Skip to main content

REVIEW article

Front. Cell. Neurosci., 02 August 2019
Sec. Cellular Neuropathology
This article is part of the Research Topic Mast Cells in Itch, Pain and Neuro-inflammation View all 18 articles

Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome

  • 1Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
  • 2Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
  • 3Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
  • 4Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
  • 5Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.

Introduction

Fibromyalgia Syndrome is a disorder of chronic generalized muscular pain, stiffness, generalized fatigue, sleep abnormalities, (Clauw et al., 2011; Schmidt-Wilcke and Clauw, 2011; Clauw, 2014) and cognitive problems (Theoharides et al., 2015b; Hauser et al., 2019) assessed by the FSQ (Ferrari and Russell, 2013), which has about 93% sensitivity and 92% specificity (Clauw, 2014). FMS affects about 5% of adults, primarily women 20–60 years of age (Branco et al., 2010) and belongs to a family of overlapping painful conditions (Table 1) known as CSS (Yunus, 2007; Theoharides, 2013). Central sensitization is recognized as the main mechanism involved (Woodman, 2013) and is characterized by allodynia, pain from an otherwise non-painful stimulus, (Russell and Larson, 2009) and hyperalgesia (Staud et al., 2001) due to an exaggerated response to a painful stimulus (Woolf, 2011). The pathogenesis of FMS remains unknown and with no objective diagnostic criteria (McBeth and Mulvey, 2012; Wolfe and Walitt, 2013). FMS patients have reduced tolerance to pain, especially extremes of heat and cold (Desmeules et al., 2003). There is considerable evidence of altered circuity of pain networks and (Jensen et al., 2012; Flodin et al., 2014) abnormal pain processing in FMS (Staud, 2011).

TABLE 1
www.frontiersin.org

Table 1. Pain Syndromes Comorbid with FMS.

The PubMed database was searched between 1960 and 2018 using the terms fatigue, fibromyalgia, hypothalamus, inflammation, mast cells, pain and stress. Only articles in English were included.

Here we discuss how brain mast cell release of neuro-sensitizing mediators in the thalamus leads to focal inflammation and contribute to the pathogenesis of FMS.

Neurohormonal Triggers of Mast Cells Contribute to Focal Inflammation in the Diencephalon

It was recently proposed that FMS may involve localized inflammation in the hypothalamus (Theoharides et al., 2015c). Elevations in pro-inflammatory chemokines/cytokines could negatively impact symptoms (Bazzichi et al., 2007; Carvalho et al., 2008; Nugraha et al., 2013) leading to sensitization of peripheral and central nociceptors (Uceyler et al., 2011; Behm et al., 2012; Hornig et al., 2015). Increased levels of the pro-inflammatory chemokine IL-8 (CXCL8) have been reported in the serum and CSF in patients with FMS (Ross et al., 2010; Kadetoff et al., 2012; Rodriguez-Pinto et al., 2014). Chemokines facilitate nociception by directly acting on chemokine receptors present along the pain pathway (Abbadie, 2005; Charo and Ransohoff, 2006).

The cytokines TNF and IL-17 greatly contribute to the inflammatory response (Romero-Sanchez et al., 2011; Griffin et al., 2012). Plasma levels of IL-17 were increased and correlated with levels of TNF in patients with FMS (Pernambuco et al., 2013). CSF and serum IL-17 also positively correlated with pain (Meng et al., 2013) and anxiety (Liu et al., 2012). Mast cells, themselves, can secrete IL-17; moreover, IL-6 and TGFβ from mast cells contribute to the development of Th-17 cells (Kenna and Brown, 2013).

Fibromyalgia syndrome worsen by stress, (Geenen et al., 2002) which augments pain responses (Bote et al., 2012, 2013). Plasma concentrations of cortisol are increased in the evening, suggesting disruption of the circadian rhythm (Crofford et al., 2004). Serum levels of CRH, which is secreted under stress, were increased in patients with FMS (Tsilioni et al., 2016). CRH was also increased in the CSF of such patients and correlated with severity of pain (McLean et al., 2006). Physiological stress was reported to be the most common trigger in patients with systemic mastocytosis (SM) (Jennings et al., 2014) who also commonly experience FMS (Theoharides et al., 2015d, 2019). We reported increased levels of CRH in the serum of one patient with indolent systemic mastocytosis (Theoharides et al., 2014). CRH can trigger human mast cells to release VEGF without histamine or tryptase (Cao et al., 2005). CRH also has synergistic action with NT stimulating VEGF release. As a result, there is increased vascular permeability in the skin and the blood-brain barrier (BBB) (Esposito et al., 2002; Donelan et al., 2006; Theoharides and Konstantinidou, 2007). Stress also disrupts the gut-blood barrier (Theoharides et al., 1999; Wallon et al., 2008) allowing for gut microbiome-associated molecules, such as propionate (Minerbi et al., 2019) to enter the brain and contribute to focal inflammation. These results have led to the conclusion that mast cells may serve as “immune gate to the brain” (Theoharides, 1990; Ribatti, 2015).

Levels of the neuropeptide SP (Russell, 1998) and NGF (Giovengo et al., 1999) are elevated in the CSF of FMS patients. NGF has been reported to increase nociception and hyperalgesia (Maren, 2017). The SP receptor NK-1 has been involved in the pathophysiology of pain (Greenwood-Van et al., 2014). We reported increased serum levels of SP, its structural analogue Hemokinin-1 (HK-1) and TNF in patients with FMS (Tsilioni et al., 2016). SP (Theoharides et al., 2010a,b) and NGF (Levi-Montalcini, 1987) can stimulate mast cells. Moreover, SP induced mast cell expression of CRHR-1 (Scholzen et al., 2001). Cerebrovascular mast cells were stimulated by CGRP, (Reynier-Rebuffel et al., 1994; Ottosson and Edvinsson, 1997) which is now well established to participate in the pathophysiology of headaches (Edvinsson, 2018). In addition to neuropeptides, sex hormones can also affect mast cell reactivity. For instance, estradiol augments immune (Kovats, 2015) and allergic (Hox et al., 2015) processes. In particular, we had reported expression of estrogen receptors on rodent mast cells (Pang et al., 1995). We also reported that 17β-estradiol further increased stimulation of mast cells by SP (Theoharides et al., 1993). Such findings may help explain why FMS is more common in women.

In addition to allergic reactions, mast cells contribute to innate immunity, (Galli et al., 2011) autoimmunity (Rottem and Mekori, 2005) and inflammation (Theoharides et al., 2010a).

Thalamic Mast Cells Secrete Neurosensitizing Mediators

Increasing evidence supports the involvement of mast cells in FMS (Lucas et al., 2006; Pollack, 2014) and comorbid disorders (Theoharides, 2013) as well as other inflammatory (Galli et al., 2008; Theoharides et al., 2010a) and painful conditions, (Heron and Dubayle, 2013; Chatterjea and Martinov, 2014) as well as neuroimmune interactions (Skaper et al., 2017) (Figure 1). Chronic urticaria, which involves stimulation of skin mast cells is more common in FMS (Torresani et al., 2009). Moreover, mast cells are significantly increased in the papillary dermis of FMS patients (Blanco et al., 2010). The chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and eotaxin (CCL-11) are elevated in plasma of FMS patients (Zhang et al., 2008). MCP-1 is a strong mast cell chemoattractant (Conti et al., 1998) and also triggers mast cells in rodents (Conti and Theoharides, 1994). MCP-1 induced prolonged muscle hyperalgesia in rats via activation of its high-affinity receptor, CC Chemokine receptor 2 (CCR2), on the peripheral nerve terminals (Alvarez et al., 2014). Myoblasts treated with MCP-1 secreted significant amounts of the key pro-inflammatory cytokine IL-1β (Zhang et al., 2008). C-reactive protein (CRP) is now considered a marker of chronic inflammation. CRP may be useful in the diagnostic of FMS (and depression/anxiety that often accompany FMS), even though there is no direct correlation reported (De Berardis et al., 2006, 2017; Orsolini et al., 2018).

