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In real-world scenarios, making navigation decisions for autonomous driving

involves a sequential set of steps. These judgments are made based on

partial observations of the environment, while the underlying model of the

environment remains unknown. A prevalent method for resolving such issues

is reinforcement learning, in which the agent acquires knowledge through a

succession of rewards in addition to fragmentary and noisy observations. This

study introduces an algorithm named deep reinforcement learning navigation

via decision transformer (DRLNDT) to address the challenge of enhancing

the decision-making capabilities of autonomous vehicles operating in partially

observable urban environments. The DRLNDT framework is built around the

Soft Actor-Critic (SAC) algorithm. DRLNDT utilizes Transformer neural networks

to e�ectively model the temporal dependencies in observations and actions.

This approach aids in mitigating judgment errors that may arise due to sensor

noise or occlusion within a given state. The process of extracting latent vectors

from high-quality images involves the utilization of a variational autoencoder

(VAE). This technique e�ectively reduces the dimensionality of the state space,

resulting in enhanced training e�ciency. The multimodal state space consists

of vector states, including velocity and position, which the vehicle’s intrinsic

sensors can readily obtain. Additionally, latent vectors derived from high-quality

images are incorporated to facilitate the Agent’s assessment of the present

trajectory. Experiments demonstrate that DRLNDT may achieve a superior

optimal policy without prior knowledge of the environment, detailed maps, or

routing assistance, surpassing the baseline technique and other policy methods

that lack historical data.

KEYWORDS

autonomous driving, deep reinforcement learning (DRL), Soft Actor-Critic (SAC),

variational autoencoder (VAE), Partially Observable Markov Decision Processes

(POMDPs), multimodal state space

1 Introduction

The automobile industry has increasingly prioritized autonomous (González et al.,

2015) driving technology due to the ongoing advancements in science and technology. The

implementation of driverless vehicles heavily relies on integrating an autonomous driving

navigation system, a fundamental component. Analyzing environmental data enables

autonomous driving navigation using numerous sensors and algorithms. The utilization

of machine learning enables the application of learning-based techniques in making

autonomous driving decisions. Imitation learning is often regarded as the prevailing
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approach when driving regulations are acquired automatically

through the analysis of expert driving data. Nevertheless, imitation

learning is not without its limitations. Firstly, acquiring substantial

quantities of authentic, contemporaneous driving data from

proficient experts is a prerequisite, a process that might incur

significant costs and consume considerable time. Furthermore,

the limited learning capacity of the system restricts its ability

to acquire driving skills beyond those displayed in the dataset.

Consequently, this limitation may give rise to safety concerns as

the system may not possess the necessary knowledge to handle

hazardous scenarios not encompassed within the dataset. Thirdly,

it is improbable that the imitation learning strategy may surpass

human performance, given that the human driving expert assumes

the role of a learning supervisor. Given these constraints, it is

imperative to investigate alternative methodologies for decision-

making in autonomous driving. One such method is reinforcement

learning, which automatically enhances and discovers new policies

without manual design.

In autonomous driving navigation, reinforcement learning

(Kiran et al., 2021; Ye et al., 2021) can help vehicles learn optimal

navigation policies by interacting with the road environment.

Through continuous trial and error and reward mechanisms,

reinforcement learning algorithms can enable vehicles to gradually

learn to deal with various complex traffic situations and road

conditions. Establishing a suitable reward system is of utmost

importance in the context of reinforcement learning for self-

driving navigation (Morales et al., 2021). Reinforcement learning

algorithms can effectively guide the vehicle to acquire appropriate

behavior by employing positive rewards, such as completing the

navigation job, or negative rewards, such as contravening traffic

regulations. The field of autonomous driving is advancing quickly,

with reinforcement learning showing promise in enabling agents to

learn how to drive without relying on expert data or manual design.

This method entails the agent learning to make decisions in various

scenarios, including hazardous ones, potentially surpassing the

skills of even the most experienced human drivers. By harnessing

the power of reinforcement learning, autonomous driving systems

can become more sophisticated and better equipped to handle the

intricacies of real-world driving situations.

Nevertheless, implementing reinforcement learning in

autonomous driving navigation has certain hurdles. Training

(Kaelbling et al., 1998) effective policies is a formidable task

primarily because of the intricacies associated with the infinite-

dimensional space. Furthermore, complicated and uncertain

road environments further compound the challenges in making

navigation decisions. The substantial quantity of necessary

exploration impedes the practical implementation of large action

spaces. This circumstance will result in unsatisfactory outcomes

of reinforcement learning-driven policy learning for complex

real-world tasks. The occlusion and noise experienced by the

sensors hinder the Agent’s capacity to perceive the actual status

of the surroundings accurately. The Agent cannot reach an

optimal conclusion given the existing situation, which is untrue.

Most current methodologies employ front-view images as input

for end-to-end learning policies. This methodology results in

highly complex and dimensional visual characteristics. Another

study area that deserves attention is the application of deep

reinforcement learning in autonomous Driving. Using elementary

deep reinforcement learning methods, such as DQN (Mnih et al.,

2013, 2015), may provide limitations in addressing intricate

navigation challenges. In recent times, there has been notable

progress in developing deep reinforcement learning algorithms

with increased efficacy. Autonomous driving technology has

limitations that restrict its use to only a few tasks.

This study introduces a novel technique called deep

reinforcement learning navigation via decision transformer

(DRLNDT). The Transformer model uses the Soft Actor-Critic

approach to gain accurate information about the present state

by considering the past trajectory state. This method helps the

Agent avoid misinterpretations or incorrect judgments regarding

the surroundings, possibly due to sensor occlusion or noise.

The conventional reinforcement learning model is constructed

within the Markov Decision Process (MDP) framework. Our

methodological approach is based on the Partially Observable

Markov Decision Process (POMDP). The data collected (Ghosh

et al., 2021) by the Agent’s sensor may need to be more accurate

as it depends on a hidden variable that existed in the past state

of the sensor and may not accurately represent the current

environmental conditions. High-quality images are crucial for

capturing a complete and accurate representation of reality

and extracting valuable information. Because images of high-

quality and larger dimensions can more precisely depict the real

world, providing a more comprehensive range of valuable data.

Nevertheless, utilizing high-resolution images (Nair et al., 2015;

Andrychowicz et al., 2020; Janner et al., 2021) containing intricate

visual features results in the intricacy of sample learning and the

occupation of substantial memory space, resulting in ineffective

learning and inadequate algorithm training. This study uses a

variational autoencoder (VAE) to extract latent vectors from high-

resolution photos. These latent vectors are then substituted for the

original high-resolution images, reducing dimensionality while

preserving the salient features of the samples to the greatest extent

possible. In addition, we utilize tricks of the Soft Actor-Critic (SAC)

policy, including changing temperature and variable learning rate,

among others, to enhance the algorithm’s efficacy. The conclusive

experimental findings demonstrate that our method outperforms

the baseline algorithm.

In this paper, we provide the following contributions:

1. In this study, we provide a novel algorithm named deep

reinforcement learning navigation via decision transformer

(DRLNDT), which leverages a transformer model to acquire

knowledge of the current state based on past states. The primary

objective of this approach is to mitigate judgment errors that

arise due to sensor noise or occlusion in a singular state.

2. The variational autoencoder (VAE) extracts latent vectors from

high-quality images, reducing the dimensionality of the state

space while preserving essential image properties. In conclusion,

optimizing image memory allocation has improved training

efficiency and outcomes.

3. The method enables an autonomous vehicle to navigate

visually from its starting point to its destination without

relying on route direction or high-precision maps, utilizing

only high-quality monocular raw photos and producing

successful outcomes.

4. Our study incorporates vector states such as velocity and

position, which can be effortlessly obtained from the vehicle’s
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intrinsic sensors. Furthermore, we introduce latent vectors

from high-quality images to construct a multimodal state

space. This method enables the agents to evaluate the current

trajectory based on the states, leading to improved overall

performance outcomes.

This paper is organized into several sections, each with a specific

focus. Section 2 of this paper focuses on the elucidation and

explication of pertinent research in the field of autonomous driving.

The text emphasizes reinforcement learning techniques used in

autonomous driving and the approaches to address POMDPs

through reinforcement learning algorithms. Section 3 of this paper

introduces various forms and definitions intended to facilitate

the comprehension and contextualization of the content. This

particular section holds significant importance as it establishes

the fundamental basis for the methodology put forth in Section

4. Section 4 of this paper introduces the DRLNDT algorithm,

which serves as the central focus of the study and encompasses the

most intricate technical aspects. Section 5 depicts the experimental

outcomes obtained by implementing our algorithm on the CARLA

platform. The results substantiate the superiority of our approach

over the baseline approach. The available evidence adequately

supports the efficacy of our approach. In conclusion, Section 6

summarizes the essential findings and offers suggestions for future

research directions.

2 Related works

We reviewed recent literature on “Reinforcement learning-

based autonomous driving” and “Deep reinforcement learning for

POMDPs,” summarizing their research.

2.1 Reinforcement learning-based
autonomous driving

Kendall et al. (2019) demonstrated the application of deep

reinforcement learning to autonomous driving, where a model

uses a single monocular image as input to learn a lane following

policy. The model is trained through several rounds with randomly

initialized parameters. The reward is the distance the vehicle

travels without the driver’s intervention. The approach relies

on continuous, model-free deep reinforcement learning, with all

exploration and optimization taking place in the vehicle.

Chen et al. (2019) and his team have developed a framework

for deep reinforcement learning in urban autonomous driving

scenarios. The framework uses a bird’s-eye view and visual coding

to capture low-dimensional latent states. The team implemented

several state-of-the-art model-free deep RL algorithms in the

framework and improved their performance. They tested the

performance of the framework in the challenging task of navigating

a circular intersection with dense surrounding vehicles and

found that it performed excellently compared to the baseline.

Additionally, the team introduced and tested three model-free deep

RL algorithms to evaluate their success rate in the roundabout

intersection task. The results demonstrate the effectiveness of the

proposed framework and algorithms in solving complex urban

driving tasks.

Liang et al. (2018) present a new Controllable Imitation

Reinforcement Learning (CIRL)model for DRL-based autonomous

vehicle driving in a high-fidelity vehicle fidelity simulator. CIRL

combines Controllable Imitation Learning with DDPG policy

learning to address sample inefficiency in reinforcement learning.

It outperforms previous approaches, achieving state-of-the-art

driving performance on the CARLA benchmark. The CIRL

model optimizes the policy network with specialized steering

angle rewards for targeting different driving scenarios. It has

excellent generalization capabilities across various environments

and conditions.

Anzalone et al. (2022) propose a reinforcement curriculum

learning method for training agents in a driving simulation

environment. The Agent has two phases of training. In the first

phase, it starts from a fixed location and drives according to the

speed limit without any traffic. In the second phase, the Agent

encounters diverse starting locations and randomly generated

pedestrians. The driving policy is evaluated quantitatively

and qualitatively.

Ozturk et al. (2021) propose the use of curriculum

reinforcement learning for autonomous driving in different

road and weather conditions. This study tackled the challenge

of tuning Agents for optimal performance and generalization

in various driving scenarios by using curriculum reinforcement

learning. Results showed significant improvement in performance

and a reduction in sample complexity. Different courses provided

different benefits, indicating potential for future research in

automated curriculum training.

Yeom (2022) propose a deep reinforcement learning (DRL)

based collision-free path planning architecture for mobile robots,

which can navigate unknown environments without supervision.

