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Cognitive dysfunction is one of the serious complications induced by status epilepticus
(SE), which has a significant negative impact on patients’ quality of life. Previous studies
demonstrated that the pathophysiological changes after SE such as oxidative stress,
inflammatory reaction contribute to neuronal damage. A recent study indicated that
preventive astaxanthin (AST) alleviated epilepsy-induced oxidative stress and neuronal
apoptosis in the brain. In the present study, rats were treated with vehicle or AST 1 h
after SE onset and were injected once every other day for 2 weeks (total of seven times).
The results showed that the cognitive function in SE rats was significantly impaired,
and AST treatment improved cognitive function in the Morris water maze (MWM).
Magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining and TdT-mediated
dUTP Nick-End Labeling (TUNEL) staining showed obvious damage in the hippocampus
of SE rats, and AST alleviated the damage. Subsequently, we evaluated the effect of
AST on relative pathophysiology to elucidate the possible mechanisms. To evaluate the
oxidative stress, the expression of malondialdehyde (MDA) and superoxide dismutase
(SOD) in plasma were detected using commercially available kits. NADPH oxidase-4
(Nox-4), p22phox, NF-E2-related factor 2 (Nrf-2), heme oxygenase 1 (Ho-1) and sod1 in
the parahippocampal cortex and hippocampus were detected using western blot and
real-time polymerase chain reaction (RT-PCR). The levels of MDA in plasma and Nox-4
and p22phox in the brain increased in SE rats, and the levels of SOD in plasma and Nrf-2,
Ho-1 and sod1 in the brain decreased. Treatment with AST alleviated these changes.
We also detected the levels of inflammatory mediators like cyclooxygenase-2 (cox-
2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and NF-κB phosphorylation
p65 (p-p65)/p65 in the brain. The inflammatory reaction was significantly activated in
the brain of SE rats, and AST alleviated neuroinflammation. We detected the levels of
p-Akt, Akt, B-cell lymphoma-2 (Bcl-2), Bax, cleaved caspase-3, and caspase-3 in the
parahippocampal cortex and hippocampus using western blot. The levels of p-Akt/Akt
and Bcl-2 decreased in SE rats, Bax and cleaved caspase-3/caspase-3 increased,
while AST alleviated these changes. The present study indicated that AST exerted an
reobvious neuroprotective effect in pilocarpine-induced SE rats.
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INTRODUCTION

Status epilepticus (SE) is one of the most common neurological
emergency diseases, which is ascribed to the failure of the
mechanisms responsible for seizure termination or the initiation
of mechanisms leading to abnormally prolonged seizures.
Accumulating evidence demonstrated that SE results in extensive
brain damage or death (Trinka et al., 2015). SE exhibits
an incidence of 10 per 100,000 persons per year to 41 per
100,000 persons per year, and it has short-term total mortality
rates of approximately 20%, of which 45%–74% are generalized
convulsive SE. Various factors cause the occurrence of SE,
including multiple neurological diseases, such as stroke, brain
tumor, brain trauma, central nervous system infection and
autoimmune encephalitis, and inappropriate medications during
the course of epilepsy treatment. The prognosis of SE is poor,
which often results in serious consequences, ranging from
transient neurological dysfunction to life-threatening issues if
not competently managed, including irreversible brain damage.
The longer SE lasts, the worse the consequences (Betjemann
and Lowenstein, 2015; Trinka et al., 2016; Yasam et al., 2017;
Sculier et al., 2018).

The present treatment of SE is based on a primary principle,
termination of the seizure as soon as possible. Treatment drugs
include benzodiazepines, antiepileptic drugs (AEDs) and some
anesthetics, which control approximately two-thirds of seizures.
However, these drugs often exacerbate comorbidities, such as
cognitive impairment (Agarwal et al., 2011; Sutter et al., 2014).
Post-epileptic neuronal injury is widely recognized, but the
underlying mechanism is still unclear. Currently, there is a
lack of effective treatment for post-SE neuronal injury. The
pathophysiology underlying SE includes neuroinflammation,
oxidative stress, neuronal death and abnormal neuron networks,
which aggravate epileptic etiological changes and neuronal
damage after SE, thus inducing cognitive impairment. Current
AEDs can terminate most seizures, but the above-mentioned
early pathophysiological changes induced by SE are not fully
inhibited by AEDs. These changes promote the occurrence of
seizure, which results in a recurrent seizure, and thus developing
into chronic temporal lobe epilepsy (TLE; Pitkänen, 2010;
Pitkänen and Lukasiuk, 2011; Pitkänen et al., 2019).

