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Brain aging, which involves a progressive loss of neuronal functions, has

been reported to be premature in probands affected by schizophrenia (SCZ).

Evidence shows that SCZ and accelerated aging are linked to changes in

epigenetic clocks. Recent cross-sectional magnetic resonance imaging analyses

have uncovered reduced brain reserves and connectivity in patients with

SCZ compared to typically aging individuals. These data may indicate early

abnormalities of neuronal function following cyto-architectural alterations in

SCZ. The current mechanistic knowledge on brain aging, epigenetic changes,

and their neuropsychiatric disease association remains incomplete. With this

review, we explore and summarize evidence that the dynamics of gut-resident

bacteria can modulate molecular brain function and contribute to age-related

neurodegenerative disorders. It is known that environmental factors such as

mode of birth, dietary habits, stress, pollution, and infections can modulate

the microbiota system to regulate intrinsic neuronal activity and brain reserves

through the vagus nerve and enteric nervous system. Microbiota-derived

molecules can trigger continuous activation of the microglial sensome, groups of

receptors and proteins that permit microglia to remodel the brain neurochemistry

based on complex environmental activities. This remodeling causes aberrant

brain plasticity as early as fetal developmental stages, and after the onset of

first-episode psychosis. In the central nervous system, microglia, the resident

immune surveillance cells, are involved in neurogenesis, phagocytosis of synapses

and neurological dysfunction. Here, we review recent emerging experimental

and clinical evidence regarding the gut-brain microglia axis involvement in SCZ

pathology and etiology, the hypothesis of brain reserve and accelerated aging

induced by dietary habits, stress, pollution, infections, and other factors. We

also include in our review the possibilities and consequences of gut dysbiosis
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activities on microglial function and dysfunction, together with the effects of

antipsychotics on the gut microbiome: therapeutic and adverse effects, role

of fecal microbiota transplant and psychobiotics on microglial sensomes, brain

reserves and SCZ-derived accelerated aging. We end the review with suggestions

that may be applicable to the clinical setting. For example, we propose that

psychobiotics might contribute to antipsychotic-induced therapeutic benefits

or adverse effects, as well as reduce the aging process through the gut-

brain microglia axis. Overall, we hope that this review will help increase the

understanding of SCZ pathogenesis as related to chronobiology and the gut

microbiome, as well as reveal new concepts that will serve as novel treatment

targets for SCZ.

KEYWORDS

microglia, microbiome, epigenetics, schizophrenia, aging, psychobiotics, dysbiosis,
vagus nerve

1. Introduction

Schizophrenia (SCZ) is a serious disorder affecting 1% of the
population worldwide that poses devastating consequences for the
individuals affected but also society (Velligan and Rao, 2023). The
estimated cost to society (2013) is approximately $155 billions
(Cloutier et al., 2016). A recent Danish study has shown that
healthcare costs for chronic SCZ is estimated to be up to 10
times higher than the cost for other chronic neurological diseases
such as epilepsy or multiple sclerosis (Hastrup et al., 2020); this
difference in cost is explained in part by the high number of co-
morbidities accompanying SCZ (Wilson et al., 1998; Hennekens
et al., 2005). However, SCZ is characterized by complex and
diverse symptoms which are widely grouped into positive (e.g.,
hallucination, delusion, thought disorder), negative (e.g., asociality,
anhedonia, amotivation), and cognitive (e.g., loss of learning
and memory functions) (Keshavan et al., 2011b; Ben-Azu et al.,
2016, 2018a,b; Blokland et al., 2017; Okubo Eneni et al., 2020;
Ishola et al., 2021).

The genetic contribution to developing SCZ is relatively high,
with heritability estimates of 81% by meta-analysis of twin studies
and 64% by a large family based study (Sullivan et al., 2003).
Genome wide association studies have greatly contributed to an
understanding of the highly polygenic genetic structure of SCZ
(Sekar et al., 2016; Hudson and Miller, 2018; Dennison et al.,
2020). Nevertheless, each common genetic variants only has a
small effect. Genetic studies robustly indicate that many of the
single nucleotide polymorphisms (SNPs) conferring an increased
risk for SCZ are shared with other neurodevelopmental disorders
(Karimian et al., 2020; Guo et al., 2021) and linked to genes
that are important for neural migration and proliferation (Walsh
et al., 2008; Karimian et al., 2020; Song et al., 2022). Abnormalities
among several brain regions were also identified (Ohtani et al.,
2018; Del Re et al., 2021), yet the neural mechanisms underlying
the disorder are largely unknown. In addition, SCZ and other
mental disorders are often accompanied by serious prodromal co-
morbidities (Newcomer, 2007; Kirkpatrick et al., 2008; Kirkpatrick
and Kennedy, 2018; Penninx and Lange, 2018; Mazereel et al.,

2020) including cardiovascular diseases (Wilson et al., 1998; Goff
et al., 2005; Hennekens et al., 2005; Demaria et al., 2014), metabolic
disorders and inflammatory bowel diseases (IBDs) (Newcomer,
2007; Kashani et al., 2017; Bernstein et al., 2019; Verdugo-Meza
et al., 2020).

There are multiple conceptualizations of SCZ that are not
necessarily exclusive. As more data illustrate the biological timeline
and mechanisms of the disease, SCZ is increasingly painted as
both a neurodevelopmental disease and a disease of accelerated
aging. The conceptualization of SCZ as a neurodevelopmental
disorder demonstrates the complexity of the disease as a whole
(Murray and Lewis, 1987; Keshavan and Paus, 2015; Murray et al.,
2017; Ben-Azu et al., 2022). Whereas SCZ symptomatology most
often emerges in late adolescence, phenotypic alterations can arise
much earlier in childhood before the onset of symptomatology
into adulthood (Woodberry et al., 2008; Sørensen et al., 2010).
Accompanying these neurodevelopmental SCZ concept, there is a
growing body of experimental data identifying SCZ as a disease
of accelerated aging (Okusaga, 2013; Kirkpatrick and Kennedy,
2018; Nguyen et al., 2018; Teeuw et al., 2021). Being affected by
SCZ predicts a shorter lifespan, by 10–15 years compared to the
general population (Kirkpatrick et al., 2008), with a mortality rate
that is ∼10 times higher than in age-matched controls (Lindqvist
et al., 2015). An autopsy-based study showed that 77.8% of admitted
decadents died of sudden cardiac death such as myocarditis,
cardiomyopathy, coronary artery atherosclerosis, and pulmonary
thromboembolism (Chen et al., 2022). However, other causes of
death were also mentioned, including respiratory inflammation
and hepatic steatosis (Chen et al., 2022), as well as antipsychotic
type such as risperidone and flupentixol owing to their blocking
effects of cardiac potassium channel encrypted by the human
Ether-à-go-go-related gene (hERG) (van Noord et al., 2011; Chen
et al., 2020). One pathomechanistic reason identified between
the increased death rates, and cardiovascular dysfunctions, was
suggested to include the presence of altered levels of the immune-
active gut-bacterial derived metabolite, trimethylamine N-oxide
(TMAO), notably involved in the exacerbation of neuropsychiatric
diseases characterized by vascular senescence, reduced capacity
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to regenerate hematopoietic system, and accelerated aging (Zeisel
and Warrier, 2017; Ke et al., 2018; Li et al., 2018; Chen
et al., 2019; Brunt et al., 2020). Of note, other measures linked
to accelerated aging were examined, including shortening of
telomere length (Zhang et al., 2016; Whittemore et al., 2019).
Also, increased inflammation and oxidative stress (Olivieri et al.,
2018), which are markers of cellular senescence, are consistent
with the shortened telomere length. Some of these findings
also strongly corroborate a tight link between inflammatory
processes and aging characterized by a decreased capacity to
regenerate the hematopoietic system (Lindqvist et al., 2015;
Leboyer et al., 2016; Zhang et al., 2016). Additionally, an
increased rate of telomere shortening processes was shown in
major psychiatric disorders such as SCZ (Lindqvist et al., 2015),
where microglia-derived pro-inflammatory markers are increased
in the central nervous system (CNS) (Young et al., 2014; Leboyer
et al., 2016; Lizano et al., 2021). Robust evidence also reveals
increased rate of telomere shortening in leukocytes across major
psychiatric illnesses that include SCZ, thus corroborating a
tight link between inflammatory processes and aging (Lindqvist
et al., 2015; Leboyer et al., 2016; Zhang et al., 2016); with a
positive relationship between the length of illness and levels
of CNS inflammation, telomere shortening, and oxidative stress
(Nguyen et al., 2018).

The immune system is intimately connected to the gut
microbiota, a system composed of ∼40,000 bacterial species
(Sender et al., 2016) that was additionally shown to tightly
affect behavior [see review by (Cryan and Dinan, 2012)]. The
gut microbiota was experimentally demonstrated to mirror the
aging process as its composition reflects shifting biological age
(Galkin et al., 2020; Mullin et al., 2020). In individuals affected by
SCZ, there is evidence of a unique gut microbiome composition
compared to age-matched controls (Shen et al., 2018), suggesting
a tight connection between cellular and chronological aging, gut
microbiome, immunity, and microglial reactivity. Microglia, which
are yolk-sac derived tissue-resident macrophages, are the brain’s
immune sentinels, responsive to aging, trauma, injury, infection
and diseases (Erny et al., 2015; Bisht et al., 2016; Hong and Stevens,
2016). Microglia actively maintain brain homeostasis in both
steady-state and pathology via a variety of cellular and molecular
mechanisms (Tremblay et al., 2010; Tay et al., 2017). Microglia
regulate synapses by eliminating axonal fragments, terminals and
dendritic spines (Tremblay et al., 2010; Tay et al., 2017). Gut
microbiome-derived antigenic materials that influx the CNS are
also known to be eliminated by microglia (Tay et al., 2017). In
the following sections, we progressively summarize evidence for
the conceptualization of “gut-brain microglia axis” hypothesis.
Given the heterogeneous pathogenesis of SCZ, our review was
aimed to bring together authors from diverse backgrounds in
order to provide a broad discussion of the various biological
substrates of the disease. Therefore, we discuss how dysbiosis
affects microglial function in SCZ and the accelerated brain
aging linked to the disease. We also debate the outcome of
antipsychotic drugs on the gut microbiome followed by evidence
showing that psychobiotics might contribute to antipsychotic-
induced therapeutic benefits or adverse effects via a modulation of
the gut-brain microglial axis.