The architecture uses DRL to figure out the unknown environment

and predicts control parameters for the mobile robots in the

next time step. Experimental results show that the proposed

architecture can successfully solve complex navigation problems in

dynamic environments.

We found that although all of these studies had some

achievements, they did not achieve the task of navigating from

the initial position to the termination position. Forward-looking

images were used in some methods, but most were low-resolution

for algorithm convenience. High-quality images are necessary

for more features and real-world applications. Most navigation

agents use routing, which the original project did not intend.

Routing guides the optimal policy but is not always optimal.

Computation needs a high-precision map, which increases costs.

It goes against the original project’s idea of minimizing the need for

high-precision maps.

2.2 Deep reinforcement learning for
POMDPs

Heess et al. (2015) used neural networks to solve continuous

control problems, and the method was successful in fully observed

states. Control problems in real-world scenarios are often only

partially observed due to various factors, such as sensor limitations,

changes in the controlled object that go unnoticed, or state aliasing

caused by function approximation. This article proposes the use of
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recurrent neural networks trained with temporal backpropagation

in model-free continuous control algorithms to tackle partially

observed domains.

Igl et al. (2018) proposed a method called Deep Variational

Reinforcement Learning (DVRL) to address the challenges of

partially observable sequential decision problems. This method

helps the agent learn a generative model of the environment and

efficiently aggregate information. Researchers developed an n-step

approximation of ELBO and a policy for the control task. DVRL

outperforms previous approaches and accurately approximates

the confidence distribution on latent states. Additionally, a

second RNN summarizes the set of particles, accounting for the

uncertainty of the latent state after the following action.

Zhu et al. (2017) proposed a new method called Action Specific

Deep Recurrent Q Network (ADRQN) to improve the learning

performance in partially observable domains. This proposed

method encodes actions with a multilayer perceptron (MLP) and

combines them with observation features from a convolutional

neural network (CNN) to create action-observation pairs. These

pairs generate a time series integrated by a Long Short-Term

Memory (LSTM) layer to infer latent states. A fully connected layer

computes the Q-value, predicting expected rewards for actions in a

given state. Tested in partially observable domains, including Atari,

this method outperformed state-of-the-art methods.

Hausknecht and Stone (2015) replaced the first fully connected

layer of a Deep Q Network (DQN) with an LSTM to add loops

and investigated its effect. DRQN, a Deep Recurrent Q Network,

integrates temporal information and performs as well as DQN on a

standard and partially observed Atari game. Its performance varies

with observability and degrades less than DQN when evaluated

with partial observations. Looping is a viable alternative to stacking

frame histories in the DQN input layer and adapts better to changes

in observation quality when evaluated. However, looping does not

provide any systematic benefits over stacking observations in the

input layer of a convolutional network for non-flickering games.

Chen et al. (2021) use transformer to model high-dimensional

distributions of semantic concepts and their latent application to

sequential decision problems formalized as reinforcement learning

(RL). A new approach for Reinforcement Learning (RL) policy

training has been proposed, which uses sequential modeling

objectives to train Transformer models with experience data.

The architecture, called Decision Transformer, can transform RL

problems into conditional sequence modeling. It has been shown

to perform well on Atari, OpenAI Gym, and Key-to-Door tasks.

These methods are very inspiring, and we have proposed the

DRLNDT method to enable autonomous driving navigation. The

transformer model is utilized to learn the actual state from the

historical data, thus reducing decision errors caused by object

occlusion or sensor noise. The results of our method are better than

those of the Baseline method in CARLA.

3 Backgrounds

The Partially Observable Markov Decision Process (POMDP)

is a type of sequential decision-making problem that involves

modeling the environment based on its location while also

considering incomplete and noisy observations. This paper

presents a novel approach known as deep reinforcement learning

navigation via decision transformer (DRLNDT). The proposed

method incorporates a Decision Transformer, which learns

the state based on past observations. It then utilizes this

learned information to guide the Agent in navigating the task,

following a reward learning scheme, from the initial to the

termination position. Variable Autoencoder (VAE) (Loaiza-Ganem

and Cunningham, 2019; Wei et al., 2020) is a neural network

type that can learn a compressed representation of input data by

encoding it into the status space and decoding it back into the

original space. This paper employs the variational autoencoder

(VAE) to enhance the algorithm’s performance. DRLNDT utilizes

a Transformer neural network architecture to capture temporal

dependencies within observations and actions effectively. This

capability enhances self-driving vehicles’ decision-making process

in partially observable urban environments. The paper introduces

the Transformer algorithm, integrated with a reinforcement

learning algorithm. The reinforcement learning algorithm employs

a variational autoencoder (VAE) for compressive characterization

of the image data. Next, integrating multimodal observations’ time

series is performed using the Transformer model. The latent state

is acquired by the layer, which subsequently employs the fully

connected layer to estimate the value and policy functions, similar

to standard reinforcement learning algorithms.

3.1 Markov decision processes

A sequential decision (Arulkumaran et al., 2017) problem

refers to a scenario in which an agent is tasked with making a

sequence of decisions over time, where each decision’s outcome

impacts the subsequent decisions. In these types of problems, it

is common for the Agent to possess knowledge of the dynamic

model of the environment, which implies that the Agent has access

to information regarding how the environment will change in

response to its actions. In order to establish a formal framework

for addressing these issues, researchers employ a mathematical

construct known as a Markov Decision Process (MDP) (Puterman,

2014), defined by a 4-tuple denoted as < S,A, P,R >. Here.

S represents the set of all possible states in the environment,

A represents the set of possible actions the Agent can take, P

represents the probability distribution of the next state given the

current state and action, and R represents the mapped reward

function where each state-action pair is rewarded with a scalar

value. During each iteration, the Agent makes a decision by

selecting an action at from a set of possible actions A, based on the

current state st from a set of possible states S, and its policy π which

maps states to actions. As a consequence of this action, the Agent

receives an immediate reward rt that is drawn from a distribution

R(st , at). Additionally, the Agent transitions to a new state st+1,

which is sampled from the probability distribution P(st+1|st , at).

The policy π(at|st) is utilized to calculate the state and state-

action marginals, which are represented as ρπ (st) and ρπ (st , at),

respectively. Themargins in question denote the likelihood of being

in a specific state or state-action pair under the policy denoted

as π . The objective of reinforcement learning is to identify the

optimal policy that maximizes the expected discounted reward
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Rt . The discount factor γ , which falls within the range of [0,

1], determines the relative significance of immediate rewards

compared to future rewards.

Rt = rt + γ rt+1 + γ 2rt+2 + . . . (1)

The discount rewards are computed using Equation (1), which

provides a concise representation of the rewards acquired at

each time, considering the discount factor associated with each

timestep. In the context of Markov Decision Processes (MDPs),

the determination of the optimal policy can be achieved through

the process of value iteration. This iterative procedure entails the

updating of the value function, which serves as a representation

of the expected discounted reward for each state given a

specific policy.

3.2 Soft Actor Critic

The Q-learning (Watkins and Dayan, 1992) technique was

introduced by Watkins and Dayan in 1992 as a solution

to reinforcement learning problems characterized by unknown

environmental dynamics. The technique is considered model-free

as it does not necessitate prior knowledge of the environment or

its dynamics. Q-learning aims to estimate the value associated with

executing an action and adhering to an optimal policy π within

a specific state. The quantity above is commonly referred to as

the state-action value or, more succinctly, the Q-value. The Q-

value measures the anticipated total reward achieved by selecting

a specific action in a given state and adhering to the optimal

policy. The Q-value is defined recursively as the summation of the

immediate reward acquired from the action and the discounted

value of the subsequent state-action pair. The utilization of a

discount factor γ , which falls within the range of [0, 1], serves

the purpose of discounting future rewards and facilitating the

convergence of Q values. The optimal policy π∗ can be derived

by selecting the action with the maximum Q-value in every state.

Q-learning is an algorithm that operates off-policy, meaning it

learns the Q-value of a target policy while adhering to various

behavioral policies.

The function Qπ (s, a) is a formal mathematical representation

denoting the expected collect reward that an Agent obtains when

it selects action a within state s and adheres to policy π . The Q-

value is acquired through an iterative process, wherein the Agent

continually updates its estimate of the Q-value by considering the

rewards it obtains during its interactions with the environment.

Qπ (s, a) = Eπ (Rt|st = s, at = a) (2)

The Equation (2) represents the anticipated reward that the Agent

is expected to obtain at a given time t, under the condition that the

Agent is in a specific state denoted as s and selects a particular action

denoted as a, by the policy denoted as π . Q-values play a crucial

role in reinforcement learning, enabling the Agent to make optimal

action selections within a specific state. The Agent selects the action

with the highest Q value within the given state. The process of

updating Q-values can be accomplished through the utilization

of a method known as Q learning. This technique entails the

modification of theQ-value associated with the present state-action

pair by considering the highest Q-value among the subsequent

state-action pairs. The Q-learning algorithm is classified as an off-

policy method, which implies that the Agent can learn the optimal

Q-value even when it adheres to a policy that differs from the

one being evaluated. The Q-value is employed for approximating

the value of the policy, specifically the anticipated cumulative

reward that the Agent will obtain by adhering to the policy. The

maximization of the value function determines the optimal policy.

The Q function is a mathematical function that provides an

estimation of the expected future reward when a specific action is

taken within a specific state in Equation (3).

Q(s, a) = Q(s, a)+ β(r + γmax
a

′Q(s′, a′)− Q(s, a)) (3)

The equation presented herein represents the Q-learning

update rule, which is a fundamental element of numerous

reinforcement learning algorithms. The equation incorporates

various components, namely the current state (s), the action taken

(a), the reward received (r), the subsequent state (s′), and a

discount factor (γ ). This equation updates the Q value of the

current state-action pair by adding the scaling difference between

the estimated Q value of the following state-action pair and the

Q value of the current state-action pair. The scaling factor β is

the learning rate, which determines how much new information

is incorporated into existing estimates. In instances with many

states where it is impossible to save Q values for all state-action

combinations, the equation above is used. In contrast, a function

approximator, such as a neural network, estimates the Q values

for previously unobserved state-action combinations. The DQN

method illustrates a reinforcement learning methodology that

utilizes a neural network to estimate Q values. Using the current

state and action as input variables, the neural network, identified

by the parameter θ , generates an estimated value Q for a specific

state-activity combination.

In contrast to the DQN algorithm, Soft Actor-Critic (SAC)

(Haarnoja et al., 2018) is an off-policy Actor-Critic algorithm

that operates within a maximum entropy reinforcement learning

framework. The primary objective of SAC is to optimize

both the expected return and entropy. SAC contains several

modifications to accelerate training and enhance the stability

of hyperparameters, such as automatic tuning of the constraint

formulas for the temperature hyperparameter. The maximum

entropy objective extends the conventional aim employed in

conventional reinforcement learning methods. Adding an entropy

element to the objective signifies that the optimal policy seeks to

maximize its entropy at each accessed state.

π∗ = argmax
π

∑

t

E(st ,at)∼ρπ
[r(st , at)+ αH(π(·|st))] (4)

Maximizing the expected reward and entropy of each

state determines the optimal policy. The parameter α in the

Equation (4) governs the relative significance of the entropy

term concerning the reward, influencing the optimal policy’s

probabilistic characteristics. The maximum entropy aim applies

when the best policy necessitates randomization or stochasticity,

such as in exploration tasks or when confronted with unpredictable
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settings. The discount factor, denoted as γ , is a scalar within the

range of 0 to 1, which plays a crucial role in determining the relative

significance of future rewards within the context of decision-

making. A discount factor of zero implies that only incentives

in the present period are considered. In contrast, a discount

factor of one indicates that rewards in the future are given equal

importance to immediate rewards. The discount factor is crucial in

infinite horizon problems since it guarantees the convergence of the

expected reward and entropy to a limited value. With the discount

factor, the cumulative value of predicted rewards and entropy may

remain the same toward infinity, making the objective function’s

optimization attainable. Incorporating the discount factor enables

the algorithm to effectively weigh the significance of immediate

benefits against those obtained in the future, facilitating more

optimal decision-making over extended time horizons.