Astaxanthin (AST) is a lutein carotenoid, which is widely
found in a variety of micro- and marine organisms, such as
algae, yeast, salmon, trout, krill, shrimp and crayfish. Previous
studies demonstrated that AST was a powerful antioxidant
because of its peculiar molecular structure of a conjugated double
bond at the center and unsaturated ketonic groups at both
ends of the aromatic nucleus (Ambati et al., 2014). Previous
studies indicated that AST directly alleviated oxidative stress

Abbreviations: SE, status epilepticus; AEDs, anti-epileptic drugs; TLE, temporal
lobe epilepsy; AST, astaxanthin; Nrf-2, NF-E2-related factor 2; ARE, antioxidant
response element; MRI, magnetic resonance imaging; HE, hematoxylin-eosin;
TUNEL, TdT-mediated dUTP Nick-End Labeling; RT-PCR, real-time Polymerase
Chain Reaction; Nox-4, NADPH oxidase-4; Ho-1, heme oxygenase 1; ROS,
Reactive Oxygen Species; Cox-2, cyclooxygenase-2; IL-1β, interleukin-1β;
TNF-α, tumor necrosis factor-α; bax, B-cell lymphoma-2; Bcl-2, associated X
protein Bcl-2.

and indirectly oxidative damage via enhancing the activity of
the brain NF-E2-related factor 2 (Nrf-2)/anti-oxidant response
element (ARE) antioxidant pathway (Grimmig et al., 2017).
Additionally, AST exhibits multipotent biological characteristics,
such as anti-inflammation, anti-apoptosis, anti-tumor and
immunity enhancement (Ying et al., 2015; Kim et al., 2017).
AST easily crosses the blood-brain barrier, and it has no toxic
side effects (Ambati et al., 2014). AST reduced brain damage
and ameliorated cognitive impairment in some neurological
disorders (Ji et al., 2017). One study showed that preventive AST
prior to epilepsy induced by amygdala kindling inhibited neuron
loss and oxidative stress (Lu et al., 2015). However, the efficacy of
AST treatment administration after a complete SE is unknown.
Therefore, we evaluated the effects of AST treatment beginning
1 h after SE for 2 weeks on the cognitive function of post-SE
rats, hippocampal damage, oxidative stress, inflammation and
neuronal loss using the Morris water maze (MWM), magnetic
resonance imaging (MRI), hematoxylin-eosin (HE) staining,
TdT-mediated dUTP Nick-End Labeling (TUNEL) staining,
western blot and real-time polymerase chain reaction (RT-PCR).

MATERIALS AND METHODS

Animals
Male Wistar rats (n = 104; body weight 160–180 g) were used
in the study and were purchased from the Animal Center
of Fudan University (Shanghai, China). All rats were raised
in a standard animal-grade room with four or five rats in
each cage. This study was carried out in accordance with
the recommendations of Guide for Animal Experiments of
the Chinese Academy of Medical Sciences. The protocol was
approved by the ethics committee for animal care of Jinshan
Hospital of Fudan University. The housing environment met
the following conditions: ambient temperature approximately
23 ± 2◦C, relative humidity (60 ± 5%) and a 12 h light/dark
cycle with free access to food and water. All animal experiments
were performed during the light cycle. All rats were housed in the
laboratory for 1 week prior to experimentation.

Establishment of the Model of Status
Epilepticus in Rats
Lithium chloride (Sigma, USA) and pilocarpine (Sigma, USA)
were used to induce SE (García-García et al., 2017). Rats were
intraperitoneally injected with 127 mg/kg lithium chloride in
0.9% saline 20–24 h before pilocarpine injection. Scopolamine
(1 mg/kg in 0.9% saline) was injected intraperitoneally 30 min
before pilocarpine injection to reduce peripheral side effects.
Intraperitoneal injection of 30 mg/kg pilocarpine was performed
in the SE and AST groups, and saline was injected into
the Normal group as a replacement for lithium chloride
and pilocarpine. Electroencephalogram (EEG) monitoring was
performed on rats during SE to identify a seizure (Figure 1),
and behavioral seizures were scored using a modified Racine
scale (Ishida et al., 1992). Seizures were graded using the
following classification: I—standing still or wet dog shakes;
II—nodding and chewing rhythmically; III—unilateral forelimb
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clonic seizure; IV—bilateral forelimb clonic and convulsive
seizure with standing; and V—receding, tumbling, with a
generalized tonic-clonic seizure. SE models were regarded as
successfully kindled when the rats developed seizure scoring
grade IV-V within 30 min and exhibited a sustained state. If
the rat did not develop seizure scoring grade IV-V, then rats
were injected (i.p.) with 10 mg/kg pilocarpine every 30 min
until the seizure reached grade IV-V. No rat received more
than 60 mg/kg pilocarpine. Diazepam (10 mg/kg, i.p.) was
administered after a seizure lasted 60 min to terminate the
seizure. The criteria for SE model success included EEG showing
seizure, seizure grade reaching IV-V and seizure lasting for over
30 min. A total of 104 rats were used. Twenty-two rats were
injected with saline for the Normal group, and 82 rats were
injected with pilocarpine to induce SE. Sixty-three rats were
successfully induced SE rats (success rate 76.83%), and these rats
were randomly divided into an SE group (31 rats) and AST group
(32 rats). Nine rats failed (failure rate 10.98%), and ten rats died
(mortality rate 12.20%).

Animal Grouping and Experimental
Protocol
Experimental animals were divided into three groups: Normal
group, SE group and AST group. Treatments were initiated
60 min after the onset of SE to allow enough time in SE
to produce significant physiopathological changes, such as
oxidative stress, neuroinflammation, and significant neuron
loss, which promote epilepsy development in all rats. The
interventions were administered at the same time every 2 days
for 2 weeks (total of seven times). AST (purity ≥ 98%; Solarbio,
Beijing, China) was dissolved in vehicle mixing 1:1 polyethylene
glycol (Sigma, USA) and tri-distilled water. The AST group
was intraperitoneally injected with 30 mg/kg AST (Solarbio,
Beijing, China), according to previous studies (Lu et al., 2015).
The Normal and SE groups received the same dose of vehicle
(see Figure 2).