2. Brain reserve and morphogenesis
in SCZ

Reports from neuroimaging studies have provided mounting
evidence for structural and functional abnormalities of brain
reserves in SCZ (Keshavan et al., 2011a). Here the concept of brain
or neuronal reserve especially of cortical origin can be considered
as the brain architecture that prevents the development or
expression of a neuropsychiatric condition or delay the occurrence
of premature aging (Shenton et al., 2001; Stern et al., 2019;
Del Re et al., 2021). According to Stern’s extensive conception
(Stern et al., 2019), brain reserve can be conceptualized as the
brain resources that allow some individuals to better withstand
pathological processes and healthy aging. The brain reserve
includes morphometry, such as cortical thickness (CT), surface
area (SA), volume, number of neurons and/or other neuro-
biological factors. Cognitive reserve (CR) is an additional measure
which according to Stern et al. (2019) reflects the cognitive
flexibility of the brain exposed to day-to-day life events, as well
as pathologies and aging. In studies of patients with SCZ, higher
brain reserve, measured as greater surface area and gray matter,
was predictive of both social and cognitive responses to Cognitive
Enhancement Therapy (Keshavan et al., 2011b), indicating a role
of the brain reserve in the pathophysiological course of SCZ.
While high cortical reserves particularly in the temporal cortex and
superior temporal gyrus gray matter were linked to improved social
cognitive response, a low cortical reserve was hypothesized as a risk
mediating factor for many forms of mental illness (Shenton et al.,
2001; Keshavan et al., 2011a).

In SCZ, the CT and SA components of the cortex develop along
distinct developmental pathways which are mostly genetically
unrelated and follow differentiated morphogenetic stages during
cortical formation (Lichtenstein et al., 2009; Rimol et al., 2012). The
bulk of the cortical structure development is completed prenatally
while increased gyrification of the superior and inferior frontal gyri
is indicative of further postnatal development (Rimol et al., 2012;
Del Re et al., 2021). During neurodevelopment, SA and CT interact
dynamically and increase during the first years of life (Gilmore
et al., 2012; Lyall et al., 2015). Longitudinal data indicate a non-
linear maturation of gray matter density, a measure that includes
both SA and CT (ages 4–21 years) (Gogtay et al., 2004), while
higher order association cortices mature significantly later than
lower-order ones (Gogtay et al., 2004). Within the temporal lobe,
the superior and inferior temporal gyri exhibit slowest maturation,
continuing up to age ∼20–21. Within the superior temporal gyrus,
the posterior area appears to mature last (Gogtay et al., 2004). Other
longitudinal studies of CT (Sowell et al., 2004) (ages 5–11 years) or
CT and SA (age 7–29 years) (Tamnes et al., 2014; Fjell et al., 2015;
Ducharme et al., 2016) indicate extended fine-tuning of neuronal
connections far beyond childhood, especially in language-related
cortices. The prefrontal cortex, essential to executive function,
might be the last region to mature (Paus et al., 2008). Cognition and
other complex functions are associated with an intact cortex and
ultimately genetics influences the expansion of SA and CT along
specific directions (Grove and Fukuchi-Shimogori, 2003; Narr et al.,
2005; Stiles and Jernigan, 2010; Alexander-Bloch et al., 2013). In
SCZ, smaller CT is described in the prefrontal, temporal, parietal
and occipital regions at various stages of disease progression
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(Narr et al., 2005; van Haren et al., 2011; Rimol et al., 2012; Cannon
et al., 2015). An association of specific symptomatology, positive
vs. negative symptoms, with temporal (Walton et al., 2017) and
prefrontal (Walton et al., 2018) CT, respectively, was also shown.
In SCZ (Blokland et al., 2017) and other neurodevelopmental
disorders (Schubert et al., 2015), there is a tight genetic relationship
between cognitive dysfunction and disease vulnerability (del Re
et al., 2014; Toulopoulou et al., 2015; Blokland et al., 2017; Song
et al., 2022). There is further an association, albeit less clear,
between SCZ and cortical characteristics, especially CT (Cannon
et al., 2015).

While the process of morphogenesis is especially important
in the study of neurodevelopmental disorders, as it determines
the overall structure of the cortex and the relationships between
its regions, SCZ was also described as a disease of accelerated
aging (Nguyen et al., 2018). Conceptualizing the difference between
chronological aging and biological aging (He and Sharpless,
2017) is important in interpreting the epidemiology of SCZ and
other serious mental diseases (Nguyen et al., 2018). Cellular
senescence (He and Sharpless, 2017), as part of the aging process,
includes cellular growth arrest and activation of several cellular
pathways that respond to DNA damage (Campisi, 2005). Senescent
cells accumulate with increasing age; this process is possibly
linked to lowered immune clearance (Demaria et al., 2014;
Muñoz-Espín and Serrano, 2014; Sanoff et al., 2014), increased
production of senescent cells themselves, abnormal DNA repair,
and telomere dysfunction (Lindqvist et al., 2015; Zhang et al.,
2016). Telomeres, sequences of repetitive DNA at the end of
chromosomes, are shortened under conditions of sustained DNA
damage (Whittemore et al., 2019). Consequently, senescence
markers accumulate in several tissues including the CNS in humans
and animal models during healthy aging itself (Molofsky et al.,
2006; Sousa-Victor et al., 2014). Molecular senescence can be linked
to immune cell phenotypes such as dystrophic microglia that are
also characteristic of the aging process (He and Sharpless, 2017;
Candlish and Hefendehl, 2021; Shahidehpour et al., 2021).

3. Evidence of accelerated aging in
SCZ

Growing evidence support an accelerated aging and cognitive
decline process in SCZ (Kirkpatrick et al., 2008; Okusaga, 2013;
Schnack et al., 2016; Islam et al., 2017; Stone et al., 2020). This
probable endophenotype of SCZ is described by different hallmarks
(Carrier et al., 2021). There is evidence that SCZ and accelerated
aging are linked to changes in epigenetic clocks (Teeuw et al.,
2021) and that accelerated brain aging in SCZ significantly occurs
around the period of first episode psychosis leading to an average
5.5 years older brain biological vs. chronological age (“brain age
gap”) (Koutsouleris et al., 2014; Schnack et al., 2016; Hajek et al.,
2019; Kaufmann et al., 2019; Shahab et al., 2019). The trajectory of
brain aging can be predicted based on evidence from neuroimaging
of decreased gray matter volume (Cole and Franke, 2017; Cole
et al., 2017) and inverted U-shape curve white matter (Mwangi
et al., 2013), as well as the inter-organ activities (Lai et al., 2021;
Nguyen et al., 2021). Of note, age-dependent depreciation of
both the gray and white matter function has been recorded to

occur in males vs. females, which supports the view that SCZ
is a sexually dimorphic disease with males showing increased
derangement in brain reserve and cognitive decline compared to
female counterparts (Lee et al., 2020). Thus, several clinical reports
revealed decreased cognitive features such as reduced information
processing speed, vigilance/attention, and social flexibility which
were age-dependent and differed between males and females,
suggesting gradual degenerative processes (Lee et al., 2020). One
possible explanation that could be provided for this cognitive
decline of SCZ patients is accelerated brain aging (Sheffield et al.,
2016; Shahab et al., 2019). Accordingly, investigation with diffusion
tensor imaging was performed to show a profound reduction in
the leftward asymmetry among some key white matter areas in
SCZ (Ribolsi et al., 2014). This abnormal functional connection
and asymmetry of intra-hemispheric connectivity in the brain of
patients with SCZ is attributable to the structural impairment
and loss of inhibition across the corpus callosum (Ribolsi et al.,
2014). Notably, this attenuated left-right asymmetry has been
reported to play key roles in determining disease progression and
major psychotic symptoms such as loss of reality-based belief,
altered perception integration and attentional surveillance as well
as core cognitive deficits of SCZ (Rentería, 2012; Ribolsi et al.,
2014; Zhang et al., 2015; Gurin and Blum, 2017). Recent cross-
sectional brain magnetic resonance imaging (MRI) in patients with
SCZ (N = 715 scans, mean scan interval of 3.4 years) and blood
sample analyses based on two epigenetic age clocks (N = 172)
examining DNA methylation age (DNAmAge; measure of cellular
aging, but not senescence) and phenotypic age (phenoAge; measure
that captures all risk factors of morbidity and mortality) gaps
revealed a connection between SCZ and accelerated biological
aging (Teeuw et al., 2021). The study reported that patients with
SCZ presented signs of accelerated age-related decline in cognition
based on decreased gray matter and physiological domains. They
also found reduced brain reserves with an increased mortality due
to cardiovascular issues based on altered metabolism compared
to normally aging individuals. The authors found that polygenic
risk of patients with SCZ matches an accelerated brain aging yet
correlates negatively with the DNAmAge contrary to the phenoAge
metrics. This finding supports the view that the accelerated aging
rate observed in these patients implies a distinct biological process
(Levine et al., 2018; Teeuw et al., 2021).

Further, cellular aging can be assessed using telomere length,
where SCZ patients have shorter telomeres compared to healthy
subjects (Czepielewski et al., 2016; Omidpanah et al., 2019). Follow-
up investigation from one of the groups showed similar results
while also correlating with the decreased brain gray matter volume
measured using MRI described by other groups (Czepielewski et al.,
2018; Carrier et al., 2020). It is important to mention though
that the findings appear conflictual across studies [see for example
(Omidpanah et al., 2019)], possibly due to differences in medication
or subsets of patients with SCZ. Another hallmark of cellular aging
measured in SCZ patients is oxidative stress (Okusaga, 2013). When
cognitive functions were measured using the Repeated Battery for
the Assessment of Neuropsychological Status and correlated with
super oxide dismutase activity in the blood of patients, a significant
negative correlation was found (Wang et al., 2021), supporting
the involvement of oxidative stress in mediating cognitive decline
(Ben-Azu et al., 2018c,d, 2022). Using DNA methylation as a
proxy for cellular aging, two studies also showed no acceleration
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of cellular aging in SCZ patients (McKinney et al., 2017; Voisey
et al., 2017). However, a more recent study found evidence of
DNA methylation in patients with SCZ, in a cohort-dependent
manner (Okazaki et al., 2019). Using two different sets of patients
consisting of hospitalized chronic long-term vs. medication-free
SCZ patients, the study revealed a decreased extrinsic epigenetic
age acceleration (EEAA) in the blood of patients with long-
term SCZ contrary to the medication free group. The study
provided evidence showing the correlation between DNAm age
and chronological aging. However, no changes were observed in
the intrinsic epigenetic age acceleration for both groups (Okazaki
et al., 2019), indicating the implication of EEAA in driving DNA
methylation and accelerated aging. Taking multiple aging hallmarks
together [i.e., telomere length, blood levels of oxidative stress, C-C
motif chemokine (CCL)-11 and 24], a machine learning algorithm
was able to distinguish SCZ patients from controls in 80% of
cases vs. in only 62.5% of cases when comparing SCZ patient with
their siblings (Rebouças et al., 2021). This highlights the role of
accelerated aging in SCZ and other related neurodevelopmental
diseases, while the SCZ aging risk may be shared among siblings.
Overall, including brain volume measurements determined with
MRI in these analyses could allow to portray significantly more
accurate distinctions from controls.

