 
researchers. Accelerated nerve regeneration caused by 
electroacupuncture with intermittent direct current may contribute to 
the recovery of PNI (Inoue et al., 2011). Some studies demonstrated 
that short-term acupuncture treatment may result in long-term 
improvement in mild-to-moderate idiopathic CTS. Acupuncture 
treatment can be  considered an alternative therapy to other 
conservative treatments for those who do not opt for early surgical 
decompression (Yang et  al., 2011). Some findings indicated that 

electroacupuncture could improve symptomatology for CTS patients, 
as evidenced by improved symptomatology, grip strength, 
electrophysiological function, and physical provocation sign (Ho et al., 
2014). The grip strength of CTS patients’ primary symptomatic side 
dramatically increased following acupuncture treatment indicating an 
improvement in median nerve motor function obstacle (Mathiowetz 
et  al., 1985). As CTS-induced paresthesias constitute diffuse, 
synchronized, multidigit symptomatology, researchers found that 
maladaptive change and correction are consistent with Hebbian 
plasticity mechanisms. Acupuncture shows promise in inducing 
beneficial cortical plasticity manifested by more focused digital 
representations (Napadow et  al., 2007b). The acupoints for PNI 
treatment are listed in Tables 1–5 and shown in Figures 1–5. Table 1 
summarizes the evidence of the effect of acupuncture on the repair of 
peripheral nerve injury.

3. Nerve system remodeling-related 
mechanisms of acupuncture or 
electroacupuncture for the treatment 
of peripheral nerve injury

3.1. Peripheral nerve fiber regeneration and 
repair

The primary obstacles to saving neurological function following 
damage are repair, regeneration, and neuroprotection (Ribeiro et al., 
2016; Tallon and Farah, 2017). The potential for regeneration after 
nerve fiber injury is reflected by the de novo expression or upregulation 
of a massive variety of molecules in the distal nerve fiber tracts 
(Gordon and Borschel, 2017). So, it is vital to maintain the integrity of 
the nerve fibers. Electrical stimulation can facilitate peripheral nerve 
regeneration and target reinnervation (Wenjin et al., 2011; Liu et al., 
2013; Zhao et al., 2013). Investigators believe that a weak electric field 
may affect the regeneration of mammalian peripheral nerves (Schmidt 
et  al., 1997), and extracellular electric fields could influence the 
orientation of neurite development (Patel and Poo, 1982). Under the 
influence of a weak electrical field, neurite outgrowth grew more 
quickly in the direction of the negative pole, but the growth in the 
direction of the positive pole was suppressed (Song et  al., 2004). 
Studies have discovered that needles used for direct electrical 
stimulation of the damaged ulnar nerve together with rehabilitation 
expedite nerve regeneration (Tang et al., 2016). Additionally, electro-
needling could increase the number of blood vessels and axon 
densities in rat peripheral nerves regenerated within a silicone rubber 
tube (Cheng et al., 2001), after nerve transection, EA could promote 
the recovery of transected median nerve morphology and function 
(Ho et  al., 2013). According to the experimental results, 
electroacupuncture can upregulate β-endorphin expression, which 
reduces neuropathic pain and aid in the healing of damaged brachial 
plexus nerves (Zhang et  al., 2014). According to some research, 
acupuncture therapy could enhance motor and sensory nerve 
conduction, scores for the sciatic nerve function index, compound 
muscle action potential, and motor nerve conduction velocity as well 
as better promote sciatic nerve regeneration and reduce muscle 
atrophy while causing less mechanical damage to nerve trunk (Yu 
et  al., 2019). EA was reported to effectively improve functional 
outcomes following PNI (Zhi et al., 2017). After nerve reconstruction, 
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the regeneration of the motion axis takes a long time (Pagnussat et al., 
2012; Sturma et  al., 2018). Therefore, EA can both serve as a 
foundation for nerve regeneration and has the potential to speed up 
the healing process for damaged nerves.

3.2. Mechanism of spinal cord regulation in 
peripheral nerve injury

3.2.1. Central sensitization
Central sensitization, where the input of noxious stimuli enhances 

the perceptual response of the central nervous system to pain, is 
caused by tissue inflammation or peripheral nerve damage and plays 

an important role in persistent pain (Van Griensven et al., 2020). 
Previous research has shown that a local cutaneous injury can produce 
primary hyperalgesia within the injured area and secondary 
hyperalgesia in the normal surrounding skin, for example, an 
intradermal injection of capsaicin in humans causes intense pain and 
hyperalgesia to heat and mechanical stimuli in the surrounding skin. 
Psychophysical studies in humans supported the conclusions that 
hyperalgesia was predominantly the secondary type and depended on 
one set of neurons sensitizing another (“neurogenic hyperalgesia”) and 
that the latter set of neurons is located in the central and not the 
peripheral nervous system (Baumann et  al., 1991). Central 
sensitization is accountable for spreading pain and hyperalgesia to 
uninjured tissue, the process is involved in pain-transmission neurons 

TABLE 1 Effect of acupuncture on the repair of peripheral nerve injury.

Study Model Acupoints Acupuncture type/
parameter

Major effects

Hoang et al. (2012) Sciatic nerve crush GB30, GB34 EA/0.8–1 mA, 2 Hz, 15 min motor recovery↑, target re-

innervation pain↓

Ho et al. (2013) Transected Median Nerve PC7, PC3 EA/1 mA, 2 Hz, 15 min Electrophysiological Measurements 

(Latency, amplitude, MAPs, NCV)↑, 

Morphologically (axon number, 

endoneurial area, total nerve area, 

blood vessel number)↑, Functionally 

(Grasping Test)↑

Cheng et al. (2001) Rat sciatic nerve GB30, GB34 EA/0.8-1 mA, 2 Hz, 15 min axon density↑, blood vessel area↑, 

percentage of blood vessel area↑

Li H. et al. (2021) Upper limb peripheral 

nerve injury

C6-T1 Jiaji points EA/once a day, 30 min Barthel index↑, Fugl-Meyer 

assessment score↑, motor nerve 

conduction velocity↑, sensory nerve 

conduction velocity and amplitude↑, 

SF-36↑

Napadow et al. (2007a,b) CTS Common:TW-5, PC-7 matching 

aupoint: HT-3, PC-3, SI-4, LI-5, 

LI-10, LU-5

EA/2 Hz, 10 min BCTSQ ↑, nerve sensory latencies ↑, 

grip strength↑, fMRI: inducing 

beneficial cortical plasticity 

manifested ↑

Inoue et al. (2011) Peripheral nerve damage Anode electrode–proximal to the 

injured part, cathode electrode–

innervated muscle

DCEA/100 Hz, 20 min functional↑: neurapraxia 2, 

axonotmesis 3; No functional: 

axonotmesis 1, neuromesis 1

Ho et al. (2014) CTS PC7, PC6 EA/0.8 mA, 2 Hz, 15 min Elec-Acu group: short clinical 

questionnaire by Lo and Chiang↑; 

Acu group: grip strength↑, distal 

median motor amplitude of the 

palm-wrist segment↑, Tinel’s sign↓; 