Determine the solution for the optimal Q-function, which

establishes a correspondence between a state-action pair and a

value that denotes the anticipated long-term benefit associated with

executing that action in that state and afterward adhering to the

optimal policy. From the ideal Q-function, one can deduce the

best policy. The suggested algorithm is a Soft Actor-Critic (SAC)

approach that is formulated using the policy iteration framework.

The Q-function associated with the present policy is assessed,

and the policy is then modified through the utilization of off-

policy gradient updating. Off-policy suggests a difference between

the policy being updated and the policy that produced the data

for modification. The Maximum Entropy Reinforcement Learning

framework serves as the foundation for the Soft Actor-Critic

algorithm, where the Actor’s objective is to maximize predicted

reward and entropy.

Soft policy iteration is a generalized algorithm for learning

optimal maximum entropy policies. The algorithm alternates

between policy evaluation and policy improvement in a maximum

entropy framework. The derivation of the algorithm is based on a

tabular setup that allows for theoretical analysis and convergence

guarantees. The algorithm aims to converge to the optimal policy

among a set of strategies, which may correspond to a set of

parameterized densities. The set of strategies to which the algorithm

converges is not fixed and can vary depending on the specific

problem to be solved. The algorithm aims to maximize the

expected return while maximizing the entropy of the strategies.

The entropy of a policy is a measure of the stochasticity of the

policy, and maximizing it encourages exploration and prevents

the policy from falling into a local optimum. The algorithm

is called “Soft” because it uses a Soft-valued function instead

of a hard-valued function. Soft-valued functions are smoothed

versions of hard-valued functions, which are easier to optimize and

prevent overfitting.

Soft policy iteration is a technique employed in the field

of reinforcement learning to assess the efficacy of a policy and

determine its worth by optimizing the maximum entropy target.

During the policy evaluation phase of Soft policy iteration, it is

possible to calculate Soft Q values for fixed policy iterations. The

computation of the Soft Q value involves the iterative use of the

modified Bellman backup operator, denoted as Tπ in Equation (5).

TπQ(st , at) , r(st , at)+ γEst+1∼p[V(st+1)] (5)

where r(st , at) represents the reward obtained for taking an

action at in state st , γ represents the discount factor, and p

represents the transfer probability distribution. The Soft Q-value is

calculated using the Soft state value function V(st) in Equation (6).

V(st) = Eat∼π [Q(st , at)− αlogπ(at|st)] (6)

The value of Q for taking an action at in state st is denoted as

Q(st , at). The probability of taking an action in state st according to

the policy π is represented as π(at|st). The temperature parameter

α regulates the balance between maximizing the expected payoff of

the policy and maximizing the entropy. By repeatedly applying the

Bellman backup operator T to any initialQ functionQ : S×A → R,

one can obtain the Soft Q function for any policy π . The Soft Q

function is an advantageous instrument for assessing policies in the

context of reinforcement learning due to its consideration of policy

uncertainty and promotion of exploration.

To create a feasible approximation of the Soft policy iteration,

a function approximator can be utilized for the Soft Q function

and policy. Instead of assessing and enhancing the convergence

aspect, it is suggested to employ stochastic gradient descent as an

alternative approach to optimize both networks simultaneously.

The Soft Q function and policy are parameterized by a neural

network with θ and phi parameters. The Soft Q function can

be modeled as an expressive neural network. In contrast, the

policy can be modeled as a Gaussian function, with the neural

network providing themean and covariance. The rules for updating

these parameter vectors are subsequently derived and employed to

optimize the network during the training process. The objective

is to tackle the issues of significant sample complexity and

vulnerability to hyperparameters commonly observed in model-

free deep reinforcement learning methods through the utilization

of function approximators and stochastic gradient descent. The

suggested methodology is grounded in the framework of maximum

entropy reinforcement learning. This paradigm seeks to optimize

both the expected return and entropy, enabling the Agent to

accomplish the goal while exhibiting a high degree of randomness

in its actions.

The Soft Q function is a modified version of the Q function

employed in the field of reinforcement learning, which integrates

a component of entropy to promote exploration. The parameters

of the Soft Q function are optimized through training in order to

minimize the Soft Bellman residual, which serves as a metric for

quantifying the discrepancy between the anticipated Q value and

the real Q value.

JQ(θ) = E(st ,at)∼D

[

1

2
(Qθ (st , at)− (r(st , at)

+γEst+1∼p[Vθ̄ (st+1)]))
2
]

(7)

The Soft Bellman residual is formally defined in Equation (7),

whereby it encompasses the calculation of the expected value of

the squared discrepancy between the predicted Q-value and the

summation of the reward and subsequent state discount values. The

utilization of the Soft Q function argument serves as an implicit

parameterization of the value function, as specified in Equation (6).

A crucial component of the SAC algorithm, the value function
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estimates the expected reward for a given state. The parameters of

the Soft Q function are optimized by the utilization of stochastic

gradient descent, a widely employed optimization method within

the field of deep learning. The optimization of the Soft Q function

parameters is a crucial component of the SAC method as it

enables the Agent to acquire a precise estimation of the anticipated

reward associated with a specific state-action combination. By

reducing the residuals of the Bellman Soft equation, the Agent can

acquire improved decision-making abilities and attain enhanced

performance across a range of reinforcement learning challenges.

∇̂θ JQ(θ) = ∇θQθ (at , st)(Qθ (st , at)− (r(st , at)+ γ (Qθ̄ (st+1, at+1)

−αlog(πφ(at+1|st+1))))) (8)

The Soft Q function arguments, which are obtained from

Equation (6), implicitly parameterize the value function. The

objective is optimized using stochastic gradient descent, where the

stochastic gradient is computed using the gradient of theQ function

with respect to its parameters in Equation (8). The Q function is

a mathematical function that accepts the current state (st) and

action (at) as its input and produces the anticipated reward for that

specific state-activity combination. The expected reward is equal to

the sum of the instantaneous reward (r(st , at)) and the discounted

expected reward (Qθ (st+1, at+1)) for the next state-action pair. The

Soft Q function is modified by the addition of a term that promotes

exploration, which is determined by the temperature parameter α

and the policy function πφ(at + 1|st + 1). The update also employs

a target Soft Q function with parameter θ̄ , which is derived as an

exponentially shifted mean of the Soft Q function weights. The

utilization of this targetQ function serves the purpose of stabilizing

the training process and mitigating the occurrence of overfitting.

Jπ (φ) = Est∼D[Eat∼πφ
[αlog(πφ(at|st))− Qθ (st , st)]] (9)

Equation (9) denotes the goal function Jπ (φ) employed for

the purpose of acquiring the policy parameters in the Soft Actor-

Critic (SAC) algorithm. The objective function Jπ (φ) entails

the maximization of the expected payout and entropy of the

Actor while executing the job. There exist other alternatives for

minimizing the objective function Jπ . However, in the context

of Soft Actor-Critic (SAC), the reparameterization method is

employed as a means to attain a reduced variance estimator.

The reparameterization technique entails converting the random

variables used to sample the actions from the policy into noise

variables and differentiable functions of the policy parameters,

thereby permitting the gradient to be back-propagated through

a network of policy and target densities, which in SAC are Q-

functions represented by neural networks. The utilization of the

reparameterization methodology yields an estimator with reduced

variance in comparison to the likelihood ratio gradient estimator

commonly employed in policy gradient methods.

SAC employs a reparameterization technique for neural

network restructuring. The equation at = fφ(ǫt; st) is utilized

to establish a mapping between states and actions within the

context of a reinforcement learning problem. The function

fφ(ǫt; st) represents the transformation of the neural network,

with φ denoting the parameters of the network. The input to

the neural network transformation is the noise vector ǫt , which

is sampled from a stationary distribution, such as a spherical

Gaussian distribution. The utilization of noise vectors as inputs

serves the objective of introducing stochasticity into the policy,

hence facilitating the Agent’s exploration of the environment

and enhancing its ability to acquire more effective methods. The

outcome of the neural network transformation corresponds to the

action executed by the Agent in reaction to the present state st . By

employing this particular reparameterization technique, the SAC

algorithm is capable of acquiring policies that are more versatile

and articulate, hence enabling them to be adjusted to various

scenarios within the environment.

Jπ (φ) = Est∼D,ǫt∼N[αlogπφ(fφ(ǫt; st)|st)− Qθ (st , fφ(ǫt; st))] (10)

Equation (10) is an altered variant of Equation (9) that includes

an implicit definition of the Actor policy πφ based on the function

fφ . A neural network called fφ is a function that links actions

to current states and timesteps. The objective in Equation (10)

is expressed as a mathematical function that depends on two

variables: the policy parameter φ and the Q-value parameter θ .

The objective function in Equation (10) is estimated by combining

data D in the replay buffer with noise N derived from a normal

distribution. The expression α logπφ(fφ(ǫt; st)|st) in Equation (10)

denotes the entropy of the policy, which promotes exploration and

stochasticity in the behavior of the Actor. Equation (9) introduces

the notation Qθ (st , fφ(ǫt; st)|st), which denotes the Q-value of the

Critic. ThisQ-value serves as a metric for estimating the anticipated

rewards associated with the current condition and action. The

gradient approximation formula is represented as ∇̂φJπ (φ), which

serves as an unbiased estimator of the gradient in Equation (11).

∇̂φJπ (φ) = ∇φαlog(πφ(at|st))+ (∇atαlog(πφ(at|st))

− ∇atQ(st , at))∇φ fφ(ǫt; st) (11)

The gradient estimator extends the DDPG (Silver et al., 2014)

policy gradient to any easily handled stochastic policy. The formula

involves evaluating at at fφ(ǫt; st). The gradient estimator involves

two terms, the first of which is ∇φαlog(πφ(at|st)), which is the

gradient of the policy function concerning the logarithm of the

policy parameters. The second term in the gradient estimator is

(∇atαlog(πφ(at|st))−∇atQ(st , at))∇φ fφ(ǫt; st), which relates to the

policy function The gradient of the logarithm to the action, the

gradient of the action-value function to the action, and the gradient

of the feature extractor to the policy parameters.

3.3 Partially Observable Markov Decision
Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs)

(Tamar et al., 2016) is a broader framework than Markov

Decision Processes (MDPs) for addressing planning challenges

where an agent lacks complete knowledge of the environment’s

state. POMDPs represent decision-making scenarios wherein the

agent’s information about the environment is incomplete. A

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1338189
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ge et al. 10.3389/fnbot.2024.1338189

POMDP is mathematically defined as a tuple of six elements <

S,A,Z, P,O,R >, where S is the state space, A is the action space,

Z is the observation space, P is the state transfer function, O is the

observation function, andR is the reward function. The observation

function O maps a state-action pair to a probability distribution

representing the likelihood of observing a particular observation.

The transition function, denoted as P, represents the conditional

probability of the environment transitioning from state st to state

st+1 given that the Agent executes action at . The reward function R,

denoted as r(st , at), characterizes the instantaneous reward that the

Agent obtains upon executing a particular action in a specific state.

