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Introduction: The control of infinite-dimensional rigid-flexible robotic arms

presents significant challenges, with direct truncation of first-order modal models

resulting in poor control quality and second-order models leading to complex

hardware implementations.

Methods:To address these issues, we propose a fuzzy super twistingmode control

method based on approximate inertial manifold dimensionality reduction for the

robotic arm. This innovative approach features an adjustable exponential non-

singular sliding surface and a stable continuous super twisting algorithm. A novel

fuzzy strategy dynamically optimizes the sliding surface coe�cient in real-time,

simplifying the control mechanism.

Results:Our findings, supported by various simulations and experiments, indicate

that the proposedmethod outperforms directly truncated first-order and second-

order modal models. It demonstrates e�ective tracking performance under

bounded external disturbances and robustness to system variability.

Discussion: The method’s finite-time convergence, facilitated by the modification

of the nonlinear homogeneous sliding surface, along with the system’s stability,

confirmed via Lyapunov theory, marks a significant improvement in control quality

and simplification of hardware implementation for rigid-flexible robotic arms.

KEYWORDS

rigid-flexible robotic arm, approximate inertial manifold, sliding mode control, super

twisting, fuzzy control

1. Introduction

Currently, rigid-flexible robotic arms are widely used in industries such as industrial

automation, machinery, medical care, and aerospace (Su et al., 2022a; Liu et al., 2023;

Zhao and Lv, 2023). How to design robust controllers with high positioning accuracy and

repeatability has attracted significant interest from researchers. The rigid-flexible robotic

arms utilized in this study offer several notable advantages. Firstly, their adaptability allows

them to navigate and operate in complex environments, striking a balance between flexibility

and rigidity. This ensures that tasks are executed with a high level of precision without

compromising on the structural integrity of the arm (Tavasoli and Mohammadpour, 2018).

Furthermore, the unique structure of these arms ensures pinpoint accuracy in control and

positioning (Arkouli et al., 2021). Lastly, the rigid-flexible design serves as a buffer to absorb

shocks and vibrations, enhancing the durability and reliability of the robotic arm in various
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applications (Zheng et al., 2022). However, the complexity of the

dynamics of rigid-flexible robotic arms and uncertainties caused by

unknown parameters, load variations, unmodeled nonlinearities,

and external disturbances make this task challenging.

Numerous nonlinear control techniques have been proposed

in literature, such as inversion (Alam et al., 2018; Wang et al.,

2022), adaptive control (Weiser and Corves, 2019; Zhou et al.,

2020), H-infinity control (Rigatos et al., 2016), and Sliding

Mode Control (SMC; Bahrami and Rahi, 2003; Hamdi et al.,

2015; Kwon et al., 2018). The latter has gained considerable

attention recently due to its simplicity and robustness against

uncertainties. Its design is based on a surface selected by the

user in the system state space and a high-gain switching term

that forces system trajectories to converge to and stay on that

surface (Hamdi et al., 2015). However, to ensure robustness, rapid

finite-time convergence is ensured by choosing a switching gain

that is greater than the upper bound of the uncertainty. This

excessive choice leads to the well-known chattering phenomenon,

which is a major drawback of SMC (Gharooni et al., 2001;

Congqing et al., 2013). This interference causes the system

actuator to reject high-energy, high-intensity control signals

and can lead to degradation or deterioration of the controlled

system’s mechanical components. To overcome this phenomenon,

continuous functions are considered as a replacement for the

sign function (Shokouhi and Davaie Markazi, 2018). This method

allows for robust and accurate estimation of the uncertain part.

However, if the estimation is inaccurate, control performance is

affected. Additionally, some literature combines sliding mode with

other techniques like fuzzy logic, neural networks, or both (Xu

et al., 2010; Rahimi and Nazemizadeh, 2014; Liu et al., 2017; Singla

and Singh, 2019). While theoretically powerful, these intelligent

methods are computationally complex, potentially making

hardware implementation difficult or impossible. Some researchers

(Buffinton, 1992; Khalil, 2011; Zarafshan and Moosavian, 2012)

have combined first-order SMC with Time Delay Estimation

(TDE) methods, which estimate uncertainty and bounded external

disturbances without knowing the upper bounds of uncertainty,

reducing the choice of switching gain. However, the chattering

problem has not been fully resolved and affects convergence time.

To eliminate or reduce the chattering phenomenon, higher-order

SMC (HOSMC) was introduced by Huston (1981), Kumar et al.

(2000), Delgado et al. (2017), and Zhang et al. (2020). Based on

this, many algorithms that allow finite-time convergence and

reduce chattering, such as suboptimal algorithms, super twisting

algorithms, and STA, have been proposed by Kumar et al. (2000)

and Grazioso et al. (2019). However, a common drawback of these

methods is the correct choice of controller gain, which is essential

for achieving finite-time convergence characteristics. Moreover,

in the field of rigid-flexible robotic arm control systems, there are

few reports on the application of super twisting mode control,

making it necessary to analyze the super twisting mode control of

rigid-flexible robotic arms to achieve an intelligent and effective

control system (Su et al., 2020, 2022b; Qi et al., 2023).