FIGURE 1
www.frontiersin.org

Figure 1. Diagram depicting the involvement of mast cells in the generation of pain in FMS. Mast cells (violet color) in the thalamus secrete pro-inflammatory and neuro-sensitizing mediators (CRH, histamine, IL-6, HK-1, SP, TNF, Tryptase). These mediators can then activate either microglia in thalamic nuclei or ascending nociceptive tracks creating the sensation of pain. Possible natural molecules to inhibit stimulated mast cells and/or microglia are flavonoids such as luteolin or tetramethoxyluteolin (Methlut).

Mast cells derive from the bone marrow and mature in response to SCF, which acts via the cell surface tyrosine kinase KIT receptor (Galli et al., 2011). Mast cell progenitors then migrate in all tissues. As a result, mast cell mediators can affect all organs and lead to multiple symptoms. Mast cells are found adjacent to blood vessels and nerve endings; in the brain, mast cells are located in the thalamus, hypothalamus and median eminence (Edvinsson et al., 1976; Lambracht-Hall et al., 1990; Theoharides et al., 2015d).

Mast cells are known to be stimulated by IgE, via activation of its unique surface receptors (FcεRI) (Rivera et al., 2008). Mast cells can also be stimulated via TLRs, (Abraham and St John, 2010; Zhang et al., 2010). Stimulated mast cells secrete multiple vasoactive, pro-inflammatory and neuro-sensitizing molecules (Galli and Tsai, 2008; Theoharides et al., 2010a). Stimulation of mast cells can be augmented by the cytokine IL-33, (Fux et al., 2014) which synergizes with SP to induce release of impressive amounts of VEGF, (Theoharides et al., 2010b) TNF (Taracanova et al., 2017) or IL-1β (Taracanova et al., 2018). As a result, mast cells can serve as “sensors of cell danger” (Theoharides, 1996; Enoksson et al., 2011; Theoharides et al., 2015a).

Mast cell secretory granules store many preformed pro-inflammatory and neuro-sensitizing mediators including bradykinin, histamine, TNF and tryptase (Nakae et al., 2005; Olszewski et al., 2007). Mast cells also release de novo synthesized molecules: (a) lipid mediators (leukotrienes, prostaglandins, and PAF), (b) cytokines (IL-6, IL-13, IL-33, TNF) and (c) chemokines (CXCL8, CCL2, CCL5), (Theoharides et al., 2015d; Mukai et al., 2018). Mast cell could often release mediators selectively without histamine or tryptase (Theoharides et al., 2007). Mast cells also release IL-31, which is important in the sensation of itching and pain, in response to IgE and SP, IL-33 and specifically their combination (Petra et al., 2018). We reported that mast cells can release mtDNA, which is mistaken as a pathogen and stimulates inflammatory responses (Zhang B. et al., 2012).

Finally, mast cells can release extracellular vesicles (exosomes) (Skokos et al., 2002, 2003) that could deliver regulatory molecules, including mtDNA and microRNAs (Kawikova and Askenase, 2014). Such microvesicles have been implicated in brain disorders (Tsilioni et al., 2014; Kawikova and Askenase, 2014) and pain disorders (Rafiee et al., 2018; Silva-Freire et al., 2019). We recently reported that extracellular vesicles are increased in the serum of children with ASD, contained mtDNA and stimulated cultured human microglia to secrete the pro-inflammatory molecules IL-1β and CXCL8 (Tsilioni and Theoharides, 2018).

Mast Cell Interactions With Microglia

Mast cells communicate with microglia (Skaper et al., 2012, 2014b). Mediators secreted from mast cells, (Zhang et al., 2016) such as histamine (Dong et al., 2014) and tryptase, (Zhang S. et al., 2012) can activate microglia leading to secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF. Microglia can also be activated by CRH secreted from mast cells (Wang et al., 2002; Kempuraj et al., 2004). Stimulation of brain mast cells in mice led to activation of microglia, which was decreased by administration of a mast cell inhibitor (Dong et al., 2017).

Microglia are involved in synapse plasticity, (Shemer et al., 2015; Wu et al., 2015; Reu et al., 2017) but are responsible for innate immunity of the brain (Ransohoff and Brown, 2012; Aguzzi et al., 2013). Microglia contribute to brain inflammation (Hagberg et al., 2012; Aguzzi et al., 2013; Nakagawa and Chiba, 2016) and the pathogenesis of different brain disorders, (Takeda et al., 2014; Reus et al., 2015; Faden et al., 2016; Garden and Campbell, 2016; Groh and Martini, 2017; Koutsouras et al., 2017; Pennisi et al., 2017; Jiang et al., 2018; Thonhoff et al., 2018) especially ASD (Vargas et al., 2005; Morgan et al., 2010; Suzuki et al., 2013; Edmonson et al., 2014; Gupta et al., 2014). Microglia in the thalamus have been discussed in the context of pain, especially maintaining the pain sensation even after the original painful stimulus is not present (Banati, 2002; Hansson, 2010; Saghaei et al., 2013; Blaszczyk et al., 2018).

Conclusion

Mast cells have been implicated in headaches (Theoharides, 1983; Theoharides et al., 2005) and pain (Xanthos et al., 2011; Aich et al., 2015; Gupta and Harvima, 2018). Activation of the mast cell-specific receptor, MRGPRX2, (McNeil et al., 2015) and its mouse analogue, Mrgprb2, mediated inflammatory mechanical and thermal hyperalgesia (Green et al., 2019). Hence, mast cells are key players of neuroendocrine (Theoharides, 2017) and painful disorders (Theoharides et al., 2019).

In this context, inhibitors of mast cells (Harvima et al., 2014) would be useful in the treatment of FMS. Natural molecules could include the flavonoids, luteolin (Kempuraj et al., 2008; Theoharides et al., 2015c; Ashaari et al., 2018) and tetramethoxyluteolin, (Theoharides et al., 2017; Theoharides and Tsilioni, 2018) alone or in combination with other substances selected to reduce stress (Theoharides and Kavalioti, 2018). Other natural molecules could include palmitoylethanolamide, (Schweiger et al., 2019) which apparently inhibits neuro-inflammation (Skaper et al., 2013, 2015) and reduces pain (Skaper et al., 2014a; Impellizzeri et al., 2016).

Future Directions

Research should focus on identifying in serum of patients with FMS novel molecules that are involved in pain transmission such as bradykinin, CGRP and IL-31. Extracellular vesicles should also be isolated from the serum and CSF of FMS patients, their content identified, and their effect investigated on cultured human mast cells and microglia. Such possible interactions would serve as useful in vitro assays for the screening of potential novel treatment agents. Recent reports have also stressed the possible use of the cytokine IL-37, (Mastrangelo et al., 2018) which is known to have anti-inflammatory actions (Cavalli and Dinarello, 2018). It would be important to explore the possible use of IL-37 isoforms in the treatment of FMS.