In the context of a partially observed Markov Decision

Process (MDP), the Agent lacks direct access to the state of

the environment. Instead, it receives an observation (O) that is

contingent upon the underlying state (p(ot|st)). Consequently, the

Agent must rely on its observations to deduce the latent state

of the environment and subsequently determine its actions. The

Agent lacks direct access to the underlying state of the Markov

Decision Process (MDP). In contrast, the Agent perceives the state

indirectly through its observations, and as a result, the observation

space may exhibit noise or incompleteness. The optimal Agent

requires access to the entire history of the Agent’s observations

and actions, denoted ht = (o1, a1, o2, a2, · · · , at−1, ot), which is

preferable to the MDP, in which the current state is dependent on

all preceding states and actions taken by the Agent. Nevertheless,

it may prove impractical or inefficient for an Agent to retain and

process the complete chronicle of observations and actions. Hence,

the Agent must employ a memory-based methodology to retain

pertinent knowledge from previous instances while disregarding

extraneous information.

Recurrent Neural Networks (RNNs) that have been trained

using the Back Propagation Through Time (BPTT) algorithm

are widely utilized in memory-based control within partially

seen domains. Recurrent neural networks (RNNs) can retain

a concealed state that encapsulates pertinent information from

preceding instances, hence transmitting current actions to the

Agent. The Long Short-Term Memory (LSTM) model is a

Recurrent Neural Network (RNN) type that is highly proficient

in capturing and modeling long-term dependencies within

datasets. This study uses the backpropagation technique to

train the Transformer model to capture memory-based control

within a partially seen domain effectively. This study showcases

the efficacy of the Transformer model in facilitating the

Agent’s resolution of diverse physical control challenges, which

necessitate varying degrees of memory utilization. These challenges

encompass integrating noisy sensor data in the short term and

preserving information across multiple processes in long-term

memory tasks.

In accordance with Equation (1), the objective function J is

modified to represent the trajectory the stochastic policy must

maximize in order to characterize it. Hence, the objective function

J represents the anticipated accumulation of discounted benefits

achieved over an unlimited time horizon in Equation (12).

J = Eτ

[

∞
∑

t=1

γ t−1r(st , at)

]

(12)

Trajectories τ are obtained from the distribution of trajectories

generated by the method π . The trajectory distribution

p(s1)p(o1|s1)π(a1|h1)p(s2|s1, a1)p(o2|s2)π(a2|h2)... can be

expressed as the multiplication of three components: the

initial state distribution p(s1), the observation distribution p(ot|st),

and the conditional action distribution π(at|ht) conditioned

on the history ht . The history ht is an adequate summary of

prior observations and actions up to time t − 1. The trajectory

distribution refers to the distribution encompassing all conceivable

trajectories τ = (s1, o1, a1, s2, o2, a2, ...) that can be produced by

implementing the policy π based on the probability distribution.

The objective function, denoted as J, quantifies the anticipated total

reward acquired by adhering to the policy π during an unlimited

time horizon. In this context, the reward is subject to discounting

at each timestep by a factor of γ . In the context of a deterministic

policy, the conventional policy function denoted as π is substituted

with a deterministic function denoted as µ. This function directly

maps the state S to the action A. Furthermore, in the conditional

action distribution π(a1|h1), the history of action replacements

replaces denoted as ht . This history is obtained by applying the

deterministic policy function µ.

In the context of a fully observable Markov Decision Process

(MDP), the Agent possesses knowledge of the current state s,

and the action value function Qπ is established as the anticipated

future discounted reward when the Agent takes an action in

state st and after that adheres to policy π . In situations where

observations are incomplete, the intelligence lacks access to the

true state s, and the construction of the action-value function

Qπ relies on the variable h. The variable h denotes the internal

state or memory of the intelligence system, which undergoes

updates at each timestep by the present observations and preceding

internal states. The function Qπ is employed to assess the efficacy

of the policy π , which serves as a mapping between states to

actions. The primary objective of the algorithm is to identify the

policy that will yield the highest possible predicted future discount

reward. The algorithm utilizes the function Qπ (ht , at) to address

control problems that involve incomplete observation, requiring

the Agent to depend on its internal state for decision-making. This

methodology enables the Agent to effectively incorporate data from

imprecise sensors over time and preserve information at various

temporal intervals, a crucial requirement for addressing distinct

physical control challenges.

TheQ-value function for a given policyπ in a partially observed

control situation is defined by Equation (13). The Q-value function

quantifies the anticipated total reward that an Agent can obtain by

adhering to the policy π in the context of a specific state-action

pair (ht , at).

Qπ (ht , at) = Est |ht [rt(st , at)]+Eτ>t |ht ,at

[

∞
∑

i=1

γ ir(st+i, at+i)

]

(13)

Equation (13) is comprised of two components: the

instantaneous reward rt acquired by executing an action in

state st , and the anticipated future reward acquired by adhering

to the policy π for actions initiated from the subsequent state

st+1 and at+1. The discounting of future benefits is denoted by

the variable γ , which represents the inclination of the intelligence

toward immediate rewards in comparison to delayed rewards. The
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future reward is determined by the complete sequence of states,

observations, and actions, denoted as τ>t = (st+1, ot+1, at+1, . . .),

following the current state-action pair (ht , at). The computation

of this reward involves two expectations, which are conditioned

on the probabilities p(st|ht) and p(τ>t|ht , at), respectively. These

probabilities are evaluated based on the trajectory distribution

the policy π induces. The trajectory distribution refers to the

probability distribution, including all potential paths that can

be pursued by an intelligent agent, based on the current state-

action pair (ht , at), while adhering to the on-policy π . The first

expectation calculates the anticipated immediate reward that the

Intelligent Agent can acquire by executing an action in state st ,

considering the present belief state ht . The second expectation

calculates the anticipated future reward that the Agent can achieve

by adhering to the policy π from the subsequent state st+1 and

action at+1, considering the present belief state ht and action at+1.

The belief states, denoted as ht , serve as a comprehensive statistic

that encapsulates all pertinent information on the intelligent

Agent’s previous observations and actions. These belief states

are utilized to compute the trajectory distribution and the Q

value function.

3.4 Transformer

Vaswani et al. (2017) and Parmar et al. (2018) first proposed

Transformer in a research paper. The architectural design of

the Transformer model is characterized by the utilization of

stacked self-attention layers, which are interconnected via residual

connections. In the context of self-attention (Choromanski et al.,

2020; Wang et al., 2020) layers, it is observed that each layer gets

a set of n embeddings denoted as {xi}
n
i=1, where each embedding

corresponds to a distinct input token. The self-attention layer

subsequently generates n embeddings {zi}
n
i=1, which maintain the

original input dimension. Each token at index i is associated

with a key ki, a query qi, and a value vi through a linear

transformation. The key ki is essential for extracting pertinent

information from the input sequence. Conversely, the query qi
calculates the attention scores between the key ki and other keys.

The value vi is employed in calculating a weighted sum of attention

scores, which is subsequently utilized in generating the output

embedding {zi}
n
i=1. Utilizing self-attention enables the model to

selectively attend to various segments of the input sequence, which

is highly advantageous in capturing distant relationships within the

data. The utilization of residual connectivity addresses the issue

of diminishing gradients and facilitates the efficient training of

deeper architectures.

The self-attention layer is a crucial component of the

Transformer architecture for sequence modeling tasks such as

language translation and sentiment analysis. In the context of the

Decision Transformer, the Self-Attention Layer is used to compute

the optimal action based on the input sequence of states and actions

in Equation (14).

zi =

n
∑

j=1

softmax({< qi, kj′ >}nj′=1)j · vj (14)

The self-attention (Yoo et al., 2015) layer operates by

calculating a weighted summation of values vj, with the weights

determined by the normalized dot product between the query qi
and the remaining keys kj. The query qi represents the present

state or action, whereas the key kj represents a previous state or

action. Higher values indicate more significant similarity between

the query qi and each key kj, as measured by the dot product.

The dot product is subsequently normalized using the softmax

function, which guarantees that the weights are normalized to

a sum of 1 and accurately represent the probability distribution

over the keys. Subsequently, the obtained weights are employed to

provide a weight to the value vj, which signifies a characteristic or

representation of a previous condition or action. The ith output of

the self-attention layer is determined by the weighted sum of the

vj values. This output calculates the optimal action for the current

state or action. In general, incorporating a self-attention layer in

the Decision Transformer model enables the model to effectively

capture interdependencies among the pieces of the input sequence,

hence facilitating the generation of optimal actions driven by the

expected return or reward.

The VIT (Dosovitskiy et al., 2020) architecture is a variant

of the Transformer architecture, a prevalent framework employed

in several natural language processing applications, including

language modeling and machine translation. The Transformer

architecture comprises a neural network with multiple layers of

self-attention and feed-forward mechanisms. This design enables

the model to capture long-range dependencies within the input

sequence. Utilizing the self-attentionmechanism enables the model

to choose to attend to various segments within the input sequence

and calculate a weighted summation of the input embeddings,

considering their interrelationships. The VIT architecture modifies

the Transformer model by incorporating a causal self-attention

mask. This mask constrains the attention mechanism to attend

solely to preceding tokens in the sequence throughout the

training and generation processes. The VIT model can construct

autoregressive sequences, wherein each token is formed by

considering the preceding token. The similarity of query vectors

and key vectors in the self-attention mechanism enables the model

to implicitly form state-return associations, where similar states

are associated with similar returns. The computation of attention

weights, which determine the relative relevance of each input token

for the output, is achieved by taking the dot product between the

query vectors and key vectors. Using the VIT architecture within

the Decision Transformer framework enables themodel to generate

future actions that generate the desired returns by adjusting the

autoregressive model to the desired returns, past states, and actions.

4 Deep reinforcement learning
navigation via decision transformer

This study presents the DRLNDT approach, which combines

decision transformer with deep reinforcement learning to achieve

motion navigation in autonomous vehicles. The objective is to

successfully guide the vehicle from its starting point to its final

destination. This approach enables processing high-dimensional

observations by utilizing pixel-level learning from raw, high-

resolution photos captured by the autonomous vehicle.
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4.1 Deep reinforcement learning
navigation via decision transformer
backgrounds

In the context of our autonomous driving navigation task,

which heavily relies on visual perception to understand the

surrounding environment, it is necessary to consider the potential

limitations of static photographs in conveying information about

the speed of dynamic situations. The occlusion of objects can

occur as a result of the inherent three-dimensional characteristics

of the environment. In addition, most visual sensors have limited

bandwidth, limiting the Agent’s ability to perceive the environment

accurately and influencing the self-driving car’s navigational

decision-making capabilities. The SAC algorithm is a fundamental

deep reinforcement learning method employed in our research. A

concise overview of its central ideas may be found in Section 3.2.

This paper examines an extension of SAC to Partial Markov

Decision Processes for partially observed image data processing

in autonomous navigation. The fundamental concept underlying

the SAC method is iteratively adjusting the policy parameters in

the direction of the gradient of the predicted reward for these

parameters. In situations where observation is limited, the accurate

estimation of the action-value function becomes unattainable.

Consequently, the policy must be adjusted based on the observed

condition and reward. The credibility of designating a state as a

current observation is uncertain, thus necessitating the inference

of the present state of the environment based on a chronological

record of past observations up to the present moment. In order

to tackle this issue, a Transformer model is employed to encode

policy that retains information from previous observations and

actions, which are subsequently trained using the backpropagation

algorithm. The neural network serves as a function approximator

to accommodate huge observation spaces, such as the pixel space

acquired through integrating a camera into an autopilot system.