In recent years, fuzzy logic has been widely applied to

enhance the efficiency of SMC in controlling uncertain nonlinear

systems (Soltanpour et al., 2016). So far, a plethora of fuzzy

SMC algorithms have been developed for robotic control systems

(Ertugrul and Kaynak, 2000; Huŝek, 2014; Qi et al., 2021; Qi and

Su, 2022). In Derbel and Alimi (2006), a hybrid method of fuzzy

logic controllers and SMC is given to compute the equivalent

control force. The continuous computation of sliding parameters

in Javaheri and Vossoughi (2005) improves the performance of

robots. The authors in Soltanpour et al. (2013) combine fuzzy

logic and SMC to overcome uncertainties and disturbances during

robot trajectory tracking. In Khooban and Soltanpour (2013), and

Soltanpour and Khooban (2013), optimization techniques are used

to optimize the control coefficients of the fuzzy sliding mode

system. However, these controllers lack mathematical analysis

and closed-loop stability analysis. Applications of FLSMC can

be roughly categorized into three types (Tran and Kang, 2015):

adaptive fuzzy methods enhance the anti-interference capability

of SMC, controller gains are adjusted based on fuzzy logic to

alleviate chattering, and discontinuous sign functions are replaced

with fuzzy logic during the reaching phase to eliminate chattering.

However, the correct selection of initial values for the adaptive

fuzzy system is crucial for the rapid convergence of the adaptive

law. Benbrahim et al. (2013) proposes an Adaptive Fuzzy Sliding

Mode Controller (AFSMC) to estimate the unknown functions

needed to overcome existing uncertainties. However, the design of

these controllers is quite complex and may pose issues in practical

implementation.

While many of these studies have made considerable

algorithmic improvements to ensure higher control quality,

they haven’t maximized the simplicity of controller hardware

implementation. To simplify the hardware design of the controller,

the model should be reduced in order as much as possible.

Currently, one of the better nonlinear dimensionality reduction

methods, the Galerkinmethod (Jefrin Jose, 2014; Muhammad et al.,

2014; Nazemizadeh and Nohooji, 2015; Deng et al., 2021; Yuan

et al., 2021; Peng et al., 2022; Shang et al., 2022), can effectively

reduce the dimension of nonlinear spatiotemporal coupled

systems. Still, it entirely ignores fast variables, leading to the loss

of some slow variable information integrated with the fast variable

system, affecting the model’s accuracy. In the dimensionality

reduction method based on approximate inertial manifolds (Qiu

and Dongya, 2020), fast variables can be expressed through slow

variables, so the high-precision approximate model of the original

spatiotemporal system can be obtained through fast variable

compensation for the slow variable system. Compared with the

traditional nonlinear Galerkin method, for systems with uncertain

inertial manifolds, approximate inertial manifolds can achieve

better dimensionality reduction results. This paper, from the

perspective of the reduced model, targets the challenges associated

with the poor control quality of the directly truncated first-order

modal model of the rigid-flexible robotic arm based on the Galerkin

method in Xu et al. (2021b) and the relative complexity of the

hardware implementation of the directly truncated second-order

modal model controller. We introduce a novel fuzzy super twisting

mode control method, which is a significant advancement over

traditional approaches, utilizing the approximate inertial manifold

dimensionality reduction model of the rigid-flexible robotic

arm. First, we innovatively employ a member of the Lipschitz

continuous controller family, the super twisting controller (Levant,

1993). By adapting the nonlinear homogeneous sliding surface,
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we achieve finite-time convergence, which has not been explored

in existing literature. Then, a new fuzzy strategy is used to

dynamically optimize the sliding surface coefficients in real-time.

Compared with the fuzzy method for sliding mode exponent,

the adjustment is simpler and easier to implement. Lastly, we

solidify the controller’s stability through Lyapunov theory, and

demonstrate the effectiveness of our breakthrough algorithm

via a range of simulations and experiments. In summary, the

main contributions of this paper are: (a) a novel fuzzy control

strategy, which from the perspective of the sliding surface, offers

real-time dynamic optimization of the sliding surface coefficient

β . This technique is more streamlined and practical than the

existing fuzzy method for the sliding mode exponent, marking

a distinct advancement in this field; (b) the incorporation of the

super twisting algorithm to revolutionize the reaching law, thereby

notably decreasing the chattering phenomenon. This ensures that

the tracking error converges rapidly to zero, even in scenarios

with external bounded disturbances; (c) the pioneering adoption

of the fuzzy super twisting mode control method based on the

approximate inertial manifold dimensionality reduction model for

the rigid-flexible robotic arm. This approach, when contrasted with

the directly truncated first-order and second-order modal models

based on the Galerkin method, greatly simplifies the controller’s

hardware implementation without compromising on the control

quality, filling a critical gap in the current research landscape.

The remaining parts of this article is organized as follows:

Section 2 delves into the low-dimensional model of the rigid-

flexible robotic arm based on approximate inertial manifold. The

controller design is detailed in Section 3. Section 4 provides a

simulation analysis, encompassing step response analysis, sine wave

tracking analysis, and robustness performance. Section 5 offers an

experimental verification of the fuzzy super-twisting SMC for the

reducedmodel. Finally, Section 6 concludes the article, highlighting

the key findings.