No changes: two-point 

discrimination

Yang et al. (2011) CTS PC-7, PC-6 MA/30 min modified GSS↑, DML↑, CMAP↑, 

MNCV↑, DSL↑, SNAP↑, W-P 

SNCV↑

Fan and Wu (2015) Acute lumbar muscle 

sprain

Bilateral SI-3, Jiaji (EX-B2), Ashi 

points

EA/10-25 Hz, 20 min FDVs of the bilateral lumbar 

muscle↑, temperature index of the 

lumbar skin↑

MAPs, muscle action potentials; NCV, nerve conduction velocity; CTS, carpal tunnel syndrome; BCTSQ, Boston Carpal Tunnel Syndrome Questionnaire; GSS, Global symptom score; DML, 
distal motor latency; CMAP, compound muscle action potential; MNCV, motor nerve conduction velocity; DSL, distal sensory latency; SNAP, sensory nerve action potential; W-P SNCV, 
wrist-palm sensory nerve conduction velocity; FDV, force-displacement value.
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in the central nervous system (CNS), often in the dorsal horn of the 
spinal cord (Kim et al., 2009). Second-level sensory neurons, or the 
relay stations of the conduction of the sensory system, are represented 
by the neurons of the spinal dorsal horn. The ascending fiber tracts are 
created by the spinal dorsal horn neurons’ axons as they enter the 
ipsilateral or contralateral white matter. These ascending fiber tracts 
then transmit the dorsal root afferents’ nerve impulses to the third-
level neurons in the ventroposterolateral thalamic nucleus of the 
brain, which then transmits them to the cerebral cortex. Some results 
suggested that acupuncture may simultaneously modulate the resting 
state functional connectivity (rsFC) of key regions in the descending 
pain modulation (periaqueductal gray, PAG) and reward systems 
(ventral tegmental area, VTA), and the amygdala may be a key node 
linking the two systems to produce antinociceptive effects (Yu et al., 
2020). This makes sense because it is widely known that ipsilateral 
acupuncture has an impact on numerous descending inhibitory 
networks from the amygdala, periaqueductal gray (PAG), and 
rostroventral medulla (RVM) which primarily modulate nociceptive 
signals entering the ipsilateral spinal cord and are influenced by 
ipsilateral acupuncture (Levine et al., 1991; Van Bockstaele et al., 1991; 
Manning, 1998; Urban et al., 1999). Acupuncture is demonstrated to 
activate the ascending sensory pathways, such as the spinal dorsal 
horn and thalamus, or the descending pain inhibitory mechanisms, 
such as opioid, adrenergic, and serotonergic pathways, however, the 
precise areas where EA affects pain are not fully established 
(Skrabanek, 1984; Tian et al., 2006; Li et al., 2007; Koo et al., 2008).

3.2.2. Neuronal apoptosis
According to previous findings, PNI not only results in localized 

damage but also trigger the apoptosis of certain spinal cord neurons 
in corresponding spinal cord segments (Inquimbert et al., 2018). The 
survival of central neurons plays a key role in determining the 
effectiveness of peripheral nerve regeneration (Kim and Choi, 2016). 
After PNI, the corresponding neuron cell bodies will undergo 
apoptosis because of neurotrophin transmission disorders. And 
we discovered that glial cell-derived neurotrophic factors and brain-
derived neurotrophic factors could alleviate PNI in animal models, 
and decrease apoptosis and autophagy in vitro cell and cell injury 
model studies (Chou et al., 2014; Kingham et al., 2014). PNI causes 

apoptosis in spinal motor neurons and sensory spinal ganglion 
neurons, but it is not extensive and does not affect the entire spinal 
cord, it is associated with neurons that are connected to the injured 
peripheral nerves (Ahmad et al., 2015). According to a previous study, 
acupuncture can ensure and enhance the continuity between 
peripheral and central nerves, speeding up the process of repairing 
injured nerves, laying the groundwork for regeneration, and effectively 
restoring motor conduction (He et al., 2015), and electroacupuncture 
could dramatically boost facial nerve regeneration by increasing the 
expression of GDNF and N-cadherin in neurons, preventing neuronal 
apoptosis (Fei et al., 2019). Some results indicate that EA suppresses 
spinal nerve ligation (SNL)-induced neuropathic pain by improving 
neuronal plasticity via upregulating the adenosine A2A receptor 
(A2AR) and the cyclic adenosine monophosphate (cAMP)/protein 
kinase A (PKA) signaling pathway (Wu et  al., 2021a), but more 
research is still needed to understand the underlying mechanism. 
Table 2 summarizes the evidence of the mechanism of acupuncture 
on the repair of spinal cord regulation in peripheral nerve injury.

3.3. Synaptic remodeling

The place where neurons join and where information is 
transmitted is called a synapse. Synapses, which are mostly found on 
dendritic spines and/or soma, serve a crucial role in the functional 
connections between neurons and are essential parts of information 
transmission. The synaptic region contains a variety of enzymes that 
break down neurotransmitters. Neurotransmitters transmit more 
slowly and are more degraded when there is a larger synaptic distance. 
As a result, the structural basis for the remodeling of synaptic 
transmission function may be the increase in the number of synapses, 
synaptic vesicle density, and the narrowing of synaptic space. A prior 
study suggested that the analgesic effect of EA might be connected to 
the suppression of inflammatory factors and dendritic spine/synaptic 
remodeling (Wu et al., 2021b).

Microglial cells, the smallest glial cells in the nervous system with 
polysynaptic and plasticity, are the innate immunological effector cells 
in the central nervous system. Previous research has shown that 
microglial cells are a crucial target for analgesia by EA (Shan et al., 

TABLE 2 Mechanism of acupuncture on the repair of spinal cord regulation in peripheral nerve injury.

Study Model Acupoints Acupuncture type/
parameter

Major effects

Pan et al. (2019) DPN BL13, BL20, BL23, LI4, LR3, 

ST36, SP6

EA/frequency 3 Hz, 20 min GRP78↓, caspase-12↓, sciatic 

nerves cell apoptosis↓

Kim et al. (2009) Capsaicin-induced secondary 

hyperalgesia

GB30-GB34, BL40-BL60, GV2-

GV6, LI3-LI6, SI3-TE8

EA/intensity 3 mA, frequency 

2/100 Hz, 30 min

Endogenous spinal mu- and delta-

opioid receptors↑

Koo et al. (2008) Ankle sprain SI6, LI4 EA/intensity 2 mA, frequency 

2/100 Hz, 30 min

Spinal alpha (2)-adrenoceptor↑

Li et al. (2007) Inflammatory pain GB30 EA/intensity 3 mA, frequency 10 Hz, 

20 min

Supraspinal neurons↑

Mayer et al. (1977) Ho-Ku’ MA/rotated for 2 min out of 5 min, 

30 min

Release of an endogenous 

substance with narcotic analgesic 

activity↑

DPN, diabetic peripheral neuropathy; GRP78, glucose-regulated protein 78.
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TABLE 3 Mechanism of acupuncture on the regulation of brain regions in peripheral nerve injury.