Electroencephalogram (EEG)
Stainless steel screws for EEG recording were implanted
stereotactically on the left and right epidural surfaces
[coordinates from the Bregma: anterior-posterior (AP) =
−2.2 mm, lateral (L) = ±3.2 mm] under anesthesia with 10%
chloral hydrate (Shenggong, Shanghai, China). Two other
stainless steel screws were implanted in cerebellar regions as a
grounding electrode and reference electrode. The screws were
fixed with dental cement (Shanghai, China). Modeling began
7 days after electrode implantation.

Magnetic Resonance Imaging (MRI)
MRI was performed under anesthesia with 10% chloral hydrate
(Shenggong, Shanghai, China). We collected high-resolution
T2-weighted phase (T2WI) images of the hippocampus. RARE
sequence was used to detect the MRI of the hippocampus of rats
using the following parameters: repeat time (TR): 6,000 ms; echo
time (TE): 13.7 ms; matrix size: 152 × 152; magnetic resonance
FOV: 26 × 26 mm; MRI scanning layer thickness: 0.5 mm; and
acquisition time: 3 min 15 s.

Morris Water Maze Experiment
The MWM consisted of a circular pool in which rats were
trained to escape from the water by swimming to a hidden
platform, as described previously (Vorhees and Williams, 2006).
Adaptive swimming training was performed on the 14th day
after modeling. The formal test was performed on the 15th day.
Water temperature wasmaintained at 25± 1◦Cwith the addition
of warm water. Concealed platform test: the test training stage
lasted for 4 days, and rats were trained four times each day.
Rats were placed into the pool from four entry points facing the
pool wall on the trial each day. The time required for the rats
from entering the water to finding the submerged platform and
standing on it was recorded as the escape latency (s). When the
rats found the platform, they stood on it for 15 s. If the rats
failed to find the platform 60 s after entering the water, they were
gently dragged onto the platform from the water and stayed in
place for 15 s before being removed from the pool. All tests were
performed at roughly the same time of day to minimize changes
due to time. Spatial probe test: the platform was removed 24 h
after the concealed platform test, and the rats were placed into
the water at any same entry point one time. The swimming paths
within 60 s, the time spent in the target quadrant and the times
the rat swam across the original platform site were recorded to
evaluate spatial positioning ability.

HE Staining
The brain tissues of rats were fixed with 4% paraformaldehyde
(Shenggong, Shanghai, China), washed, dehydrated,
transparentized, immersed in wax, and cut into slices. The
dried sections were immersed in a dyeing vessel containing
xylene I and xylene II for dewaxing. Sections were successively
immersed in different concentrations of alcohol, double-distilled
water to hydrate, stained in HE, dehydrated, and sealed.
The prepared tissue sections were observed under an optical
microscope and photographed using a microimaging system.

TUNEL Staining
The brain tissues of rats were fixed with 4% paraformaldehyde
(Shenggong, Shanghai, China), washed, dehydrated,
transparentized, immersed in wax, and cut into slices. The
dried sections were immersed in a dyeing vessel containing
xylene I and xylene II for dewaxing. The sections were hydrated,
digested with trypsin, and stained in TUNEL mix. The sections
were dehydrated, transparentized and sealed with neutral gum.
The CA1 region of the hippocampus was observed and analyzed
using an optical microscope to calculate the apoptosis rate.

Malondialdehyde (MDA) and Superoxide
Dismutase (SOD) Assays
Assays of the malondialdehyde (MDA) content and superoxide
dismutase (SOD) activity involved commercially available kits
(Jiancheng Bioengineering, Nanjing, China). Plasma was diluted
with saline to an appropriate concentration to estimate the
MDA content and SOD activity. All procedures were performed
under the guidance of the manufacturer’s instructions. MDA
levels were measured using a 2-thiobarbital acid method. Optical
density was measured at 532 nm. The results were expressed
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FIGURE 1 | EEG changes of rats pro-SE and post-SE. (A) The EEG of rats pro-SE and post-SE; (B) the EEG relative power of rats pro-SE and post-SE. The EEG
relative power (µV2) of SE rats was significantly increased (∗∗p < 0.01 vs. Normal).

FIGURE 2 | A flow diagram showing the experimental design and the time-line of astaxanthin (AST) treatment. The induction of status epilepticus (SE) was induced
in Wistar rats 7 days after electrode implantation. The assessment of successful SE model was using a modified Racine scale and electroencephalogram (EEG)
monitoring. Rats received the first injection of 30 mg/kg AST at an hour after the onset of SE, and seizures were terminated via i.p. injection of diazepam (10 mg/kg)
at the same time. In the following 12 days (days 2–13), rats received injections of AST every other day (total six times). In the 14th day after SE induction, subgroups
of rats (n = 8) treated with AST started performing Morris Water Maze (MWM) experiment along with SE rats and normal rats; part of rats (n = 6) conducted magnetic
resonance imaging (MRI), and then euthanized via intracardiac perfusions for hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL)
staining; the rest of rats (n = 8) were euthanized for biochemical and molecular biological studies [superoxide dismutase (SOD) and malondialdehyde (MDA)
detection, WB and real-time polymerase chain reaction (RT-PCR) studies].

as nmol/mg protein. SOD activity was determined based on its
ability to inhibit the oxidation of superoxide anions produced by
a xanthine-xanthine oxidase system. One unit of SOD activity
was defined as a 50% reduction of optical density at 450 nm
absorbance. The results were expressed as U/ml. Colorimetry was
used for determination, and the absorbance values and standard
equation were used for the assay.