Author Contributions

TT, IT, and MB participated in searching the literature. TT and IT wrote or contributed to the writing of the manuscript. IT prepared the figure.

Funding

Some aspects of our work described were supported in part by the National Institutes of Health (NIH) (Grants NS38326 and AR47652), as well as the Michael and Katherine Johnson Family Fund to TT.

Conflict of Interest Statement

TT is the inventor of US patents No. 7,906,153 and No. 8,268,365 for the treatment of neuroinflammatory conditions.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

ACR, American College of Rheumatology; ASD, autism spectrum disorder; CGRP, calcitonin-gene related peptide; CIRS, chronic inflammatory response syndrome; CRH, corticotropin-releasing hormone; CSF, cerebrospinal fluid; CSS, central sensitivity syndromes; CXCL8, IL-8; FcεRI, high affinity surface receptors; FMS, fibromyalgia syndrome; FSQ, fibromyalgia survey questionnaire; IBS, irritable bowel syndrome; IC/BPS, interstitial cystitis/bladder pain syndrome; IgE, immunoglobulin E; MCP-1/CCL2, monocyte chemoattractant protein-1; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; MRGPRX2, mas-related G-protein coupled receptor member X2; (mt)DNA, mitochondrial; NGF, nerve growth factor; PAF, platelet activating factor; PTSD, post-traumatic stress disorder; SCF, stem cell factor; SP, substance P; TLRs, toll-like receptors; TMD, myogenic temporomandibular disorder.

References

Abbadie, C. (2005). Chemokines, chemokine receptors and pain. Trends Immunol. 26, 529–534. doi: 10.1016/j.it.2005.08.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Abraham, S. N., and St John, A. L. (2010). Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452. doi: 10.1038/nri2782

PubMed Abstract | CrossRef Full Text | Google Scholar

Aguzzi, A., Barres, B. A., and Bennett, M. L. (2013). Microglia: scapegoat, saboteur, or something else? Science 339, 156–161. doi: 10.1126/science.1227901

PubMed Abstract | CrossRef Full Text | Google Scholar

Aich, A., Afrin, L. B., and Gupta, K. (2015). Mast cell-mediated mechanisms of nociception. Int. J. Mol. Sci. 16, 29069–29092. doi: 10.3390/ijms161226151

PubMed Abstract | CrossRef Full Text | Google Scholar

Alvarez, P., Green, P. G., and Levine, J. D. (2014). Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 155, 1161–1167. doi: 10.1016/j.pain.2014.03.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Ashaari, Z., Hadjzadeh, M. A., Hassanzadeh, G., Alizamir, T., Yousefi, B., Keshavarzi, Z., et al. (2018). The flavone luteolin improves central nervous system disorders by different mechanisms: a review. J. Mol. Neurosci. 65, 491–506. doi: 10.1007/s12031-018-1094-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Banati, R. B. (2002). Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. Paris 96, 289–299. doi: 10.1016/s0928-4257(02)00018-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Bazzichi, L., Rossi, A., Massimetti, G., Giannaccini, G., Giuliano, T., De Feo, F., et al. (2007). Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clin. Exp. Rheumatol. 25, 225–230.

PubMed Abstract | Google Scholar

Behm, F. G., Gavin, I. M., Karpenko, O., Lindgren, V., Gaitonde, S., Gashkoff, P. A., et al. (2012). Unique immunologic patterns in fibromyalgia. BMC Clin. Pathol. 12:25. doi: 10.1186/1472-6890-12-25

PubMed Abstract | CrossRef Full Text | Google Scholar

Blanco, I., Beritze, N., Arguelles, M., Carcaba, V., Fernandez, F., Janciauskiene, S., et al. (2010). Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients. Clin. Rheumatol. 29, 1403–1412. doi: 10.1007/s10067-010-1474-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Blaszczyk, L., Maitre, M., Leste-Lasserre, T., Clark, S., Cota, D., Oliet, S. H. R., et al. (2018). Sequential alteration of microglia and astrocytes in the rat thalamus following spinal nerve ligation. J. Neuroinflammation 15:349. doi: 10.1186/s12974-018-1378-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Bote, M. E., Garcia, J. J., Hinchado, M. D., and Ortega, E. (2012). Inflammatory/stress feedback dysregulation in women with fibromyalgia. Neuroimmunomodulation 19, 343–351. doi: 10.1159/000341664

PubMed Abstract | CrossRef Full Text | Google Scholar

Bote, M. E., Garcia, J. J., Hinchado, M. D., and Ortega, E. (2013). Fibromyalgia: anti-inflammatory and stress responses after acute moderate exercise. PLoS One 8:e74524. doi: 10.1371/journal.pone.0074524

PubMed Abstract | CrossRef Full Text | Google Scholar

Branco, J. C., Bannwarth, B., Failde, I., Abello, C. J., Blotman, F., Spaeth, M., et al. (2010). Prevalence of fibromyalgia: a survey in five European countries. Semin. Arthritis Rheum. 39, 448–453. doi: 10.1016/j.semarthrit.2008.12.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Cao, J., Papadopoulou, N., Kempuraj, D., Boucher, W. S., Sugimoto, K., Cetrulo, C. L., et al. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J. Immunol. 174, 7665–7675. doi: 10.4049/jimmunol.174.12.7665

PubMed Abstract | CrossRef Full Text | Google Scholar

Carvalho, L. S., Correa, H., Silva, G. C., Campos, F. S., Baiao, F. R., Ribeiro, L. S., et al. (2008). May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells? Clin. Exp. Immunol. 154, 346–352. doi: 10.1111/j.1365-2249.2008.03787.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Cavalli, G., and Dinarello, C. A. (2018). Suppression of inflammation and acquired immunity by IL-37. Immunol. Rev. 281, 179–190. doi: 10.1111/imr.12605

PubMed Abstract | CrossRef Full Text | Google Scholar

Charo, I. F., and Ransohoff, R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621. doi: 10.1056/nejmra052723

PubMed Abstract | CrossRef Full Text | Google Scholar

Chatterjea, D., and Martinov, T. (2014). Mast cells: versatile gatekeepers of pain. Mol. Immunol. 63, 38–44. doi: 10.1016/j.molimm.2014.03.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Clauw, D. J. (2014). Fibromyalgia: a clinical review. JAMA 311, 1547–1555. doi: 10.1001/jama.2014.3266

PubMed Abstract | CrossRef Full Text | Google Scholar

Clauw, D. J., Arnold, L. M., and McCarberg, B. H. (2011). The science of fibromyalgia. Mayo Clin. Proc. 86, 907–911. doi: 10.4065/mcp.2011.0206

PubMed Abstract | CrossRef Full Text | Google Scholar

Conti, P., Reale, M., Barbacane, R. C., Letourneau, R., and Theoharides, T. C. (1998). Intramuscular injection of hrRANTES causes mast cell recruitment and increased transcription of histidine decarboxylase: lack of effects in genetically mast cell-deficient W/Wv mice. FASEB J. 12, 1693–1700. doi: 10.1096/fasebj.12.15.1693

PubMed Abstract | CrossRef Full Text | Google Scholar

Conti, P., and Theoharides, T. C. (1994). Monocyte chemotactic Protein-1 (MCP-1) is active on mast cells and causes clump formation. Int. J. Immunopathol. Pharmacol. 7, 149–151.

