
TYPE Original Research

PUBLISHED 19 February 2024

DOI 10.3389/fnbot.2024.1336438

OPEN ACCESS

EDITED BY

Viktor Jirsa,

Aix-Marseille Université, France

REVIEWED BY

Huifang Elizabeth Wang,

Aix Marseille Université, France

Gian Marco Duma,

Eugenio Medea (IRCCS), Italy

*CORRESPONDENCE

Arpan Banerjee

arpan@nbrc.ac.in

RECEIVED 10 November 2023

ACCEPTED 01 February 2024

PUBLISHED 19 February 2024

CITATION

Bapat R, Pathak A and Banerjee A (2024)

Metastability indexes global changes in the

dynamic working point of the brain following

brain stimulation.

Front. Neurorobot. 18:1336438.

doi: 10.3389/fnbot.2024.1336438

COPYRIGHT

© 2024 Bapat, Pathak and Banerjee. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Metastability indexes global
changes in the dynamic working
point of the brain following brain
stimulation

Rishabh Bapat, Anagh Pathak and Arpan Banerjee*

Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Haryana, India

Several studies have shown that coordination among neural ensembles is

a key to understand human cognition. A well charted path is to identify

coordination states associated with cognitive functions from spectral changes

in the oscillations of EEG or MEG. A growing number of studies suggest that the

tendency to switch between coordination states, sculpts the dynamic repertoire

of the brain and can be indexed by a measure known as metastability. In this

article, we characterize perturbations in the metastability of global brain network

dynamics following Transcranial Magnetic Stimulation that could quantify the

duration for which information processing is altered. Thus allowing researchers

to understand the network e�ects of brain stimulation, standardize stimulation

protocols and design experimental tasks. We demonstrate the e�ect empirically

using publicly available datasets and use a digital twin (a whole brain connectome

model) to understand the dynamic principles that generate such observations.

We observed a significant reduction in metastability, concurrent with an increase

in coherence following single-pulse TMS reflecting the existence of a window

where neural coordination is altered. The reduction in complexity was validated

by an additional measure based on the Lempel-Ziv complexity of microstate

labeled EEG data. Interestingly, higher frequencies in the EEG signal showed

faster recovery in metastability than lower frequencies. The digital twin shed

light on how the phase resetting introduced by the single-pulse TMS in local

cortical networks can propagate globally, giving rise to changes in metastability

and coherence.

KEYWORDS

Transcranial Magnetic Stimulation, metastability, Kuramoto model, microstates,

complexity, coordination dynamics, whole brain modeling

1 Introduction

Processing the complex dynamic environment around us requires flexible exploration

of neural coordination states that helps in brain function (Deco and Kringelbach, 2016).

The ability to switch between coordination states is driven by the tendency of the dynamical

system to traverse through multiple attractors (Haken, 1983; Bressler, 2002; Kelso and

Zanone, 2002; Tognoli and Kelso, 2014), quantitatively captured by a mathematical

measure, metastability (Tognoli and Kelso, 2014; Deco and Kringelbach, 2016). Reflecting

the fundamental role of metastability, modeling studies have found it to be a signature

of brain’s dynamic core (Deco et al., 2017) and maximized in the resting state (Hellyer

et al., 2014; Deco et al., 2017; Naskar et al., 2021; Saha et al., 2023). A plethora of studies

further validate this claim by showing changes in metastability to accompany altered

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2024.1336438
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2024.1336438&domain=pdf&date_stamp=2024-02-19
mailto:arpan@nbrc.ac.in
https://doi.org/10.3389/fnbot.2024.1336438
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2024.1336438/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Bapat et al. 10.3389/fnbot.2024.1336438

or disordered states of consciousness. Metastability is shown

to be reduced during loss of consciousness (Jobst et al., 2017;