Western Blot
Hippocampal and cortical tissue proteins were extracted using
a lysis buffer containing 1% PMSF (phenyl sulfonyl fluoride;

Beyotime, Shanghai, China). Protein content was determined
using the BCA assay (BioRad, Hercules, CA, USA). Proteins
(20 µg) were separated using SDS-PAGE electrophoresis and
transferred to PVDF membranes. The membranes were blocked
with 5% BSA/TBST or skim milk at room temperature for 1 h.
The membranes were washed with TBST and incubated with a
relatively specific primary antibody (Table 1) at 4◦C overnight.
The membranes were washed with TBST and incubated with
horseradish peroxidase (HRP)-conjugated anti-rabbit/mouse
IgG at room temperature for 1 h. The ECL-Plus kit (Merck
Millipore, Darmstadt, Germany) was used to detect signals, and
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TABLE 1 | The specific primary antibodies used in the current study.

Antibody Company Dilution

anti-β-actin Cell Signaling Technology, USA 1:5,000
Nox-4 ABclonal, UK 1:1,000
p22phox Santa Cruz Biotechnology, USA 1:50
sod1 Proteintech, USA 1:1,000
Ho-1 Abcam, UK 1:1,000
Nrf-2 Santa Cruz Biotechnology, USA 1:400
Cox-2 Cell Signaling Technology, USA 1:500
TNF-α Millipore, USA 1:1,000
IL-1β Abcam, UK 1:1,000
p-p65 Cell Signaling Technology, USA 1:1,000
p65 Cell Signaling Technology, USA 1:3,000
p-Akt Cell Signaling Technology, USA 1:2,000
Akt Cell Signaling Technology, USA 1:3,000
Bcl-2 Cell Signaling Technology, USA 1:2,000
Bax Cell Signaling Technology, USA 1:2,000
cleaved caspase-3 Cell Signaling Technology, USA 1:1,000
caspase-3 Cell Signaling Technology, USA 1:3,000
HRP-conjugated anti-rabbit IgG Proteintech, USA 1:5,000
HRP-conjugated anti-mouse-IgG Proteintech, USA 1:5,000

ImageJ was used to quantify western blots. β-actin was used as
an internal control for quantitative analysis of relative expression
levels of proteins.

Real-Time Polymerase Chain Reaction
(RT-PCR)
The total RNA of hippocampal and cortical brain tissue
was extracted using the Trizol Reagent kit (Takara, Japan).
All procedures were performed under the guidance of the
manufacturer’s instructions. cDNA of the mRNA of target genes
was synthesized using the PrimeScriptTM reagent kit (Takara,
Japan). Primer Express software v3.0.1 was used to design the
RT-PCR primers. SYBR Premix Ex Taq (Tli RNaseH Plus;
TaKaRa) was used to perform RT-PCR in the Applied Biosystem
7300 (Applied Biosystems, Foster City, CA, USA), to detect the
levels of β-actin and target genes. The 2−44Ct method was used
to assess the levels of relative mRNA normalized to β-actin. The
primer sequences were shown in Table 2.

Statistical Analysis
The results were expressed as the mean value ± SD. All
data analyses were performed using GraphPad Prism 7. The
paired t-test was used to compare the differences between the
two groups. The escape latency of the MWM was analyzed
using repeated measures ANOVA, with factors of strain and
days. P < 0.05 was used to indicate significant differences. All
experiments were repeated at least three times.

RESULTS

Result 1. Astaxanthin Treatment
Significantly Improved the Cognitive
Function of SE Rats
The results indicated that AST significantly ameliorated
SE-induced cognitive impairment. The hidden platform test
showed that the escape latency in the SE group was longer than
the Normal group (∗∗p < 0.01 vs. Normal). However, the escape

TABLE 2 | The sequences of primers used in the current study.

Gene Primer Sequence (5′ to 3′)

Nox-4 Nox-4 (forward) ACTCTACTGGATGACTGGAAACC
Nox-4 (reverse) AGCTGGATGTTCACAAAGTCAGG

p22phox p22phox (forward) TGGCGGGCGTGTTTGTGT
p22phox (reverse) CCACGGCGGTCATGTACTTC

Ho-1 Ho-1 (forward) TATCGTGCTCGCATGAACACTCTG
Ho-1 (reverse) GTTGAGCAGGAAGGCGGTCTTAG

Nrf-2 Nrf-2 (forward) GCCTTCCTCTGCTGCCATTAGTC
Nrf-2 (reverse) TCATTGAACTCCACCGTGCCTTC