Study Acupoint Intervention and 
acupuncture type/
parameters

Control 
intervention

Method Major effects

Matsumoto-Miyazaki 

et al. (2016)

GV 26, Ex-HN 3, 

bilateral LI 4, ST 

36

MA/10 min No treatment TMS MEP amplitude↑, MEP/Mmax ↑, 

CMCTs↓, the CST activity of patients 

with chronic DOC after severe TBI↑

Zhao N. et al. (2018) At the middle 2/5 

of the MS6 line in 

the affected 

hemisphere

SA/40 min + LF-rTMS 20 min SA/40 min DTI FMA↑, MBI↑, FAvalue↑, MDvalue↓

Yang et al. (2017) LI-11, LI-10, 

TB-5, LI-4, ST-

36, GB-34, SP-6, 

EX-UE9

MA/Deqi, later hold the 

needle still for 30 min

No stimulation TMS Left MEP↓, right MEP↑, IHI↑

Chen et al. (2015) GB34 MA/1.5 Hz, 1 min baseline-30 s 

Stimulation-three blocks

Non-acupoint fMRI Motor-cognition connectivity↑, 

compensation of unaffected motor 

cortex and homolateral synkinesis↓

Napadow et al. 

(2007a,b)

LI-4 MA/1 Hz, 2 min rest-1 min 

stimulation-7-min block 

paradigm

Non-insertive cutaneous 

stimulation

fMRI Functional connectivity between the 

hypothalamus and amygdala: amygdala 

deactivation↓, hypothalamus activation↑, 

and vice versa

Wang et al. (2016) RN12, RN10, 

RN6, RN4, KL17, 

ST24, Qipang

Abdominal 

acupuncture/20 min

Non-insertive cutaneous 

stimulation

fMRI MADRS scores↓, SDS scores↓, rsFC 

between the left amygdala and sgACC/ 

pgACC↑

Napadow et al. (2005) ST-36 MA/1 Hz; EA/2 Hz, 100 Hz, 

2 min rest-1 min stimulation-

7-min block paradigm

Tactile control stimulation fMRI Acu, EA: anterior insula hemodynamic 

signal↑, limbic and paralimbic structures 

hemodynamic signal ↓ only EA: anterior 

middle cingulate cortex signal↑, pontine 

raphe area signal↑

Yan et al. (2005) Liv3 LI4 MA/1 Hz Non-acupoints fMRI Liv3, LI4: middle temporal gyrus and 

cerebellum↑, middle frontal gyrus and 

inferior parietal lobule↓ Liv3: postcentral 

gyrus, posterior cingulate, 

parahippocampal gyrus, BA 7, 19 and 

41↑, inferior frontal gyrus, anterior 

cingulate, BA 17 and 18↓ LI4: temporal 

pole↑, precentral gyrus, superior 

temporal gyrus, pulvinar and BA 8, 9 

and 45↓

Kong et al. (2002) LI4 EA, MA/3 Hz, 1 min 

baseline-1 min stimulation-5-

min block paradigm

fMRI EA: precentral gyrus, postcentral gyrus/

inferior parietal lobule, and putamen/

insula fMRI signal ↑ Acu: posterior 

cingulate, superior temporal gyrus, 

putamen/insula fMRI signal↓

Hui et al. (2000) LI4 MA/120 times per min, 2 min 

baseline-2 min 

stimulation-4 min rest-16 min 

scan time

Tactile stimulation fMRI Modulates the activity of the limbic 

system and subcortical structures

Hui et al. (2005) ST36 MA/1 Hz, 2 min 

baseline-2 min 

stimulation-3 min rest-10 min 

scan time

Sensory control stimulation fMRI An integrated response of the human 

cerebro-cerebellar and limbic systems to 

acupuncture stimulation that correlates 

with the psychophysical response

(Continued)
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TABLE 3 (Continued)

Study Acupoint Intervention and 
acupuncture type/
parameters

Control 
intervention

Method Major effects

Li et al. (2015) SJ5 MA/twirled ± 180°, 60 times 

per minutes, 30s stimulation-

30s rest-6 min scan time

fMRI The clinical effect of Deqi during 

acupuncture is based on brain functional 

changes

Lu et al. (2014) ST36 MA Non-point PET Bilateral amygdalae activation↑, left 

temporal lobe activation↑, blood 

perfusion↑, glycol metabolism↑

Shi et al. (2016) BL40 MA/depth 2 mm, 5 min MA/depth 10–20 mm, 5 min fMRI Acupuncture modulates the limbic-

paralimbic-neocortical network to 

produce its Deqi effects; The similarity of 

LPNN and DMN suggests that deep 

needing may mobilize an important 

intrinsic brain network for its multiple 

modulation effects

Wang et al. (2013) LV3 MA/rotated 180°, 1 Hz, 2 min 

baseline-2 min 

stimulation-3 min rest-10 min 

scan time

Tactile stimulation fMRI Pressure was contributing to negative 

activation of a LPNN; modulatory effects 

of different needling sensations 

contribute to acupuncture modulations 

of LPNN network

Napadow et al. (2009) PC6 MA/0.5 Hz, 30s stimulation-

30s rest-5.5 min scan time

Non-invasive cutaneous 

stimulation

fMRI Cognitive load↑, dmPFC activity↑

Fang et al. (2009) LV3, LV2, ST44 MA/160 times per min, 180°, 

1 min stimulation- 1 min 

rest-6 min scan time

Sham acupoint stimulation fMRI Limbic-paralimbic-neocortical system 

extensive deactivation↓; sensorimotor 

cortices, thalamus and occasional 

paralimbic structures activated↑

Dhond et al. (2008) PC6 MA/twirled ± 180°, 0.5 Hz, 

5.5 min baseline-5.5 min 

stimulation-31.5 min scan 

time

Non-insertive cutaneous 

stimulation

fMRI DMN connectivity↑, SMN connectivity↑, 

post-stimulation spatial extent of resting 

brain networks to include anti-

nociceptive, memory, and affective brain 

regions↑

He et al. (2014) LI4 MA/Deqi, 10 min 

baseline-10 min 

stimulation-10 min 

postacupuncture resting state

fMRI Connectivity in the primary 

somatosensory region of both early and 

late recovery groups↑

Zhang et al. (2016) LR3, KI3 MA/90–180°, 60–90 times per 

min, lifted and thrust 0.3–

0.5 cm, 30 min

Non-acupoint fMRI Number of brain regions with altered 

brain activity after acupuncture at 

acupoint combinations↑

Jung et al. (2015) PC6, HT7 MA/1 Hz Pseudo-stimulation fMRI Salience network↑, default mode 

network↓

Lee et al. (2013) ST36 MA/1 min baseline-30s 

stimulation-30s rest-5 min 

scan time

Non-acupoint fMRI Blood oxygenation level-dependent 

signal intensity in basal ganglia, limbic 

system, and cerebellum↓

Napadow et al. (2009) PC6 MA/0.5 Hz, 30s baseline-30s 

stimulation-30s rest-5.5 min 

scan time

Non-insertive cutaneous 

stimulation

fMRI Anterior dmPFC activity↑, posterior 

dmPFC activity↑

Long et al. (2016) ST36 MA/6 min stimulation-6 min 

rest-4 min break

Non-acupoint fMRI Centrality in parahippocampal gyrus↑, 

centrality in middle temporal gyrus↑, 

DMN↑

Lin et al. (2016) LI4 SNA + MS/twirled rotated, 

180°, 1 Hz, 20s for15min

SNA, TNA/15 min; 