4. Microglia and their sensomes

Microglia are the immune cells dedicated to the protection
of the CNS (Ginhoux et al., 2010; Colonna and Butovsky, 2017;
Kabba et al., 2018). Microglia play vital roles in development,
homeostasis and remodeling, including via neurogenesis, synaptic
formation and elimination, as well as myelination [reviewed in
(Salter and Beggs, 2014; Hong and Stevens, 2016; Tay et al., 2017;
Hughes and Appel, 2020; Tremblay, 2021)]. Notably, microglia
are involved in brain rewiring via the phagocytosis of less active
synapses (Sierra et al., 2010; Tremblay et al., 2010; Schafer et al.,
2012). Furthermore, microglia can eliminate synapses in a process
named synaptic stripping, where their dynamic processes physically
separate synaptic elements (Trapp et al., 2007). These roles are
crucial for proper brain development and plasticity, and require a
constant neuron-microglia communication (Tremblay et al., 2011;
Eyo and Wu, 2013; Szepesi et al., 2018). Microglia achieve this feat
using their sensomes, which are groups of proteins and binding
sites that facilitate their interactions with neurons, among other cell
types (Hickman et al., 2013). These interactions enable microglia
to fulfill their physiological and immune functions in health and
diseases (Carrier et al., 2021). Microglia-neuron communication is
notably mediated via the fractalkine receptor CX3CR1 (Harrison
et al., 1998; Ransohoff and Perry, 2009; Paolicelli et al., 2014;
Lauro et al., 2019; Tremblay, 2021). This receptor, but also the
complement receptors, triggering receptor expressed on myeloid
cells 2 and purinergic receptors are all involved in neuron-microglia
signaling and are central for synaptic pruning and phagocytosis
(Schafer et al., 2012; Zhan et al., 2014; Arnoux and Audinat,
2015; Sipe et al., 2016; Filipello et al., 2018; Gunner et al., 2019).
Microglia further express tyrosine kinase receptors like Tyros3, Axl,
and Mer (TAM) which are important for neuronal cell removal
in health and diseases such as Parkinson’s disease (Fourgeaud

et al., 2016). Microglia act as a damage sensor for the CNS via
TAM-regulated activity, as microglia in TAM-deficient mice exhibit
decreased motility and attraction to sites of injury (Fourgeaud
et al., 2016). However, microglial function is altered upon excessive
release of pro-inflammatory cytokines, as well as activation of
the complement pathway in different brain areas (Fekete et al.,
2019). In SCZ, one of the strongest genetic associations is with the
locus at the major histocompatibility complex, originating from
alleles of the complement component C4 (Sekar et al., 2016). In
animal models, C4 has a central role in microglia-mediated synapse
elimination (Yilmaz et al., 2021), providing a direct evidence for
an immune system involvement in SCZ pathophysiology (Sekar
et al., 2016). C4 polymorphism in microglia was linked to an
up-regulation of pro-inflammatory markers including c-reactive
protein, interleukin (IL)1β and IL-8 (Hepgul et al., 2012; Chiappelli
et al., 2017; David et al., 2017), as well as strong levels of Nod-
like receptor protein 3 (NLRP3) inflammasome in the brain and
blood of a subset of SCZ patients (Scheiblich et al., 2017; Ventura
et al., 2020). There are evidence that inflammation and accelerated
aging have a complex link, particularly in the context of stress and
mental health (Ben-Azu et al., 2020; Carrier et al., 2021). Chronic
inflammation can induce telomere shortening leading to increased
aging process (Jurk et al., 2014) or "inflammaging." Inflammaging
is characterized by a chronic inflammation accelerating the brain
aging process where the brain immune system is highly involved,
including microglia (Franceschi and Campisi, 2014; Franceschi
et al., 2018, 2007).

5. Gut-brain axis

The gut-brain axis (GBA) is a term used to describe the
bidirectional relationships between the gastrointestinal (GI) tract
and CNS (Figure 1). The GI tract is home to a plethora
of microorganisms including bacteria, fungi, viruses, archaea,
and protozoa (Morais et al., 2021). Gradually from infancy to
adulthood, the composition of the gut microbiome is established,
from initial maternal microbiota exposure (Yao et al., 2021)
to subsequent environmental inputs (Dominguez-Bello et al.,
2019; Qi et al., 2021). Generally, the vast ecosystem inhabiting
the GI tract performs three main functions to the benefit of
both microorganisms and host (Ducarmon et al., 2019; Qi
et al., 2021). The first main function is nutrient absorption,
particularly of substances typically not digestible by the human GI
tract alone. Second, via nutrient absorption, gut microorganisms
create a competitive environment that drastically limits pathogen
colonization. Third, gut microorganisms fortify the gut via
secretion of trophic factors strengthening epithelial barriers.
Additionally, recent research has revealed a fourth critical function
of the gut microbiome in the development, maturation and
maintenance of the immune system including microglia (Morais
et al., 2021). Importantly, the gut microbiota communicate
with the brain via vagal innervation (Forsythe et al., 2014;
Kaczmarczyk et al., 2017). The vagal nerve projects to the brainstem
locus coeruleus through which the cholinergic and noradrenergic
systems connect different brain regions, including the nucleus
basalis of Meynert, via cholinergic and noradrenergic receptors
which are notably expressed on microglia (Kaczmarczyk et al., 2017;
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Wang et al., 2018). Research into this topic demonstrates GBA’s
critical role in growth and development of the host, indicating
that disruptions to the microbiota balance can have devastating
and global effects for the host including brain health (Erny
et al., 2015, 2021). Overall, recent research has demonstrated
the critical role that the GBA plays in the development and
progression of neuropsychiatric disorders such as, autism spectrum
disorder (ASD), mood disorders, and SCZ, making the microbiome
a very promising novel area of therapeutic intervention. In
the next section, the contributions that the GBA make toward
neurodevelopment are on focus.

6. Evidence of gut-brain microglia
axis connection

The connection of the gut to the brain is a relatively recent
finding, with contemporary research revealing high associations
between negative gut health and psychological conditions. While
these associations are quite profound, this field is still elucidating
the biological mechanisms underlying these complex relationships.
Excitingly, many studies are demonstrating promising therapeutic
interventions. In this section, a brief overview of research
associating the gut microbiota and their microbiome with
psychological disorders will be provided, followed by a discussion
of mechanisms underlying this gut-brain communication.

A distinct association appears to be present between GI tract
disorders, affective disorders, and cognitive dysfunction. Multiple
studies have demonstrated high correlations between GI disorders,
anxiety trait and state, depressive symptoms, and even personality
differences (Tosic-Golubovic et al., 2010; Bercik et al., 2011; Heijtz
et al., 2011; Schmidtner et al., 2019). Another study revealed that
children with (vs. without) GI disorders are more likely to present
increased symptom severity on measures of irritability, social
withdrawal, and anxiety (Nikolov et al., 2009). Similar findings were
obtained in children with ASD (Mazefsky et al., 2014), while gut
microbiota transferred from humans with ASD to mice triggered
the onset of ASD-related behaviors in an animal model (Sharon
et al., 2019). Further, evidence emphasize that the microbiota can
underlie cognitive dysfunction and affective disorders in patients
with GI tract disorders (Addolorato et al., 2008; Morais et al.,
2021). Research is overall increasingly supporting the importance
of modulating the GBA to treat many neuropsychiatric disorders
including SCZ (Wang and Kasper, 2014; Ding et al., 2021).
Although the biological means underpinning the microbiome’s
neurological effects are not fully understood in humans, preclinical
research is gradually shedding light onto these mechanisms.

Various mechanisms connecting the gut and brain involve
a combination of nervous, endocrine, metabolic, and immune
communication pathways (Clapp et al., 2017). The GI tract
and its microbiome are responsible for the digestion of food,
from which the body and brain are provided with energy and
other chemical building blocks like amino acids and vitamins
required for optimal function (Clapp et al., 2017). Although it
is difficult to fully isolate metabolic effects of the gut microbiota
from the effects of other systems, such as nervous or endocrine,
the evidence points toward the metabolic properties of the gut
microbiome as critical for CNS health and disease (Kamdar

et al., 2016; Yu et al., 2017). Many neurotransmitters and
their precursors are produced in the gut by certain strains
of microorganisms. For example, Bacteroides, Bifidobacterium,
Escherichia, and Lactobacillus spp. produce gamma-aminobutyric
acid (GABA), the major inhibitory neurotransmitter implicated
in SCZ pathogenesis (Barrett et al., 2012; Strandwitz et al., 2019;
Patrono et al., 2021). Oral administration of these microbial
species in mouse models demonstrated increased serum levels
of GABA and brain levels of GABAA receptors (Bravo et al.,
2011; Strandwitz et al., 2019; Qi et al., 2021). Other microbial
metabolites generated by the gut microbiota, such as bile acid and
methylamine N-oxide, are critical for host development (Qi et al.,
2021). Further, the enteroendocrine cells (EEC) are specialized
secretory cells found across the stomach, pancreas, and GI tract
which secrete various hormones in response to stimulation (Qi
et al., 2021). Among these hormones are ghrelin and somatostatin,
which are both critical to appetite regulation and exert a global
effect on metabolism and growth (Qi et al., 2021). Additionally,
EECs are responsible for serotonin secretion in the gut (Yu
and Li, 2022). However, serotonergic dysregulation, particularly
in the hippocampus, a highly plastic region linked to cognitive
dysfunction and other behavioral deficits, has been consistently
reported in the pathogenesis of SCZ (Chatterjee et al., 2012; Ben-
Azu et al., 2018b, 2023). This disruption could, in part, be linked to
elevated levels of serotonin and its primary metabolite as observed
in the hippocampus of germ free (GF) male mice (Clarke et al.,
2013; Yano et al., 2015; Morais et al., 2021). Also, increased serum
concentration of tryptophan, the precursor agent for serotonin
synthesis was reported in GF mice (Clarke et al., 2013). These
findings thus suggest possible humoral mechanisms through which
the microbiome could regulate central pathways dependent on
the serotonergic system. Furthermore, it was observed in mice
that changes in gut microbiome alter levels of brain-derived
neurotrophic factor (BDNF), a protein that is highly associated with
synaptic plasticity and neurogenesis (Bercik et al., 2011; Bistoletti
et al., 2019). Several studies further demonstrated reduced synaptic
proteins alongside BDNF and impaired neurogenesis in patients
with SCZ and IBD (Bercik et al., 2011; Szeligowski et al., 2020).
These chemical messengers, crucial for healthy brain function, are
an output of a healthy gut, demonstrating the reliance of the brain
on outside systems to ensure its performance. Thus, these findings
summarized that the intrinsic systems involved in neurochemical
transmission and neuronal development are indeed affected by
changes in gut microbiota diversity.