Cox-2 Cox-2 (forward) CGGACTTGCTCACTTTGTTG
Cox-2 (reverse) CTCTCTGCTCTGGTCAATGG

TNF-α TNF-α (forward) GCATGATCCGAGATGTGGAACTGG
TNF-α (reverse) CGCCACGAGCAGGAATGAGAAG

IL-1β IL-1β (forward) GCCAACAAGTGGTATTCTCCA
IL-1β (reverse) TGCCGTCTTTCATCACACAG

β-actin β-actin (forward) CCACCATGTACCCAGGCATT
β-actin (reverse) CAGTGAGGCCAGGATAGAGC

latency in the AST group was reduced compared to the SE group
(##p < 0.01 vs. SE; Figures 3A,B). The spatial probe test showed
that the time spent in the target quadrant and the time across the
platform in the SE group were significantly reduced compared to
the Normal group, and treatment with AST obviously reversed
these changes (∗∗p < 0.01 vs. Normal; ##p < 0.01 vs. SE;
Figures 3C,D). The results of the MWM indicated that SE
significantly impaired cognitive function, which is consistent
with previous reports (Müller et al., 2009). Treatment with AST
ameliorated the SE-induced cognitive impairment.

Result 2. Astaxanthin Alleviated the
SE-Induced Hippocampal Damage
The present study showed that AST intervention
ameliorated SE-induced hippocampal damage as detected
on high-resolution T2WI images of the hippocampus
using MRI. As shown in Figures 4A–C, the T2WIs of the
hippocampus of the SE group exhibited a higher signal
compared to the Normal group. The AST group showed
a lower signal compared to the SE group. Our study
indicated that SE induced hippocampal damage in rats,
such as edema, and that AST intervention alleviated the
hippocampal damage.

Meanwhile, we utilized H&E staining to evaluate
morphological changes in the rat hippocampus. Neurons in
the hippocampus of the SE group were decreased, swollen
and loosely arranged compared to the Normal group, and
karyopyknosis was obviously observed in the CA1 region of
the hippocampus in the SE group (Figures 4Dd,Ee). These
morphological dysfunctions were ameliorated in the AST group
compared to the SE group (Figure 4Ff).

Result 3. Astaxanthin Ameliorated
Apoptosis of Hippocampal Neurons in SE
Rats
TUNEL staining showed that AST intervention ameliorated
SE-induced apoptosis of hippocampal neurons, and AST
intervention ameliorated the apoptosis of neurons in the
CA1 region of the hippocampus. As shown in Figure 5, the
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FIGURE 3 | The results of MWM. (A,B) Under treatment with 30 mg/kg AST significantly reduces the escape latency. (C) The bar chart shows the time spent in
target quadrant (%). AST treatment clearly increases the time spent in target quadrant. (D) The times across the platform (∗∗p < 0.01 vs. Normal; ##p < 0.01 vs. SE).

apoptosis rate of neurons in hippocampus CA1 significantly
increased in the SE group (48.36 ± 5.436%) compared to the
Normal group (30.3 ± 3.485%; p < 0.05). In contrast, AST
reduced the apoptosis rate (28.79± 3.32%; p < 0.05).

Result 4. Astaxanthin Obviously Reduced
Oxidative Stress Status in SE Rats
The present study showed that AST intervention significantly
reduced oxidative stress status in SE rats and enhanced
antioxidant activity via the Nrf-2/ARE pathway. Figures 6A,B
showed that MDA in the plasma of the SE group-significantly
increased compared to the Normal group (p < 0.05), and the
SOD level decreased (p < 0.05). AST downregulated MDA
(p < 0.05) level and upregulated SOD level (p < 0.05) in the
plasma of SE rats. These results suggested that AST reduces
the systemic oxidative stress response and enhances antioxidant
capacity in SE rats. To evaluate the level of oxidative stress
in the brain, we assayed the expression of oxidant indicators
including p22phox and NADPH oxidase-4 (Nox-4) in the
hippocampus and parahippocampal cortex of rats. Nox-4 is
an NADPH oxidase, and p22phox is a subunit of NADPH
oxidase. Both enzymes are major sources of reactive oxygen
species (ROS). We detected the levels of protein and mRNA
using western blot and RT-PCR, respectively. As shown in
Figures 6C,D,F, the levels of nox-4 and p22phox protein and
mRNA in the hippocampus and parahippocampal cortex of
the SE group significantly increased compared to the Normal

group, and AST reduced these changes (∗p < 0.05 vs. Normal;
∗∗p < 0.01 vs. Normal; #p < 0.05 vs. SE; ##p < 0.01 vs. SE).
The levels of Nrf-2, heme oxygenase 1 (Ho-1) and sod1, which
are major molecules of the antioxidant Nrf-2/ARE pathway,
were detected using western blot and RT-PCR. The results
showed that the levels of Nrf-2, Ho-1 and sod1 protein and
mRNA in the hippocampus and parahippocampal cortex of
rats in the SE group significantly decreased compared to
the Normal group (∗p < 0.05 vs. Normal; ∗∗p < 0.01 vs.
Normal), and AST significantly elevated the expression of Nrf-
2, Ho-1 and sod1 (#p < 0.05 vs. SE; ##p < 0.01 vs. SE;
Figures 6C,E,G).