TENS/1 Hz, 20s for 15 min

fMRI Enhance the acupuncture dose induce 

different DMN modulatory effects; TNA 

induces the most extensive DMN 

modulation

(Continued)
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2007; Sun et al., 2008), EA can reduce neuropathic pain by promoting 
the production of IL-10 in spinal microglial cells (Ali et al., 2020). 
EA-induced anti-hyperalgesia may be partially associated with the 
reduced expression of Phospho-p38 MAPK (p-p38 MAPK) on 
microglia, and subsequently reducing the activation of oxytocin-42 
(OX-42, marker of microglia) in neuropathic pain (Liang et al., 2016). 
P2X7R overexpression in neuropathic pain models can result in 
microglia activation and overexpression of TNF-a and IL-1b. Long-
term potentiation is avoided and the pain threshold is raised by 
downregulating P2X7R with P2X7-specific siRNA (Chu et al., 2010; 
Vadivelu et al., 2015; Shen et al., 2018). Following chronic constriction 
injury, there was an increase in P2X7R expression in the spinal cord 
and a corresponding drop in the rat pain threshold (Lin et al., 2018). 
Therefore, EA may reduce aberrant dendritic spine/synaptic 
remodeling, and inflammation by downregulating P2X7R to improve 
neuropathic pain and promote nerve repair (Figure  6; Wu et  al., 
2021b). Table  3 summarizes the evidence of the mechanism of 
acupuncture on the regulation of synaptic in peripheral nerve injury.

3.4. Regulation of brain regions in 
peripheral nerve injury

Plasticity following peripheral nerve transection has been 
demonstrated throughout the neuroaxis in animal models of nerve 
injury (Fawcett and Keynes, 1990). However, little research has 
demonstrated the brain changes that occur following peripheral nerve 
transection and surgical repair in humans. Furthermore, the extent to 
which peripheral nerve regeneration influences functional and 
structural brain changes has not been characterized (Taylor et al., 

2009). Numerous studies on neural imaging extensively revealed the 
particular alterations in the brain caused by acupuncture (Figure 6; 
Kong et al., 2009; Napadow et al., 2009; Lee et al., 2013). Due to the 
tight relationship between behavioral performance and cortical 
plasticity, acupuncture may have an impact on cortical plasticity 
(Klingner et al., 2014; Jung et al., 2015; Zhang et al., 2016). Therefore, 
we asked whether acupuncture treatment of peripheral nerve injury 
is accompanied by gray and/or white matter structural changes and 
whether these changes relate to nerve system remodeling.

3.4.1. The endogenous opioid peptide system 
network

Numerous brain regions and nuclei, including the caudate 
nucleus, septal area, arcuate nucleus, periaqueductal gray, and nucleus 
raphe magnus, all of which contain opioid peptides, and μ, δ, and κ 
receptors, are involved in the transmission of acupuncture signals 
(Zhao, 2008). The hypothalamic arcuate nucleus is a significant 
structure in the endogenous opioid peptide system and a crucial 
region that mediates low-frequency electroanalgesia (Takeshige et al., 
1991). Researchers found that acupuncture at HT7 points attenuates 
behavioral manifestation of alcohol dependence by activating 
endorphinergic input to the nucleus accumbens (NAc) from the 
arcuate nucleus(ARC) (Chang et al., 2019). The arcuate nucleus may 
control electroanalgesia based on the fact that its axons branch out to 
the adjacent nucleus accumbens, septum, periaqueductal gray, and 
locus coeruleus. In praxiology and electrophysiology, activating the 
arcuate nucleus will boost analgesic effects, increased the activity of 
neurons in the dorsal raphe nucleus and decreased the activity of 
neurons in the locus coeruleus (Kwon et al., 2004; Yoon et al., 2013). 
According to studies, more genes were differentially regulated by 

TABLE 3 (Continued)

Study Acupoint Intervention and 
acupuncture type/
parameters

Control 
intervention

Method Major effects

Dhond et al. (2008) PC6 MA/twirled (∼ ± 180°), 0.5 Hz, 

5.5 min rest-5.5 min 

stimulation-31.5 min scan 

time

Non-insertive cutaneous 

stimulation

fMRI DMN connectivity with pain, affective 

and memory related brain regions↑, 

SMN connectivity with pain-related 

brain regions ↑

Ren et al. (2008) Neiguan, 

Waiguan, 

Sanyinjiao, 

Zusanli

EA/1 mA, 10 Hz, 30 min Dendritic spine density↑, ephrin-A5↑, 

neural plasticity at the peri-infarct 

cerebral cortex in acute cerebral 

ischemia rat↑

Liang et al. (2017) ST36, LI11 EA/2 mA, 1/20 Hz, 30 min The modified neurologic severity 

scores↑, neural activity of motor 

function-related brain regions↑

Wu et al. (2018a,b) GB30, ST36 EA/0.2 mA, 1/20 Hz, 15 min Limbic/paralimbic areas fluctuated↑

Maeda et al. (2017) TW5 PC7 + three 

additional 

acupoints

EA/2 Hz, 20 min Sham acupuncture fMRI Primary somatosensory cortex 

somatotopy↑

MA, manual acupuncture; TMS, transcranial magnetic stimulation; MEP, motor-evoked potential; CMCT, Central motor conduction time; CST, cortico spinal tract; DOC, disorders of 
consciousness; TBI, traumatic brain injury; DTI, Diffusion tensor imaging; FA, fractional anisotropy; MD, mean diffusion; LF-rTMS, low frequency repetitive transcranial magnetic 
stimulation; IHI, interhemispheric inhibition; SA, scalp acupuncture; Deqi, a characteristic sensation of aching and tingling; 7-min block paradigm including a 2-min rest, 1-min stimulation, 
2-min rest, 1-min stimulation, 1-min rest block; MADRS, Montgomery–Åsberg Depression Rating Scale scores; SDS, Self-Rating Depression Scale scores; sgACC, subgenual anterior cingulate 
cortex; pgACC, preguenual anterior cingulate cortex; rsFC, resting state functional connectivity; DMN, default mode networks; LPNN, limbic-paralimbic-neocortical network; dmPFC, 
dorsomedial prefrontal cortex; SMN, sensorimotor network; SNA, single needle acupuncture; TENS, transcutaneous electrical nerve stimulation; TNA, three needle acupuncture; MS, manual 
stimulation.
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low-frequency EA than high-frequency EA (154 vs. 66 regulated 
genes/ESTs) in Arc, especially those related to neurogenesis (Wang 
et al., 2012). These findings suggest that the opioid-system network 

that includes the dorsal horn, periaqueductal gray, nucleus raphe 
magnus, and the arcuate nucleus is crucial for electroanalgesia (Mayer 
et al., 1977; Han et al., 1991).

TABLE 4 Mechanism of acupuncture on the regulation of factors associated with neuronal response in peripheral nerve injury.