Another system which is important to the biological
mechanisms underlying the connection of the gut to the brain is
the enteric nervous system (ENS), the GI tract’s nervous system.
The ENS, regulates gut activities such as peristalsis, permeability,
and nutrient absorption (Furness, 2012; Heiss and Olofsson, 2019;
Joly et al., 2021). The ENS, also referred as the “gut brain,” interacts
with the immune and endocrine systems of the gut (Furness, 2012;
Heiss and Olofsson, 2019; Aktar et al., 2020). Gut microbiota play
a crucial role in the development and maintenance of the ENS
(Aktar et al., 2020). For example, enteroglial cells (EGCs), which
are analogous to microglia in the CNS, function as support and
homeostatic cells for the GI tract. Recent evidence suggest that
their development and homeostatic regulation are influenced by
microbiota constitution (Morais et al., 2021). In adult mice, it
was demonstrated that these EGCs are constantly replenished
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FIGURE 1

A summary of the epigenetic factors and putative extracellular mechanisms that provide communicative pathways for gut-brain microglia axis. Top
panel shows the myriad of detrimental factors affecting the brain and the gut, which include the diet, genetic and epigenetic changes, pollution,
infection, and stress. These factors affect the gut-brain axis, shown in the middle panel, via respective roles particularly affecting the gut microbiome
and brain microglia. Ultimately, adverse effect on the gut-brain microglia axis can result in neurodevelopmental disorders and accelerated aging in
the offspring which might be mitigated by gut interventions such as the Mediterranean diet, polyphenols, probiotics with antipsychotics, and fecal
microbiota transplantation, all promoting microbiome diversity and proper function. GABA: gamma amino butyric acid, BDNF: brain-derived
neurotrophic factor, MAMPS: microbe-associated molecular patterns, PRRs: pathogen recognition receptors.

through a homeostatic dynamic and contribute to the overall
health of the gut wall and ENS (Obata et al., 2020). However, this
renewal is impacted by the gut microbiota composition which
partially determines gut health on a cellular level (Obata et al.,
2020). In patients with SCZ, many studies identified a crossroad
between EGCs depletion, altered epithelial barrier and SCZ-related
gastrointestinal disturbances, influencing SCZ development and
progression (Bernstein et al., 2019; Verdugo-Meza et al., 2020).
Given their trophic role, the alteration of EGCs is also related to the
reduced brain levels of BDNF largely reported in SCZ (Szeligowski
et al., 2020; Konturek et al., 2021). Alterations of EGCs-induced
BDNF depletion have been linked to reduced levels of IL-1β

through phosphorylated-c-Jun N-terminal kinase-dependent
pathway, and increased phosphorylation of p38 mitogen activated
protein kinase (Fukumoto et al., 2020). Interestingly, recent
research has implicated EGC in the development and progression
of SCZ as basins for misfolded proteins and/or prions which are

transmitted to the brain through vagus nerve mediated transfer
of endotoxemic molecules owing to disrupted epithelial barrier
(Kaczmarczyk et al., 2017; Bernstein et al., 2019; Verdugo-Meza
et al., 2020). Notably, misfolded proteins can be transmitted to
the brain in conditions of irritable bowel disease wherein there
are elevated levels of IL-1β and other phlogistic materials that are
transmitted to the brain through communications with vagal nerve
due to disrupted epithelial barrier. The consequence is SCZ-related
gastrointestinal disturbances, thus promoting SCZ-like behavior
(Bernstein et al., 2019; Verdugo-Meza et al., 2020). The primary
connection of the nervous system to the GI tract occurs through
the vagus nerve, which innervates the muscle and mucosa layers of
the GI tract, thus linking the gut to the ENS (Morais et al., 2021).
Mechanoreceptors sense and transmit to the CNS information
regarding hormones, neurotransmitter, gut cytokines and other
metabolite levels, as well as overall gut health and function
through the vagus nerve (Aktar et al., 2020; Joly et al., 2021;
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Morais et al., 2021). The vagus nerve fibers innervate the muscle
and mucosa layers of the gastrointestinal tract, detect sensory
signals and then relay these signals to the CNS (Wang et al., 2007).
The transmission of signals from the peripheral ends of the vagus
nerve to the CNS occurs though activation of mechanoreceptors
that can sense luminal volume or chemoreceptors triggered
by chemical stimuli such as hormones, neurotransmitters, and
metabolites such as short chain fatty acids produced by EECs,
which may themselves be influenced by the gut microbiota (Morais
et al., 2021).

Microglial sensomes also receive signals from outside the brain
through the GBA, opening microglial implication in many more
processes (Abdel-Haq et al., 2018). To normalize microglia, the
GBA has increasingly emerged as a potent regulator of microglial
function and dysfunction in the pathogenesis of neuropsychiatric
diseases (Chen et al., 2021; Huang and Wu, 2021). Of note, the
gut microbiome supplies trophic ingredients derived from the
breakdown of complex carbohydrate products including short
chain fatty acids (SCFAs) that cross the blood-brain barrier (BBB)
through the portal circulation to regulate the maturation and
function of microglia (Erny et al., 2015; Rooks and Garrett, 2016;
Yilmaz et al., 2021). Other microbiome metabolites with pattern
recognition receptor (PRR) capacity, such as microbe-associated
molecular patterns (MAMPs), produced by the gut microbiota, can
also permeate the BBB to modulate microglia (Braniste et al., 2014).
The gut microbiota regulates, partially through its communication
with gut-located EGCs and partially through PRRs and gut-
derived MAMPs, the transmission of inflammatory information
throughout the ENS (Furness, 2012). Changes in the concentration
of certain molecules are sensed along the lumen, triggering signal
transmission of inflammatory responses within the gut, in some
cases resulting in acute inflammatory responses, such as colitis or
gut dysbiosis (Kamdar et al., 2016; Qi et al., 2021), a pathological
state linked to increased microglial phagocytosis in SCZ (Erny et al.,
2015, 2021; Munawar et al., 2021). Moreover, the roles of Toll-
like receptors (TLR)-3, 7, and 9 were found to regulate microglial
activities via a series of MAMPs-independent mechanisms (Wang
et al., 2018). Additionally, peripheral macrophages that interact
with gut metabolites or MAMPs via gut flora-mediated signaling
can cross the BBB and target microglia to regulate their activities
(Wang et al., 2018).

The continuous GI tract inflammation can lead to systemic
inflammation via chronically high levels of pro-inflammatory
cytokines in circulation, resulting in damage throughout the body’s
organs (Parker B. J. et al., 2020). Increases in systemic pro-
inflammatory cytokines present in the brain causes damage to
the BBB, further raising the inflammatory response as a result
of increasing pathogens and toxins from the deteriorating BBB
(Parker A. et al., 2020). While an imbalanced or abnormal
gut microbiome can result in this runaway inflammation, a
balance of beneficial gut microorganisms promotes the secretion
of anti-inflammatory cytokines resulting in an overall decrease
in inflammation both locally and systemically (Desbonnet et al.,
2008; Dowlati et al., 2010; Sarkar et al., 2016; Peppas et al., 2021).
Thus, these findings suggest that the gut microbiota is a central
figure in the health of the gut, which plays a critical role in
determining changes in metabolism, endocrine system, nervous
system communication, and inflammatory responses, as observed
in the pathophysiology of SCZ.

7. Emerging epigenetic changes
modulating the gut-brain microglia
axis

Recent studies have investigated the effects of environmental
factors on epigenetic changes during human neurodevelopment.
These outcomes directly modify the transcription and expression
of genes including from the complement pathways—“turning on”
some genes, while “turning off” others (Föcking et al., 2021; Ji
et al., 2022). The complement pathway is a vital component of
the immune defense against certain immune stimulating factors
(Föcking et al., 2021), which include stress, infection, in- and
out-door pollution, and nutrition (Figure 1; Afighor et al., 2019;
Elizabeth et al., 2020; Oladapo et al., 2021; Osagie et al., 2021;
Ben-Azu et al., 2022). There is emerging evidence that these
environmental factors directly affect the GBA—demonstrating a
mechanism inducing direct alterations during development and
throughout life. Of note, early life stress and infection are key
epigenetic factors that have been largely linked to the emergence of
SCZ-like feature during adulthood (Giovanoli et al., 2016; Ben-Azu
et al., 2019, 2020).

Recently, there has been increasing evidence suggesting
an association between air pollution and intestinal diseases,
specifically inflammatory bowel syndrome, appendicitis, and
colorectal cancer (Li et al., 2019; Feng et al., 2020). Mounting
evidence also suggest that air pollution and stress affect
brain development, adversely through modification of early life
microbiome, and might serve as a risk factor for developing
psychiatric diseases such as SCZ due to mechanisms linked to
modulation of epigenetic codifiers and readers including covalent
histone modification, DNA methylation, and non-coding RNAs
(David et al., 2017; Comer et al., 2020; Newbury et al., 2021).
For instance, parental isolation causes phosphorylation of methyl
CpG binding protein and a disassociation of DNA strands from
protein moieties, thus leading to a post-translational modification
of epigenetic modifiers linked to neurodevelopmental disorders
(Chahrour et al., 2008). Hypermethylation of the genes glutamic
acid decarboxylase (GAD) 67 (GAD1), which is responsible for the
synthesis of the major inhibitory neurochemical, GABA, as well
as reelin (RELN), an extracellular matrix protein involved in the
regulation of neuronal migration and positioning, were reported
in the brain and periphery of patients with SCZ after post-mortem
investigation (Guidotti et al., 2000; Abdolmaleky et al., 2005; Huang
and Akbarian, 2007; Magwai et al., 2021). Down-regulation of
RELN, GAD1, or GAD67 are linked to impaired prefrontal cortical
dendritic arborization and activity related to the working memory
deficits of animals and patients with SCZ (Ben-Azu et al., 2018b;
Magwai et al., 2021; Oshodi et al., 2021).