Cavanna et al., 2018), following traumatic brain injury (Hellyer

et al., 2015) and in Alzheimer’s disease (Córdova-Palomera

et al., 2017). Interestingly, metastability is found to be higher

among schizophrenics (Lee et al., 2018) and following the use

of psychedelic drugs (Carhart-Harris et al., 2014; Lord et al.,

2019). Some of these studies also indicate changes in cognitive

flexibility caused by reduction in metastability (Hellyer et al.,

2015; Córdova-Palomera et al., 2017). Are these changes in

metastability idiosyncratic or do they arise from a principled

organization of brain network dynamics? Answering this question

requires hypothesis driven empirical observation followed up with

theoretical understanding of whole-brain network dynamics.

Transcranial Magnetic Stimulation (TMS) is known to cause

a phase-reset within the stimulated region (Kawasaki et al., 2014;

Pellicciari et al., 2017). This can effectively force the underlying

neural to get into a coordinated state at least transiently. From a

dynamical systems standpoint, getting into an attractor state will

make a high dimensional system low-dimensional and thus lead to

a reduction in metastability (Pillai and Jirsa, 2017). Thus, even a

single-pulse TMS can lower the metastability of brain dynamics.

Hence, metastability might also be used as an index of neural

dynamics to describe the effects of a given TMS protocol. Using

metastability to contextualize the effects of such stimulation could

help explain the variability pervasive in TMS research and help

optimize therapeutic TMS protocols for disorders known to have

altered metastability. Once, perfected with TMS, similar effects

can be studies for more emerging methods of non-invasive brain

stimulation such as transcranial Direct Current Stimulation (tDCS)

and transcranial Alternating Current Stimulation (tACS).

In the present article we test the hypothesis that metastability

which is typically associated with the resting state is reduced in

a time-window that is time-locked to the onset of TMS pulse.

The recovery to pre-stimulus levels of metastability will index

the temporal window over which the network is perturbed by

the stimulation and may vary with the oscillation frequency.

Secondly, we illustrate that using a digital twin—a whole-brain

network of phase-coupled Kuramoto oscillators connected with a

bio-physically realistic connection topology (Cabral et al., 2011;

Jirsa et al., 2017)—can shed light on the dynamic principles that

are key to such empirical findings. Taken together, the empirical

findings and the theoretical approach enhance our understanding

of systems level neural mechanisms that unfold following non-

invasive brain stimulation.

2 Methods

2.1 Data collection

Two datasets were obtained from OpenNeuro (https://

openneuro.org/) for the purpose of this study. Dataset 1 had 20

healthy participants (six female, 14 male) with a mean age of 30.

Data were collected using a 32 channel BrainVision EEG cap with a

sampling frequency of 5 kHz. TMS was delivered using a MagStim

figure-of-eight coil held at 45 degrees to the mid-saggital line over

the scalp hotspot for the left first dorsal interosseous muscle (the

right Primary Motor Cortex). Three hundred seconds of resting

state, eyes open EEG data were collected from each participant.

Six hundred monophasic TMS pulses were then delivered at 120%

of the Resting Motor Threshold (RMT) with 5 s between each

pulse, EEG recordings were taken simultaneously. Short breaks

were taken every 100 pulses or upon subject request (Hussain,

2019).

Dataset 2 had 13 healthy, right handed participants aged

between 18 and 85 years. Data were collected using a 64 channel

BrainVision EEG cap with a sampling frequency of 20kHz. TMS

was delivered using a Nexstim figure-of-eight coil over the right

Primary Motor Cortex. Three hundred seconds of resting state

data were collected from each participant. Seventy-fivemonophasic

TMS pulses were delivered at 100% of RMT and at 110% of

RMT with 5 s between each pulse, EEG recordings were taken

simultaneously (Pavon et al., 2022). In both datasets the coil noise

was not masked, but participants were provided with earplugs to

reduce the disturbance.

