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Loop closure detection is an important module for simultaneous localization

and mapping (SLAM). Correct detection of loops can reduce the cumulative

drift in positioning. Because traditional detection methods rely on handicraft

features, false positive detections can occur when the environment changes,

resulting in incorrect estimates and an inability to obtain accurate maps. In

this research paper, a loop closure detection method based on a variational

autoencoder (VAE) is proposed. It is intended to be used as a feature extractor

to extract image features through neural networks to replace the handicraft

features used in traditional methods. This method extracts a low-dimensional

vector as the representation of the image. At the same time, the attention

mechanism is added to the network and constraints are added to improve the

loss function for better image representation. In the back-end feature matching

process, geometric checking is used to filter out thewrongmatching for the false

positive problem. Finally, through numerical experiments, the proposed method

is demonstrated to have a better precision-recall curve than the traditional

method of the bag-of-words model and other deep learning methods and is

highly robust to environmental changes. In addition, experiments on datasets

from three di�erent scenarios also demonstrate that the method can be applied

in real-world scenarios and that it has a good performance.

KEYWORDS

visual SLAM, loop closure detection, variational autoencoder, attentionmechanism, loss

function

1 Introduction

Loop closure detection is the process of identifying the places that a robot has visited

before, which can help the robot relocate when it loses its trajectory due to motion blur,

forming a topologically consistent trajectory map (Gálvez-López and Tardis, 2012; Arshad

and Kim, 2021). The key to solving the loop closure detection problem is to match the

images captured by the robot with the images corresponding to previously visited locations

on the map. Loop closure detection is essentially an image-matching problem, the core of

which is the representation and matching of image features.

Traditional loop closure detection methods are generally based on appearance

(Cummins and Newman, 2008), which has little connection with the front end and

back end of the system. The loop detection relationship is only determined given the

similarity of the two images. Since proposed, the appearance-based loop closure detection

methods have become mainstream in visual SLAM and have been applied to practical

systems (Mur-Artal et al., 2015), most of which utilize the bag-of-words (BOW) model
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(Filliat, 2007; Garcia-Fidalgo and Ortiz, 2018; Li et al., 2019). The

BOW model clusters the visual feature descriptors of the image

to build a dictionary and then searches the words that match

the features of each image to describe the image. A word can be

regarded as a representative of several similar features.

However, appearance-based methods usually depend on

traditional handcrafted features, such as SIFT (Lowe, 2004), SURF

(Bay et al., 2006), and BRIEF (Calonder et al., 2010). Each of these

features has its own characteristics, but they have limited ability

to express the environment under the conditions of significant

changes in viewing angle or illumination conditions. Moreover,

they can only describe the local appearance, which has a limited

ability to describe the whole image. BOW-based closed-loop

detection methods rely on appearance features and their presence

in the dictionary, ignoring geometric information and relative

positions in space, thus generating false loops due to similar

features appearing in different places (Qin et al., 2018; Arshad and

Kim, 2021).

Recently, given the rapid development of deep learning

in computer vision (Bengio et al., 2013), methods based on

convolutional neural networks (CNN) (Farrukh et al., 2022;

Favorskaya, 2023) and attention mechanisms have attracted more

attention in imitating human cognitive patterns. Using the learning

features of the neural network to replace the traditional manual

features is a new method to solve the loop detection problem

(Memon et al., 2020; Wang et al., 2020). Zhang et al. (2022)

used global features to perform candidate frame selection via

HNSW (Malkov and Yashunin, 2018), while the local one was

exploited for geometric verification via LMSC. Based on the

above two components, the whole system was at the same time

high-performance and efficient compared with state-of-the-art

approaches. Liu and Cao (2023) utilized the effective FGConv (Liu

et al., 2020) as their proposed network backbone due to its high

efficiency. The network adopts an encoder-decoder-based structure

with skip connections. Osman et al. (2023) trained PlaceNet to

identify dynamic objects in scenes via learning a grayscale semantic

map indicating the position of static and moving objects in

the image. PlaceNet is a multi-scale deep autoencoder network

augmented with a semantic fusion layer for scene understanding,

which generates semantic-aware deep features that are robust to

dynamic environments and scale invariance.