PubMed Abstract | Google Scholar

Crofford, L. J., Young, E. A., Engleberg, N. C., Korszun, A., Brucksch, C. B., McClure, L. A., et al. (2004). Basal circadian and pulsatile ACTH and cortisol secretion in patients with fibromyalgia and/or chronic fatigue syndrome. Brain Behav. Immun. 18, 314–325. doi: 10.1016/s0889-1591(04)00021-2

PubMed Abstract | CrossRef Full Text | Google Scholar

De Berardis, D., Campanella, D., Gambi, F., La, R. R., Carano, A., Conti, C. M., et al. (2006). The role of C-reactive protein in mood disorders. Int. J. Immunopathol. Pharmacol. 19, 721–725.

PubMed Abstract | Google Scholar

De Berardis, D., Serroni, N., Campanella, D., Marini, S., Rapini, G., Valchera, A., et al. (2017). Alexithymia, suicide ideation, C-Reactive Protein, and serum lipid levels among outpatients with generalized anxiety disorder. Arch. Suicide Res. 21, 100–112. doi: 10.1080/13811118.2015.1004485

PubMed Abstract | CrossRef Full Text | Google Scholar

Desmeules, J. A., Cedraschi, C., Rapiti, E., Baumgartner, E., Finckh, A., Cohen, P., et al. (2003). Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 48, 1420–1429. doi: 10.1002/art.10893

PubMed Abstract | CrossRef Full Text | Google Scholar

Donelan, J., Boucher, W., Papadopoulou, N., Lytinas, M., Papaliodis, D., and Theoharides, T. C. (2006). Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc. Natl. Acad. Sci. U.S.A. 103, 7759–7764. doi: 10.1073/pnas.0602210103

PubMed Abstract | CrossRef Full Text | Google Scholar

Dong, H., Zhang, W., Zeng, X., Hu, G., Zhang, H., He, S., et al. (2014). Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia1. Mol. Neurobiol. 49, 1487–1500. doi: 10.1007/s12035-014-8697-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Dong, H., Zhang, X., Wang, Y., Zhou, X., Qian, Y., and Zhang, S. (2017). Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol. Neurobiol. 54, 997–1007. doi: 10.1007/s12035-016-9720-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Edmonson, C., Ziats, M. N., and Rennert, O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol. Autism 5:3. doi: 10.1186/2040-2392-5-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Edvinsson, L. (2018). The CGRP pathway in migraine as a viable target for therapies. Headache 58(Suppl. 1), 33–47. doi: 10.1111/head.13305

PubMed Abstract | CrossRef Full Text | Google Scholar

Edvinsson, L., Owman, C., and Sjöberg, N. O. (1976). Autonomic nerves, mast cells and amine receptors in human brain vessels. A histochemical and pharmacological study. Brain Res. 115, 377–393. doi: 10.1016/0006-8993(76)90356-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Enoksson, M., Lyberg, K., Moller-Westerberg, C., Fallon, P. G., Nilsson, G., and Lunderius-Andersson, C. (2011). Mast cells as sensors of cell injury through IL-33 recognition. J. Immunol. 186, 2523–2528. doi: 10.4049/jimmunol.1003383

PubMed Abstract | CrossRef Full Text | Google Scholar

Esposito, P., Chandler, N., Kandere-Grzybowska, K., Basu, S., Jacobson, S., Connolly, R., et al. (2002). Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. J. Pharmacol. Exp. Ther. 303, 1061–1066. doi: 10.1124/jpet.102.038497

PubMed Abstract | CrossRef Full Text | Google Scholar

Faden, A. I., Wu, J., Stoica, B. A., and Loane, D. J. (2016). Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br. J. Pharmacol. 173, 681–691. doi: 10.1111/bph.13179

PubMed Abstract | CrossRef Full Text | Google Scholar

Ferrari, R., and Russell, A. S. (2013). A questionnaire using the modified 2010 American College of rheumatology criteria for fibromyalgia: specificity and sensitivity in clinical practice. J. Rheumatol. 40, 1590–1595. doi: 10.3899/jrheum.130367

PubMed Abstract | CrossRef Full Text | Google Scholar

Flodin, P. D., Martinsen, S., Lofgren, M., Bileviciute-Ljungar, I., Kosek, E., and Fransson, P. (2014). Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. Brain Connect. 4, 587–594. doi: 10.1089/brain.2014.0274

PubMed Abstract | CrossRef Full Text | Google Scholar

Fux, M., Pecaric-Petkovic, T., Odermatt, A., Hausmann, O. V., Lorentz, A., Bischoff, S. C., et al. (2014). IL-33 is a mediator rather than a trigger of the acute allergic response in humans. Allergy 69, 216–222. doi: 10.1111/all.12309

PubMed Abstract | CrossRef Full Text | Google Scholar

Galli, S. J., Borregaard, N., and Wynn, T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035–1044. doi: 10.1038/ni.2109

PubMed Abstract | CrossRef Full Text | Google Scholar

Galli, S. J., and Tsai, M. (2008). Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J. Dermatol. Sci. 49, 7–19. doi: 10.1016/j.jdermsci.2007.09.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Galli, S. J., Tsai, M., and Piliponsky, A. M. (2008). The development of allergic inflammation. Nature 454, 445–454. doi: 10.1038/nature07204

PubMed Abstract | CrossRef Full Text | Google Scholar

Garden, G. A., and Campbell, B. M. (2016). Glial biomarkers in human central nervous system disease. Glia 64, 1755–1771. doi: 10.1002/glia.22998

PubMed Abstract | CrossRef Full Text | Google Scholar

Geenen, R., Jacobs, J. W., and Bijlsma, J. W. (2002). Evaluation and management of endocrine dysfunction in fibromyalgia. Rheum. Dis. Clin. North Am. 28, 389–404. doi: 10.1016/s0889-857x(01)00009-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Giovengo, S. L., Russell, I. J., and Larson, A. A. (1999). Increased concentrations of nerve growth factor in cerebrospinal fluid of patients with fibromyalgia. J. Rheumatol. 26, 1564–1569.

PubMed Abstract | Google Scholar

Green, D. P., Limjunyawong, N., Gour, N., Pundir, P., and Dong, X. (2019). A Mast-Cell-Specific receptor mediates neurogenic inflammation and pain. Neuron 101, 412–420. doi: 10.1016/j.neuron.2019.01.012

PubMed Abstract | CrossRef Full Text | Google Scholar

Greenwood-Van, M. B., Mohammadi, E., Tyler, K., Pietra, C., Bee, L. A., and Dickenson, A. (2014). Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain. J. Pharmacol. Exp. Ther. 351, 146–152. doi: 10.1124/jpet.114.216028

PubMed Abstract | CrossRef Full Text | Google Scholar

Griffin, G. K., Newton, G., Tarrio, M. L., Bu, D. X., Maganto-Garcia, E., Azcutia, V., et al. (2012). IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. J. Immunol. 188, 6287–6299. doi: 10.4049/jimmunol.1200385

PubMed Abstract | CrossRef Full Text | Google Scholar

Groh, J., and Martini, R. (2017). Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: understanding pathogenesis and chances for treatment. Glia 65, 1407–1422. doi: 10.1002/glia.23162

PubMed Abstract | CrossRef Full Text | Google Scholar

Gupta, K., and Harvima, I. T. (2018). Mast cell-neural interactions contribute to pain and itch. Immunol. Rev. 282, 168–187. doi: 10.1111/imr.12622