2.2 Preprocessing

The resting state EEG and TMS-EEG data were pre-processed

prior to analysis using custom MATLAB code and the EEGLAB

toolbox (Delorme and Makeig, 2004). The remaining analysis

was done using custom Python code with the MNE package

(Gramfort, 2013) and the SimNIBS toolbox (Saturnino et al.,

2019). All code is made available at the associated bitbucket

repository (See Data Availability). The resting state EEG data were

processed using a combination of Artifact Subspace Reconstruction

(Plechawska-Wojcik et al., 2019) and Multiple Artifact Rejection

Algorithm (MARA) (Winkler et al., 2011) based independent

component rejection. The TMS-EEG data were preprocessed using

the Automated Artifact Rejection for Single Pulse TMS Data

(ARTIST) pipeline (Wu et al., 2018). All data was downsampled to

1 kHz and bandpass filtered between 1 and 100 Hz prior to analysis.

2.3 Measures of metastability

2.3.1 The standard deviation of the Kuramoto
Order Parameter

Twomeasures of metastability were applied to the preprocessed

EEG time series (Figure 1). The first measure was based on the

standard deviation of the Kuramoto Order Parameter (KOP) based

on the work of Kuramoto (1984). The KOP is a measure of

synchrony in a network of oscillators and is calculated as the real

part of the normalized vector sum of individual phases from each

node,

reiψ =
1

N

N∑

j=1

eiθj (1)

where “N” is the number of oscillators, “θj” is the phase of the

jth oscillator, “r” is the Kuramoto Order Parameter and ψ is the

phase angle following the vector sum of individualized phases.

The KOP (Equation 1) can be thought of as plotting the phase

of each oscillator as a point on a unit circle, and then taking the

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1336438
https://openneuro.org/
https://openneuro.org/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Bapat et al. 10.3389/fnbot.2024.1336438

FIGURE 1

Pipelines used to calculate metastability. Kuramoto Order Parameter on EEG data (left) and the Lempel-Ziv Complexity on microstates (right).

magnitude of their resultant vector. Its value is 1 for a completely

synchronized system and 0 for a desynchronized system (with

infinite nodes). Its standard deviation indexes the ability of the

system to deviate from stable states and thus can be used as

a proxy measure of metastability. For this measure, the TMS

EEG data were bandpass filtered within narrow frequency bands

(for example, 8–12 Hz), after which the instantaneous phase was

extracted via Hilbert transformation. The KOP was then calculated

for each time point. The standard deviation of the KOP was

calculated in a sliding window of 50 ms and was used as a

dynamic measure of metastability. The metastability time series

was then averaged across epochs and participants to yield the

final results.

The choice of which group of channels to include for

computation of metastability is an important one. Since changes

to global coherence across all channels are relatively less intense,

and stimulation with TMS has prominent local effects, channel

groupings derived from an algorithm were analyzed in addition

to global metastability. This algorithm aimed to capture local

effects on synchrony and grouped channels together based on the

similarity of their TMS evoked potential. First the evoked response

to TMS was calculated in each stimulation intensity by averaging

across epochs and subjects. Then the time point with the highest

Global Field Power (GFP), meaning the highest spatial standard

deviation, was selected. At this time point, the activity of each

channel was subtracted from themean of all channels. The channels

were then sorted in ascending order of their mean differences,

and the top and bottom tertiles were assigned to separate groups.

This algorithm is a quantitative analog to visually inspecting the

evoked response, finding the point at which the channels activity is

the most varied, and sorting the most extreme channels into their

own groups.
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2.3.2 Microstate sequence complexity
An additional measure of metastability used in this study is

based on microstate sequence complexity. Microstates are quasi-

stable spatial activity patterns that are derived from EEG data

using clustering algorithms. The original recording can then be

backfitted to the most similar microstate at each point in time

and be analyzed as a sequence of microstates (Lehmann, 1971).