2. Low-dimensional model of
rigid-flexible robotic arm based on
approximate inertial manifold

The research object of this paper is a two-link rigid-flexible

hybrid robotic arm, composed of a rigid robotic arm, and a flexible

robotic arm connected together. The rigid robotic hand is mounted

on the rotating joint of the base, while the flexible robotic hand

is connected to the rigid robotic hand through a motor-driven

shaft. Ignoring the longitudinal deformation of the flexible robotic

hand, it is assumed that the flexible robotic hand can bend freely in

the horizontal direction, and the cross-section after deformation is

perpendicular to the deformation axis, as shown in Figure 1.

In the Figure 1: OXY represents the inertial coordinate

system fixed on the base; o1y1z1 and o2y2z2 are local coordinate

systems, respectively, fixed on the rigid link robotic arm and

the flexible link robotic arm base, and they rotate following

the rotation of the robotic arm; θ1 is the angle of rotation of

FIGURE 1

Structural diagram of the rigid-flexible robotic arm.

o1y1z1 relative to the inertial coordinate system; θ2 is the angle

of rotation of o2y2z2 relative to o1x1y1; The lengths of the

rigid arm and the flexible arm are l1 and l2, respectively; The

deformation displacement of the endpoint P of the flexible robotic

arm is represented by the spatial function and time function

w(x, t).

As shown in Figure 1, the dimensionality reduction

model of the rigid-flexible robotic arm based on the

approximate inertial manifold can be represented as

(Xu et al., 2021a):

M(θ , q)

[

θ̈

q̈

]

+

[

F1(θ , q, θ̇ , q̇)

F2(θ , q, θ̇ , q̇)

]

+

[

E1θ̇

E2q̇+ Kq

]

=

[

u

0

]

(1)

Where:

θ = [θ1, θ2]
T : The generalized joint angle.

q =
[

q1, 0, 0
]T
: The vibration mode.

M(θ , q): The generalized inertia matrix.

K = diag
(

k1, k2, k3
)

: Stiffness matrix.

u: Joint input force and torque.
[

F1(θ , q, θ̇ , q̇) F2(θ , q, θ̇ , q̇)
]T
: Non-linear term.

E1: A positive definite damping matrix. E2: Structural damping

matrix.

F1(θ , q, θ̇ , q̇) =

[

J1(θ , q, θ̇ , q̇)

J2(θ , q, θ̇ , q̇)

]

, F2(θ , q, θ̇ , q̇) =







J3(θ , q, θ̇ , q̇)

J4(θ , q, θ̇ , q̇)

J5(θ , q, θ̇ , q̇)







(2)

Write the mass matrix as a block matrix M(θ , q) =
[

Mθθ MT
θq

Mθq Mqq

]

5∗5

, where M−1(θ , q) =

[

Hθθ Hθq
Hqθ Hqq

]

5∗5

, both

Mθθ and Hθθ are of order 2×2, bothMθq and Hθq are of order 2×

3,Hqθ is of order 3× 2, andMqq and Hqq are of order 3× 3.

Multiply both sides of the equation above by M−1, and the

dynamics equation can be expressed in the following form:

θ̈ = −Hθθ
(

F1(θ , q, θ̇ , q̇)+ E1θ̇
)

−Hθq
(

F2(θ , q, θ̇ , q̇)+ E2q̇+ Kq
)

+ Hθθu (1)

q̈ = −Hθq
(

F1(θ , q, θ̇ , q̇)+ E1θ̇
)

−Hqq

(

F2(θ , q, θ̇ , q̇)+ E2q̇+ Kq
)

+Hθqu (2)
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3. Controller design

Since the rigid arm system is a minimum phase system, when

establishing a closed-loop control system, the system’s asymptotic

stability can be ensured, making the end trajectory of the system

easier to determine. In contrast, determining the end trajectory of

a flexible arm is much more complex. The main challenge lies in

it being a non-minimum phase system. A significant distinction

between a flexible arm and a rigid arm is the presence or absence

of internal dynamics. In the case of flexible arm motion, if the

flexible deformation vibration is not suppressed, the arm’s internal

dynamics can become unstable. When adopting feedforward

control, the instability of internal dynamics can easily lead to

the divergence of calculated torques (Rahimi and Nazemizadeh,

2014). If feedback control is adopted, it can cause instability in

the closed-loop system. Given the need to consider the dynamic

model characteristics of the rigid-flexible robotic arm system,

and the potential structural parameter changes, environmental

changes, and component aging during operation, the controller

design should firstly ensure that the input-output subsystem’s

design output follows the given trajectory, and secondly, ensure the

stability of the internal dynamics subsystem. The proposed control

structure is shown in Figure 2.

In Figure 2, uex represents the control quantity of

the input-output subsystem. The control strategy adopts

fuzzy super-twisting SMC. uin is the control quantity

of the internal dynamics subsystem, and the control

strategy adopts PD (Proportional Differential) state

feedback control. The overall control is composed of uex
and uin.