Certain air pollutants that include ozone, sulfur dioxide, and
carbon monoxide were associated with increased inflammation in
the gut, while their short-term exposure is linked to increased
occurrences of appendicitis (Kaplan et al., 2009) and there seems
to be a relationship between appendicitis and the occurrence
of neuropsychiatric disorders such as SCZ (Isung et al., 2019;
Parker B. J. et al., 2020). Moreover, anecdotal evidence suggest
a high rate of appendiceal perforation in patients with SCZ vs.
controls (Nishihira et al., 2017). Not only does air pollution
seem to have a direct effect on the gut inflammatory status,
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but it was also shown across in vivo and in vitro studies
to disrupt lipid metabolism, commonly resulting in increased
pathological metabolites such as serum cortisol/corticosterone,
monoacylglycerol, glycerol, lysolipids, mitochondrial β-oxidation-
derived metabolites like acylcarnitines and ketone bodies in
the serum as well as hexanoyl-lysine in the serum, liver and
brain (Tomaru et al., 2007; Vesterdal et al., 2014; Miller et al.,
2016). These derangements are linked to a short supply of
short chain fatty acid, consequently leading to depletion of
polyunsaturated fatty acid (PUFA) which are both needed for
normal brain signaling. Another study also revealed that diesel
exhaust particles increase the levels of hexanoyl-lysine in the
liver of obese diabetic subjects as well as levels of aspartate
aminotransferase (AST) and alanine transaminase (ALT) compared
to that to vehicle. Of note, debilitating cerebral edema has been
reported as one of the devastating consequences of acute liver
damage following exposure to hepatoxins which occur due to BBB
breakdown-derived oxidative stress and exacerbation of existing
inflammatory milieu (Jayakumar et al., 2013; Kim et al., 2014).
In addition, air pollution affects microglia-astrocyte interactions
leading to exacerbated brain inflammation and oxidative stress
(Gómez-Budia et al., 2020). Even though many studies examining
the relationship between air pollutants and intestinal diseases
are epidemiological and comprise uncontrolled, confounding
variables, the general trend observed suggest a relationship between
air pollution and gut diseases. Considering the crucial role of
gut microbiota in determining health of the gut, the effect of
pollutants on the gut microbiome is a worth-while concept of
investigation notably in SCZ (Bernardini and Attademo, 2021).
Many studies have suggested that exposure to chronic air pollution
can up-regulate brain expression of microglial genes and pro-
inflammatory cytokines such as tumor necrosis factor (TNF)α,
IL-1β, and IL-6 in animals and humans following exposure to nano-
particulate matter from traffic-related air pollution (Calderón-
Garcidueñas et al., 2015; Gruzieva et al., 2017). It will be important
to develop translational models to elucidate further how air
pollution could adversely affect brain neurons, their microglia-
astrocyte crosstalk, and the influence from the gut microbiota
and microbiome.

Stress was found to be quite impactful in altering gut health and
microbiome development. Stress signaling is primarily mediated
through the hypothalamic-pituitary-adrenal (HPA) axis to the gut
and has been demonstrated to lead to leaky gut, lower gut motility,
and decreased microbial abundance (Keita and Söderholm, 2010;
Yu et al., 2017). Exposure to chronic and acute stress in early
life has been shown to reduce gut biodiversity, notably resulting
in a decrease of human growth hormones in early development
(Qi et al., 2021). Human studies revealed that prenatal stress and
depression can alter the microbiome composition, in association
with lower birth weight and preterm birth (Rondó et al., 2003;
Zijlmans et al., 2015). These findings emphasize the need for
further research into how to promote healthy gut microbiomes for
both mother and infants, as potential therapeutics to prevent the
development of SCZ.

Diet is an important factor toward microbiome health
throughout the host lifetime (Singh et al., 2017; Hills et al., 2019;
Johnson et al., 2019; Alemao et al., 2021). Diet restrictions
and selectivity are commonly observed in children with SCZ
leading to nutritional limitations and a marked decrease in gut

microbiome composition (Alemao et al., 2021; Onaolapo and
Onaolapo, 2021). During healthy adulthood, changes in diet can
result in significant alterations of the gut microbiome within
24 h (Wright and Starkweather, 2015). The Mediterranean diet is
commonly considered a healthily balanced diet which primarily
consists of high intake of olive oil, fruits, vegetables, and nuts,
moderate intake of red wine, poultry, and fish, and relatively low
intake of red meat and dairy (Figure 1; De Filippis et al., 2016;
Singh et al., 2017). Several studies have demonstrated associations
between healthy microbiome composition and the Mediterranean
diet, as well as opposite associations with other diets, such as
the Western diet (low fiber, high fat, and animal protein) and
gluten-free diet (Wu et al., 2011; Lopez-Legarrea et al., 2014; De
Filippis et al., 2016; Singh et al., 2017). While examining the
consequences of diet on the gut microbiome can be challenging,
dietary fibers and polyphenols, the main active ingredient in
tea, fruits and vegetables, have consistently demonstrated positive
correlations with a balanced gut microbial environment (Figure 1;
Zhang et al., 2021).

It has been hypothesized that SCFAs which are a chain length
of 1–6 carbon atoms derived from fiber content of foods by
microbiota, regulate activities between the gut microbiome and the
brain (Dalile et al., 2019). Some examples of SCFAs include acetate,
butyrate, propionate, formate, valerate, and caproate. Notably,
acetate, butyrate and propionate are produced in very high amounts
in the ratio of 60:20:20 as the most copious anions in the proximal
bowel, whereas formate, valerate, and caproate are formed in
lower quantities (Macfarlane and Macfarlane, 2003). The levels of
SCFAs produced are based on a variety of factors such as type of
diet, microbiota system and colon transition time (Macfarlane and
Macfarlane, 2003; Dalile et al., 2019). Following absorption from
colonocytes into the systemic circulation, SCFAs play important
role in cellular ATP generation from mitochondrial citric acid
cycle (Schönfeld and Wojtczak, 2016). SCFA anion reaches the
brain via the expression of monocarboxylate transporter-1 by BBB
endothelial cells (Vijay and Morris, 2014; Dalile et al., 2019). In
addition, SCFAs modulate microglial homeostasis via a free fatty
acid receptor (FFAR)-dependent signaling pathway in mice (Erny
et al., 2015). Research into the associations between diet and the
gut microbiome composition in determining health will be key to
provide further insight into the therapeutic potential of modifying
the GBA via diet, notably in SCZ.

The gut microbiome is a critical factor toward preventing
infection of the GI tract (Ducarmon et al., 2019). Producing
bile acids, bacteriocins and bacteriophages, which contribute to
creating a competitive nutrient environment, and fortifying the
GI tract’s epithelial barrier are all part of the gut microbiome’s
repertoire to maintain gut homeostasis (Vollaard and Clasener,
1994; Ducarmon et al., 2019). However, many exogenous agents
can affect the gut microbiome’s ability to counteract pathogens,
such as antipsychotics, proton pump inhibitors, antibiotics,
antidepressants and diabetic medications (Ducarmon et al., 2019;
Flux and Lowry, 2020). Infections can cause a dysbiotic state
of the gut microbiome characterized by a leaky gut and high
inflammatory status (Clapp et al., 2017), which can increase
the host vulnerability to developing neuropsychiatric diseases
such as SCZ. The effects of dysbiosis on the gut and brain
health particularly as it promotes accelerated brain aging and
neuropsychiatric states like SCZ via mechanisms related to
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gut-brain microglia axis will be further investigated in the next
section.

8. Dysbiosis-induced microglial
dysfunction in SCZ and its
accelerated brain aging

The role of the gut microbiome in the development and
regulation of the CNS, especially via EEC-induced synthesis
of neurotransmitters, but also microglial maturation, is well
documented, with outcomes on the control of behavior and
cognition (Erny et al., 2015, 2021; Abdel-Haq et al., 2018).
Consequently, dysbiosis-induced microglial dysfunction has
increasingly become an interesting aspect of the GBA (Chen et al.,
2021; Huang and Wu, 2021). Consecutive administration of broad-
spectrum antibiotics (cefoxitin, gentamicin, and metronidazole) to
male and female mice for a month induced temporal depletion of
host microbiota which was associated with markedly enlarged caeca
and deficits in microglial maturation, as well as neuroimmune
response (Erny et al., 2015). In line with this finding, GF
conditioning was associated with low populations of bone
marrow-derived splenic macrophages and monocytes (Khosravi
et al., 2014). This outcome was suggested to result from reduced
myeloid survival factor colony stimulated factor 1 (CSF1), thereby
translating into reduced microglial function (Khosravi et al.,
2014; Erny et al., 2015). Notably, microglia are seeded elements
from the embryonic hematopoietic yolk sac, which enter the
brain starting at embryonic day 9.5 in mice, thus reinforcing
the relevance of early microbial colonization to effectively
respond to pathogens later in life (Ginhoux and Prinz, 2015). In
adulthood, microbiota ablation was shown to trigger hyperactive
and irregular HPA activity in GF mice exposed to stress (Sudo,
2016). This aberrant response was linked to exacerbated cortisol
release, translocation of gut-derived metabolic-end products
and bacterial antigens across the BBB, which are associated
with the pathogenesis of SCZ, notably in conjunction with
microglial dysfunction (Sudo, 2016; Picard et al., 2021; Rim et al.,
2022).

Gut dysbiosis-induced microglial dysfunction was also shown
to be sex-dependent. For example, Thion et al. (2018) demonstrated
that microglia display age-dependent sex-specific vulnerability
to microbiota ablation, with male showing an early uterine
manifestation and female exhibiting profound changes during
adulthood. Regardless of the life stage, microglia from GF
showed enhanced transcriptomic genetic signatures indicative
of a premature immune state with sex-specific outcomes. The
conceivable influence of the gut dysbiosis as a precursor for SCZ
and accelerated aging stems from the hypothesis that lifelong
cohabitation of the gut microbiota as an immune regulator
can initiate dysfunctional microglia-neuron interactions following
maternal immune activation (Thaiss et al., 2016; Abdel-Haq et al.,
2018; Reyes et al., 2020). Importantly, identifying genera associated
with increased microglial dysfunction in SCZ and accelerated aging
is important for designing relevant probiotics that could help
maintain a young gut microbiota. This strategy aims to slow down
aging and associated neurological diseases, especially in vulnerable
individuals with SCZ or advanced age groups (Xu et al., 2019).