Animal study Model Acupoints Acupuncture type/
parameter

Major effects

Liu et al. (2015) MS GV6

GV9

EA/1-2 mA, 2/60 Hz, 20 min NT-3↑, differentiation of 

oligodendrocyte-like cells from 

grafted NR-MSCs in the 

demyelinated spinal cord↑

Hu et al. (2018) Sciatic nerve injury GB30

ST36

EA/20 mA, 5 Hz, 15 min Compare to model-only group:

sciatic functional index↑, recovery 

rate of conduction velocity↑, 

diameter recovery of the 

gastrocnemius muscle fibers↑, 

S100-immunoreactive cells↑, 

nerve growth factor↑; treatment 

groups: not differ

Zhao X. et al. (2018) MCAO GV20 EA/1-2 mA, 2/10 Hz, 30 min miR-132↑, SOX2↓

Cui et al. (2017) SD rats ST36

SP6

EA/3 mA, 2/15 Hz, 30 min miR-7a-5p↓, miR-148a-3p ↓, 

miR-124-3p↑, miR-204-5p ↓, 

miR-370-3p↓, miR-221-3p ↑, 

miR-107-3p↑

Du and Liu (2015) Diabetic models ST36 EA/1 mA, 10/100 Hz, 30 min The mRNA and protein level of 

the enteric neurons↑, GDNF in 

colon↑, p-Akt in colon↑

Yu et al. (2017) SNI models GB30 ST36 EA/2 mA, 5 Hz, 30 min Agrin ↑, AChR-ε↑, AChR-γ↓

Yu et al. (2017) Sciatic nerve injury GB30

ST36

EA/2 mA, 5 Hz, 30 min SFI↑, tibialis anterior muscle 

weight↑, muscle fibre CSA↑, agrin 

expression levels↑, AChR-ε 

expression levels↑, AChR-γ 

expression levels↓

Liang et al. (2016) SD rats ST36

BL60

EA/1-2 mA, 2/100 Hz, 30 min PWTs↑, p-p38 MAPK↓, OX-42↓

Shan et al. (2007) SD rats GB30

GB34

EA/ranging from 1–2-3 mA, 

2/100 Hz, 30 min

Microglial activation↓, MA-

induced up-regulation of IL-1β, 

IL-6, and TNFα mRNA ↓, OX-42-

IR↓

Sun et al. (2008) SD rats GB30

GB34

EA/1–3 mA, 2/100 Hz, 30 min Spinal glial activation↓

Ali et al. (2020) Wistar rats ST36

SP6

EA/2–3 mA, 2 Hz, 20 min IL-10↑, β-endorphin↑, 

neuropathic pain↓

Zhang et al. (2014) Avulsion injury to the left 

brachial plexus root

LI11, LI04

ST36, GB34

EA/8 mA, 2–100 Hz, 15–20 min Mechanical stimulation pain 

threshold↑, Autotomy scoring↓, 

β-endorphin↑

Wang et al. (2018) Sciatic nerve CCI ST36, GB34

Both ilateral

EA/1 mA, 2/15 Hz, 30 min Hyperalgesia↓, glial cell activation 

of the lumbar spinal cord↓, 

microgliacytes of astrocytes↓, 

astrocytes activity↓, GFAP 

protein↓

MS, multiple sclerosis; NT-3, neurotrophin-3; NR-MSCs, neurotrophin-3 and retinoic acid preinduced mesenchymal stem cells; MCAO, middle cerebral artery occlusion; GDNF, glia cell 
line-derived neurotrophic factor; SNI, sciatic nerve injury; AChR, acetylcholine receptor; SFI, sciatic nerve functional index; CSA, cross-sectional area; PWTs, paw withdrawal thresholds; p38 
MAPK, p38 mitogen-activated protein kinase; OX-42, oxycocin-42 (marker of microglia); TNFα, tumor necrosis factor-alpha; IL, interleukin; CCI, chronic constrictive injury; GFAP, glial 
fibrillary acidic protein.
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3.4.2. Cortical remodeling

3.4.2.1. Remodeling pattern of areas of sensorimotor 
integration

Maintaining synergy and appropriate sensory and motor function 
depends on the sensorimotor circuit’s integrity (Yao et al., 2022). PNI 
disrupts the sensorimotor circuit’s integrity and results in the loss of 
sensory and motor feedback, which may result in changes to the 
sensory-motor network’s intrinsic activity (Taylor et  al., 2009). 
However, the adult brain is capable of profound plasticity (Li C. et al., 
2021). The fMRI study showed that insertion of the acupuncture 
needle at acupoint ST 36 significantly affected the proprioceptive brain 
activation by decreasing blood oxygenation level-dependent signal 
intensity in basal ganglia, limbic system, and cerebellum (Lee et al., 
2013), and EA could reduce chronic pain, so it can be used to treat the 
paresthesia brought on by PNI persisted (Lu et al., 2021). Current 
research showed that acupuncture at local versus distal sites may 
improve median nerve function at the wrist by somatotopically 
distinct neuroplasticity in the primary somatosensory cortex following 
therapy (Maeda et al., 2017). Some studies found that after sciatic 
nerve injury, local synaptic activity increased in the ipsilateral 
somatosensory cortex and decreased in the contralateral 
somatosensory cortex (Zuo et al., 2010; Nugent et al., 2015), and the 
plasticity changes following PNI were situated in homologous regions 
of the ipsilateral hemisphere in addition to the contralateral 
hemisphere (Fornander et  al., 2016). Acupuncture at GB34 may 
increase motor-cognition connectivity meanwhile decrease 
compensation of unaffected motor cortex and homolateral synkinesis 
(Chen et al., 2015). EA at ST 36 and LI 11 could enhance the neural 

activity of motor function-related brain regions, including the motor 
cortex, dorsal thalamus, and striatum in rats (Liang et al., 2017). The 
results of resting-state functional MRI connectivity show that 
acupuncture induces significant connectivity changes in the primary 
somatosensory region of recovery patients with Bell’s palsy (He et al., 
2014). Acupuncture increased sensorimotor network (SMN) 
connectivity with pain-related brain regions (ACC, cerebellum) 
(Dhond et al., 2008). Nervous damage causes the sensorimotor circuit 
to lose its integrity, which may prompt the brain to reorganize itself to 
make up for the damaged sensorimotor circuit. However, these 
alterations in the brain could be beneficial or harmful (Mohan and 
Vanneste, 2017). Although EA treatment might reverse the 
maladaptive cortical plasticity, the status of the brain has not recovered 
to a level consistent with normalcy (Wu et al., 2018a).

3.4.2.2. Pain network of brain region
It has been demonstrated in both a human and a rat model that 

nerve transection in PNI typically causes paresthesia or pain before 
reinnervation (Campbell and Meyer, 2006; Gu et al., 2016; Peng et al., 
2016; Lim et al., 2017). Researchers found that the activity pattern of 
the region associated with pain was remarkably coordinated 
(Lefaucheur et al., 2009). The changes in regions of the brain, such as 
the thalamus, amygdala, and cingulate, involved in pain modulation 
were observed under EA stimulation. For Carpal Tunnel Syndrome 
patients responding to acupuncture, functional connectivity was 
found between the hypothalamus and amygdala--the less deactivation 
in the amygdala, the greater the activation in the hypothalamus, and 
vice versa. Furthermore, hypothalamic response correlated positively 
with the degree of maladaptive cortical plasticity in Carpal Tunnel 

TABLE 5 Mechanism of acupuncture on the regulation of factors associated with neuronal response in peripheral nerve injury.