PubMed Abstract | CrossRef Full Text | Google Scholar

Gupta, S., Ellis, S. E., Ashar, F. N., Moes, A., Bader, J. S., Zhan, J., et al. (2014). Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 5:5748. doi: 10.1038/ncomms6748

PubMed Abstract | CrossRef Full Text | Google Scholar

Hagberg, H., Gressens, P., and Mallard, C. (2012). Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann. Neurol. 71, 444–457. doi: 10.1002/ana.22620

PubMed Abstract | CrossRef Full Text | Google Scholar

Hansson, E. (2010). Long-term pain, neuroinflammation and glial activation. Scand. J. Pain 1, 67–72. doi: 10.1016/j.sjpain.2010.01.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Harvima, I. T., Levi-Schaffer, F., Draber, P., Friedman, S., Polakovicova, I., Gibbs, B. F., et al. (2014). Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134, 530–544. doi: 10.1016/j.jaci.2014.03.007

PubMed Abstract | CrossRef Full Text | Google Scholar

Hauser, W., Sarzi-Puttini, P., and Fitzcharles, M. A. (2019). Fibromyalgia syndrome: under-, over- and misdiagnosis. Clin. Exp. Rheumatol. 37(Suppl. 116), 90–97.

PubMed Abstract | Google Scholar

Heron, A., and Dubayle, D. (2013). A focus on mast cells and pain. J. Neuroimmunol. 264, 1–7. doi: 10.1016/j.jneuroim.2013.09.018

PubMed Abstract | CrossRef Full Text | Google Scholar

Hornig, M., Montoya, J. G., Klimas, N. G., Levine, S., Felsenstein, D., Bateman, L., et al. (2015). Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci. Adv. 1:e1400121. doi: 10.1126/sciadv.1400121

PubMed Abstract | CrossRef Full Text | Google Scholar

Hox, V., Desai, A., Bandara, G., Gilfillan, A. M., Metcalfe, D. D., and Olivera, A. (2015). Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J. Allergy Clin. Immunol. 135, 729–736. doi: 10.1016/j.jaci.2014.11.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Impellizzeri, D., Di, P. R., Cordaro, M., Gugliandolo, E., Casili, G., Morittu, V. M., et al. (2016). Adelmidrol, a palmitoylethanolamide analogue, as a new pharmacological treatment for the management of acute and chronic inflammation. Biochem. Pharmacol. 119, 27–41. doi: 10.1016/j.bcp.2016.09.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Jennings, S., Russell, N., Jennings, B., Slee, V., Sterling, L., Castells, M., et al. (2014). The mastocytosis society survey on mast cell disorders: patient experiences and perceptions. J. Allergy Clin. Immunol. Pract. 2, 70–76. doi: 10.1016/j.jaip.2013.09.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Jensen, K. B., Loitoile, R., Kosek, E., Petzke, F., Carville, S., Fransson, P., et al. (2012). Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain 8:32. doi: 10.1186/1744-8069-8-32

PubMed Abstract | CrossRef Full Text | Google Scholar

Jiang, N. M., Cowan, M., Moonah, S. N., and Petri, W. A. Jr. (2018). The impact of systemic inflammation on neurodevelopment. Trends Mol. Med. 24, 794–804. doi: 10.1016/j.molmed.2018.06.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Kadetoff, D., Lampa, J., Westman, M., Andersson, M., and Kosek, E. (2012). Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 242, 33–38. doi: 10.1016/j.jneuroim.2011.10.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Kawikova, I., and Askenase, P. W. (2014). Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. 1617, 63–71. doi: 10.1016/j.brainres.2014.09.070

PubMed Abstract | CrossRef Full Text | Google Scholar

Kempuraj, D., Papadopoulou, N. G., Lytinas, M., Huang, M., Kandere-Grzybowska, K., Madhappan, B., et al. (2004). Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 145, 43–48. doi: 10.1210/en.2003-0805

PubMed Abstract | CrossRef Full Text | Google Scholar

Kempuraj, D., Tagen, M., Iliopoulou, B. P., Clemons, A., Vasiadi, M., Boucher, W., et al. (2008). Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell dependent stimulation of Jurkat T cells. Br. J. Pharmacol. 155, 1076–1084. doi: 10.1038/bjp.2008.356

PubMed Abstract | CrossRef Full Text | Google Scholar

Kenna, T. J., and Brown, M. A. (2013). The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheumatol. 9, 375–379. doi: 10.1038/nrrheum.2012.205

PubMed Abstract | CrossRef Full Text | Google Scholar

Koutsouras, G. W., Ramos, R. L., and Martinez, L. R. (2017). Role of microglia in fungal infections of the central nervous system. Virulence 8, 705–718. doi: 10.1080/21505594.2016.1261789

PubMed Abstract | CrossRef Full Text | Google Scholar

Kovats, S. (2015). Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294, 63–69. doi: 10.1016/j.cellimm.2015.01.018

PubMed Abstract | CrossRef Full Text | Google Scholar

Lambracht-Hall, M., Dimitriadou, V., and Theoharides, T. C. (1990). Migration of mast cells in the developing rat brain. Dev. Brain Res. 56, 151–159. doi: 10.1016/0165-3806(90)90077-c

PubMed Abstract | CrossRef Full Text | Google Scholar

Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237, 1154–1162. doi: 10.1126/science.3306916

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, Y., Ho, R. C., and Mak, A. (2012). The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int. J. Rheum. Dis. 15, 183–187. doi: 10.1111/j.1756-185X.2011.01673.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Lucas, H. J., Brauch, C. M., Settas, L., and Theoharides, T. C. (2006). Fibromyalgia–new concepts of pathogenesis and treatment. Int. J. Immunopathol. Pharmacol. 19, 5–10.

PubMed Abstract | Google Scholar

Maren, S. (2017). Synapse-Specific encoding of fear memory in the amygdala. Neuron 95, 988–990. doi: 10.1016/j.neuron.2017.08.020

PubMed Abstract | CrossRef Full Text | Google Scholar

Mastrangelo, F., Frydas, I., Ronconi, G., Kritas, S. K., Tettamanti, L., Caraffa, A., et al. (2018). Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37. J. Biol. Regul. Homeost Agents 32, 195–198.

PubMed Abstract | Google Scholar

McBeth, J., and Mulvey, M. R. (2012). Fibromyalgia: mechanisms and potential impact of the ACR 2010 classification criteria. Nat. Rev. Rheumatol. 8, 108–116. doi: 10.1038/nrrheum.2011.216

PubMed Abstract | CrossRef Full Text | Google Scholar

McLean, S. A., Williams, D. A., Stein, P. K., Harris, R. E., Lyden, A. K., Whalen, G., et al. (2006). Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 31, 2776–2782. doi: 10.1038/sj.npp.1301200

PubMed Abstract | CrossRef Full Text | Google Scholar

McNeil, B. D., Pundir, P., Meeker, S., Han, L., Undem, B. J., Kulka, M., et al. (2015). Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241. doi: 10.1038/nature14022

PubMed Abstract | CrossRef Full Text | Google Scholar

Meng, X., Zhang, Y., Lao, L., Saito, R., Li, A., Backman, C. M., et al. (2013). Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 154, 294–305. doi: 10.1016/j.pain.2012.10.022

PubMed Abstract | CrossRef Full Text | Google Scholar

Minerbi, A., Gonzalez, E., Brereton, N. J. B., Anjarkouchian, A., Dewar, K., Fitzcharles, M. A., et al. (2019). Altered microbiome composition in individuals with fibromyalgia. Pain doi: 10.1097/j.pain.0000000000001640 [Epub ahead of print].