8.1. Gut dysbiosis in SCZ

An increasing body of epidemiological reports has provided
significant evidence for a connection between prenatal infections
and increased risk for later development of neuropsychiatric
disorders (Awogbindin et al., 2021). Neuroimmune activity during
the first phase of life (age 1–3 years) is important for cognitive
and social flexibility later in life, especially in adolescence and
adulthood (Allswede et al., 2016; Kelly et al., 2021). At birth and
in newborns, vaginal microbes as well as those from maternal
diets and immunological complements from breast milk colonize
different organs including the brain (Al Nabhani et al., 2019).
Perturbations of maternal gut microbiome during early phases of
life from embryonic development until weaning can impact the
immune system, thereby causing a pathological “priming” or an
increased immune responsivity to future challenges of microglia
which are still developing (Al Nabhani et al., 2019; Rosin et al.,
2021). A nationwide study of hospitalized children in Denmark
(N = 1,015,447) between 1985 and 2002 showed a close relationship
between treatment with anti-infective agents and a higher risk of
developing SCZ with a hazard rate ratio of 2.05 (95%-Cl = 1.77-2-
38). Evidence suggests that this enhanced vulnerability to SCZ was
mediated by a dysregulated adjustment of the gut microbiome after
treatment of infections with wide-spectrum antibiotics (Yolken
et al., 2016; Köhler et al., 2017; Köhler-Forsberg et al., 2019).
Experimental work on gut dysbiosis indicates that altered intestinal
barrier coupled with dysregulated microbial populations may
allow for leaking of antigenic gastrointestinal molecules causing
activation of the complement system of immune cells including
microglia (Lambert, 2009; Mossad and Erny, 2020). Experimentally
induced immune alterations during prenatal life with antibiotics
were also shown to alter the microbiota system in mice (Russell
et al., 2013; Gonzalez-Perez et al., 2016; Benner et al., 2021).
Additionally, studies examining neuronal functioning revealed
that mice exposed to maternal immune activation with viral
mimicry agents display during adolescence and adulthood SCZ-
and autistic-like behavior including reduced communication and
social interactions, together with increased stereotypy, anxiety and
sensorimotor deficits (Coiro et al., 2015; Meehan et al., 2017;
Pendyala et al., 2017; Hui et al., 2018).

8.2. Accelerated aging and gut
microbiota

Aging is a rate-limiting factor that modifies the functional
activities of different body organs. There are numerous pathways
that could influence the aging rate including factors such as
environment and diet, genetics and pathological conditions (Finlay
et al., 2019; Kim and Benayoun, 2020; Li et al., 2021; Narasimhan
et al., 2021). Increasing evidence is beginning to show that
the diversity of the human gut microbiome is also correlated
with aging, which is based on the aging progression of the
microbiota (Xu et al., 2019). Of note, different multivariate reports
hypothesize that the human aging process is determined by the
continuous aging curve of gut microbiota community, dysbiosis,
and depends on incidence or rate of infection, antibiotic usage,
type of genera, declined metabolic activity and availability of gut

Frontiers in Cellular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncel.2023.1139357
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1139357 May 11, 2023 Time: 10:50 # 11

Ben-Azu et al. 10.3389/fncel.2023.1139357

metabolites including SCFAs (Lovat, 1996; Vatanen et al., 2018;
Xu et al., 2019; Hendriks et al., 2021), which in turn influence
brain aging (Nguyen et al., 2021). Using high throughput whole
genome sequencing and metagenomics, microbial species such as
Bacteroides, Clostridiaceae, and Eubacterium were reported to be
increased during aging (Odamaki et al., 2016; Loughman et al.,
2020). These species can influence neurotransmitter synthesis such
as glutamate and GABA, and associated behavioral outcomes
which have been largely implicated in brain aging (Dinan and
Cryan, 2017; Zheng et al., 2019; Chen et al., 2021). Notably,
these findings support the possibility that leaky gut during
dysbiosis may permit a translocation of gut-derived metabolic-
end products, enteric microbes, as well as food and bacterial
antigens into systemic circulation and across the BBB (Abdel-Haq
et al., 2018; Dabke et al., 2019). This potentially contributes to
sustaining an inflammatory gut environment, leading to the brain
physiological and structural anomalies observed in aging (Hsiao
et al., 2013; Nguyen et al., 2021). Thus, these data indicate that using
proteomics, metabolomics, transcriptomic, DNA methylation and
telomere length analyses, the microbiota ecosystem can be used
to uncover the biochemical landscape underlying the inter-organ
transfer of molecules and gut-brain connections that likely promote
accelerated aging (Lai et al., 2021; Nguyen et al., 2021).

Mechanistically, some correlations were identified between
an increased intestinal bacterial synthesis of 3-deoxy-D-manno-
octulosonic acid-lipid (Kdo2-lipid), TMAO and an accelerated
disease state-induced brain aging (Zeisel and Warrier, 2017; Li
et al., 2018). Notably, it was discovered that Kdo2-lipid and
TMAO biosynthesis are altered in neurodegenerative diseases,
in association with increased inflammatory cytokines and risk
of coronary heart and IBD (Verdugo-Meza et al., 2020; Nguyen
et al., 2021). Kdo2-lipid is an immune stimulant released by
lipopolysaccharide (LPS) in most gut microbial metabolism
that causes host immune stimulation by activating TLR-4.
TMAO is generated from trimethylamine derived from foods
like fish or indirectly from the bacterial breakdown of dietary
phosphatidylcholine, betaine, L-carnitine in the gut as well as
enteric tract cell fragments (Koukouritaki et al., 2002). Colonization
of gut microbiome of gnotobiotic mice with trimethylamine-
forming microbes within the cecum and colon significantly
increased TMAO concentrations via flavin monooxygenases-
mediated metabolism and dramatically reduced dietary choline
levels, which was worsened upon increasing population of
trimethylamine-forming bacteria (Chao and Zeisel, 1990; Romano
et al., 2015). TMAO is an immunologically active gut-bacterial
derived metabolite (Chen et al., 2019), with innate capacity to
up-regulate NLRP3, caspase-1, IL-1β, IL-6, and 1L-18 activities
that could lead to chronic metabolic and neuropsychiatric
diseases characterized of vascular senescence and accelerated
aging (Zeisel and Warrier, 2017; Ke et al., 2018; Brunt et al.,
2020). Correlatively, exogenous TMAO systemic administration
for 16 weeks accelerated brain aging in 24-week-old senescence
accelerated prone strain 8 mice, typified by a significant number
of senescent cells mitochondrial death, and oxidative stress
in the hippocampus, accompanied by memory impairment
(Li et al., 2018). These findings suggest possible mechanisms by
which an altered gut microbiota could negatively induce the
accelerated brain aging increasingly observed in neuropsychiatric
diseases like SCZ. These findings also provide insight into the

functional connection between the gut and brain, also proposing
that TMAO could serve as a useful marker for the diagnosis
accelerated aging in SCZ. Together, these findings provide insights
into the gut microbiota involvement in premature brain aging and
potential mechanisms to slow down senescence by modulating gut
microbiome-derived metabolites acting on microglial functions.

9. Effects of antipsychotics on the
gut microbiome: therapeutic and
adverse effects

Neuroleptic drugs including typical and atypical antipsychotics
are clinically prescribed for the management of SCZ and other
related psychotic diseases such as conduct disorder, oppositional
defiant disorder, ASD and borderline personality disorder (Cheng-
Shannon et al., 2004; De Hert et al., 2011; Olfson et al.,
2012). Different reports have been provided for antipsychotic-
related therapeutic and adverse effects of typical and atypical
antipsychotic drugs during usage in psychotic conditions. Of
pertinence, some therapeutic benefits have been linked to
modulation of neurochemical transmission, as well as inhibition
of oxidative stress and inflammation. However, their adverse
outcomes including extrapyramidal symptoms (like locomotor
impairment, tremor, stiff muscle, and tardive dyskinesia) and
metabolic effects such as weight gain and obesity are attributable
to alterations in neurotransmitter homeostasis (Saddichha et al.,
2008). Of increasing interest is the role of the gut microbiome
in the therapeutic and adverse effects of antipsychotic drugs
and the reciprocal influence of the gut microbiome on the
pharmacokinetic profiles of antipsychotic drugs (Kraeuter et al.,
2020; Singh et al., 2022).

Different studies revealed that many antipsychotic drugs
change the composition of gut microbiota, either by population
or depopulation, by modifying mucosal integrity and membrane
permeability (Tyski, 2003; Dinan and Cryan, 2018; Lima et al., 2019;
Vich Vila et al., 2020). For example, some phenothiazines including
chlorpromazine, fluphenazine, and thioridazine, second generation
antipsychotic drugs (risperidone, clozapine, aripiprazole, and
olanzapine) exhibit intrinsic antibiotic tendency against bacterial
isolates of Gram-positive and Gram-negative organisms derived
from the mammalian gut (Kristiansen and Mortensen, 1987;
Morgan et al., 2014; Maier et al., 2018). Remarkably, an
immunosuppressive concentration-dependent action of typical
(e.g., haloperidol) and atypical (e.g., clozapine) antipsychotics
possibly linked to IL-1 receptor antagonism was reported (Song
et al., 2000). More recent studies showed that most of these
drugs inhibited similar gut microbiota species irrespective of their
chemical characteristics, thus pointing to the fact that their clinical
application could be dependent on the spectrum of gut microbiotic
specie populated or depopulated (Maier et al., 2018; Singh et al.,
2022).

In terms of pharmacodynamic effects, the gut microbiome
is an important site for the synthesis of different neurohormone
transmitters including dopamine, serotonin, noradrenaline,
acetylcholine, while microbiota diversity may strongly affect these
neurochemical levels (Roshchina, 2010; González-Arancibia et al.,
2019; Saniotis et al., 2020; Szõke et al., 2020). Given that the primary
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mechanism of action for antipsychotic drugs is neurochemical
modulation (Ben-Azu et al., 2018c, 2023; González-Arancibia et al.,
2019; Szõke et al., 2020), it is unsurprising that the gut microbiome
could significantly impact the action of antipsychotic drugs in
the brain, either by reducing or enhancing their effectiveness
(Seeman, 2021a). Some investigations have shown that GF mice
exhibited reduced neurochemical levels, such as decreased mRNA
expression of NR2 subunit of N-methyl-D-aspartate receptor in
the central amygdala, as well as low serotonin receptor (5-HT)
1A in the hippocampus and histamine levels in the limbic system
(Neufeld et al., 2011; Clarke et al., 2013; Panula and Nuutinen,
2013; Chen and Liu, 2021). These findings reinforce the inter-organ
connectivity between the gut and brain, and the potential influence
of gut microbiota diversity on the pharmacodynamic profile of
antipsychotic drugs. On this ground, Seeman (2021a) recommends
avoiding antibiotic treatment during antipsychotic therapy, while
nutritional enhancement with probiotics is recommended to
improve general health and wellbeing during management of
psychotic conditions.