Animal study Model Acupoints Acupuncture type/
parameter

Major effects

Liu et al. (2015) MS GV6

GV9

EA/1-2 mA, 2/60 Hz, 20 min NT-3↑, differentiation of 

oligodendrocyte-like cells from 

grafted NR-MSCs in the 

demyelinated spinal cord↑

Hu et al. (2018) Sciatic nerve injury GB30

ST36

EA/20 mA, 5 Hz, 15 min Compare to model-only group:

sciatic functional index↑, recovery 

rate of conduction velocity↑, 

diameter recovery of the 

gastrocnemius muscle fibers↑, 

S100-immunoreactive cells↑, 

nerve growth factor↑; treatment 

groups: not differ

Zhao X. et al. (2018) MCAO GV20 EA/1-2 mA, 2/10 Hz, 30 min miR-132↑, SOX2↓

Cui et al. (2017) SD rats ST36

SP6

EA/3 mA, 2/15 Hz, 30 min miR-7a-5p↓, miR-148a-3p ↓, 

miR-124-3p↑, miR-204-5p ↓, 

miR-370-3p↓, miR-221-3p ↑, 

miR-107-3p↑

Du and Liu (2015) Diabetic models ST36 EA/1 mA, 10/100 Hz, 30 min The mRNA and protein level of 

the enteric neurons↑, GDNF in 

colon↑, p-Akt in colon↑

Yu et al. (2017) SNI models GB30 ST36 EA/2 mA, 5 Hz, 30 min Agrin ↑, AChR-ε↑, AChR-γ↓

MS, multiple sclerosis; NT-3, neurotrophin-3; NR-MSCs, neurotrophin-3 and retinoic acid preinduced mesenchymal stem cells; MCAO, middle cerebral artery occlusion; GDNF, glia cell 
line-derived neurotrophic factor; SNI, sciatic nerve injury; AChR, acetylcholine receptor; SFI, sciatic nerve functional index; CSA, cross-sectional area.
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Syndrome patients (inter-digit separation distance; Napadow et al., 
2007a). The thalamus, which relays sensory data to the cerebral cortex 
and is the most significant sensory integration region, has a strong 
correlation with pain (Çetin et al., 2014; Zitnik et al., 2014). It is well 
known that the amygdala, hippocampus, and parahippocampus are 
crucial for regulating emotions, motivation, memory, and the affective 
aspect of pain (LeDoux, 2000; Zubieta et al., 2001; Mears and Pollard, 
2016). Some findings demonstrate the additive effect of acupuncture 
on antidepressant treatment and suggest that this effect may 
be achieved through the amygdala and the anterior cingulate cortex 
(ACC) (Wang et al., 2016). Researchers found higher centrality in the 
parahippocampal gyrus and middle temporal gyrus after ST36 
stimulation. These regions are positively correlated to major hubs of 
the default mode network, which might be  the primary network 
affected by chronic pain (Long et  al., 2016). Studies showed that 
conventional methods to enhance the acupuncture dose induce 
different DMN modulatory effects. Conventional methods of 
enhancing the acupuncture dose could potentially be applied as a 
means of modulating brain activity (Lin et al., 2016).

3.4.2.3. Limbic-paralimbic system
A group of brain regions known as the limbic system have been 

linked to emotion, memory, and sensation. Numerous earlier research 
showed that acupuncture not only stimulated sensorimotor regions of 
the brain but also deactivated extensive regions of the brain, including 
the limbic-paralimbic system (Fang et al., 2009; Napadow et al., 2009; 

Chae et  al., 2013). The “Deqi” sensation has been described as a 
phenomenon of concerted attenuation of signal strength in the para-
limbic regions through fMRI investigations. Additionally, 
acupuncture’s “Deqi” effects may be mediated by modulation of the 
limbic-paralimbic-neocortical network (Hui et al., 2005; Shi et al., 
2016). Acupuncture’s effects on depression, schizophrenia, ischemic 
stroke, and Alzheimer’s disease may be  brought on by the limbic 
system, according to some animal and clinical investigations (Lu et al., 
2014; Bosch et al., 2015; Li et al., 2015; Wang et al., 2016). Researchers 
discovered that, while treating PNI following surgical repair, the brain 
plasticity generated by longitudinal EA intervention also occurred in 
limbic/paralimbic areas. The fMRI experiments of manual 
acupuncture at LI4, ST36, and LV3 showed the weakness of signal in 
several limbic, paralimbic, and neocortical areas (Kong et al., 2002; 
Hui et  al., 2005; Napadow et  al., 2005; Yan et  al., 2005). Some 
hypothesize that voluntary slow deep breathing functionally resets the 
autonomic nervous system through stretch-induced inhibitory signals 
and hyperpolarization currents propagated through both neural and 
non-neural tissue which synchronizes neural elements in the heart, 
lungs, limbic system, and cortex (Jerath et al., 2006). The anterior 
cingulate cortex and nearby medial prefrontal cortex, insula, 
hippocampus, amygdala, and midcingulate cortices were consistently 
linked to peripheral markers of autonomic nervous system activity, 

FIGURE 1

Acupoints on the upper limb lateral and back lumbar.

FIGURE 2

Acupoints on the inside of the upper limb.
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according to recent meta-analyzes and other reviews (Thayer et al., 
2012; Beissner et al., 2013; Gianaros and Wager, 2015; Myers, 2017). 
According to the hypothesis, the limbic system’s fluctuating behavior 
was caused by a conflict between the up-regulating effects of 

paresthesia or pain and the down-regulating effects of EA intervention 
(Beissner and Henke, 2011). Previous research suggested that 
acupuncture could promote the regeneration of peripheral nerves (He 
et al., 2015). It demonstrated the changes in the brain caused by the 
long-term therapeutic effects of EA, which were manifested as a 
synchronized pattern of activation in the somatosensory and pain-
related areas, as well as a fluctuating pattern in the limbic/paralimbic 
system (Wu et al., 2018b).

3.4.3. White matter remodeling
According to some studies, corticospinal tract(CST) and 

spinothalamic tract (STT) fibers are similarly altered when peripheral 
nerve injury occurs (Zhang et  al., 2019). Previous research 
demonstrated that neural pathway injuries, such as brain and spinal 
cord injuries, caused STT fibers to adapt or be maladapt (Wang and 
Thompson, 2008; Wasner et al., 2008). According to findings from a 
rat study, chronic pain stimuli of the sciatic nerve could lead to the 
hyperexcitability of ventral posterior thalamus neurons, which were 
the major termination of STT fibers and responsible for the signal 
relay (Miki et  al., 2000). Neuronal hyperexcitability could be  an 
inappropriate reaction to a reduction or absence of sensory input. 
Although there was little evidence that acupuncture improved sensory 
function, some researchers thought that the plasticity alteration in 
STT may also be  predicted to restore sensory function. Previous 
studies found that acupuncture treatment has a complex effect on the 
corticospinal system for a variety of disorders (Chen et al., 2015; Yang 
et al., 2017). It is demonstrated that based on routine rehabilitation 
treatment, scalp acupuncture plus low-frequency rTMS can promote 
white matter tracts repair better than scalp acupuncture alone for 

FIGURE 5

Acupoints in the chest and abdomen.