The quasi-stable nature of these states is reminiscent of the dwell

and escape tendencies seen in metastable dynamics while the

microstates themselves are related to the coordination states. The

central idea behind this measure is that metastable coordination

dynamics will produce a non-repetitive microstate sequence. This

can be expressed for any microstate sequence using measures

of “complexity.”

“Complexity” refers to the unpredictability of a signal and is

quantified here by Lempel-Ziv Complexity (LZC). The LZC of a

string is the minimum number of unique sub-strings that can be

repeated and combined to reproduce the original. It increases with

the unpredictability and length of a string (Lempel and Ziv, 1986).

In order to compute this measure, microstates were derived from

GFP peaks in resting state data that was bandpassed to alpha (8–

12 Hz). The clustering was done using Topographical Atomise and

Agglomerate Hierarchical Clustering. In this method, each time

point is initially its own microstate. Through iteratively breaking

apart (atomising) and redistributing (agglomerating) the worst

microstate, based on the sum of correlations between themicrostate

and its members (Correlation Sum), the number of microstates is

reduced to two (a preset minimum) thereafter, an optimal number

of microstates can be selected (Khanna et al., 2014; Poulsen et al.,

2018).

Microstates were individually created for each participant

based on their resting state data. The number of microstates for

each participant were selected using the Krzanowski-Lai criterion

(Krzanowski and Lai, 1988) applied to the Correlation Sum. This

method involves identifying the point past which the Correlation

Sum plateaus with respect to the number of microstates. The

microstates for each participant were then back fitted to their

resting state data, and fitted to their TMS EEG data. After this,

the LZC was calculated in a 100 ms sliding window and averaged

across epochs and subjects before being compared between

resting state and TMS EEG recordings. This short window was

considered suitable since good temporal resolution was required

for this analysis and previous literature has shown that microstate

sequences show scale free dynamics (Van De Ville et al., 2010).

To test the changes in metastability for significance, two 250 ms

windows of time were defined, before and after the pulse. Then,

the epoch-averaged measures were averaged in the windows of

time, yielding a pre and post pulse metastability value for each

participant. Given that the sample size was <30 and the results

of the Shapiro–Wilk test of normality were inconsistent, normality

could not be safely assumed. Thus the difference between the two

lists of metastability measures was tested for significance using

Wilcoxon’s Signed Rank test. This is a non-parametric test suitable

for testing dependent samples. The significance threshold was set

to 0.05, and p-values below this were used to indicate a significant

difference. The test was carried out in a one-tailed manner, with the

direction being dependent on the effect in question.

2.4 Computational modeling

In order to provide mechanistic insights into metastability

modulation post-TMS, a computational model was implemented

similar to that used by Pathak et al. (2022). The brain was reduced

to a system of 90 coupled oscillators with activity at each oscillator

being generated based on the Kuramoto model,

θ̇i = ωi +
K

N
∗

N∑

j=1

cij ∗ sin(θj(t − τij)− θi)+ d ∗ ζ (t) (2)

Here, the derivative of the phase of each oscillator, “θ̇i” is

calculated using its intrinsic frequency, “ωi,” a coupling term with a

time delay, “τij” and coupling strength, “cij,” and noise [d ∗ ζ (t)].

Euler integration is then used to generate a phase time series

for the network. The intrinsic frequencies of the network were

assigned based on anatomical node strength, as described in Gollo

et al. (2017). The adjacency matrix was derived from probabilistic

tractography applied to diffusion MRI data and were obtained

from the public repository associated with Cabral et al. (2014).

The connectivity was reduced to a 90 by 90 matrix based on

the Automated Anatomical Labeling parcellation scheme (Tzourio-

Mazoyer et al., 2002) and averaged across subjects as in Cabral et al.

(2014). The delays were obtained by scaling cortical distances by

conduction velocity. Noise was sampled from a normal distribution

with a mean of zero and a standard deviation of 1, it was scaled by a

factor of 3. The scaling factors for coupling “cij” and the conduction

velocity that scales “τij” were chosen such that the model

showed metastable dynamics, as approximated by the Kuramoto

Order Parameter.