CrossRef Full Text | PubMed Abstract | Google Scholar

Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68, 368–376. doi: 10.1016/j.biopsych.2010.05.024

PubMed Abstract | CrossRef Full Text | Google Scholar

Mukai, K., Tsai, M., Saito, H., and Galli, S. J. (2018). Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282, 121–150. doi: 10.1111/imr.12634

PubMed Abstract | CrossRef Full Text | Google Scholar

Nakae, S., Suto, H., Kakurai, M., Sedgwick, J. D., Tsai, M., and Galli, S. J. (2005). Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc. Natl. Acad. Sci. U.S.A. 102, 6467–6472. doi: 10.1073/pnas.0501912102

PubMed Abstract | CrossRef Full Text | Google Scholar

Nakagawa, Y., and Chiba, K. (2016). Involvement of neuroinflammation during brain development in social cognitive deficits in autism spectrum disorder and schizophrenia. J. Pharmacol. Exp. Ther. 358, 504–515. doi: 10.1124/jpet.116.234476

PubMed Abstract | CrossRef Full Text | Google Scholar

Nugraha, B., Korallus, C., Kielstein, H., and Gutenbrunner, C. (2013). CD3+CD56+natural killer T cells in fibromyalgia syndrome patients: association with the intensity of depression. Clin. Exp. Rheumatol. 31, S9–S15.

PubMed Abstract | Google Scholar

Olszewski, M. B., Groot, A. J., Dastych, J., and Knol, E. F. (2007). TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J. Immunol. 178, 5701–5709. doi: 10.4049/jimmunol.178.9.5701

PubMed Abstract | CrossRef Full Text | Google Scholar

Orsolini, L., Sarchione, F., Vellante, F., Fornaro, M., Matarazzo, I., Martinotti, G., et al. (2018). Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol. 16, 583–606. doi: 10.2174/1570159X16666180119144538

PubMed Abstract | CrossRef Full Text | Google Scholar

Ottosson, A., and Edvinsson, L. (1997). Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17, 166–174. doi: 10.1046/j.1468-2982.1997.1703166.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Pang, X., Cotreau-Bibbo, M. M., Sant, G. R., and Theoharides, T. C. (1995). Bladder mast cell expression of high affinity estrogen receptors in patients with interstitial cystitis. Br. J. Urol. 75, 154–161. doi: 10.1111/j.1464-410x.1995.tb07303.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Pennisi, M., Crupi, R., Di, P. R., Ontario, M. L., Bella, R., Calabrese, E. J., et al. (2017). Inflammasomes, hormesis, and antioxidants in neuroinflammation: role of NRLP3 in Alzheimer disease. J. Neurosci. Res. 95, 1360–1372. doi: 10.1002/jnr.23986

PubMed Abstract | CrossRef Full Text | Google Scholar

Pernambuco, A. P., Schetino, L. P., Alvim, C. C., Murad, C. M., Viana, R. S., Carvalho, L. S., et al. (2013). Increased levels of IL-17A in patients with fibromyalgia. Clin. Exp. Rheumatol. 31, S60–S63.

PubMed Abstract | Google Scholar

Petra, A. I., Tsilioni, I., Taracanova, A., Katsarou-Katsari, A., and Theoharides, T. C. (2018). Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. Allergy Asthma Proc. 39, 153–160. doi: 10.2500/aap.2018.38.4105

PubMed Abstract | CrossRef Full Text | Google Scholar

Pollack, S. (2014). Mast cells in fibromyalgia. Clin. Exp. Rheumatol. 33(1 Suppl. 88):S140.

Google Scholar

Rafiee, Z. A., Falahatian, M., and Alsahebfosoul, F. (2018). Serum levels of histamine and diamine oxidase in multiple sclerosis. Am. J. Clin. Exp. Immunol. 7, 100–105.

PubMed Abstract | Google Scholar

Ransohoff, R. M., and Brown, M. A. (2012). Innate immunity in the central nervous system. J. Clin. Invest. 122, 1164–1171. doi: 10.1172/JCI58644

PubMed Abstract | CrossRef Full Text | Google Scholar

Reu, P., Khosravi, A., Bernard, S., Mold, J. E., Salehpour, M., Alkass, K., et al. (2017). The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784. doi: 10.1016/j.celrep.2017.07.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Reus, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., et al. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300, 141–154. doi: 10.1016/j.neuroscience.2015.05.018

PubMed Abstract | CrossRef Full Text | Google Scholar

Reynier-Rebuffel, A.-M., Mathiau, P., Callebert, J., Dimitriadou, V., Farjaudon, N., Kacem, K., et al. (1994). Substance P, calcitonin gene-related peptide, and capsaicin release serotonin from cerebrovascular mast cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 267, R1421–R1429.

PubMed Abstract | Google Scholar

Ribatti, D. (2015). The crucial role of mast cells in blood-brain barrier alterations. Exp. Cell Res. 338, 119–125. doi: 10.1016/j.yexcr.2015.05.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Rivera, J., Fierro, N. A., Olivera, A., and Suzuki, R. (2008). New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 98, 85–120. doi: 10.1016/S0065-2776(08)00403-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A., and Shoenfeld, Y. (2014). Fibromyalgia and cytokines. Immunol. Lett. 161, 200–203. doi: 10.1016/j.imlet.2014.01.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Romero-Sanchez, C., Jaimes, D. A., Londono, J., De Avila, J., Castellanos, J. E., Bello, J. M., et al. (2011). Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin. Exp. Rheumatol. 29, 828–834.

PubMed Abstract | Google Scholar

Ross, R. L., Jones, K. D., Bennett, R. M., Ward, R. L., Druker, B. J., and Wood, L. J. (2010). Preliminary evidence of increased pain and elevated cytokines in fibromyalgia patients with defective growth hormone response to exercise. Open Immunol. J. 3, 9–18. doi: 10.2174/1874226201003010009

PubMed Abstract | CrossRef Full Text | Google Scholar

Rottem, M., and Mekori, Y. A. (2005). Mast cells and autoimmunity. Autoimmun. Rev. 4, 21–27. doi: 10.1016/j.autrev.2004.05.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Russell, I. J. (1998). Advances in fibromyalgia: possible role for central neurochemicals. Am. J. Med. Sci. 315, 377–384. doi: 10.1016/s0002-9629(15)40355-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Russell, I. J., and Larson, A. A. (2009). Neurophysiopathogenesis of fibromyalgia syndrome: a unified hypothesis. Rheum. Dis. Clin. North Am. 35, 421–435. doi: 10.1016/j.rdc.2009.06.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Saghaei, E., Abbaszadeh, F., Naseri, K., Ghorbanpoor, S., Afhami, M., Haeri, A., et al. (2013). Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. Neurosci. Res. 75, 316–323. doi: 10.1016/j.neures.2013.01.010

PubMed Abstract | CrossRef Full Text | Google Scholar

Schmidt-Wilcke, T., and Clauw, D. J. (2011). Fibromyalgia: from pathophysiology to therapy. Nat. Rev. Rheumatol. 7, 518–527. doi: 10.1038/nrrheum.2011.98

PubMed Abstract | CrossRef Full Text | Google Scholar

Scholzen, T. E., Steinhoff, M., Bonaccorsi, P., Klein, R., Amadesi, S., Geppetti, P., et al. (2001). Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis. J. Immunol. 166, 1285–1291. doi: 10.4049/jimmunol.166.2.1285

PubMed Abstract | CrossRef Full Text | Google Scholar

Schweiger, V., Martini, A., Bellamoli, P., Donadello, K., Schievano, C., Del, B. G., et al. (2019). Ultramicronized palmitoylethanolamide (um-PEA) as add-on treatment in fibromyalgia syndrome (FMS): retrospective observational study on 407 patients. CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527318666190227205359 [Epub ahead of print].