Result 5. Astaxanthin Alleviated the
Inflammatory Reaction in SE Rats via the
NF-κB Pathway
The results indicated that AST intervention obviously alleviated
the inflammatory response in the brains of SE rats, likely
via the NF-κB pathway. The present study assayed the
neuroinflammatory reaction by detecting the expression of
classical inflammatory factors, including cyclooxygenase-2 (Cox-
2), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-
α), in the hippocampus and parahippocampal cortex of rats
using western blot and RT-PCR. As shown in Figure 7,
the protein and mRNA levels of Cox-2, IL-1β and TNF-α
in the hippocampus and parahippocampal cortex of the SE
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FIGURE 4 | Observation of the hippocampal damage via MRI and HE staining. Panels (A,B) show the results of T2-weighted phase (T2WI) of MRI. (A) Normal
group. (B) SE group. (C) AST group. The T2WIs of the hippocampus of the SE group exhibited a higher signal compared to the Normal group. AST treatment
showed a lower signal compared to the SE group. Panels (D–F) show the results of HE staining in the hippocampus. (D,d) Normal group. (E,e) SE group. (F,f) AST
group. AST treatment improved the morphological changes in SE rats.

FIGURE 5 | The apoptosis levels in the hippocampal CA1 region via TUNEL
staining. (A) Normal group. (B) SE group. (C) AST group. (D) The bar chart
shows a proportion of apoptosis cells in the CA1 region in the hippocampus.
The results are expressed as the mean ± SD (∗p < 0.05 vs. Normal;
#p < 0.05 vs. SE).

group significantly increased compared to the Normal group
(∗p < 0.05 vs. Normal; ∗∗p < 0.01 vs. Normal). However, AST
intervention significantly reduced the expression levels of these
inflammatory factors compared to the SE group (#p < 0.05 vs.
SE; ##p < 0.01 vs. SE). To investigate the effects of AST on the
NF-κB pathway, we also detected the levels of NF-κB p65 and
phosphorylation p65 (p-p65) using western blot. The results
showed that the expression of p-p65/p65 in the brain of rats in the
SE group significantly increased compared to the Normal group
(∗p < 0.05 vs. Normal; ∗∗p < 0.01 vs. Normal), and AST reduced
the expression of p-p65/p65 (#p < 0.05 vs. SE; ##p < 0.01 vs. SE;
Figure 7).

Result 6. Astaxanthin Reduced Neuronal
Apoptosis in SE Rats via the PI3K/Akt
Pathway
The results suggested that AST alleviated SE-induced neuronal
apoptosis via the PI3K/Akt pathway. TUNEL staining indicated
that AST alleviated SE-induced neuronal apoptosis (Figure 5).
We detected the expression of caspase-3 and cleaved caspase-3
in the hippocampus and parahippocampal cortex using
western blot. The levels of cleaved caspase-3/caspase-3 in the
hippocampus and parahippocampal cortex increased in the
SE group compared to the Normal group (p < 0.01), which
suggests the activation of apoptosis. AST reduced the expression
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FIGURE 6 | The levels of oxidative stress in each group. (A) MDA level in plasma. (B) SOD vitality in plasma. (C) Representative protein bands of NADPH oxidase-4
(Nox-4), p22phox, NF-E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and sod1 in the parahippocampal cortex and hippocampus. (D) The bar chart shows the
relative proteins levels of Nox-4 and p22phox in the parahippocampal cortex and hippocampus, compared with that of β-actin. (E) The bar chart shows the relative
proteins levels of Nrf-2, HO-1 and sod1 in the parahippocampal cortex and hippocampus, compared with that of β-actin. (F) The bar chart shows the relative
mRNAs levels of Nox-4 and p22phox in the parahippocampal cortex and hippocampus. (G) The bar chart shows the relative mRNAs levels of Nrf-2 and Ho-1 in the
parahippocampal cortex and hippocampus. The results are expressed as the mean ± SD (∗p < 0.05 vs. Normal; ∗∗p < 0.01 vs. Normal; #p < 0.05 vs. SE;
##p < 0.01 vs. SE).

of these proteins (p < 0.01). We detected the levels of molecules
associated with the PI3K/Akt pathway using western blotting.
B-cell lymphoma-2 (Bcl-2) associated X protein (bax) levels in
the SE group increased and the levels of phospho-Akt/Akt and
Bcl-2 decreased compared to the Normal group (∗∗p < 0.01 vs.
Normal). AST reduced Bax expression and increased the
expression of p-Akt/Akt and Bcl-2 (##p < 0.01 vs. SE; Figure 8).