The use of neural networks with convolutional measures in this

method has proven effective for various perceptual processing

tasks and for extending reinforcement learning to significant state

space methods.

Using neural networks with convolutional measures has proven

effective in this approach for various perceptual processing tasks

and extending reinforcement learning to extensive state space

methods. In our autonomous driving navigation task, however,

we use an infinite space of pixels and high-quality images with a

high degree of information, not only because more features can

be extracted from high-quality images but also because we want

our algorithms to apply to real-world environments. The high

quality of images captured by the camera of a real car leads to

a significant memory requirement during training. Consequently,

setting greater values for the buffer_size and batch_size becomes

impractical, adversely impacting the training results and efficiency.

The variational autoencoder (VAE) is employed to extract latent

vectors. The conversion of the image space to latent space is

performed to establish a congruence between the latent vector space

and the image space within the machine’s cognitive framework.

Consequently, using the latent space instead of the image space

ensures the preservation of characteristics to the greatest extent

possible while minimizing the memory footprint. The term is

denoted as Slatent .

Determining the optimal policy and action-value function

is contingent upon the historical record of previously observed

actions, represented as ht . In this study, we suggest a modification

to the neural network framework that facilitates the acquisition

of knowledge regarding the policy and action-value function. In

this study, we suggest employing a Transformer network as an

alternative to a feed-forward network. Preserving messages with

history is an essential capability of the Transformer model, as it

enables the resolution of partially observed situations.

The utilization of Transformer (Choromanski et al., 2020;

Ding et al., 2020; Parisotto et al., 2020) enables the formulation

of the policy and action value functions, represented as π(h, a)

and Q(h, a) respectively, in terms of the observed action history

ht . This approach facilitates the policy update process by

incorporating the history of observed actions rather than solely

relying on the current observation (ot). Additionally, it allows for

utilizing the learned approximation (oθ ) to address the challenges

posed by the partially-observed control problem Qθ , thereby

replacing Qπ .

DRLNDT is off-policy, indicating that the policy being learned

differs from the policy used to generate the data. Exploration is

necessary for acquiring knowledge about the gradient of the Q

function to actions. This approach necessitates that the Agent

do behaviors that can be more optimal to acquire knowledge

of the environment. However, exploration can be inefficient

and unpredictable in practice. To address this issue, academics

frequently employ experience replay to enhance data efficacy and

stability. The process of experience replay entails the storage of

experience trajectories in memory and the subsequent sampling

from this memory throughout the learning phase. This approach

enables the Agent to acquire knowledge from diverse encounters

and has the potential to enhance the robustness of the learning

process. In the case of DRLNDT, sampled memory trajectories

are used to learn expectations through experience replay. In

our memory, we store a tuple < Ot ,At ,Ot+1,Rt , done >.

Here, Ot represents a succession of observations labeled as

ot−n, ot−n−1, ..., ot . This sequence is continuous and differs from the

conventional representation ofOt . In our case,Ot encompasses past

and present observations. The set At is defined as the collection of

at values that exclusively represent the action associated with the

present state.

4.2 Baseline architecture

This study conducts a comparative analysis of two

methodologies for training Agents using reinforcement learning

to achieve autonomous navigation from the starting point to the

final destination in the context of autonomous driving. The first

methodology discussed in the paper is called deep reinforcement

learning navigation via decision transformer (DRLNDT). The

second methodology employed in this study involves utilizing a

recurrent neural network (RNN) to encode time series data. The

second strategy is designated as the baseline approach, and our

study primarily focuses on conducting controlled experiments

using this approach.

Deep reinforcement learning (DRL) has demonstrated efficacy

in contexts with complete observability, although its performance
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FIGURE 1

Long Short-Term Memory (LSTM) layer.

has been suboptimal in environments with partial observability.

In 2015, Hausknecht and Stone (Hausknecht and Stone, 2015)

introduced a system known as Deep Recurrent Q-Learning

(DRQN) as a potential solution to tackle the issue above. The

proposed modification involves substituting the initial fully-

connected layer after the convolutional layer in a conventional

Deep Q-Network (DQN) architecture with a Long Short-Term

Memory (LSTM) (Yu et al., 2019) layer as shown in Figure 1. In

contrast to Deep Q-Networks (DQNs), which rely on fixed-length

histories, the Deep Recurrent Q-Network (DRQN) has a recurrent

structure that allows for the integration of arbitrarily lengthy

histories, enhancing the accuracy of current state estimation.

DRQN estimation function Q(ot , ht − 1|theta) rather than

Q(st , at|theta), where theta represents the network parameters, ht−

1 represents the output of the LSTM layer in the previous step,

and ht = LSTM(ht − 1, ot). The performance of DRQN on the

standardMDP problem is comparable to that ofDQN, whileDRQN

outperforms DQN in partially observable domains. The algorithm

is enhanced by integrating the Recurrent Neural Network (RNN)

with the Soft Actor-Critic (SAC) framework. This is achieved by

utilizing the functionQ(ot , ht−1, a|θ) instead ofQ(st , at) to estimate

the Q-function, and employing π(at|ht−1, ot ,φ) instead of π(at|st)

to estimate the policy function. This methodology is defined as

baseline algorithm.

4.3 DRLNDT architecture

Let us compare our approach to the baseline method. The

Transformer layer is included in our approach to incorporate the

historical context, enhancing the accuracy of forecasting the present

state. The estimation of the Q function and policy function is

performed using the current action. The structural architecture

of DRLNDT exhibits notable similarities to that of DRQN. This

resemblance arises from utilizing the Transformer layer to integrate

historical information, adopting time as a positional reference, and

incorporating the Attention mechanism. These features enable the

integration of past and future information at a specific temporal

point, a capability not attainable in RNN networks.

In conjunction with the principle of maximum entropy,

neural networks are employed to approximate the value and

policy functions to acquire knowledge about the optimal policy.

Initially, we present the value network concept, wherein the inputs

consist of states and actions. Since the state is unknown and

we can acquire observations from the surrounding environment,

we must determine the actual state from the observations.

Observations refer to the data obtained by directly utilizing

sensors embedded within the autopilot system. On the other

hand, the state represents what has been learned derived from

past observations. Due to numerous sensors, the state obtained

by the autopilot from the surrounding environment in our self-

driving car exhibits multimodality. The camera is a primary

sensor utilized by autonomous vehicles. Autonomous driving aims

to enable vehicles to navigate their surroundings by utilizing

camera-based perception systems, thereby emulating human-like

image-based driving capabilities. Images are employed as the

principal state space for multimodal states. The remaining modal

states encompass state vectors that include velocity, acceleration,

position, and distance relative to the final position of the

autonomous vehicle. Hence, combining the image space and the

state vectors constitutes the multimodal state space. Nevertheless,

we have identified an additional issue of using the image as a state

space. The utilization of a replay buffer necessitates the storage of

state information in memory. However, the substantial memory

requirements associated with high-quality images, specifically those

with dimensions of 640 ∗ 640, restrict the ability to increase the

buffer_size beyond a certain threshold. The batch_size parameter

is employed during the training process in order to enhance the

efficiency of training. Furthermore, converting high-quality images

into tensors results in a more significant memory allocation for

the image matrix, thereby imposing greater demands on the GPU

hardware due to the increased GPU memory consumption.

Consequently, the utilization of high-quality images does

not yield increased efficacy in the process of training. In our

experimental evaluations, it was observed that the utilization of

a computing system that only marginally satisfies the hardware

prerequisites results in a notable decrease in the training efficiency

of the model. As an illustration, the computational efficiency

of a 64 ∗ 64 image surpasses that of a 640 ∗ 640 image by

a factor of three, a performance level that does not meet our

requirements. Nevertheless, we must continue to explore the

utilization of high-quality images as a means of perceiving and

comprehending the surrounding environment. The utilization

of high-quality images enables the machine to capture finer

details that may not be discernible to the machine, thereby

enhancing the intelligence’s ability to perceive the environment

more realistically, as compared with low-quality images. To solve

the problem of memory consumption by high-quality images, we

use VAE to obtain latent states from high-quality images. After

VAE processing, the latent state is considered by the machine

to be consistent with the high-quality image. As a result, we

use VAE to compress high-quality images with minimal image

loss, thereby decreasing memory consumption. Therefore, we

ingeniously deduce the latent state and trick the machine into

believing that the latent state is consistent with the image. The

retention of image information is maximized while minimizing

memory consumption. Consequently, our multimodal state space
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consists of two states, latent state and vector state, which can be

obtained easily from the sensor.

The fundamental concept underlying VAE is to map the input

data into a low-dimensional latent space and reconstruct the

vectors of the latent space using a decoder into samples similar to

the original data. The variational autoencoder (VAE) is comprised

of two main components, namely an encoder and a decoder.

The process of encoding involves mapping the input data to the

statistical measures of themean and variance in the latent space. On

the other hand, the decoding process generates novel samples by

utilizing vectors that are randomly sampled from the latent space.

The network architecture of the variational autoencoder (VAE)

is depicted in Figure 2. The system can be primarily categorized

into two components, namely, the encoder and the decoder. The

encoder component is tasked with converting the input image

into a latent state representation with reduced dimensions. The

dimensions of the input image are 640 pixels by 640 pixels, and it

consists of three color channels (red, green, and blue). The encoder

is composed of a sequence of convolutional layers and an activation

function that progressively decreases the spatial dimensions of the

input image and captures valuable features. The activation function

employed in this process is LeakyReLU. The result of the encoder

is fed into the Flatten layer in order to obtain a vector with one

dimension. The dimension of the latent vector is a determining

factor for its overall dimensionality. In our research paper, we

decided to use a latent vector dimension of 256 in order to strike

a balance between expressive capacity and dimensional efficiency.

The decoder component transforms the latent vector into the image

space, resulting in a reconstructed image that maintains the exact

dimensions as the original input image. The ultimate layer of the

decoder employs a hyperbolic tangent activation function (Tanh)

to guarantee that the resultant pixel values fall within the range

of -1 and 1, aligning with the input image’s range. Consequently,

the self-driving car engages with the environment to acquire high-

quality images, which are subsequently processed by the variational

autoencoder (VAE). These processed images are then extracted as

latent vectors, referred to as latent states within our algorithm.

The multimodal state space is comprised of the latent and

vector states, which, in conjunction with the current action, are

utilized to estimate the current value function and policy function.

Neural networks are employed to approximate both the value

function and policy function, as depicted in the Figures 3, 4.

illustrating the network architecture for these functions. The

multimodal state space is temporally superimposed, encompassing

historical data pertaining to the state space. Consequently, the most

recent state space is redefined as the historical state space, thereby

distinguishing it from the conventional state space. The concept of

historical state space refers to a sequential arrangement of states

over time, encompassing both past-to-present time observations

and a partial trajectory of the past. The time series can be

characterized by the historical latent states, which are derived

from the image state space. Furthermore, by analyzing the state

space of the history vector, one can derive the velocity, the

positional relationship, and other pertinent information. In the

context of multimodal state space, it is possible to establish a

correspondence between the information pertaining to velocity,

position, and other relevant variables obtained from an image

and the corresponding information in the vector space. This

correspondence enables the extraction of features such as velocity

from the image. Extracting features related to velocity and position

from a single state becomes challenging, particularly in the presence

of occlusion. The algorithmic framework has been transformed

from a Markov Decision Process (MDP) to a Partially Observable

Markov Decision Process (POMDP). Hence, it is necessary to

derive the actual state space from the partially observed historical

state space. Experimental proof supports the notion that obtaining

the optimal policy is more feasible using the historical state space.