CrossRef Full Text | PubMed Abstract | Google Scholar

Shemer, A., Erny, D., Jung, S., and Prinz, M. (2015). Microglia plasticity during health and disease: an immunological perspective. Trends Immunol. 36, 614–624. doi: 10.1016/j.it.2015.08.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Silva-Freire, N., Mayado, A., Teodosio, C., Jara-Acevedo, M., Varez-Twose, I., Matito, A., et al. (2019). Bone marrow mast cell antibody-targetable cell surface protein expression profiles in systemic mastocytosis. Int. J. Mol. Sci. 20:E552. doi: 10.3390/ijms20030552

PubMed Abstract | CrossRef Full Text | Google Scholar

Skaper, S. D., Facci, L., Barbierato, M., Zusso, M., Bruschetta, G., Impellizzeri, D., et al. (2015). N-Palmitoylethanolamine and neuroinflammation: a novel therapeutic strategy of resolution. Mol. Neurobiol. 52, 1034–1042. doi: 10.1007/s12035-015-9253-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Skaper, S. D., Facci, L., Fusco, M., la Valle, M. F., Zusso, M., Costa, B., et al. (2014a). Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology 22, 79–94. doi: 10.1007/s10787-013-0191-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Skaper, S. D., Facci, L., and Giusti, P. (2014b). Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol. Disord. Drug Targets 13, 1654–1666. doi: 10.2174/1871527313666141130224206

CrossRef Full Text | Google Scholar

Skaper, S. D., Facci, L., and Giusti, P. (2013). Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol. Neurobiol. 48, 340–352. doi: 10.1007/s12035-013-8487-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Skaper, S. D., Facci, L., Zusso, M., and Giusti, P. (2017). Neuroinflammation, mast cells, and glia: dangerous liaisons. Neuroscientist 23, 478–498. doi: 10.1177/1073858416687249

PubMed Abstract | CrossRef Full Text | Google Scholar

Skaper, S. D., Giusti, P., and Facci, L. (2012). Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26, 3103–3117. doi: 10.1096/fj.11-197194

PubMed Abstract | CrossRef Full Text | Google Scholar

Skokos, D., Botros, H. G., Demeure, C., Morin, J., Peronet, R., Birkenmeier, G., et al. (2003). Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170, 3037–3045. doi: 10.4049/jimmunol.170.6.3037

PubMed Abstract | CrossRef Full Text | Google Scholar

Skokos, D., Goubran-Botros, H., Roa, M., and Mecheri, S. (2002). Immunoregulatory properties of mast cell-derived exosomes. Mol. Immunol. 38, 1359–1362. doi: 10.1016/s0161-5890(02)00088-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Staud, R. (2011). Brain imaging in fibromyalgia syndrome. Clin. Exp. Rheumatol. 29, S109–S117.

PubMed Abstract | Google Scholar

Staud, R., Vierck, C. J., Cannon, R. L., Mauderli, A. P., and Price, D. D. (2001). Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 91, 165–175. doi: 10.1016/s0304-3959(00)00432-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry 70, 49–58.

Google Scholar

Takeda, S., Sato, N., and Morishita, R. (2014). Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6:171. doi: 10.3389/fnagi.2014.00171

PubMed Abstract | CrossRef Full Text | Google Scholar

Taracanova, A., Alevizos, M., Karagkouni, A., Weng, Z., Norwitz, E., Conti, P., et al. (2017). SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc. Natl. Acad. Sci. U.S.A. 114, E4002–E4009. doi: 10.1073/pnas.1524845114

PubMed Abstract | CrossRef Full Text | Google Scholar

Taracanova, A., Tsilioni, I., Conti, P., Norwitz, E. R., Leeman, S. E., and Theoharides, T. C. (2018). Substance P and IL-33 administered together stimulate a marked secretion of IL-1beta from human mast cells, inhibited by methoxyluteolin. Proc. Natl. Acad. Sci. U.S.A 115, E9381–E9390. doi: 10.1073/pnas.1810133115

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C. (1983). Mast cells and migraines. Perspect. Biol. Med. 26, 672–675. doi: 10.1353/pbm.1983.0028

CrossRef Full Text | Google Scholar

Theoharides, T. C. (1990). Mast cells: the immune gate to the brain. Life Sci. 46, 607–617. doi: 10.1016/0024-3205(90)90129-f

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C. (1996). Mast cell: a neuroimmunoendocrine master player. Int. J. Tissue React. 18, 1–21.

PubMed Abstract | Google Scholar

Theoharides, T. C. (2013). Atopic conditions in search of pathogenesis and therapy. Clin. Ther. 35, 544–547. doi: 10.1016/j.clinthera.2013.04.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C. (2017). Neuroendocrinology of mast cells: challenges and controversies. Exp. Dermatol. 26, 751–759. doi: 10.1111/exd.13288

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Alysandratos, K. D., Angelidou, A., Delivanis, D. A., Sismanopoulos, N., Zhang, B., et al. (2010a). Mast cells and inflammation. Biochim. Biophys. Acta 1822, 21–33.

Google Scholar

Theoharides, T. C., Zhang, B., Kempuraj, D., Tagen, M., Vasiadi, M., Angelidou, A., et al. (2010b). IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. U.S.A. 107, 4448–4453. doi: 10.1073/pnas.1000803107

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Dimitriadou, V., Letourneau, R. J., Rozniecki, J. J., Vliagoftis, H., and Boucher, W. S. (1993). Synergistic action of estradiol and myelin basic protein on mast cell secretion and brain demyelination: changes resembling early stages of demyelination. Neuroscience 57, 861–871. doi: 10.1016/0306-4522(93)90030-j

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Donelan, J., Kandere-Grzybowska, K., and Konstantinidou, A. (2005). The role of mast cells in migraine pathophysiology. Brain Res. Brain Res. Rev. 49, 65–76. doi: 10.1016/j.brainresrev.2004.11.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., and Kavalioti, M. (2018). Stress, inflammation and natural treatments. J. Biol. Regul. Homeost Agents 32, 1345–1347.

PubMed Abstract | Google Scholar

Theoharides, T. C., Kempuraj, D., Tagen, M., Conti, P., and Kalogeromitros, D. (2007). Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65–78. doi: 10.1111/j.1600-065x.2007.00519.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., and Konstantinidou, A. (2007). Corticotropin-releasing hormone and the blood-brain-barrier. Front. Biosci. 12:1615–1628. doi: 10.2741/2174

CrossRef Full Text | Google Scholar

Theoharides, T. C., Letourneau, R., Patra, P., Hesse, L., Pang, X., Boucher, W., et al. (1999). Stress-induced rat intestinal mast cell intragranular activation and inhibitory effect of sulfated proteoglycans. Dig. Dis. Sci. 44, 87S–93S.