3.1. Stabilization of the internal dynamic
subsystem based on PD state feedback

According to reference (Hamdi et al., 2015), using PD state

feedback to stabilize the internal dynamic subsystem ensures the

convergence of the flexible deformation amount q.

uin = Kqq+ Kq̇q̇ (3)

The overall input control quantity is:

u = uex + uin

= Z−1(α, θ , q)
(

ÿr +3ė− Ŵ(α, θ , q, θ̇ , q̇)+ ε · sgn S+ KsS
)

+ Kqq+ Kq̇q̇

(4)

Substituting Equations (7) and (9) into Equation (13) yields:























Ḃ1 =B2

Ḃ2 =
(

−HqqK +HqθKq

)

B1 +
(

−HqqE2 + HqθKq

)

B2−

Hqθ

(

F1 + E1θ̇
)

−HqqF2 +Hqθ

(

Z−1(α, θ , q)
(

ÿr +3ė− Ŵ(α, θ , q, θ̇ , q̇)+ ε · sgn S+ KsS
)

(5)

Linearizing the internal dynamic subsystem at B1 = 0 and

B2 = 0:

Ḃ = 5BB (6)

Where 5B =

[

0 I

−Hqq0K +Hqθ0Kq Hqθ0Kq

]

and Hij0 =

Hij

∣

∣

B1=0, B2=0
. By choosing appropriate control gains Kq and Kq̇,

ensuring 5B is a Hurwitz matrix, it is known from Lu et al. (2018)

that the internal dynamic subsystem can maintain local asymptotic

stability.

3.2. Fuzzy super-twisting sliding mode
control for input-output subsystems

3.2.1. Output redefinition
Next, we redefine the output for the rigid-flexible robotic arm

system, and the observed quantity of the end position output is:

{

y1 = θ1

y2 = θ2 + α · ω(L2 ,t)L2
= θ2 +

α
L2
w(x, t)

(7)

Where the value of α is related to the output redefinition and

its range is−1 < α < 1.

The end position of the rigid-flexible robotic arm is written in

vector form:

y = θ + D · q (8)

Where:

y =
[

y1, y2
]T

, D =

[

0
α
L2
81 (L2)

]

Then, linearizing the input and output of the rigid-flexible

coupled robotic arm system, we obtain the input-output subsystem:

¨̃y = Ŵ̃(α, θ , q, θ̇ , q̇)+ Z̃(α, θ , q)u (9)

In the above equation:

Ŵ̃(α, θ , q, θ̇ , q̇) = −
(

H̃θθ + D̃H̃qθ

) (

F̃1(θ , q, θ̇ , q̇)+ E1θ̇
)

−
(

H̃θq + D̃H̃qq

) (

F̃1(θ , q, θ̇ , q̇)+ E2q̇+ Kq
) (10)

Z̃(α, θ , q) = H̃θθ + D̃H̃qθ (11)

Define Ũ =
[

ÃT B̃T
]T

, where Ã =
[

ÃT
1 ÃT

2

]T
=

[

ỹT ˙̃yT
]T

, B̃ =
[

B̃T1 B̃T2

]T
=

[

q̃T ˙̃qT
]T

. The system’s state

equation is as follows:























˙̃A1 = Ã2
˙̃A2 = Ŵ̃(α, θ , q, θ̇ , q̇)+ Z̃(α, θ , q)u
˙̃B1 = B̃2
˙̃B2 = Ẽ(θ , q, θ̇ , q̇)+ H̃qθu

(12)
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FIGURE 2

Control framework of the rigid-flexible robotic arm.

Ẽ(θ , q, θ̇ , q̇) = −H̃θq
(

F̃1(θ , q, θ̇ , q̇)+ E1θ̇
)

− H̃qq

(

F̃2(θ , q, θ̇ , q̇)

+E2q̇+ Kq
)

(13)

In Equation (10), Ã1 and Ã2 form the input-output subsystem,

and B̃1 and B̃2 form the internal dynamic subsystem:

{

˙̃A1 = Ã2
˙̃A2 = ṽ

(14)

{

˙̃B1 = B̃2
˙̃B2 = Ẽ(θ , q, θ̇ , q̇)+ H̃qθ · Z̃

−1(α, θ , q)(h̄− Ŵ̃(α, θ , q, θ̇ , q̇))

(15)

Where ṽh̄ is the control quantity to be designed.

3.2.2. Super-twisting sliding mode controller
design

The sliding mode surface here is defined as in Equation (14):

S = e+ β ėp/v (16)

Where e = ỹd − ỹ represents the deviation, ỹd is the desired

motion trajectory, β , p, ν are the sliding mode surface parameters,

among which 2 > (p/v) > 1.

The super-twisting algorithm is a high-order sliding mode

algorithm. It not only retains the advantages of conventional SMC

but also has notable features: it can effectively suppress chattering

phenomena (Gamarra-Rosado, 2000) and exhibits good tracking

performance and strong robustness in the presence of bounded

external disturbances (Delgado et al., 2017). Here, using the super-

twisting approach, i.e., Ṡ = −K1|S|
1
2 sgn(S) − K2

∫ t
0 sgn(S)dt, by

combining Equations (8) and (14), we obtain:

Ṡ = ė+ β
p

v
ė
p
v−1ë = β

p

v
ė
p
v−1( ¨̃y− ¨̃y)+ ė

= β
p

v
ė
p
v−1

(

ÿd − Ŵ̃(α, θ , q, θ̇ , q̇)− Z̃(α, θ , q)ũex

)

+ ė

= −K1|S|
1
2 sgn(S)− K2

∫ t

0
sgn(S)dt

(17)

From Equations (15) and (13), the input quantity of the

improved controller is:

ũ =Z̃−1(α, θ , q)

(

¨̃yr −
[

β
p

v
ė
( p
v−1

)
]−1

(

−K1|S|
1
2 sgn(S)− K2

∫ t

0
sgn(S)dt − ė

)

− Ŵ̃(α, θ , q, θ̇ , q̇))+ Kqq+ Kq̇q̇

(18)

3.2.3. Stability proof
Theorem 1: For the aforementioned rigid-flexible robotic arm

system based on the reduced model of the approximate inertial

manifold, if the control parameters meet the following conditions:

K1i > 0

K2 >
K2
1i (Ki − K1i)

2 + 16K2
1iδi + 16δ2i + 8K1iKiδi

8Ki1 (2Ki − K1i)

Where δ > 0, the designed robust super-twisting control

strategy can ensure that the selected non-singular terminal sliding

mode surface converges within a finite time TC :

TC ≤ 2λ
1/2
min{P}λ

−1
max{P}λmin{Q}V

1/2
t (0)

Proof: Firstly, insert the super-twisting control rate into the

following model:

¨̃y = Ŵ̃(α, θ , q, θ̇ , q̇)+ Z̃(α, θ , q)u
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Upon arrangement, the error state equation is:

ṡ = −K1|s|
1/2 sign(s)+ ψ

ψ̇ = −K2 sign(s)+ ε̇
(19)

Where:

ε = Ŵ(α, θ , q, θ̇ , q̇)− Ŵ̃(α, θ , q, θ̇ , q̇)+ Kqq+ Kq̇q̇ (20)

Let: |ε̇| ≤ δ

For each joint, the designable Lyapunov function is:

Vi = 2K2i |si| +
1

2
ω2
i +

1

2

(

K1i |si|
1/2 sgn (si)− ωi

)2
(21)

Let: ηi =
[

|si|
1/2 sgn (si) ωi

]T
. Rearrange equation (19) to

get:

Vi = ηTi Piηi (22)

Where:

Pi =

[

2K2i +
K2
1i
2 −K1i

2

−K1i
2 1

]

Equation (20) satisfies:

λmin {Pi} ‖ηi‖
2
2 ≤ Vi ≤ λmax {Pi} ‖ηi‖

2
2 (23)

|si|
1/2 ≤ ‖ηi‖2 ≤

V
1/2
i

λ
1/2
min {Pi}

(24)

FIGURE 3

Membership function graph for input variable S.

λmin {Pi} and λmax {Pi}, respectively, represent the maximum

and minimum eigenvalues of the matrix Pi; ‖ηi‖
2
2 represents the

2-norm of ηi. The derivative of the vector ηi is:

η̇i =

[

η̇1i

η̇2i

]

=

[

1
2|si|

0.5 ṡi

ω̇i

]

Differentiate the Lyapunov function shown in equation (19):

V̇t = 2K2i ṡi,t sgn
(

si,t
)

+ ωi,tω̇i,t +
(

K1i
∣

∣si,t
∣

∣

1/2
sgn

(

si,t
)

− ωi,t

)

(

1

2
K1i

∣

∣si,t
∣

∣

−1/2
ṡi,t − ω̇i,t

)

= −2K1iK2i
∣

∣si,t
∣

∣

1/2
+ 2K2iωi,t sgn

(

si,t
)

−

K2iωi,t sgn
(

si,t
)

+ ωi,t ε̇2i,t +
(

K1i
∣

∣si,t
∣

∣

1/2
sgn

(

si,t
)

− ωi,t

)

(

−
1

2
K2
1i sgn

(

si,t
)

+
K1i

2

∣

∣si,t
∣

∣

−1/2
ωi,t

+
K1i

2

∣

∣si,t
∣

∣

−1/2
ε1i,t + K2i sgn

(

si,t
)

− ε̇2i,t

)

=
1

∣

∣si,t
∣

∣

1/2

(

−
1

2
K3
1i

∣

∣si,t
∣

∣ + K2
1i

∣

∣si,t
∣

∣

1/2
sgn

(

si,t
)

−

K1i

2
ω2i,t − K1iK2i

∣

∣si,t
∣

∣

)

+ ε̇2i,t

(

−K1i
∣

∣si,t
∣

∣

1/2
sgn

(

si,t
)

+ 2ωi,t

)

After simplification, we get:

V̇t = −
1

∣

∣si,t
∣

∣

1/2
ηTt

[

1
2K

3
1i + K1iK2i −

K2
1i
2

−
K2
1i
2

K1i
2

]

ηt+ ε̇2i,t

[

−K1i 2]
]

ηt

(25)

Let:

A =

[

1
2K

3
1i + K1iK2i −

K2
1i
2

−
K2
1i
2

K1i
2

]

; B =

[

0

1

]

;C =

[

1

0

]

Then Equation (23) can be expressed as:

V̇t = − 1

|si,t|
1/2 η

T
t Aηt +

2ε̇2i,t

|si,t|
1/2

∣

∣si,t
∣

∣

1/2
BTPηt

FIGURE 4

Membership function graph for output variable β.
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Also, based on the condition:
∣

∣dε2,t
∣

∣ ≤ δ2; the following

inequality can be derived:

2ε̇2i,t
∣

∣si,t
∣

∣

1/2
BTPηt ≤ ε̇22i,t

∣

∣si,t
∣

∣ + ηTt PBB
TPηt

≤ δ22iη
T
t CC

Tηt + η
T
t PBB

TPηt
Inserting into Equation (23), we obtain:

V̇t ≤ −
1

∣

∣si,t
∣

∣

1/2
ηTt

(

A+ δ22iCC
T + PBBTP

)

ηt+

1
∣

∣si,t
∣

∣

1/2
ηTt

[

2K2i +
K2
1i
2

K1i
4

K1i
4 0

]

ηt

V̇t ≤ −
1

∣

∣si,t
∣

∣

1/2
ηTt Qηt

Where:

Q =

K1i
2

[

2K2i + K2
1i −

(

4K2i
K1i

+ K1i

)

δ1 −
K1i
2 −

2δ22
K1i

− (K1i + 1)

− (K1i − 1) 1− 2
K1i

]

Then:

V̇i = −
1

|si|
1/2
ηTi Qiηi (26)

When matrix Qi is positive definite, Equations (5–16) satisfies

Lyapunov stability. Its range of values is:

K1i > 0

K2 >
K2
1i (Ki − K1i)

2 + 16K2
1iδi + 16δ2i + 8K1iKiδi

8Ki1 (2Ki − K1i)

3.3. Fuzzy controller design

The existing fuzzy non-singular terminal SMC is mainly

focused on the fuzzification of the sliding mode surface exponent.

FIGURE 5

Controller’s input torque: (A) Input torque of joint one, (B) input torque of joint two.

FIGURE 6

Step response of the joints: (A) Angular displacement of joint one, (B) angular displacement of joint two.
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This exponent has strict parameter constraints, and the method is

complex. However, this paper directly performs real-time dynamic

optimization on the sliding mode surface coefficient. This fuzzy

strategy is simple and easy to implement. The specific design is as

follows:

(1) Fuzzification of Variables

Let Si be the input of the fuzzy controller, and βi be the output

variable. Their domains are set to [−100, 100] and [−80, 80],

respectively. The fuzzy variables are PL (Positive Large), ZR (Zero),

NL (Negative Large). For S, the partitioned regions correspond to

NL [−100,−20], ZR [−20, 20], and PL [20, 100]. For β , the regions

correspond to NL [−80, −40], ZR [−40, 40], and PL [40, 80]. The

membership functions are shown in Figures 3, 4.

(2) Fuzzy Control Rules

The fuzzy inference method adopts “IF-THEN.” The rules are

designed as follows: If S is NL, then β is PL; If S is ZR, then β is ZR;

If S is PL, then β is NL.

FIGURE 7

End-point vibration.

(3) Fuzzy Inference and Defuzzification

This step uses MATLAB’s Mamdani method for inference to

obtain precise values. This paper uses the centroid method, which

is widely used and reflects the most comprehensive situations, as

shown in Equation (25):

û∗ =
∑

i

k̂iµA

(

ûi
)

ûi/
∑

i

k̂iµA

(

ûi
)

(27)

Where i is the control quantity; û corresponds to the discretized

point in the domain; and k̂i is the weighting coefficient.

4. Simulation analysis

4.1. Step response analysis

First, assume there is no external disturbance in the system

and the modeling error is 0. The given step signal is yd =
[

0.5 0.5
]T

(unit: rad). The parameters chosen for the second-

order modal model are α = 0.65, p =
[

9 9
]

, v =
[

7 7
]

,

K1 = diag(30, 30), and K2 = diag(9, 9), with a sampling

period of 2 ms. The parameters chosen for the first-order modal

model are α = 0.69, p =
[

7 7
]

, v =
[

5 5
]

, K1 =

diag(22, 22), K2 = diag(5.6, 5.6) with a sampling period of 2

ms as well. The parameters chosen for the model based on the

approximate inertial manifold reduction are α = 0.73, p =
[

9 9
]

, v =
[

7 7
]

,K1 = diag(25, 25),K2 = diag(7, 7), with

a sampling period of 2 ms too. The simulation results based on

MATLAB’s Simulink are shown in Figures 5–7.

FSNTSMC-1: Fuzzy super-twisting non-singular terminal SMC

for the first-order modal model.

FSNTSMC-2: Fuzzy super-twisting non-singular terminal SMC

for the second-order modal model.

FIGURE 8

Sine tracking comparison: (A) Angular displacement of joint one, (B) angular displacement of joint two.
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FIGURE 9

Sine tracking error comparison: (A) Angular displacement error of joint one, (B) angular displacement error of joint two.

FIGURE 10

Input torque of the joints: (A) Input torque of joint one, (B) input torque of joint two.

FSNTSMC-GL: Fuzzy super-twisting non-singular terminal

SMC based on the reduced model of the approximate inertial

manifold.

From the simulation results in Figures 5–7, it can be seen

that the FSNTSMC-GL method designed based on the reduced

model of the approximate inertial manifold has significantly

improved dynamic performance compared to the FSNTSMC-1

method. There is no steady-state error, no overshoot, the input

torque chattering has decreased by 65%, and the end’s maximum

amplitude has decreased by 77.8%. The simulation results verify the

effectiveness of this method.