Given that TMS is known to cause a phase reset in the affected

area, that propagates through the rest of the network (Kawasaki

et al., 2014) the TMS pulse was modeled by resetting the phase

of affected oscillators to an arbitrary value π/2 (any other value

can be chosen for this purpose without loss of generality). During

TMS, the stimulated region and nearby areas reset their phase

instantly, while other areas would experience the phase reset

with a delay as it propagates through the network. To emulate

this the region of instant phase resetting was determined by

simulating the electric field induced by TMS using SimNIBS (see

Supplementary material), while all other regions were reset based

on their conduction delay to the site of stimulation. The Kuramoto

Order Parameter of the network was found to oscillate reflecting

the metastability of the dynamics. To keep the state of the network

at the time of stimulation consistent, a peak finding algorithm

was used to find the high coherence and low coherence states.

The pulse was only delivered at low coherence states. A subgroup

of oscillators with similar intrinsic frequencies to the oscillator

corresponding to the right primary motor cortex were chosen

for further analysis. This subgroup is analogous to the subgroups

derived from the empirical data. Metastability was then computed

in a 500 ms sliding window based on the KOP. This analysis was

repeated for frequency distributions with maximum frequencies of

5, 15, 25, and 35 Hz to observe the effects of intrinsic frequency

on the dynamics. The dispersion of the frequency distribution

and the other parameters of the model were kept consistent. The

metastability and coherence time series were produced for 20

random number generator seeds and averaged.
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FIGURE 2

(A) Evoked potentials, time locked to onset of TMS pulse. The TMS pulse is indicated by the vertical line. (B, C) Channel groupings or the regions of

interest for examination derived from measurements of local synchrony.

3 Results

3.1 Localization of TMS induced neural
coordination

Our first goal was to identify the subgroup of EEG sensors

where the relationship between phase synchrony and metastability

is most evident following the line of reasoning outlaid in Section

2.3.1. We extracted the TMS pulse evoked event related potential

(ERP) and applied a channel grouping algorithm described in

Section 2.3.1 (Figure 2). The channel grouping analysis extracted

two distinct groups of sensors, a fronto-central (Figure 2B) and

a temporo-occipital (Figure 2C) cluster. Thus, the groups appear

to be clustered either around the point of stimulation (right

Primary Motor Cortex) and reflected the shape of the induced

electrical field.

3.2 Metastability in pre and post TMS
periods

Metastability was computed using two measures to

demonstrate that the phenomena are robust. One measure

was based on the Kuramoto Order Parameter (KOP), while the

other used Lempel-Ziv complexity based on microstates. While the

KOP measures the levels of synchrony in a select group of sensors,

the standard deviation of the KOP indexes metastability (Deco

et al., 2017; Pathak et al., 2022). The LZC measure is introduced in

this study as an alternative measure of metastability (see details in

Section 2.3.2).

The Kuramoto Order Parameter was computed for the whole-

brain scenario (all channels) and on the sub-groups of channels

(fronto-central and occipito-temporal) to identify differences in

the effect at the global and local level. Among all three groups,
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single pulse TMS causes a reduction of 10%–40% in the standard

deviation of the KOP calculated in different frequency bands

(see Section 2.3.1). Higher frequencies (alpha, beta and gamma)

recover quickly (within 200 ms) while lower frequencies (delta

and theta) recover slowly (within 400 ms). Interestingly, in all

frequency bands, a 10% increase prior to the pulse is seen, while

in the alpha and theta bands subsequent recovery 10%–15% past

baseline levels was also observed. At a global level these changes

were accompanied by a 10% decrease in KOP, however, for the

subgroups, a sharp increase in KOPwas observed concomitant with

the same changes to metastability. These effects were replicated

across all stimulation intensities, 120%, 110% and 120% of Resting

Motor Threshold (RMT). The results for group 1 (fronto-central

channels) and 120% RMT are plotted in Figure 3 and Table 1

details the significance of effects across different frequency bands.