FIGURE 3

Acupoints on the head and face According to the newest National 
Standard of the People’s Republic of China GB/T 12346–2021 
Nomenclature and Location of Meridia Points, Yintang belongs to 
Governor Vein (GV), in order to be consistent with the literature cited 
in this paper, Yintang is still labeled EX-HN3.

FIGURE 4

Acupoints on the lower extremity.
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stroke hemiplegic patients (Zhao N. et  al., 2018). Prior research 
changed the focus of plasticity from gray matter, which includes the 
motor cortex, to white matter, which includes the CST. Cortical 
alterations were anticipated to lead to modifications in efferent neural 
pathways (Matsumoto-Miyazaki et al., 2016). Acupuncture also aided 
in the recovery process and ameliorated the efferent neural pathway’s 
longitudinal prognosis (Zou et al., 2019). Table 4 summarizes the 
evidence of the mechanism of acupuncture on the regulation of brain 
regions in peripheral nerve injury.

3.5. Regulation of neurotrophic factor 
associated with PNI by acupuncture

Peripheral nerves in mammals can regenerate after being damaged 
(Menorca et  al., 2013; Scheib and Höke, 2013). Schwann cell 
proliferation is frequently thought to be related to the mechanism 
behind peripheral nerve regeneration. In particular, neurotrophic 
substances released by Schwann cells are crucial for the regeneration 
of peripheral nerves (Jessen et  al., 2015). According to research, 
neurotrophic factors secreted by Schwann cells as well as extracellular 
matrix and cell adhesion molecules can induce, stimulate, and 
modulate axon regeneration and the development of myelin sheaths 
(Madduri and Gander, 2010). Based on this discovery, a proposal was 
put forth that the distal portions of the nerve guided the regeneration 
of peripheral nerves, helping to extend neurites and restore 
innervation through identification and communication between 

neurons and neurogliocytes. After the sciatic nerve cut off, some 
researchers found that Schwann cells produced S100, suggesting 
central nervous system damage. For peripheral nerve injury, 
low-frequency EA (5 Hz) had the better effect, and the results were 
most pronounced in the early stages (Cheng et al., 2014; Liao et al., 
2017). Neurotrophic factors, cell adhesion molecules (including L1, 
NCAM, and N-cadherin), transcription factors, growth-stimulating 
agents, extracellular matrix components, intracellular signaling 
enzymes, and proteins regulating cell-surface cytoskeletal interactions 
are related to neuronal response (Figure 6).

3.5.1. Neurotrophic factors
Nerve growth factor (NGF) is the earliest discovered neurotrophic 

factor and can nourish neurons and promote neurite sprouting (Yu 
et  al., 2014).In response to nerve damage, NGF expression was 
upregulated, creating the ideal conditions for axon regeneration, the 
restoration of the connection between axons and Schwann cells, and 
the reinnervation of target locations to enhance nerve growth (Tang 
et al., 2013). After peripheral nerve damage, EA may strengthen new 
axonal connections, which would ultimately accelerate the transfer of 
NGF. Additionally, EA was able to promote the growth of Schwann 
cells, which greatly increased the amount of NGF released (Hu 
et al., 2018).

In the peripheral nervous system, Schwann cells (SCs) are the 
predominant glial cells. Following PNI, SC migration and proliferation 
result in the release of a variety of neurotrophic factors (NTFs), which 
are beneficial for preserving the survival of injured neurons, 

FIGURE 6

The labeled regions revealed where the particular alterations in the brain are caused by acupuncture. The factors regulated by acupuncture include 
axonal growth-associated protein 431, NT-31, P751, GDNF1, N-cadherin, P2X7R1, IL-101, TNF-at, and IL-161. Abbreviation: NT-3: Neurotrophins-3, 
GDNF: Glial cell line-derived neurotrophic factor, P2X7R: P2X7 receptor, IL- 10: Interleukin 10, TNF-α: Tumor necrosis factor-alpha, IL-16: Interleukin 
16.

https://doi.org/10.3389/fncel.2023.1253438
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fncel.2023.1253438

Frontiers in Cellular Neuroscience 14 frontiersin.org

encouraging nerve fiber regeneration, and fostering the formation of 
new synapses (Dai et al., 2013). It has been demonstrated that EA may 
promote the recovery of neuroplasticity in rats subjected to spinal cord 
transection. This could be attributed to the systematic regulation of 
NTFs and their receptors after EA.EA stimulation at ST36  in rats 
increases the expression of axonal growth-associated protein 43 in 
neurons of the dorsal root ganglia, promoting axonal development 
(Wang et al., 2017). EA may alleviate tibialis anterior muscle atrophy 
induced by sciatic nerve injection injury by upregulating agrin and 
AChR-ε and downregulating AChR-γ (Yu et al., 2017). Some studies 
found that EA increased NT-3 levels and promoted differentiation of 
oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated 
spinal cord and induced MSC transplantation combined with EA 
treatment not only increased MSC differentiation into 
oligodendrocyte-like cells forming myelin sheaths but also promoted 
remyelination and functional improvement of nerve conduction in the 
demyelinated spinal cord (Liu et al., 2015). Some researchers indicate 
that electroacupuncture and moxibustion promoted nerve 
regeneration and functional recovery, which mechanism might 
be associated with the enhancement of Schwann cell proliferation and 
upregulation of nerve growth factor (Hu et al., 2018).

As one of the most significant NTFs, persistent exogenous BDNF 
release in the damaged peripheral nerve may be a helpful tool to boost 
axonal density (Lopes et  al., 2017). In the recovery process after 
peripheral nerve injury in rats, electrical muscle stimulation increases 
intramuscular BDNF levels (Willand et al., 2016). Studies have shown 
that BDNF actively contributes to the regeneration of motor neurons 
and the restoration of motor function. The amount of the protein 
BDNF, which has been identified as a crucial regulator of axon 
regeneration, was significantly enhanced in the spinal cord and DRG 
following PNI (Santos et al., 2016; Sanna et al., 2017; McGregor and 
English, 2018).

Previous research demonstrated that glial cell-derived 
neurotrophic factor (GDNF) was the most effective survival factor 
described for motoneurons in vitro (Höke et  al., 2002). Recent 
investigations have proven GDNF’s function in neuronal protection 
and axonal regeneration in vivo (Allen et al., 2013; Kopra et al., 2015). 
Researchers discovered that GDNF mRNA is expressed in the 
cytoplasm membrane, notably in the neuromuscular junctions, and 
less in the axons and Schwann cells (Suzuki et al., 1998). To protect 
neurons, GDNF binds to N-cadherin and initiates the intracellular 
PI3K/Akt signaling pathway (Wang et al., 2014). Researchers found 
that EA with high-frequency and long-term stimuli at acupoint ST-36 
can induce regeneration of lost enteric neurons in diabetic rats, and 
GDNF and PI3K/Akt signal pathway may play an important role in 
EA-induced regeneration of impaired enteric neurons (Du and 
Liu, 2015).