In comparison with the second-order modal model

(FSNTSMC-2), the input torque chattering, the response of

the two joints, and the end vibration are very close to the second-

order modal model. This provides theoretical verification for the

reduced model based on the approximate inertial manifold to

replace the second-order modal model for subsequent control.

4.2. Sine wave tracking analysis

The controller parameters chosen for sine wave tracking

analysis are the same as those for step signal analysis. The sine signal

input to the controller is set to yd =
[

sin(π t/4) sin(π t/4)
]T

,

with other parameters remaining unchanged. Similarly, assuming

no external disturbance and a modeling error of 0, the simulation

results based on MATLAB’s Simulink are shown in Figures 8–11.

As shown in Figures 8, 9, the tracking performance, input

torque chattering suppression, and end vibration suppression

effects of FSNTSMC-GL and FNTSMC-2 methods are very close.

Compared to the FNTSMC-1 method, the performance in all

aspects has significantly improved. This further verifies that

the reduced model based on the approximate inertial manifold

can be used to replace the second-order modal model for

controller design.
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4.3. Robustness performance

From the above step response and sine wave tracking results,

it is evident that the fuzzy super-twisting sliding mode controller

based on the reduced model of the approximate inertial manifold

has a control quality almost equal to the second-order modal

model, and significantly superior to the first-order modal model.

The simulation analyses of the designed controller mentioned

above were all based on the assumption of no external disturbances

and zero modeling error. However, during the long-term operation

of the rigid-flexible robotic arm system, hardware structure changes

due to motion friction, component aging, or environmental factors

may cause system structural parameter variations. This necessitates

a further analysis of the robustness performance of the controller

FIGURE 11

End-point oscillation.

based on the reduced model of the approximate inertial manifold

and a comparison with the second-order modal model. The

detailed comparison is as follows:

Firstly, an analysis of the controller’s robustness performance

under external disturbances. The controller parameter selection

remains unchanged. A 2Nmdisturbance for joint one is introduced

at the 4th second and lasts for 0.2 s, while a 2 Nm disturbance for

joint two is introduced at the 5th second and lasts for 0.3 s. The

simulation results are shown in Figures 12–14.

From the simulation results in Figures 12–14, it can be observed

that FSNTSMC-GL has strong robustness performance under

disturbances, very close to the FSNTSMC-2 method. This further

validates the effectiveness of the proposed method.

Next, a simulation analysis of the fuzzy super-twisting

non-singular terminal sliding mode controller’s robustness

performance based on error truncation of the first-order modal

model and parameter-ignored modeling errors. The controller

parameter selection remains unchanged. Simulation results based

on MATLAB’s Simulink are shown in Figures 15–17.

From the simulation results in Figures 15–17, it is evident

that FSNTSMC-GL also has strong robustness performance under

error truncation and modeling errors, with performance not much

different from the FSNTSMC-2 method.

5. Experimental verification of the
fuzzy super-twisting sliding mode
control for the reduced model

5.1. Experimental platform

As showcased in Figure 18, ourmodel verification experimental

platform is physically designed to resonate with the dynamics

captured by our theoretical model. Joint 1 utilizes a stepper

motor and ball screw transmission, ensuring precise and smooth

movements, with a grating ruler on the guide rail to measure

real-time position. Joints 2 and 3, driven by servo motors with

FIGURE 12

Input torque of the joints: (A) Input torque of joint one, (B) input torque of joint two.
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reducers, reflect the control dynamics our model emphasizes,

while incremental encoders at their end capture real-time angular

movements. To measure the robot’s flexible arm deformation,

we use strain gauges, interpreted by a dynamic strain gauge

instrument, offering an exact terminal position. The basic

parameters of the experimental platform are shown in Tables 1, 2.

The experimental platform uses a control computer equipped

with amotion control card. The industrial computer communicates

in real-time with the motion control card via an Ethernet network.

Resistance strain gauges are pasted at different positions on the

flexible robotic arm. Displacement changes are measured through

the variations in the resistance strain gauges. The control computer

connects to the DC resistance tester via the RS232 standard

asynchronous serial communication bus interface, recording real-

time data changes in the strain gauges, ultimately obtaining

the vibration displacement of the flexible arm. This verifies the

accuracy of the control algorithm. The relationship between

resistance change and displacement is described by the equation:

w(x, t) =
2

R · K · h













81(x)

82(x)

.

.

.

8N (x)













T 











8′′
1 (x1) 8

′′
2 (x1) · · · 8′′

N (x1)

8′′
1 (x2) 8

′′
2 (x2) · · · 8′′

N (x2)

.

.

.
.
.
.

. . .
.
.
.

8′′
1 (xi) 8′′

2 (xi) · · · 8′′
N (xi)

























1R1
1R2
.
.
.

1R3













(28)

R is the original resistance value of the strain gauge, 1R is

the resistance change caused by elongation or compression, K is

the strain gauge constant (for copper-chromium alloy, the strain

constant is 2), and h is the thickness of the flexible arm.