DISCUSSION

Early pathophysiological insults of SE in rodents include
imbalanced oxidative stress, intense neuroinflammatory
responses, selective neuronal degeneration, and disruption of
the brain-blood barrier, which result in subsequent cognitive
impairment (Walker, 2018). The longer the epileptic seizure
lasts, the worse is the prognosis of neuron injury and cognitive

function injury after SE (Trinka et al., 2016). The main
therapeutic strategy of SE is termination of the epileptic
seizure as soon as possible including first-line treatment
(benzodiazepines) and second-line treatment (AEDs, including
phenobarbital, valproic acid and levetiracetam). Some scholars
insisted intravenous injections of midazolam, propofol and other
anesthetics as soon as possible to terminate seizures (lasting for
30–60 min) rather than the use of multiple second-line drugs
when the first-line treatment does not terminate the seizure
(Betjemann and Lowenstein, 2015; Glauser et al., 2016). These
drugs have obvious effects on the termination of seizures, but
they do not effectively improve the pathophysiological changes
after epilepsy or prevent SE from developing into chronic TLE.
They even aggravate neuron damage or cognitive impairment
(Agarwal et al., 2011; Sutter et al., 2014). Therefore, there is a
pressing need for the development of new treatment strategies
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FIGURE 7 | The inflammation levels in the parahippocampal cortex and hippocampus. (A) The bar chart shows the relative proteins levels of cyclooxygenase-2
(Cox-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and NF-κB phosphorylation p65 (p-p65)/p65 in the parahippocampal cortex, compared with that of
β-actin. (B) Representative protein bands of Cox-2, IL-1β, TNF-α, NF-κB p-p65 and p65 in hippocampus and the parahippocampal cortex. (C) The bar chart shows
the relative proteins levels of Cox-2, IL-1β, TNF-α and NF-κB p-p65/p65 in the parahippocampus, compared with that of β-actin. (D) The bar chart shows the relative
mRNAs levels of Cox-2, IL-1β and TNF-α in the parahippocampal cortex and hippocampus. The results are expressed as the mean ± SD (∗p < 0.05 vs. Normal;
∗∗p < 0.01 vs. Normal; #p < 0.05 vs. SE; ##p < 0.01 vs. SE).

to alleviate the pathophysiological insults in the brain post-SE.
We hypothesized that AST would exert neuroprotective effects
in SE rats based on its effects on oxidative stress, inflammatory
reactions and apoptosis.

Cognitive dysfunction is a common clinical manifestation
of SE-induced brain injury. Long-term epileptic seizures
inevitably affect the cognitive function of patients with SE
and compromise the quality of life of these patients (Power
et al., 2018). Previous studies reported that SE model rats
using pilocarpine showed cognitive impairment compared to
normal rats. Repeated transient seizures may lead to long-term
deficits in spatial memory because of progressive hippocampal
neuron loss induced by the repeated brief seizures (Kotloski
et al., 2002; Müller et al., 2009). Our results also confirmed
these results. AST treatment apparently improved the potential
of learning and memory of SE rats. An increasing body of
preclinical evidence over the past decade has demonstrated
the neuroprotective effects of AST in multiple neurological
diseases. A recent randomized, double-blind, placebo-controlled,
small-sample clinical trial also showed that the addition of a
compound containing AST and sesamin significantly improved
cognitive function in patients with mild cognitive impairment
(Ito et al., 2018).

Numerous studies demonstrated that inhibition of
oxidative stress induced by seizure was enormously valuable.
Activated oxidative stress in epilepsy and other neurological
diseases accelerated chronic neuronal dysfunction and
neurodegeneration. Oxidative stress activated by epileptic
seizure may be a key incentive for recurrent seizures and
exacerbate the consequences of seizures, such as neuronal death
and cognitive dysfunction, and oxidative stress itself also results
in neuronal death (Pearson-Smith and Patel, 2017). Elevated
levels of oxidized proteins and lipids in the serum of patients
with epilepsy indicated that oxidative stress was an ongoing
process in epilepsy (Menon et al., 2012). Oxidative damage
of biomolecules was detected in surgically resected epileptic
brain tissue, and the oxidative stress reaction contributed to
excitatory neural toxicity and neuronal degeneration (Pecorelli
et al., 2015). Previous animal experiments demonstrated that
antioxidant treatment exerted obvious neuroprotective effects
in various epileptic models by alleviating oxidative stress in the
brain (Pearson et al., 2015; Pauletti et al., 2017). Some treatments
also improved neuronal injury after epilepsy by enhancing the
Nrf2/ARE pathway to heighten the antioxidative activity of
the body (Liu et al., 2018; Shi et al., 2018). The level of MDA
in plasma increased in the SE group compared to the Normal
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FIGURE 8 | The expression of apoptosis regulation by the PI3K/Akt pathway. (A) Representative protein bands of p-Akt, Akt, B-cell lymphoma-2 (Bcl-2), Bax,
caspase-3 and cleaved caspase-3 in the parahippocampal cortex and hippocampus. (B) The bar chart shows the relative proteins levels of p-Akt/Akt, Bcl-2, Bax
and caspase-3/cleaved caspase-3 in the parahippocampal cortex, compared with that of β-actin. (C) The bar chart shows the relative proteins levels of p-Akt/Akt,
Bcl-2, Bax and caspase-3/cleaved caspase-3 in the parahippocampus. The results are expressed as the mean ± SD (∗∗p < 0.01 vs. Normal; ##p < 0.01 vs. SE).

group in the present study, the level of SOD in plasma decreased,
and the levels of Nrf-2, Ho-1 and sod1 in the hippocampus and
parahippocampal cortex decreased. However, AST reduced these
changes. NADPH oxidase aggravated oxidative stress damage
by inducing ROS (Brandes et al., 2014). NOX-4 is an important
NADPH oxidative enzyme, and p22phox is a subunit of NADPH
oxidase; both are vital biomarkers of oxidative stress. Therefore,
we detected the levels of Nox-4 and p22phox in the brain.
The results showed that SE increased the expression of Nox-4
and p22phox in the brain, and AST treatment decreased their
expression. Previous studies demonstrated that the powerful
antioxidant AST alleviated oxidative stress and enhanced
anti-oxidative activity in other diseases (Ravi Kumar et al.,
2016; Chalyk et al., 2017), which is consistent with our results.
Therefore, our results suggest that AST plays a neuroprotective
role in pilocarpine-induced injury via reducing oxidative stress
and enhancing anti-oxidant capacity.