The process of extracting the current state from a given

historical context is a topic of interest. The initial step in the

structure of the value function and policy function involves

extracting the current state from the historical data. In the

implemented algorithm, a Transformer model is employed to

extract the current state from the historical data. Subsequently,

a multilayer neural network is employed to approximate both

the value function and policy function. The division of the value

function and policy function is comprised of two components.

The first component is referred to as the transformer module,

which is illustrated in Figure 5. The second component is a

multilayer neural network, where the activation function employed

is LeakyReLU. The final layer of the policy function incorporates

the Tanh activation function in order to confine the output within

the range of −1 and 1, aligning with the permissible values for the

output action. The output action is composed of two dimensions.

Action 1 involves a range of values from 0 to −1 for executing a

left turn and a range of values from 0 to 1 for executing a right

turn. Action 2 involves adjusting the brake input from a value

of 0 to −1 and the throttle input from a value of 0 to 1. The

results of the final experiments indicate that our proposed method

exhibits superior performance compared to LSTM’s time series

prediction in addressing incomplete observations. Additionally, the

learned autopilot policy demonstrates better performance than the

baseline method.

5 Experiment

To ascertain the efficacy of our approach in acquiring more

optimal policies, we conduct a validation of our algorithm within

the CARLA (Dosovitskiy et al., 2017) simulation environment. The

empirical findings indicate that the DRLNDT algorithm exhibits

superior learning capabilities in deriving optimal policies from

historical data, surpassing both the baseline method and other

policy methods that lack access to such data.

5.1 Simulation environment

Given the inherent characteristics of reinforcement learning

algorithms, it is imperative for self-driving vehicles designed

to operate autonomously to engage in continuous interaction

with their surrounding environment. Due to the high cost and

lack of security associated with fundamental interactions, we

cannot train the algorithms in a natural environment using actual

vehicles for learning. The CARLA (Dosovitskiy et al., 2017)

simulation environment, which is already established and known

for its realistic qualities, is utilized for both training and testing
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FIGURE 2

The network structure of VAE includes two parts: encoder and decoder.

FIGURE 3

The figure shown represents the Actor-Network in the context of the Soft Actor-Critic (SAC) paradigm, which is used to learn policies. The inputs are

the latent states xlatent and vector states xvector , while the outputs are the actions. The latent states are high-quality images obtained through

variational autoencoder (VAE) processing.

the algorithm. CARLA is an open-source simulator designed

for autonomous driving systems, utilizing the Unreal Engine 4

platform for its development. The application offers a practical

and adaptable three-dimensional setting wherein researchers and

developers can assess and optimize their algorithms, eliminating

the necessity for physical vehicles. The CARLA simulation

environment offers users high-fidelity, authentic urban settings

that encompass dynamic traffic, pedestrians, diverse weather

conditions, and a range of road configurations.

Furthermore, it provides support for a diverse range of sensor

models, encompassing LIDAR, millimeter wave radar, cameras,

and other such technologies. The CARLA platform offers a

map editor tool that facilitates the creation and modification of

diverse road networks, buildings, and other components within a

given scene. CARLA additionally offers a comprehensive range of

application programming interfaces (APIs) and tools, facilitating

the expeditious development and evaluation of autonomous

driving algorithms by researchers and developers. Hence, the

CARLA simulation environment is employed in order to acquire

information and evaluate the DRLNDT algorithm, thereby

confirming the superiority of our approach over the baseline

method and its capability to acquire a more optimal policy.

5.2 Simulation environment configuration

The selected operating environment for CARLA is Ubuntu

20.04, equipped with a 64GBRAMand anNVIDIA 3090GPU. This

configuration fulfills the necessary specifications for both CARLA

and our algorithms. Our research team has selected Town10HD

in CARLA as the designated simulation environment for our

study. This particular environment encompasses a comprehensive

representation of a town, including a diverse range of buildings

and road infrastructure. The complexity of the town environment

is depicted in the high precision map of Town10HD, as illustrated

in the Figure 6. Within the simulated environment, we established

a standardized condition of clear, sunny weather during daylight

hours. This condition deliberately excludes the presence of fog or
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FIGURE 4

This figure depicts the Critic network used in the Soft Actor-Critic (SAC) model. Its main purpose is to evaluate the quality of policies. The inputs are

the latent states xlatent and vector states xvector , while the outputs correspond to Q-values. The latent states refer to high-quality images processed

through a variational autoencoder (VAE).

FIGURE 5

The figure illustrates the Transformer network’s coding structure.

The input is a continuous time series of latent vectors xlatent and

vector states xvector defined as historical states.

rain, ensuring that the environmental factors remain unobscured.

Vehicles are allowed to drive from the starting point to the

finishing point without having to follow established traffic rules.

The autonomous vehicle has the capability to navigate from its

starting point to its destination along any possible path. This

approach subsequently decreases the regulatory limitations for

the autonomous driving system, so enabling it to possess greater

adaptability and flexibility. The high-precision map is annotated

with the starting and ending coordinates. The accomplishment

of this assignment is readily attainable by current conventional

approaches. Nevertheless, the development of a self-learning-

based intelligent body autonomous driving system poses significant

challenges. The state space inside urban areas exhibits a high

degree of complexity and contains an unlimited dimension. The

objective of our endeavor is to enable an autonomous agent

to obtain the optimal policy and imitate human-like driving

behavior only based on camera images and readily available

state vectors in an autonomous vehicle. Our study primarily

centers around the acquisition of driving skills through human-like

intelligence, which is crucial for the development of reinforcement

learning-based autonomous navigation systems in the context of

autonomous driving.

In CARLA, we configure the simulated vehicles in accordance

with the research requirements. As the foundation for the simulated

vehicle, we utilized a Tesla model3. A camera with a resolution of

640*640*3 is installed on the roof in a position directly facing the

car, with the purpose of capturing visual data from the area directly

in front of the vehicle. Similar to human driving, an autonomous

system operates the vehicle by maintaining focus on the road

ahead. Therefore, the camera on the vehicle is able to detect the

surrounding environment and acquire the image state of the Agent.

Other vector states of the Agent, such as velocity and position, can

be acquired directly via the vehicle API in CARLA, so additional
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FIGURE 6

(A) Shows the simulation e�ect of the Town10 map in the CARLA simulation environment, portraying various structures. On the other hand, (B)

presents a highly precise map of Town10HD in Carla. This figure is annotated to provide information on the initial and end coordinates.

sensors are not required. Therefore, our algorithm in CARLA

simulates autonomous navigation without requiring information

from high-precision maps. As a result, our algorithm does not rely

on high-precision maps and relies mainly on the camera’s acquired

images to understand the driving policy, just as humans do. Applied

to a physical vehicle, as shown in the Figure 7, it may be necessary

to install sensors such as GPS, IMU, and encoder to acquire the

vehicle’s position and speed information without relying on a high-

precision map. Our algorithm reduces the need for high-precision

maps, which further reduces the operating costs of the autonomous

driving system, and investigates the intelligence of autonomous

driving navigation algorithms.

5.3 Training

Now, it is necessary to train our method in the CARLA

environment in order to learn the optimal policy for navigating

from the initial position to the final position by simulating

interactions with autonomous vehicles in the environment. First,

we must train the VAE model so that it can extract the latent

states from the image states. Thus, we guarantee the accuracy of

the image data while minimizing memory usage. Then, we devise

the reward function, which, instead of restricting the autonomous

vehicle’s driving behavior, guides it to drive in accordance with

human preferences. In conclusion, we operate the autonomous

vehicle as an Agent in driving that learns the optimal policy through

continuous interaction with its environment.

5.3.1 Variational autoencoder training
Initially, it is necessary to gather the requisite dataset for

training the variational autoencoder (VAE). The primary purpose

of our VAE model is to analyze the picture data captured by

the camera integrated into the autopilot system in order to

extract the latent state. Hence, it is necessary to utilize a dataset

consisting of photographs pertaining to the environmental makeup

of CARLA towns and cities for the purpose of training the VAE.

This approach facilitates enhanced data processing capabilities.

There are two distinct methodologies for obtaining data inside

the dataset utilized for training VAE. The first approach involves

configuring the autonomous car with a random strategy, enabling

it to navigate aimlessly from its starting place. This approach

allows the vehicle to gather information about the town’s unfamiliar

environment. The second approach involves employing an optimal

policy to gather data, hence mitigating the risk of data imbalance

and insufficient destination data. Given our knowledge of the

starting and ending positions, the best strategy can be readily

comprehended by human beings, allowing for straightforward

evaluation and implementation using conventional approaches.

The acquired data is stored in an offline local storage. Subsequently,

the data from both ways is combined to create a unified dataset.

Random sampling is then employed from this dataset to train the

VAE model. The size of the collected dataset was determined to

be 32,768, while the batch_size was set to 16 in order to meet the

training requirements. The training process was terminated after

reaching a total of 100,000 training cycles. The mean squared error

(MSE) is computed in order to satisfy our specified criteria. The

experimental findings are depicted in Figure 8. The VAE produced

from our training is utilized to extract the latent state, which aims

to minimize memory usage while preserving the original features

to the greatest extent possible.

5.3.2 Reward design
Autonomous navigation algorithms for autonomous vehicles

that are based on reinforcement learning diverge from traditional

methods. This approach enables an Agent to autonomously

acquire information by engaging with the environment and

determining the optimal policy through the utilization of rewards

obtained from the environment. Hence, this algorithmic technique

diverges significantly from the conventional methodology, wherein

predefined rules and logic are established to govern the behavior

of autonomous vehicles in order to execute tasks. This method
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FIGURE 7

The figure illustrates the arrangement of sensors on a practical vehicle. The sensors utilized in this system primarily consist of a camera, ultrasonic

sensor, speed encoder, Inertial Measurement Unit (IMU), and collision sensor.

FIGURE 8

The variational autoencoder (VAE) experimental results are presented in the figure. (A) Shows the input image, which has a resolution of 640*640 and

is of excellent quality. On the other hand, (B) illustrates the output image of good quality with the same resolution of 640*640.

is mechanical and needs more intelligence. Nevertheless, our

methodology entails directing the Agent to execute our objectives

through the design of rewards rather than restricting it solely

to the final result. This strategy enhances the Agent’s level of

unpredictability and intelligence. The system is capable of making

varied decisions in response to diverse environmental conditions.

It is also the reason why the optimal policies acquired using these

algorithms possess the capacity to generate behavioral strategies

that exceed those exhibited by human drivers. This cognitive

approach can be employed to foster innovative and unconventional

thinking beyond the conventional boundaries of human cognition.

The reward function was designed with the purpose of

providing guidance to autonomous driving systems in order to

successfully accomplish the task of navigating from the starting

point to the ending position. The primary objective of the

navigation challenge is for the autonomous vehicle to successfully

arrive at the designated end location. Upon reaching the designated

destination, the autonomous vehicle will be rewarded with a reward

that is denoted as rsuccess = +1 for successfully completing

its task. Simultaneously, upon the successful completion of the

mission, the episode concludes, marking the finish of a training

cycle. In the event of a collision involving the vehicle, the Agent

will receive a negative reward denoted as rcollision = −3. This

reward is implemented as a preventive measure to discourage

the Agent from engaging in collisions. Simultaneously, the task is

unsuccessful, resulting in the conclusion of the episode and the

fulfillment of the training cycle. Subsequently, in order to guarantee

the duration of the training episode, the training episode concludes

when the duration of the episode surpasses the value of n. The

Agent is subjected to a negative reward denoted as rlong_time =

−1. The three rewards that have been formulated thus far are

characterized as sparse rewards, and the task of training optimal

policies using these sparse rewards poses significant challenges.