PubMed Abstract | Google Scholar

Theoharides, T. C., Petra, A. I., Stewart, J. M., Tsilioni, I., Panagiotidou, S., and Akin, C. (2014). High serum corticotropin-releasing hormone (CRH) and bone marrow mast cell CRH receptor expression in a mastocytosis patient. J. Allergy Clin. Immunol. 134, 1197–1199. doi: 10.1016/j.jaci.2014.05.023

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Petra, A. I., Taracanova, A., Panagiotidou, S., and Conti, P. (2015a). Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther. 354, 24–31. doi: 10.1124/jpet.114.222505

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Stewart, J. M., Hatziagelaki, E., and Kolaitis, G. (2015b). Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front. Neurosci. 9:225. doi: 10.3389/fnins.2015.00225

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Tsilioni, I., Arbetman, L., Panagiotidou, S., Stewart, J. M., Gleason, R. M., et al. (2015c). Fibromyalgia, a syndrome in search of pathogenesis and therapy. J. Pharmacol. Exp. Ther. 355, 255–263.

Google Scholar

Theoharides, T. C., Valent, P., and Akin, C. (2015d). Mast cells, mastocytosis, and related disorders. N. Engl. J. Med. 373, 163–172. doi: 10.1056/nejmra1409760

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Stewart, J. M., and Tsilioni, I. (2017). Tolerability and benefit of a tetramethoxyluteolin-containing skin lotion. Int. J. Immunopathol. Pharmacol. 30, 146–151. doi: 10.1177/0394632017707610

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., and Tsilioni, I. (2018). Tetramethoxyluteolin for the treatment of neurodegenerative diseases. Curr. Top. Med. Chem. 18, 1872–1882. doi: 10.2174/1568026617666181119154247

PubMed Abstract | CrossRef Full Text | Google Scholar

Theoharides, T. C., Tsilioni, I., and Ren, H. (2019). Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert. Rev. Clin. Immunol. 15, 639–656. doi: 10.1080/1744666X.2019.1596800

PubMed Abstract | CrossRef Full Text | Google Scholar

Thonhoff, J. R., Simpson, E. P., and Appel, S. H. (2018). Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis. Curr. Opin. Neurol. 31, 635–639. doi: 10.1097/WCO.0000000000000599

PubMed Abstract | CrossRef Full Text | Google Scholar

Torresani, C., Bellafiore, S., and De Panfilis, G. (2009). Chronic urticaria is usually associated with fibromyalgia syndrome. Acta Derm. Venereol. 89, 389–392. doi: 10.2340/00015555-0653

PubMed Abstract | CrossRef Full Text | Google Scholar

Tsilioni, I., Panagiotidou, S., and Theoharides, T. C. (2014). Exosomes in neurologic and psychiatric disorders. Clin. Ther. 36, 882–888. doi: 10.1016/j.clinthera.2014.05.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Tsilioni, I., Russell, I. J., Stewart, J. M., Gleason, R. M., and Theoharides, T. C. (2016). Neuropeptides CRH, SP, HK-1, and inflammatory cytokines IL-6 and TNF are increased in serum of patients with fibromyalgia syndrome, implicating mast cells. J. Pharmacol. Exp. Ther. 356, 664–672. doi: 10.1124/jpet.115.230060

PubMed Abstract | CrossRef Full Text | Google Scholar

Tsilioni, I., and Theoharides, T. C. (2018). Extracellular vesicles are increased in the serum of children with autism spectrum disorder, contain mitochondrial DNA, and stimulate human microglia to secrete IL-1beta. J. Neuroinflammation 15:239. doi: 10.1186/s12974-018-1275-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Uceyler, N., Hauser, W., and Sommer, C. (2011). Systematic review with meta-analysis: cytokines in fibromyalgia syndrome. BMC Musculoskelet Disord. 12:245. doi: 10.1186/1471-2474-12-245

PubMed Abstract | CrossRef Full Text | Google Scholar

Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., and Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81. doi: 10.1002/ana.20315

PubMed Abstract | CrossRef Full Text | Google Scholar

Wallon, C., Yang, P., Keita, A. V., Ericson, A. C., McKay, D. M., Sherman, P. M., et al. (2008). Corticotropin releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57, 50–58. doi: 10.1136/gut.2006.117549

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, W., Ji, P., Riopelle, R. J., and Dow, K. E. (2002). Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J. Neurochem. 80, 287–294. doi: 10.1046/j.0022-3042.2001.00687.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Wolfe, F., and Walitt, B. (2013). Culture, science and the changing nature of fibromyalgia. Nat. Rev. Rheumatol. 9, 751–755. doi: 10.1038/nrrheum.2013.96

PubMed Abstract | CrossRef Full Text | Google Scholar

Woodman, I. (2013). Fibromyalgia: fibromyalgia-all in the brain? Nat. Rev. Rheumatol. 9:565. doi: 10.1038/nrrheum.2013.137

PubMed Abstract | CrossRef Full Text | Google Scholar

Woolf, C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15. doi: 10.1016/j.pain.2010.09.030

PubMed Abstract | CrossRef Full Text | Google Scholar

Wu, Y., Dissing-Olesen, L., MacVicar, B. A., and Stevens, B. (2015). Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613. doi: 10.1016/j.it.2015.08.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Xanthos, D. N., Gaderer, S., Drdla, R., Nuro, E., Abramova, A., Ellmeier, W., et al. (2011). Central nervous system mast cells in peripheral inflammatory nociception. Mol. Pain 7:42. doi: 10.1186/1744-8069-7-42

PubMed Abstract | CrossRef Full Text | Google Scholar

Yunus, M. B. (2007). Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin. Arthritis Rheum. 36, 339–356. doi: 10.1016/j.semarthrit.2006.12.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, B., Asadi, S., Weng, Z., Sismanopoulos, N., and Theoharides, T. C. (2012). Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 7:e49767. doi: 10.1371/journal.pone.0049767

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, S., Zeng, X., Yang, H., Hu, G., and He, S. (2012). Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol. Biochem. 29, 931–940. doi: 10.1159/000171029

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107. doi: 10.1038/nature08780

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, X., Wang, Y., Dong, H., Xu, Y., and Zhang, S. (2016). Induction of microglial activation by mediators released from mast cells. Cell Physiol. Biochem. 38, 1520–1531. doi: 10.1159/000443093

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, Z., Cherryholmes, G., Mao, A., Marek, C., Longmate, J., Kalos, M., et al. (2008). High plasma levels of MCP-1 and eotaxin provide evidence for an immunological basis of fibromyalgia. Exp. Biol. Med. 233, 1171–1180. doi: 10.3181/0712-RM-328

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: mast cells, pain, neuroinflammation, fibromyalgia syndrome, proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6)

Citation: Theoharides TC, Tsilioni I and Bawazeer M (2019) Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front. Cell. Neurosci. 13:353. doi: 10.3389/fncel.2019.00353

Received: 20 May 2019; Accepted: 16 July 2019;
Published: 02 August 2019.

Edited by:

Kempuraj Duraisamy, University of Missouri, United States

Reviewed by:

Domenico De Berardis, Azienda Usl Teramo, Italy
Mihir Gupta, University of California, San Diego, United States

Copyright © 2019 Theoharides, Tsilioni and Bawazeer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Theoharis C. Theoharides, theoharis.theoharides@tufts.edu

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.