Burgeoning evidence from recent research studies
considerably highlighted the key role of the inflammatory
response in the pathogenesis of epilepsy. Inflammatory responses
promote the occurrence and development of epilepsy. The brain
tissue of patients with epilepsy undergoing surgical resection
exhibits a strong inflammatory response, including reactive

astrocyte proliferation, the infiltration of activated microglia,
and the upregulation of various pro-inflammatory factors,
including Cox-2, IL- 1β, TNF-α, and IL-6. Inflammatory cells,
including mononuclear cells and neutrophil granulocytes, also
increase in the brain, and inflammatory cells infiltrate from
the periphery, which can promote inflammatory reactions in
the brain and aggravate local neuronal injury (Varvel et al.,
2016). Various SE model experiments also showed that rapid
and persistent neuroinflammatory responses existed in the
forebrain, which were mainly caused by activated microglia and
astrocytes and infiltrated mononuclear cells. The inflammatory
mediators induced by epileptic seizure include cytokines and
their receptors. Inflammatory factors, such as Cox-2, IL-1β, and
TNF-α, are rapidly induced in major anterior brain neurons
such as hippocampal pyramidal cells and dentate granulosa cells.
These increased pro-inflammatory factors are demonstrated to
aggravate the proliferation of neuroglial cells, damage to the
blood-brain barrier, neuronal excitability and seizure intensity,
which may contribute to neuronal loss (Vezzani et al., 2015).
Activation of the NF-κB pathway has been demonstrated
to play a vital role in the process. There is a growing body
of evidence derived from in vitro experiments and animal
models that inhibition of the inflammatory response provides a
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significant neuroprotective effect and reduces the seizure degree
and mortality (Serrano et al., 2011; Noe et al., 2013; Vezzani
et al., 2015). Cox-2, IL-1β and TNF-α significantly increased
in SE rats in the present study, and AST reduced these levels.
AST also inhibited the activation of NF-κB. Numerous studies
demonstrated that the application of AST reduced the expression
of inflammatory factors such as IL-1β and TNF-α, and AST may
inhibit the inflammatory response via multiple pathways (Kim
et al., 2010, 2017; Ying et al., 2015). Our results suggest that AST
suppresses the inflammatory reaction in pilocarpine-induced SE
via the NF-κB pathway.

SE resulting in neurodegeneration, especially hippocampal
neurons, is a prominent feature of clinical epilepsy (Dam,
1980). SE contributes to neuronal damage, which results in
multiple complications, including cognitive impairment. The
longer the seizure lasts, the more serious are the consequences.
Oxidative stress and the inflammatory reaction vitally affect
epilepsy-induced neuronal death. However, the underlying
molecular mechanisms are yet completely understood. Previous
studies reported that the neuronal death in the brain after
SE mainly includes apoptosis and necrosis, and apoptosis is
an important factor (Yu et al., 2018). Our study showed that
neuronal apoptosis in the hippocampal CA1 region was obvious
in SE rats using TUNEL staining, which is consistent with
previous studies (Kotloski et al., 2002). TUNEL staining directly
detects apoptotic cells, and the Bcl-2 protein family regulates
apoptosis by controlling the release of mitochondrial apoptosis
factors, cytochrome c, and apoptosis induction factors, which
activate downstream executive reactions, including caspases
(Zamzami and Kroemer, 2001). Previous studies demonstrated
that caspase-3 was significantly activated in the brain of rats
with epilepsy, cleaved caspase-3 significantly increased, the
pro-apoptotic protein Bax increased, and the anti-apoptotic
protein Bcl-2 decreased (Akcali et al., 2005; Yu et al., 2018).
Our results confirmed these changes, and AST reversed these
changes. A variety of signaling pathways regulate apoptosis. The
PI3K/Akt pathway is a classical signal transduction pathway

with various biological effects, and it exerts multiple roles in
the regulation of cell growth, proliferation, differentiation and
survival. The PI3K/Akt signaling pathway regulates apoptosis
via regulating the expression of apoptosis-related molecules (Jin
et al., 2017). The PI3K/Akt pathway plays an important role
in epilepsy-induced neuronal damage, and activation of the
PI3K/Akt pathway exhibits neuroprotective effects in epilepsy
(Xue et al., 2011), which is consistent with our results. Therefore,
we suggest that AST reduces SE-induced neuron damage via the
PI3K/Akt pathway.

In brief, the present study demonstrated that AST exerted
significant neuroprotective effects on neurological damage after
SE. The data highlighted that AST afforded neuroprotection
after a delayed post-injury intervention. AST blocked the rapid
onset oxidative stress, inflammatory pathway and neuronal death
during SE. AST, or co-treatment with AEDs, is likely to be a
promising strategy to improve treatment efficacy.
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