The control computer can obtain the generalized state quantity

of flexible deformation based on the collected data and can calculate

the position and instantaneous speed of the robot arm’s end. Real-

time control torque is obtained by transforming the control torque

equation. Therefore, the servo motor system adopts a direct torque

control mode. The maximum torque can be set to 0.48 Nm. Due to

a reduction ratio of 40:1, the maximum torque of the final reducer

output shaft is 19.2 nm. To protect the servo system and prevent

the motor from being impacted by full-load torque, a safety factor

of 2.0 is chosen, so the torque range of the output shaft is [−9.6 Nm,

9.6 Nm].

5.2. Experimental purpose and method

As shown in Figure 19, a coordinate system is established for

the experimental platform. Looking down at the experimental

platform, the axis perpendicular to the guide rail plane is labeled

as x, and the axis parallel to the guide rail plane is y. Therefore, the

initial end position of the rigid-flexible robotic arm is (0.63, 0). In

the control systemwe developed, a target end position coordinate is

FIGURE 14

End-point vibration.

FIGURE 13

Step response of the joints: (A) Angular displacement of joint one, (B) angular displacement of joint two.
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FIGURE 15

Input torque of the joints: (A) Input torque of joint one, (B) input torque of joint two.

FIGURE 16

Step response of the joints: (A) Angular displacement of joint one, (B) angular displacement of joint two.

given. Through inverse calculation, the expected angles of the two

joints are obtained. Using the corresponding control program, the

motors are controlled with the appropriate control input until the

target position is reached. During the experiment, the input control

quantity of the motor is calculated by the controller program on

the computer. The control card gives the motor’s input, making

the joints rotate. The real-time angular displacement of the two

joints is obtained through the motor encoder, and the change in

value of the strain gauge on the flexible arm is collected by the

data collector to calculate the real-time deformation amount at the

end, which is fed back to the computer for control. During the

experiment, the angular displacement of the two joints, control

input, and deformation amount at the end of the flexible arm are

saved in real-time. We conducted an experiment using the fuzzy

super-twisting sliding mode control based on the reduced-order

model of the approximate inertial manifold and compared it with
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FIGURE 17

End-point vibration.

FIGURE 18

Experimental platform of the rigid-flexible robotic arm.

the direct truncation low-order modal model and the second-order

modal model. The end coordinates of the experiment are (0.45 m,

0.41 m), and the experimental results are shown in Figures 20–22.

5.3. Analysis of experimental results

Based on the control system and experimental method

described above, we conducted experimental research on the end

position control of the rigid-flexible robotic arm. The experimental

results, as illustrated in Figures 20–22, provide a comprehensive

overview of our proposed method’s performance.

From Figures 20–22, it is evident that the fuzzy super-

twisting sliding mode control (FSNTSMC-GL) based on the

reduced-order model of the approximate inertial manifold exhibits

key attributes worth noting. Firstly, its joint response speed

aligns closely with the non-singular terminal sliding mode

control (FNTSMC-2) based on the second-order modal model,

highlighting the comparable efficiency of our proposed method

TABLE 1 Parameters of the RK2511N+ DC resistance tester.

Testing
range

Accuracy Open
circuit
voltage

Basic
dimensions

Range

10u�−20K 0.1% < 5.5v 330× 220×

198 mm

2�/

20�/200

�/2 K�

TABLE 2 AC servo motor parameter table.

Motor model MSMD5AZG1V MSMD5AZG1U

Rated power (W) 50 50

Rated speed (rpm) 3000 3000

Maximum speed (rpm) 5000 5000

Rated torque (Nm) 0.16 0.16

Maximum torque (Nm) 0.48 0.48

Rated line current (A) 1.1 1.1

Rotor inertia (×10−4 kg ·m2) 0.027 0.025

FIGURE 19

Experimental coordinate system.

in terms of response time. Additionally, the control quantity

and end vibration characteristics of FSNTSMC-GL are akin

to those of FNTSMC-2, suggesting that our approach not

only ensures precise control but also minimizes unintended

vibrations, vital for the optimal operation of robotic arms. When

contrasted with the non-singular terminal sliding mode controller

(FNTSMC-1) rooted in the low-order modal model, FSNTSMC-

GL demonstrates substantial improvements across all metrics,

underscoring the benefits of leveraging the reduced-order model

of the approximate inertial manifold, which bolsters control

quality without the intricacies of advanced controller hardware

implementation.

To sum up, our experimental results not only validate

the theoretical claims made in the paper but also underscore

the advantages of the proposed FSNTSMC-GL in real-world

applications. The improved performance across response speed,

control quantity, and end vibrationmakes it a promising alternative

to existing methods, especially when hardware simplification is of

paramount importance.
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FIGURE 20

Experimental joint angular displacements: (A) Angular displacement of joint one, (B) angular displacement of joint two.

FIGURE 21

Experimental motor control value: (A) Control quantity of joint one, (B) control quantity of joint two.

FIGURE 22

Experimental end-point deformation displacement.

6. Conclusion

A new fuzzy super-twisting sliding mode control strategy

was utilized to the reduced model of the rigid-flexible coupled

robotic arm based on the approximate inertial manifold. Based

on simulation and experimental results, the control quality of

the low-order modal model based on the approximate inertial

manifold is very close to the directly truncated second-order

model. Compared to the directly truncated first-order modal

model, the control quality has been significantly improved, and it

has excellent tracking performance and strong robustness under

bounded external disturbances. Thus, the fuzzy super-twisting

sliding mode control of the rigid-flexible coupled robotic arm

reducedmodel based on the approximate inertial manifold not only

ensures higher control quality but also simplifies the controller’s

design.
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