Some preclinical and clinical experiments have also investigated
the role of the gut microbiome in determining the adverse profile of
antipsychotic medication (Davey et al., 2013; Morgan et al., 2014;
Bahr et al., 2015). Olanzapine interacts with the gut microbiome
to induce significant weight gain and adiposity in control mice,
while GF mice treated with olanzapine exhibited little or no weight
gain after 7 weeks. Proteomic analysis of fecal pellets of rats
revealed that olanzapine causes a shift toward obesogenic bacterial
phyla including Actinobacteria, Alphaproteobacteria, Clostridia,
and Firmicutes (Davey et al., 2013; Morgan et al., 2014). Oral
co-administration of antibiotic cocktail containing neomycin
(250 mg/kg/day), metronidazole (50 mg/kg/day), and polymyxin B
(9 mg/kg/day) with olanzapine dramatically prevented olanzapine-
induced weight gain, uterine fat decomposition and macrophage
infiltration of adipose tissue (Davey et al., 2013). Also, 16S
ribosomal RNA sequencing of fecal bacteria population in
children treated with risperidone showed compositional shift
toward obesogenic bacteria profile particularly with increased
Bacteroidetes and Firmicutes levels compared to antipsychotic
naïve psychiatric group. This outcome suggests a possible link
between high body mass index (BMI), weight gain and deregulated
synthesis of SCFAs, as well as tryptophan metabolism in the gut
during antipsychotic therapy and could be due to blockade of
neurohormone receptors such as muscarinic, H1 and 5-HT2C
(Jumpertz et al., 2011; Bahr et al., 2015).

Nevertheless, variable sex-dependent effects of antipsychotic
drugs-induced metabolic syndrome and gut microbiota alterations
have been postulated, with female rodents having higher rates
of obesity and cognitive symptoms (Rubin et al., 2008; Davey
et al., 2012, 2013; Morgan et al., 2014; Bahr et al., 2015; Seeman,
2021b). Although the gut microbiome and its composition differ
among humans and gender due to hormonal variations and
route of drug administration (Zhang et al., 2013; Kim et al.,
2020; Yuan et al., 2020), microbiome-induced drug metabolism
could negatively impact host’s pharmacokinetic profiles including
metabolic enzymes involved in phases 1 and 2 such as cytochrome
P450s (a hemeprotein involved in the metabolism of drug and
xenobiotics) to determine bioavailability, efficacy and toxicity
(Enright et al., 2016; Cussotto et al., 2021). A typical example is the
activation of the pro-drug or chemical scission of isoxazole in the

benzisoxazole ring system of risperidone to active metabolites (such
as 9-hydroxy-risperidone and paliperidone) in the presence of gut
microflora under aerobic and anaerobic states (Meuldermans et al.,
1994; Wilson and Nicholson, 2017; Xie et al., 2020). Altogether,
these findings indicate the possible influence of microbiota system
on antipsychotic-induced adverse effects (weight gain, higher BMI).
Thus, widening the scope to include gut microbiota profiling
during antipsychotic therapy may eventually result in improved
therapeutic strategies and outcomes. However, this axis remains
open for elucidation of a clear connection between dysbiosis and
the adverse effects of antipsychotic drugs for efficient clinical
outcomes.

10. Do fecal microbiota transplants
populate microglial sensomes and
affect brain reserves?

The clinical application of the effect of interpersonal variations
of microbiome on pharmacokinetics, pharmacodynamics and
adverse effects of drugs known as “pharmacomicrobiomics”
is increasingly emerging because of the striking evidence
demonstrating that fecal transplantation of healthy microbiota
decoction into dysbiotic gut of ill individuals can be beneficial.
While fecal microbiota transplantation (FMT) (Figure 1) entails
the seeding of healthy bacteria contained in fecal products from
healthy donors to diseased individuals (Zheng et al., 2019; Chinna
Meyyappan et al., 2020; Zhu et al., 2020b; Erny et al., 2021),
pharmacomicrobiomics is the study of the interactions between
drugs and microbiome (Sharma et al., 2019). Gut microbiota
community can regulate CNS activity, which is partly dependent
on genetic and epigenetic factors (Goodrich et al., 2014; Levine
et al., 2018; Montgomery et al., 2020). One possible connection
between the gut microbiome and brain’s immune status is the
role of microglia in regulating neuro-immune responses, and brain
metabolic activity, as well as the reciprocal reprogramming of
microglia by the gut microbiome (Clarke et al., 2013; Abdel-Haq
et al., 2018; Bernier et al., 2020; Carrier et al., 2020; Cornell
et al., 2021). Transplantation of microbiota fecal materials from
SCZ patients to GF mice has been reported to cause SCZ-
like behavior typified by hyperlocomotion, sensorimotor gating
deficit, anhedonia-like symptoms and neurochemical imbalance
characterized by decreased glutamate in the hippocampus,
increased cellular basal dopamine in the prefrontal cortex and
serotonin levels in the hippocampus (Zheng et al., 2019; Zhu et al.,
2020a). Although SCZ-like behaviors were previously linked to
brain inflammation and microglial dysfunction (Morgan et al.,
2010; Abdel-Haq et al., 2018), whether the microbiome-microglia
brain axis directly mediates the effects of the FMT on modulating
SCZ-like behavior remains to be investigated in experimental
animal-human models.

Of note, translocator-positron emission tomography (PET)
imaging scans of individuals at ultra-high risk of SCZ demonstrated
a higher binding of radiotracer markers (such as [11C]PBR28
and [11C] R©-PK11195 radioligands) for 18 kDa translocator protein
(TSPO), a relatively non-specific marker for immune reactivity, in
gray matter regions, suggesting the implication of microglia and
(neuro) inflammation (Bloomfield et al., 2016; Conen et al., 2021).
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A study showed that GF mice displayed underdeveloped and
immature microglia in the cerebral cortex, corpus callosum,
hippocampus, olfactory bulb, and cerebellum with a wide array of
gene expression changes pertaining to cytokines and chemokines
compared to colonized SPF microglia. Using quantitative real-
time PCR analysis, these changes included S100a4, S100a6, S100a8,
and S100a10 genes following LPS or lymphocytic choriomeningitis
virus (LCMV) inflammatory induction (Erny et al., 2015).
Furthermore, Erny et al. (2015) demonstrated that under GF
conditions, microglial response to pathological insults such as
viral exposure is less severely characterized by up-regulation of
CSF1-receptor, F4/80 and CD31 surface proteins. The study also
found substantial high levels of several other genes involved in
the promotion of cell proliferation [e.g., Iqgap1, DNA-damage
inducible transcript-4 (Ddit4)], cell cycle (e.g., Cdk9 and Ccnd3),
and apoptotic inhibition (Bcl2) in the microglia of GF mice. The
microglia of GF mice displayed altered morphology characterized
of increased cell division, branching, and segments, through
mechanisms linked to metabolic elevated expression of Csflr, Ddit4
and Transforming growth factor beta (Tgf-β) 1 genes (Erny et al.,
2015; Mossad and Erny, 2020; Wang et al., 2022). Of relevance to
microbiome reconstitution, these defects were partially restored by
recolonization with a complex microbiota and microbiota-derived
bacterial fermentation. Also, defective microglia were reversed
by SCFA supplementation, promoting restoration of microglial
process length, number of branching and segments (Erny et al.,
2015). These findings further suggest that continuous contribution
of the gut microbiome is critical for microglia-regulated functions,
including neuroimmune response and behavior in steady-state
conditions.

Gut microbes are essential for the release of SCFAs, which
are bacterial fermentation products required to maintain intestinal
immune cell homeostasis through peripheral regulatory T cells
(Tregs)-transcription factor forkhead box P3 signaling (Burzyn
et al., 2013; Smith et al., 2013), G-protein coupled receptor (GPCRs)
or histone deacetylases (HDACs) (Samuel et al., 2008; Soliman
and Rosenberger, 2011). Recent findings illustrated that cerebral
Tregs-Foxp3 in rat cerebrum constitute over 15% of cerebral
CD4(+) T cell compartment and higher Treg cell-associated
signature genes than those present in peripheral counterpart (Xie
et al., 2015). Cerebral Tregs-Foxp3 inhibits LPS-induced microglial
reactivity and brain inflammation via IL-10, IL-35, CTLA4, and
CD39 response pathways, suggesting immuno-surveillance and
immunomodulatory roles of the gut-brain microglia Tregs-Foxp3
pathway in maintaining cerebral homeostasis (Xie et al., 2015).
Furthermore, gut-brain microglia metabolic fitness is driven by
essential bacteria-derived SCFAs specifically acetate through an up-
regulation of brain acetyl-coenzyme (aCoA) (Mezö et al., 2020;
Mossad and Erny, 2020; Erny et al., 2021). Although microbiota-
derived MAMPs and FFAR2 for SCFAs binding have not been
successfully shown to participate in the maintenance of microglia
under homeostatic conditions (Erny et al., 2015), these recent
findings emphasize that microglial maturation, differentiation and
function are strongly controlled by host gut microbiome and
complex molecular signatures, ensuring that their roles serve as
chaperon for quick diagnosis of dysfunctional CNS activity relevant
for SCZ pathogenesis (Erny et al., 2015; Abdel-Haq et al., 2018;
Kelly et al., 2021; Rosin et al., 2021). These findings support the
notions that microglial sensomes can be modulated and brain

reserves can be increased by acting on the gut microbiome,
thus supporting the gut-brain microglia axis hypothesis. In the
future, other links showing specific gut microbiome complement-
mediated microglia phagocytosis and altered synaptogenesis and
morphogenesis are hereby required to identify novel therapeutic
targets.