3.5.2. N-cadherin
Cadherins tend to form dimers or multimers, and the extracellular 

peptide chain partially folds to form five or six repeat domains 
(Stevens et al., 2023). Calcium ions are bound between the repeat 
domains, thus imparting rigidity and strength to the cadherin 
molecule (Oroz et al., 2011). The more calcium ions are bound, the 
more rigid the cadherin is, so when calcium ions are removed, the 
rigidity of the extracellular part of the cadherin is lost. Researchers 
revealed that electroacupuncture may encourage nerve regeneration 
through an increase in calcium concentration, which activates neuron 

outgrowth and repair (McCaig et al., 2002). Similarly to NCAM and 
integrin 1, N-cadherin is a calcium-dependent neuronal cell surface 
protein that facilitates adhesion and signal transduction (Neugebauer 
et al., 1988). Ret has a cadherin-like domain in its extracellular region 
that interacts with the GDNF/GDNF family receptor α1 (Oppenheim 
et al., 1995; Kjaer and Ibáñez, 2003). Some studies have confirmed that 
electroacupuncture promotes regeneration of peripheral facial nerve 
injury in rabbits, inhibits neuronal apoptosis, and reduces peripheral 
inflammatory response, resulting in the recovery of facial muscle 
function, which is achieved by up-regulating the expression of GDNF 
and N-cadherin in central facial neurons (Fei et al., 2019). GDNF 
binds to N-cadherin, a transmembrane cell adhesion molecule, to 
exercise its neuroprotective impact on dopaminergic neurons (Cao 
et al., 2010; Patil et al., 2011; Zuo et al., 2013).

3.5.3. MicroRNAs
MicroRNAs (miRNAs), which comprise between 2 and 3 percent 

of all human genes and primarily function to silence genes by binding 
to people’s targets’ 3′ untranslated regions (3′ UTR), are a vital and 
significant component of the regulation over a variety of signaling 
pathways and biological functions in the restoration of PNI (Wanke 
et al., 2018; Treiber et al., 2019), so MiRNAs have gained growing 
interest in the field of peripheral nerve regeneration (Yu et al., 2015). 
Numerous studies have shown that miRNAs play a key role in the 
recovery process after PNI. For instance, miRNA expression in rat 
dorsal root ganglia (DRG) tissues was drastically altered following 
sciatic nerve damage (Li et al., 2012). To increase rat DRG neurons’ 
survival and prevent apoptosis following sciatic nerve damage, 
miR142-3p can target CDKN1B and TIMP3. MiR-7 influences repair 
following PNI by targeting cdc42 and preventing neural stem cell 
migration and proliferation. By targeting GF1-A-binding protein 1, 
miR-221-3p may prevent SCs from maturing into myelin sheaths 
when they are cocultured with DRG neurons (Nab1) (Zhao L. et al., 
2018; Zhou et  al., 2018). Researchers have demonstrated miR-1-
targeting BDNF in the regulation of SC proliferation and migration 
following nerve injury; in addition, miR-1 modulated chronic 
neuropathic pain in rats by targeting cx43 and BDNF, and miR-206 
can target BDNF to the regulation of the MERK-ERK signaling 
pathway to influence neuro stress pain (Neumann et al., 2015; Yi et al., 
2016; Sun et al., 2017). Liu et al. (2018) have discovered that miR-1b 
overexpression inhibited RSC96’s migration and proliferation while 
boosting cell apoptosis. Similar targets and expression profiles are 
used to identify miRNAs that belong to the same family. Numerous 
miRNAs, including miR-129 and miR-195, had altered expression 
following PNI, according to studies (Shi et al., 2013; Zhu et al., 2018). 
Using miR-132 to target SOX2-mediated axonal regeneration, it has 
been found that EA improved neurobehavioral functional recovery 
after ischemic stroke (Zhao X. et al., 2018). According to another 
study, let-7b-5p, miR-148a-3p, miR-124-3p, miR-107-3p, and 
miR-370-3p were confirmed to participate in EA tolerance probably 
through the functional categories related to nerve impulse 
transmission, receptor signal pathways, and gene expression 
regulation, as well as pathways related to MAPK, neurotrophin, fatty 
acid metabolism, lysosome, and the degradation of valine, leucine, and 
isoleucine (Cui et al., 2017). MiR-1b expression was initially found to 
be highly downregulated in the local nerve following EA in a prior 
investigation, and EA may promote the proliferation, migration of SC, 
and nerve repair after PNI by regulating miR-1b, which targets BDNF 
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(Liu et al., 2020). Table 5 summarizes the evidence of the mechanism 
of acupuncture on the regulation of factors associated with neuronal 
response in peripheral nerve injury.

4. Conclusion and consideration

With in-depth research on the mechanism underlying the effects 
of acupuncture in treating PNI, we  now fully appreciate the 
importance of nerve system remodeling in this process. we have 
found that after peripheral nerve injury, not only is the injury limited 
to the local area of the nerve, but the entire nervous system is altered 
accordingly. Acupuncture not only reverses the poor remodeling of 
the nervous system but also activates the central opioid system and 
the innate immunological effector cells in the nervous system to 
ameliorate pain. Acupuncture can promote the proliferation and 
migration of Schwann cells and the release of neurotrophic 
substances such as nerve growth factors, accelerating the 
regeneration and repair of nerve fibers. Based on the view that 
acupuncture affects the remodeling of the nervous system, it is 
believed that in the treatment of peripheral nerve injury, acupuncture 
should not only be applied to the local acupoint of peripheral nerve 
injury but also be  combined with scalp acupuncture and Jiaji 
acupoints. At present, there are many studies on the mechanism of 
acupuncture affecting nerve remodeling, but there are still many 
limitations. First, the reduction of inflammatory pain by acupuncture 
may be related to the interaction between glial cells and neurons in 
the spinal cord, but the mechanisms of action of microglia and 
astrocytes after acupuncture are different. It is not known which 
factors influence their activation timing and molecular signaling 
within the cell. Secondly, in the process of acupuncture treatment of 
peripheral nerve injury, the related neural circuit, functional area, 
and network connection at the central nervous system level are still 
not clear. Thirdly, it is known that neurotrophic factors are involved 
in the repair process of peripheral nerve injury, but the production 
site, production time, and transport route of neurotrophic factors 
during acupuncture treatment need to be further improved. Finally, 
current animal models have drawbacks because they show an acute 
inflammatory response and short-lived hyperalgesia after PNI, both 
of which become attenuated over time. Most studies have only 
examined the protective effect of acupuncture in the initial phase of 
PNI. Better models or clinical trials are needed to explore the 
effectiveness of acupuncture in the process of chronic nerve repair. 

Overall, this review of studies provides strong evidence for the 
usefulness of acupuncture in the treatment of PNI. The elucidation 
of the mechanisms underlying the effects of acupuncture in the 
treatment of PNI from the perspective of nervous system remodeling 
will open a variety of opportunities for further applications of 
acupuncture and a combination of acupuncture and drugs for 
treating, managing, and accelerating nerve repair. Therefore, the 
continuation of research on this topic is extremely important.
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