Hence, an additional form of reward, known as a dense reward in

contrast to a sparse reward, is introduced, which the Agent obtains

at every timestep. The distance potential reward is formulated as
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the difference between the vehicle’s distance from the endpoint

at the present timestep and its distance from the endpoint at the

preceding timestep as shown in Equation (15).

rpotental

= abs(locend(t)−locvehicle(t))−abs(locend(t−1)−locvehicle(t−1))

(15)

This observation suggests that a positive reward is provided as

the vehicle approaches the destination, while a negative reward is

administered when the vehicle remains far from the destination.

Likewise, it is desired for the autonomous vehicle to operate within

a velocity range of 25–50 km per hour as shown in Equation (16).

rvelocity =















v− 25, if v > 25

v− 25, if 25 ≤ v ≤ 50

50− v if v > 50

(16)

The variable v represents the current velocity of the vehicle,

with the rewards explicitly designed tomeet the speed requirements

of autonomous driving. Our overall reward is as follows:

r = c1rsuccess+c2rcollision+c3rlong_time+c4rpotental+c5rvelocity (17)

The reward coefficient, denoted as c1 through c5, is employed to

achieve a balance among the individual rewards in Equation (17).

5.3.3 DRLNDT training
Autonomous vehicles were trained interactively within the

CARLA simulation environment, wherein they relied on a random

policy to navigate the simulated world guided by rewards, the

autonomous vehicle endeavors to execute the given navigation

task successfully. Once the task either fails or succeeds, the

episode of interaction finishes, prompting the start of a new

episode. Simultaneously, the Agent evaluates and updates the value

function and policy function by utilizing the information collected.

The Agent will engage in interactions with the environment in

accordance with the updated policy. The Agent acquires the

optimal policy through engaging in ongoing interaction and

ultimately achieves task completion.

During its travel, the autonomous vehicle gathers data

pertaining to various states. The autonomous vehicle’s motion

induces modifications in the surrounding environment, resulting

in the acquisition of new states. Initially, the autonomous

vehicle acquires visual data and vector-based representations

encompassing parameters such as velocity, position, and other

relevant variables. Subsequently, the image input undergoes

processing by a VAE in order to acquire latent states. These

latent states are then merged with vector states to create a

novel multimodal state. Subsequently, the state needs to undergo

temporal serialization. In the academic domain of reinforcement

learning, it is more appropriate to use the term “observation”

instead of “state” to denote the concept being discussed. The

conflation of observation and state occurs when the collected

observation is indistinguishable from an actual state. As a result,

in academic research, these two terms are often conflated for

simplification. Nevertheless, in practical use, the data gathered

TABLE 1 Hyperparameter list.

Hyperparameters Value Description

Camera resolution 640*640*3 Dimension of the input image

Dim_latent_vector 256 Dimension of the latent_vector

vae_lr 1.00E-04 VAE learning rate

Batch_size_vae 16 Batch size in VAE training

Train_data_size 65,536 Number of VAE training sets

n 50 Length of the history state sequence

Head_num 6 Number of heads in Transfomer

Dim_head 64 Dimension of head in Transfomer

Dim_mlp 512 Dimensions of MLPs in Transfomer

Buffer_size 65,536 Buffer size in SAC

lr 1e-3 1e-4 Learn rate in SAC

γ 0.99 Discount rate in SAC

batch_size 128 Batch size in SAC

by the Agent is often masked and lacks completeness. At the

same time, the actual state remains concealed within the historical

record of observations from before up until the present moment.

The current state is derived from the sequence of observations

using a transformer, allowing the Agent to acquire an improved

policy. This characteristic represents the efficacy of our algorithm.

We next need to historicize the state, or what can also be called

the time serialization of the state. Serialization of the state adds

a temporal dimension to the data. We consider the historical

context of the present situation. The historical experience replay

is a memory storage mechanism that stores a quintuple, denoted

as < sht , at , rt , s
h
t+1, done >. In this quintuple, sht represents a set

of historical states from ot−n to ot , at represents the action taken

at the current moment, rt represents the reward acquired at the

current moment, sht+1 represents a set of historical states from

ot+1−n to ot+1, and done represents the end-of-episodemarker. The

approach employs a random sampling technique to select tuples

from a historical experience replay. These selected tuples are then

used to update both the value function and the policy function.

The training process adheres to the hyperparameters described

in the Table 1. Specific hyperparameters are selected based on

the optimum results reported in the paper, while others are

determined through repeated training experiments to identify the

most favorable findings.

5.4 Experimental results and analysis

The experiments primarily focus on evaluating the

performance of our algorithm, DRLNDT, in achieving autonomous

vehicle navigation from the starting point to the final destination.

Additionally, we compare the experimental outcomes with those

obtained using the baseline approach. The primary concept of

the baseline technique involves utilizing a Recurrent Neural

Network (RNN) to extract the latent state information from

the previous states. Three evaluation standards are primarily
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utilized to assess the algorithm in comparison to the baseline

algorithm during both the training and evaluation stages. The

three evaluation metrics includeultra mean_lens, mean_rewards,

and success_rate. The evaluation measure, indicated as mean_lens,

quantifies the length of the sequence of the average episode,

specifically measuring the average time spent at the conclusion of

each episode. A negative correlation exists between the magnitude

of themean_lens and the time required to successfully perform the

task. The evaluation metric means_rewards quantifies the average

prizes acquired by the Agent after each episode on average. In the

context of task completion, a more excellent value for the variable

means_rewards signifies a heightened reward associated with

the task. Consequently, this implies that the algorithm exhibits a

greater level of effectiveness. The variable success_rate represents

the proportion of successful episodes in achieving the task relative

to the total number of episodes. It is considered the primary

statistic for assessing the algorithm’s efficacy. In our experimental

study, we emphasize the investigation of reinforcement learning

algorithms, while ignoring the assessment indicators pertaining to

safety, comfort, and other relevant aspects of autonomous driving.

There exist variations among these three indicators during the

training and evaluation stages. During the training phase, our

primary criterion for determining the end of training depended on

the total number of time steps. During the evaluation phase, we

analyzed the metrics statistically following 500 consecutive episode

runs. Multiple sets of control experiments were conducted using

the hyperparameters trained as listed in Table 1. The outcomes

of these experiments are shown in Figures 9, 10, 11. The primary

objective is to compare our DRLNDT method, the typical SAC

algorithm, and the baseline algorithm to discern our algorithm’s

specific advantages while utilizing identical parameters. The data

results are shown in Tables 2, 3.

The network was evaluated, and it was found that the DRLNDT

method outperformed the Baseline algorithm and the Standard

SAC algorithm. The hyperparameters were adjusted based on the

values in Table 1. The evaluation process was divided into two

stages - the training phase and the assessment phase. The results

of the training and evaluatingphase are presented in Figure 9.

We use three metrics to measure the algorithm’s performance:

mean_len, mean_reward, and success_rate. After training for 1,000

timesteps, the algorithm is evaluated ten times in a row. The

performance metrics during the evaluation phase are calculated

based on these assessments. It is intriguing to observe that

DRLNDT performs superior to the other two measures in the

mean_lenmetric. However, it notably exhibits inferior performance

in the success_rate and mean_reward metrics compared to the

other algorithms. We are profoundly contemplating this matter,

which raises the question of whether our algorithm fails to enhance

navigation performance. The provided response is incorrect; our

algorithm demonstrates superiority over both algorithms. The

primary metric of interest is the success_rate, which should be

prioritized when evaluating the algorithm’s ability to navigate

successfully. The challenge of implementing navigation tasks using

reinforcement learning algorithms arises from the intricate action

and state spaces involved. Our algorithm performed exceptionally

well and produced the model with the highest reward, which was

used for subsequent testing. It is important to note that during

the training phase and midway through it, the metrics obtained

may not accurately represent the algorithm’s overall performance

but rather offer insights into the effectiveness of the training

process. The stored model was deployed in the experimental

environment for 200 testing episodes, during which various

statistics such as mean episode length, mean episode reward,

and success rate were computed and analyzed. The data results

are presented in a tabular form, indicating that the evaluation

steps depicted in the table differ from the outcomes illustrated

in Figure 9. The table shows that the algorithm’s performance

strongly correlates with the observed results. Specifically, the

algorithm has a success rate of 99.9%, which is higher than

that of other algorithms. Additionally, our method achieves a

higher average reward than alternative algorithms. Furthermore,

the algorithm’smean_lenmetric is comparatively lower than others.

Our algorithm has outperformed other algorithms, demonstrating

its ability to learn the actual state from historical data. This

method is particularly evident in our use of a transformer,

which makes extracting the actual state from historical data

more efficient than other algorithms. The transformer model

can incorporate information from preceding and subsequent

moments, thereby enabling the integration of a specific moment

with its preceding and subsequent data. In contrast, recurrent

neural networks (RNNs) can only establish relationships between

a specific moment and its preceding moment. Consequently, the

transformer model exhibits superior proficiency in integrating

historical information compared to RNNs. The performance of

the baseline algorithm was compared with that of the standard

SAC algorithm, and it was found that the former showed a

weaker effect than the latter. It could be due to the suboptimal

performance of the RNN in extracting historical state information

and its computational overhead. As a result, the standard SAC

algorithm had a more pronounced effect than the baseline

algorithm.

During the experiments, it was noticed that the variable

n, which represents the duration of history, holds significant

importance as it determines the temporal extent of the time

series data. It is worth noting that the fixed time series were

used for extracting the actual state instead of selecting variable

time series. Choosing the correct length for a time series

is critical for the algorithm. The algorithm may accurately

capture underlying patterns if there is limited historical data.

On the other hand, an excessive amount of historical data

can cause the algorithm to consume too much memory and

negatively impact its performance. As depicted in the Figure 10,

we establish a range for the variable n, specifically from 10

to 80. Subsequently, we do a single training session at regular

intervals of 10 units to ascertain the most favorable value for

n. The figure demonstrates that the algorithm exhibits optimal

performance at n = 50. Additionally, it is evident from the

figure that at n = 50, the outcomes tend to reach a state of

stability characterized by the absence of discernible fluctuations.

Extending the training duration and period was found to be

unfeasible as it resulted in oscillatory behavior and suboptimal

results. When n ranges from 40 to 70, the success rates of

the experimental outcomes are nearly identical, reaching up to

99%. The curves in the photos show a high degree of similarity.

Furthermore, when evaluating the relationship between the average

reward and the episode’s duration, it becomes apparent that
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FIGURE 9

The figure presented illustrates the experimental outcomes of the DRLNDT method as compared to both the baseline and standard Soft Actor-Critic

(SAC) algorithms throughout both the training and evaluation phases. The results provide evidence supporting the superiority of the DRLNDT

algorithm over the other techniques. (A) Depicts the evaluation procedure, whereas (B) illustrates the training process. The chart’s x-axis displays

timesteps, while the y-axis shows mean_len, mean_reward, and success_rate.

the optimal outcome is achieved when n equals 50. It is still

possible to achieve good results even when n is ∼50. It is

worth mentioning that while evaluating the tests, there were

minor differences in the speed of autonomous driving and

a slight deviation from the ideal path regarding the traveled

trajectory. To summarize, the Transformer-based method for

extracting historical states performs better than other techniques.