The same figures for the other channel groups and stimulation

intensities can be found in the Supplementary material.

To cross-validate the KOP measure of metastability, we

calculated the Lempel-Ziv complexity of the sequence of

microstates derived from resting state EEG data using a clustering

algorithm (see Section 2.3.2). The optimal number of microstates

varied across participants but was between 4 and 8 microstates

in all cases. Microstate global explained variance was worse for

the backfitted post-TMS EEG than for the resting state data but

the performance was sufficient for continued analysis (0.65–0.60).

Microstate analysis showed increased variation in microstate

duration, and polarization of transition probabilities in the post-

TMS data (Figure 4A). Note that the transition probabilities shown

pertain to a single subject, since the subject specific microstate

fitting made an averaging procedure unviable. However, the effect

remains consistent across subjects. The LZC of the microstate

sequence increases prior to the TMS pulse (test statistic = 22, p

= 0.002), is reduced following TMS stimulation (test statistic =

138, p-value = 0.01) and recovers to baseline levels within 200 ms

(Figure 4B).

The transition probabilities for the microstates were initially

relatively consistent, with each microstate having a roughly even

chance of transitioning to any other microstate. In the period

after the TMS pulse for which metastability is reduced, transition

probabilities increase along some columns and decrease along

others. Since the columns indicate the probability of another

microstate transitioning into a givenmicrostate, this change reflects

the repeated consolidation of dynamics to the same pattern(s)

of activity.

3.3 Understanding post TMS modulation of
metastability using a digital twin

Numerical integration of the Kuramoto phase oscillators

(Equation 2) connected via bio-physically realistic coupling

parameters (cij, τij; Figure 5A) was conducted using Euler

integration in customized Python scripts. We identified the values

of K and conduction velocity (that scales τij) for which the network

is maximally metastable. The TMS pulse was simulated by resetting

the phase of oscillators based on the conduction delay to the site of

stimulation. The coherence and metastability was then computed

from the simulated phase time series. The phase time series were

simulated for multiple frequency distributions while keeping the

other parameters constant (see Section 2.4).

Coherence increased following the TMS pulse followed by a

reduction and recovery toward pre-TMS condition (Figure 5B). On

the other hand, metastability decreases following TMS followed

by a recovery toward baseline. Both of these findings were also

observed in the empirical data. Furthermore, upon running the

analysis for different maximum frequencies we observed that a

quicker recovery of metastability occurs for higher frequency and

slower recovery to baseline for lower frequency (Figure 5C).

4 Discussion

Metastability emerges when a delicate balance between

integrative and segregative tendencies exists in a high dimensional

large-scale network (Tognoli and Kelso, 2014). One can posit

metastability as a winner-less competition between a set of

coordination states (Deco et al., 2017). Emerging research have

highlighted the usefulness of applying the measure of metastability

for motor coordination (Tognoli and Kelso, 2014), lifespan aging

(Naik et al., 2017), resting state brain dynamics (Deco et al., 2017)

and mental health (Deco and Kringelbach, 2016). However, the

changes in brain dynamics following brain stimulation techniques

such as TMS, tDCS or tACS remains to explored in detail. Since

the TMS pulse may lead to a forced synchronization certain groups

of oscillators, it would follow that the natural balance between

them would be disrupted and the dynamics would appear less

metastable. Although this effect would be highly localized and

brief due to the stimulation alone, the impulse delivered to the

stimulated population could propagate through the network and

reset their phase dynamics as it does so. This may effectively cluster

neural populations based on their collective dynamics arising

out of an interaction between synaptic weights and propagation

delays. The relative simplicity and stability of the resulting

coordination state would manifest in reduced metastability (see

Figure 6). We proved this hypothesis in the present manuscript

and validated our results using two independent measures of

metastability, the standard deviation of KuramotoOrder Parameter

(KOP) and Lempel-Ziv complexity (LZC; Figures 3, 4). We also

observed a time-scale separation in recovery of metastability from

higher frequency EEG components recovering faster than lower

frequencies. Digging deeper to understand the mechanistic origins

of this phenomenon we employed a coupled Kuramoto oscillator

network using bio-physically realistic parameters. Both findings,

metastability reduction and time scale separation of the recovery

trajectory were replicated by the dynamical model giving us key

insights to the network interactions that unfold during TMS.