11. Experimental and clinical
evidence for the influence of
psychobiotics in SCZ

Psychobiotics, as an intervention that seeks to improve mental
well-being through manipulation of the GB axis, may be in the
form of prebiotics or probiotics. While probiotics are beneficial
live bacteria, prebiotics include substances that encourage the
growth and survival of probiotics. Some variations in microbiota
diversity have been reported in many cases of first episode psychosis
and chronic SCZ compared to healthy controls. Commonly
reported microbiota strains particularly in first episode psychotic
patients include: Brucellaceae, Halothiobacillus, Micrococcineae,
Lachnospiraceae, and Lactobacillaceae which are particularly
elevated in individuals suffering from social deficits due to a weak
global functionality (Schwarz et al., 2018; Nguyen et al., 2021). By
contrast, Veillonellaceae is decreased in these individuals compared
to controls (Schwarz et al., 2018). Additionally, Tropheryma,
Halothiobacillus, Saccharophagus, Deferribacter, Halorubrum, and
Lactobacillus were elevated whereas Nitrosospira, Anabaena, and
Gallionella decreased significantly (Schwarz et al., 2018). These
findings are consistent with other reports from other first episode
SCZ spectrum (He et al., 2018; Shen et al., 2018; Yuan et al.,
2018). In the genus levels, patients with chronic SCZ showed
increased Anaerococcus (H = 8.32; p = 0.007) with reduced levels
of Clostridium (H = −15.9; p = 0.002), Haemophilus (H = −11.3;
p = 0.004), and Sutterella (H = −12.0; p = 0.004) compared to
controls (Nguyen et al., 2019). At the taxonomic levels, 35 taxa
were differentially expressed. Among these, 33 sub-operational
taxonomic units (sOTU), an operational classification model
used to classify a group of closely related organisms, were from
Clostridiales order, 1 sOTU from Gammaproteobacteria consisting
of Haemophilus parainfluenzae, and 1 sOTU belonging to class
Erysipelotrichia with unknown genus (Nguyen et al., 2019). In
terms of association of microbial taxa and disease severity in
relation to the psychopathology of SCZ, elevated levels of genus
Bacteroides correlated with more depressive-like behavior, while
low family levels of Ruminococcaceae were linked to heightened
negative symptoms. In general, it is reported that the levels
of phylum Verrucomicrobia are positively interrelated with self-
reported mental wellness (Nguyen et al., 2019). Therefore, these
data underscore the need to conduct more mechanistic clinical
investigations for the possible application of psychobiotic in the
treatment of SCZ (Nguyen et al., 2019; Zhu et al., 2020a).

A randomized double-blind placebo-control trial (N = 65) of
probiotics consisting of a mixture of Lactobacillus rhamnosus strain
GG and Bifidobacterium animalis subp. lactis strain Bb12 was
conducted on DSM-IV confirmed-psychotic patients (Dickerson
et al., 2014). Although no significant changes were observed
in the positive and negative symptoms using their syndrome
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scale (PANSS) relative to control group, male patients were
less vulnerable to bowel immobility during the trial period.
However, another longitudinal pilot study examining the links
between probiotic treatment, bowel distress and SCZ symptoms
specifically reported on the antibody expressions of Candida
albicans and Saccharomyces Cerevisiae which are highly abundant
in SCZ (Severance et al., 2017). Severance et al. (2017) reported
improvement in positive symptoms after PANSS test (N = 56) in
male patients who were seronegative for C. albicans. Additionally,
this study found significant decrease in the antibody levels of
C. albicans only in males after 14 weeks of probiotic treatment.
These findings suggest the possible connection between the severity
of positive psychotic symptoms and seropositivity of C. albicans
as confirmed in over 380 male patients with SCZ (Severance
et al., 2017; Severance and Yolken, 2019). Consequently, this
investigation reinforces the beneficial role of psychobiotics in SCZ
and that repopulation and depopulation of some gut microbiota
phyla might play a vital role in determining the therapeutic
response to antipsychotic drugs (Seeman, 2021b). Elsewhere,
multiplex immunoassay of 47 immune-related proteins in the
serum of patients with chronic SCZ (N = 31) reported the
immunomodulatory effects of probiotics (Lactobacillus rhamnosus
and Bifidobacterium animalis strains) (Tomasik et al., 2015).
Through in silico analysis, it was further demonstrated that
a probiotic add-on therapy modulates the IL-17 group of
cytokines in immune and gut epithelial cells, leading to increased
expressions of BDNF, monocyte chemotactic protein-1 (MCP-1)
and decreased von Willebrand factor, with unchanged expressions
of other inflammatory proteins including T-cells relative to placebo
control (Tomasik et al., 2015). Again, these findings showed the
immunomodulatory potential of probiotics in ameliorating SCZ
symptoms via inhibition of a leaky gut and enhancement of
neurotrophic activity. Of note, the interplay between SCZ and
elevated pro-inflammatory cytokines have been well characterized
over the years (de Pablos et al., 2014; Köhler et al., 2017;
Conen et al., 2021). Studies have shown that the gut microbiome
can synthesize bioactive “immunomodulins” in the form of
regulatory cytokines including IL-10 and TNFα that inhibit
brain inflammation (Kemgang et al., 2014; Pendyala et al.,
2017). Furthermore, while BDNF is implicated in SCZ pathology
(Angelucci et al., 2005; Ben-Azu et al., 2018a), the microbial
synthesis and regulation of neurotrophic factors such as BDNF
which were shown to modulate synaptogenesis, neurogenesis,
neuronal survival and neurochemical activities is expected to
influence brain functions and clinical outcomes (Tomasik et al.,
2015).

A proof of concept study examining the effect of probiotics on
anxiety and depressive-like behavior associated with SCZ indicated
that administration of Bifidobacterium breve A-1 for 4 weeks
significantly attenuated the Hospital Anxiety and Depression
Scale (HADS) total score by 25% (Okubo et al., 2019). This
finding was associated with reduced PANSS anxiety/depression
episodes and increased levels of Parabacteroides in the gut
microbiome through mechanisms related to elevated expressions
of TNF-dependent activated release of other cytokines such as
IL-22 (Okubo et al., 2019). These findings raise awareness on
the ability of probiotics to attenuate anhedonic-like symptoms
of SCZ via an inhibition of cytokine release, leaky gut, and
prevention of gut-derived bacterial antigens transfer to the brain.

A preclinical investigation also revealed that treatment with
probiotics containing Akkermansia muciniphila reversed high-fat
diet (HFD)-induced cognitive dysfunction in rats (Higarza et al.,
2021) as well as olanzapine-induced weight gain, metabolic and
immune alterations in mice by inhibiting hepatic gluconeogenesis
and reducing serum levels of cytokines (TNFα, IL-6) (Huang
et al., 2021). Besides, another proof of concept exploratory
study (NCT02637115) confirmed the beneficial effect of this
Akkermansia muciniphila in overweight and obese human
volunteers following daily oral administration for 3 months
(Depommier et al., 2019). Thus, for better clinical outcome,
these findings suggest that probiotic supplementation from
dietary intervention could be used to abate metabolic adverse
effects and epithelia barrier dysfunction associated with some
antipsychotic medications.

Remarkably, a mechanistic study showed that post-treatment
with prebiotic (Xylooligosaccharides), probiotic (Lactobacillus
paracasei HII01) or symbiotic (Xylooligosaccharides and
Lactobacillus paracasei HII01) in male obese-insulin resistant rats,
induced by HFD for 12 weeks, significantly reversed peripheral
insulin sensitivity, gut, and systemic inflammation as well as
oxidative stress and apoptosis in the hippocampus. Although the
superiority of prebiotic vs. probiotic supplementations on the
metabolic benefits remains undecided in the field, interestingly this
study reports that inhibition of gut and systemic inflammation was
associated with decreased microglial reactivity, mitochondrial
dysfunction, increased dendritic spine density, improved
hippocampal plasticity, long-term potentiation and cognitive
functions (Chunchai et al., 2018). While the inability of probiotic
(Lactobacillus rhamnosus, JB-1) to prevent cold pressor-induced
cognitive impairment in males has been reported (Kelly et al.,
2017), another investigation proved that probiotics (Lactobacilli,
Lactococci, and Bifidobacteria) in healthy females volunteers
improved cognitive functions by raising the relative abundance
of bacterial taxa known to protect the integrity of the intestine
and BBB (Bloemendaal et al., 2021). These discrepant findings
suggest that certain variables such as sex, health status, disease
chronicity, microbial composition, and duration of treatment
as well as genetic footprints are important factors to consider
when designing studies to modulate the GB axis. Of note, the
research shortcomings of using different microbial strains, genetic
factors and the resilience to short-term course are discussed
in-depth in the following articles (Castro-Nallar et al., 2015;
Montgomery et al., 2020; Yuan et al., 2020; Bloemendaal et al.,
2021; Teeuw et al., 2021).

12. Do psychobiotics contribute to
antipsychotic-induced therapeutic
benefits or adverse effects through
the gut-brain microglial axis?

The aim of this review was to explore and summarize how
the gut-resident bacteria can modulate molecular mechanisms
of accelerated aging in SCZ through microglial signaling. While
convincing evidence on the gut-microglia brain axis continue
to emerge, substantial data show that dysbiotic disorders
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can negatively impact the vagal communication with the brain and
activation of the microglial sensomes. The gut-brain microglia axis
hypothesis of SCZ was stimulated by the discovery that GF mice
displayed global microglial defects with abnormal phenotypes in
steady and disease states, which was reversed by the introduction
of a complex microbiota profile. Excessive microglial reactivity
due to disease state can cause behavioral perturbations relevant
to SCZ-like behavior. Definitive changes of gut microbiota and
microbiome compositions may also allow to increase effectiveness
and reduce the adverse effects of antipsychotic drugs by rectifying
defective microglia. However, because the composition of the
gut microbiome is regulated by certain dynamics such as dietary
habits, aging, stress, pollution, infections, as well as other factors
like genetics, sex, disease chronicity, duration of treatment,
and age, the microglial sensomes and its signaling may vary
as well, thus, making the hypothesis difficult to test due to
interpersonal variations.

In the future, the assessment of microbiota and microbiome
markers together with microglial functions can be used
longitudinally as diagnostic judgment for SCZ and therapeutic
benefits of antipsychotic drugs. Measures from microglial
phenotypes and their sensomes can be collected and used to track
the progress of antipsychotic drug idiosyncratic response, the
effectiveness, and severity of adverse effects, as well as the rate of
accelerated brain aging. Investigating gut microbiome-dependent
microglia-mediated modulations of cytokines, chemokines,
complements factors, neurogenesis, synaptic pruning, dendritic
arborization, and brain reserves during treatment of SCZ
patients with antipsychotic drugs may give more insights and
understanding of the overall inter-organ-dependent clinical
symptoms. These studies also hold the potential to provide novel
treatment targets for SCZ and to slow down the accelerated brain
aging. To this end, specific psychobiotic regimen could be used
either as monotherapy or as adjunct or supplemented from dietary
intervention to decelerate disease progression and associated
accelerated brain aging. Development of scientific methods for
absolute and idiosyncratic profiling and identification of the genera
associated with altered gut-brain microglia axis in the pathogenesis
of SCZ would, however, be recommended, to enable treatment
with appropriate psychobiotics. This would be meaningful for
designing relevant psychobiotics either as prebiotic, probiotic or
symbiotic (a mixture of prebiotics and probiotics) as well as related
dietary-enriching products such as ketogenic diets that could help
in reversing SCZ and related diseases or maintain young gut
microbiota system to protect vulnerable SCZ groups and improve
quality of life.
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