Additionally, the algorithm’s effectiveness is closely associated with

the length of the historical context. Specifically, the best results

are achieved when n = 50. However, it should be noted that

acceptable outcomes can still be attained within the range of the

n = 50 parameter.
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FIGURE 10

The figure illustrates the training and assessment outcomes obtained for various durations of history states. These history states are employed to

elucidate the impact of varying lengths on the algorithms. (A) Depicts the evaluation procedure, whereas (B) illustrates the training process. The

figure compares the results of the algorithms for time lengths ranging from n = 10 to n = 80.

Generating reward weights can be a challenging task. The

primary difficulty is determining the specific weights assigned to

individual rewards, particularly the weight coefficient associated

with potential_reward. An ablation experiment was conducted

further to investigate the impact of the weight coefficient of

potential_reward. The experiment consisted of five test groups,

each with a different weight coefficient (0.125, 0.175, 0.2, 0.25,

and 0.5). The weight coefficient was incrementally increased;

the results are illustrated in Figure 11. The results of the

experiments are summarized in the Tables 2, 3. The statistical

analysis showed that setting the weight coefficient to 0.2 led to

the best outcome. This finding highlights the importance of the

hyperparameter potential_reward in guiding the autopilot task.

Notably, potential_reward acts as a dense reward and is crucial
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FIGURE 11

The figure illustrates the training and assessment outcomes obtained by varying the potential_reward_weight parameter. This analysis aims to

investigate the impact of di�erent potential_reward_weight values on the algorithm’s performance. (A) Depicts the evaluation procedure, whereas

(B) illustrates the training process. Specifically, the algorithmic results are compared across a range of potential_reward_weight values, ranging from

0.125 to 0.5.

in guiding the Agent to complete the task and acquire the

optimal policy. This is particularly important because training

the optimal policy for autopilot navigation is challenging due to

the infinite-dimensional state and action space. In this context,

potential_reward is the only guiding factor for the Agent to

complete the navigation task instead of relying on sparse rewards

Through the evaluation phase, it was observed that increasing

the weight of potential_reward leads to favorable outcomes

for the algorithm. However, during the training phase, it was

discovered that large weights hinder the learning process, causing

the algorithm to converge locally. It is demonstrated by the

autonomous vehicle repeatedly circling in place or remaining

Frontiers inNeurorobotics 21 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1338189
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Ge et al. 10.3389/fnbot.2024.1338189

TABLE 2 Comparison of experimental training processes.

Policy Train Description

Mean_length Mean_reward Success_rate

DRLNDT 160.0993 46.3408 0.128 Transformer + SAC

Baseline 192.1297 70.02924 0.623 RNN + SAC

Standard SAC 251.9917 77.8219 0.713

DRLNDT-n-10 152.487 42.1571 0.1642 Historical state length n = 10

DRLNDT-n-20 77.869 13.363 0.0009 Historical state length n = 20

DRLNDT-n-30 75.24716 21.7094 0.0195 Historical state length n = 30

DRLNDT-n-40 85.8629 14.1125 0.024 Historical state length n = 40

DRLNDT-n-60 107.8153 45.3691 0.1809 Historical state length n = 60

DRLNDT-n-70 133.1698 51.724 0.1999 Historical state length n = 70

DRLNDT-n-80 179.1541 16.9834 0.00982 Historical state length n = 80

DRLNDT-w-0.125 105.7095 8.6156 0 Potential_reward_w = 0.125

DRLNDT-w-0.175 231.223 27.2584 0.0476 Potential_reward_w = 0.175

DRLNDT-w-0.25 107.2249 39.07225 0.1076 Potential_reward_w = 0.25

DRLNDT-w-0.5 111.2946 44.93245 0.139 Potential_reward_w = 0.5

TABLE 3 Comparison of experimental evaluation processes.

Policy Evaluation Description

Mean_length Mean_reward Success_rate

DRLNDT 110.055 80.3718 0.99502488 Transformer + SAC

Baseline 181.065 54.3497 0.59701493 RNN + SAC

Standard SAC 218.16 65.6080 0.7312

DRLNDT-n-10 314.845 27.8312 0.398 Historical state length n = 10

DRLNDT-n-20 179.08 20.5407 0 Historical state length n = 20

DRLNDT-n-30 175.09 24.3238 0 Historical state length n = 30

DRLNDT-n-40 110.12 80.3325 0.99502488 Historical state length n = 40

DRLNDT-n-60 108.025 80.9850 0.995 Historical state length n = 60

DRLNDT-n-70 140.1 80.7300 0.995 Historical state length n = 70

DRLNDT-n-80 155.255 14.7500 0 Historical state length n = 80

DRLNDT-w-0.125 166.01 31.7600 0 Potential_reward_w = 0.125

DRLNDT-w-0.175 359.04 80.3810 0.99502 Potential_reward_w = 0.175

DRLNDT-w-0.25 110.015 80.5790 0.99502 Potential_reward_w = 0.25

DRLNDT-w-0.5 119.025 80.7813 0.99502 Potential_reward_w = 0.5

Modular Pipi 1113 83.0000 0.99

stationary, resulting in its inability to reach the optimal policy. In

the middle of the training, we thought that we would not be able to

train a good policy, but after saving the model with the maximum

reward, we found that it still showed good results with a success rate

of 99%, which we did not expect in our experiments. Therefore,

the weight of potential_reward should be a manageable size, and

after comparing the length of the episodes and the average reward,

a weight of 0.2 was the best choice.

Our DRLNDT algorithm has outperformed both the baseline

and other algorithms based on the comparison experiments

conducted. This algorithm effectively guides an autonomous

vehicle from its initial to the termination position while

simultaneously learning the optimal policy. During the evaluation

phase, we saved the model with the highest rewards and utilized it

for assessment. After conducting 200 consecutive testing episodes,

we achieved a notable success rate of 99%. Furthermore, a
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comparison was made between the traditional modular approach

and our algorithm. The results indicate that the traditional modular

(Paden et al., 2016) algorithm does not yield superior outcomes,

primarily due to incorrect routing during the navigation phase,

resulting in erroneous trajectory routes. It highlights the advantage

of our policy, as the interdependence of modular navigation

tasks can lead to failure or reduced effectiveness when routing

errors occur. The experimental results indicate that the DRLNDT

approach is a successful solution for resolving the problem of state

unobservability in the POMDP model. This method conceals the

current state by incorporating it into the historical state, utilizing

the Transformer model. It is worth noting that the Transformer

model performs better than the LSTM-based RNN algorithm in

terms of effectiveness.

We compare the computational performance of the methods

and evaluate their performance in the evaluation phase based on

response time. The Table 4 displays the mean response time of each

method during the evaluation portion of the examination, which is

measured in milliseconds. The computation time is determined by

executing the algorithms in the Python framework. The response

time indicates the algorithm’s decision-making capability, which

influences its capacity to handle unforeseen circumstances. A faster

response time can enhance the safety of autonomous driving during

emergencies. The classic modular method has the quickest reaction

time, while the DRLNDT algorithm has the longest response time

among the other algorithms. The 7 ms difference in reaction

time between the two frameworks is insignificant for practical

purposes, especially considering that the response time in the C++

framework is much shorter. The DRLNDT algorithm demonstrates

superior performance compared to other algorithms across all

metrics. The algorithm we are comparing is a simplified version

that relies on a detailed map with pre-marked data on intersections,

traffic lights, and obstacles for navigation. The modular approach

is aware of the knowledge of surrounding barriers beforehand,

but in real-world scenarios, it must be combined with sensing,

localization, routing modules, and so forth. The navigation process

in actual applications will be delayed by the inclusion of a sensor

module, localization module, and other components, leading to

increased response time. Traditional approaches are slower in

resolving complicated situations due to the rise in constraints. Our

method relies on an end-to-end reinforcement learning algorithm

and does not impact response time despite the environment’s

complexity. The Transformer model’s benefit lies in its ability to

handle each location in the sequence simultaneously, leading to

a notable enhancement in training speed and performance. Its

self-attentive mechanism allows it to capture both long-distance

dependencies and local structural and positional information in

the sequence simultaneously. As a result, by incorporating a

transformer into our DRLNDT algorithm, historical information

can be incorporated to extract the actual state, thereby enhancing

the algorithm’s decision-making capability, resolving the issue of

unobservable states in the POMDP model, and producing an

outcome that surpasses that of the baseline algorithm. The intricate

design of the transformer model results in a high requirement

for computer resources during training and inference, impacting

the reaction time during actual deployment. The VAE in our

DRLNDT algorithm retrieves latent states from the source image

TABLE 4 Experimental evaluation process on response time comparison.

Policy Response_time Description

DRLNDT 7.4250 Transformer + SAC

Baseline 2.8370 RNN + SAC

Standard SAC 2.7200

DRLNDT-n-10 7.1830 Historical state length n = 10

DRLNDT-n-20 8.1440 Historical state length n = 20

DRLNDT-n-30 5.7540 Historical state length n = 30

DRLNDT-n-40 7.4040 Historical state length n = 40

DRLNDT-n-60 7.4030 Historical state length n = 60

DRLNDT-n-70 7.4046 Historical state length n = 70

DRLNDT-n-80 7.7540 Historical state length n = 80

DRLNDT-w-0.125 7.4350 Potential_reward_w = 0.125

DRLNDT-w-0.175 7.4130 Potential_reward_w = 0.175

DRLNDT-w-0.25 7.5120 Potential_reward_w = 0.25

DRLNDT-w-0.5 7.3780 Potential_reward_w = 0.5

Modular Pipi 1.3000

to preserve its features while lowering the dimensionality of other

images. Our technique reduces the amount of parameters in the

Transformer model. Our real-world experiments showed that the

model had fewer than 100 million parameters, making it suitable

for deployment in real-world settings. Our approach, being end-

to-end based, optimizes the hardware performance dedicated to

decision-making. The response time remains unaffected by the

heavy demand for processing resources.

6 Conclusion and future

This paper provides a comprehensive overview of the DRLNDT

algorithm for autonomous vehicle navigation. The paper also

discusses the experimental outcomes obtained by implementing

our algorithm on the CARLA platform. The results substantiate

the superiority of our approach over the baseline approach. The

available evidence adequately supports the efficacy of our approach.

We have employed the Transformer model in our research to

address the issue of incomplete observation of the state in POMDP

due to sensor occlusion or noise in autonomous driving. We aim

to learn the real state from the historical state with the help of

this model. We have successfully developed an optimal policy for

autonomous driving, enabling the vehicle to navigate from the

starting to the termination position.

Our algorithm has achieved an impressive 99% success rate

in a complex state and action space task using only high-quality

monocular images without any prior knowledge of high-precision

maps, routing, or surrounding environment information. This

outcome is a testament to the effectiveness of our optimal policy.

Despite our best efforts, implementing our system in actual

vehicles has proven to be a challenging task. While our problem
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is considered highly challenging in the field of reinforcement

learning, it is relatively straightforward when compared to the

complexities of real-world self-driving navigation tasks. The

current system needs to be more effective in handling intricate

navigation challenges, including randomized starting and ending

positions, which require additional algorithmic improvements.

Based on our analysis, we have identified that the need for

appropriate incentives designed by humans is the primary cause of

the issue. To overcome this challenge, we plan to focus our future

research on reward design for self-driving navigation tasks. We

will use the active preference learning approach to gain knowledge

about the reward weights associated with complex human needs.

Additionally, we intend to explore areas such as learning the reward

function from expert data through inverse learning. These two focal

points will be the primary areas of investigation for our future

research projects.
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