Reduced Lempel-Ziv complexity following the TMS pulse

corroborates the results of the KOP based analysis. Furthermore,

following TMS, themicrostate dynamics show increased transitions

into certain microstates and reduced transitions into others. This

polarization of the microstate transition probabilities suggests

that the brain repeatedly consolidates to the same coupling

state under reduced metastability. This aligns with how natural

dynamics would periodically start to emerge but then be

interrupted as the phase reset propagates through the network

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2024.1336438
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Bapat et al. 10.3389/fnbot.2024.1336438

FIGURE 3

(A) The e�ect of the TMS pulse on the Kuramoto Order Parameter. (B) The e�ect of the TMS pulse on Metastability calculated in a sliding window.

The TMS pulse is indicated by the vertical purple line at 500 ms. Both metastability and coherence are plotted as a percentage of a baseline value

calculated as the mean between 525 and 1,525 ms. Results are plotted in unique colors for each frequency band as per the legend. These results

pertain to the fronto-central electrode group and the 120% RMT stimulation condition as described in Section 3.2.

TABLE 1 Test statistics and p-values for one-tailed Wilcoxon’s Signed Rank tests conducted on the Kuramoto Order Parameter measure (KOP).

Delta Theta Alpha Beta Gamma All

Decrease in KOP

after pulse

200

(p< 0.001)

210

(p< 0.001)

88

(p = 0.73)

146

(p = 0.06)

202

(p< 0.001)

205

(p< 0.001)

Increase in KOP

before pulse

6

(p< 0.001)

2

(p< 0.001)

21

(p< 0.001)

26

(p< 0.001)

13

(p< 0.001)

149

(p = 0.951)

Increase in KOP

after pulse

162

(p = 0.985)

55

(p = 0.031)

17

(p< 0.001)

48

(p = 0.016)

82

(p = 0.204)

197

(p = 0.999)

with finite time delays. The results of the modeling elucidates

how reduced metastability post-TMS emerge from the dynamic

interactions between structural parameters such as fiber width

conduction speeds. Thus our approach demonstrates how a

transient phase reset can produce a measurable reduction

in metastability and the dissociation of its recovery in a

tonotopic organization.

The validation of metastability as a measure of coordination

dynamics in short timescales is the another contribution of this

work. From a practical point of view this opens up opportunities

for designing paradigms where an experimenter can choose

to present task designs in a phase of reduced metastability

if the effects of TMS has to be maximized. Alternatively,

long term effects of TMS can be studied by presentation of

stimulus at a temporal window where metastability has recovered.

Furthermore, given how metastability is deranged in a wide

range of neurological disorders (Hellyer et al., 2015; Córdova-

Palomera et al., 2017; Cavanna et al., 2018; Lee et al., 2018),

stimulation protocols aimed at treating them could show better

effects if optimized based on their effect on metastability. It bears

advantages over simpler measures such as coherence because of

its relevance to pathology and its occurrence at multiple temporal

and spatial scales. This property is exceptionally useful since

it allows this measure to be applied to both EEG and MRI

data, and capture changes occurring over disparate temporal and

spatial scales.

An interesting and surprising result of this analysis was the

increase in metastability observed prior to the pulse in the alpha
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FIGURE 4

(A) Microstate transition probabilities. The numbers on the x and y axes indicate specific microstate. The probability of transitioning from the row

microstate to the column microstate is given by the color of the cell as defined by the color map on the right. The left heat-map depicts transition

probabilities for 1,000 ms of resting state data from a given participant. While the right heat-map depicts the same for an equivalent length of time

following TMS stimulation. (B) Results for the Lempel-Ziv Complexity Measure. The TMS pulse is indicated by the purple line at 500 ms. The orange

line is LZC in the TMS stimulated condition while the blue line is LZC in the resting state. Complexity was calculated in 100 ms bins and averaged

across subjects and epochs. The resting state data was sub-sampled and averaged in the same way. Results are plotted as a percentage of the mean

LZC across the first three bins.

and theta bands. Having thoroughly ruled out any artifactual

sources of this effect, the most likely explanation was anticipation.

Since hundreds of pulses were delivered during recording sessions,

the distinctive “click” of the TMS coil was not masked and the inter-

stimulus interval was consistent, it was possible that the subjects

came to anticipate the pulse and the increase in metastability

reflected that mental state. To address this question, the data were

examined for the presence of a Stimulus Preceding Negativity

(SPN). The SPN is an ERP associated with the anticipation of

an affective or physiologically arousing stimulus such as opposite

sex nudes or painful electric shocks (Luck and Kappenman,

2011). In one study, an electric shock was delivered 100–300
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FIGURE 5

Overview of the computational model used to demonstrate the mechanism. (A) How the model parameters were derived from neural connectivity.

(B) The e�ect of the phase reset on the The Kuramoto Order Parameter. (C) The e�ect of the phase reset on the metastability calculated in a sliding

window. The orange line marks the time of stimulation. The results for each frequency distribution is plotted in a unique color whose highest

frequency is described by the legend. Discontinuity at the pulse was removed for clarity. These results pertain to a subgroup of oscillators described

in Section 2.4.

ms after an audio cue, and the SPN was observed in the

time after the audio cue (Tanovic and Joormann, 2019). These

conditions are highly reminiscent of the TMS coil click being

followed by the scalp sensations of TMS. The presence of the

SPN in the data (see Supplementary material) and the fact that

TMS can produce sensations similar to electrical stimulation,

supports the idea that participants were anticipating the stimulus

in the same time window as the increase in metastability. The

neurophysiological mechanism for this effect and whether the

increase in metastability is facilitatory or collateral to anticipation

is an area of future investigation. Paired and repetitive TMS

are also known to produce long term effects on coherence

and excitability which could alter metastability (Bharath et al.,

2023).

Another intriguing implication of this work relates to

how metastability changes during cognitive tasks. Metastability

increases during cognitive tasks such as emotion perception,

language processsing, and relational reasoning (Alderson et al.,

2020). Additionally, decreases in metastability are associated

with reduced cognitive flexibility (Hellyer et al., 2015). Thus a

transient reduction in metastability could impair the performance

of cognitive tasks. This could explain how TMS interferes with

emotion perception (Pitcher et al., 2008), language processing

(Devlin and Watkins, 2007) and relational reasoning (Ragni et al.,

2016). Given that rTMS is known to have relatively long term

effects, quantifying them using metastability and relating them

to cognition is an interesting avenue for future research. Finally,

the global desynchronization and local synchronization created

by TMS presents a unique lens with which to analyse it’s effects.

Rather than seeing TMS as tool to excite one region, it might

instead be seen as a way of linking a set of regions. Building

a computational model of this phenomenon and using it to

contextualize the effects of various TMS protocols is a direction of

future study.
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FIGURE 6

Mechanistic explanation of how TMS perturbs metastability. (A) The phase locking caused by TMS can propagate through the network, increasing

coherence within clusters and decreasing the overall metastability. (B) Explanation of metastability in terms of an energy landscape. The system has

high metastability when it moves in and out of points of stability (wells in the energy landscape) the period of depressed metastability is analogous to

a valley, where movement is more constrained.
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