At the same time, the attention mechanism can weigh key

information and ignore other unnecessary information to process

information with higher accuracy and speed. Hou et al. (2015)

used the pre-trained CNN model to extract features to obtain

a complete image representation, and through experiments on

various datasets, it was shown that CNN features are more

robust to changes in visual angle, light intensity, and scale of

the environment. Gao and Zhang (2017) used a modified stacked

denoising autoencoder (SDA), a deep neural network trained in an

unsupervised manner, to solve the loop closure detection problem,

but the extraction speed is slow. NetVLAD (Arandjelovic et al.,

2016) is currently an advanced location recognition method, which

is an improved version of VLAD. It clusters local descriptors into

global image descriptors through neural network learning, which

has high accuracy and applicability. Schönberger et al. (2018)

used a variational autoencoder (VAE) to compress and encode 3D

geometric and semantic information to generate a descriptor for

subsequent position recognition. This method has good detection

accuracy for large viewing angles and appearance changes, but its

computational cost is high.

For traditional methods, the problem of false detection is

easy to occur when facing similar environments or relatively

large changes in illumination, which leads to serious errors

in map estimation. In this research paper, we propose a loop

closure detection method based on a variational autoencoder to

solve the loop closure detection problem in visual SLAM. The

method uses intermediate layer depth features instead of the

traditional manual features and compares the current image with

the previous keyframes to detect the loop. Themethod incorporates

an attentional mechanism in the neural network to obtain more

useful features and also improves the loss function of the network

and eliminates erroneous loops through geometric consistency.

2 Loop closure detection system
architecture based on variational
autoencoder

Figure 1 shows the structure of the proposed loop closure

detection system based on a variational autoencoder. Dividing

loop closure detection into two parts: front-end feature extraction

and back-end feature matching. The proposed method consists

of two sections: (1) In the front-end feature extraction part,

a network structure based on a variational autoencoder is

designed and constructed, and the attention mechanism is

added. It will be called SENet-VAE. Besides, the loss function

of the variational autoencoder is revised and improved. The

aim is to learn feature representations with fewer image

features to obtain more accurate results. (2) In the back-

end feature matching part, due to the low dimensionality of

the descriptor, a K-nearest neighbor search is used to detect

loop closures and geometric checks are used to filter false

detections.

The proposed network structure is shown in Figure 2.

The front encoder part encodes the input image with 13

convolutional layers, four pooling layers, and three SENet attention

modules. The middle section is responsible for sampling and

mapping the encoder input to a normal distribution. The

later decoder part performs the semantic segmentation of the

image and the decoded reconstruction of the image with

eight convolutional layers and four upsampling layers. The

last decoder outputs high-dimensional features to the softmax

classifier. The classifier classifies the pixels of the input image and

predicts the probability of the classification labels while decoding

the image.

The proposed network is based on VAE. The network input is

an RGB image with a resolution of 192 × 256. The encoder maps

the image to a normal distribution through the latent variables

µ and σ , and then the information of the potential variables

is decoded by the decoder. It describes the observation of the

potential space in a probabilistic way. In addition, this method adds

an attentional mechanism to the VAE to increase the weight of the

effective features to obtain better results.
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FIGURE 1

Function diagram of loop detection based on a variational autoencoder.

FIGURE 2

Feature extraction network structure of SENet-VAE.

2.1 Improvement of the objective function
of the VAE network

Inspired by Sikka et al. (2019), the loss function of VAE

is improved based on the KL divergence of traditional VAE. A

hyperparameter β is added to the second KL divergence of the

loss function. As the parameter β rises, the traditional VAE has

the characteristics of disentanglement. The entangled data in the

original data space are transformed into a better representation

space, in which the changes of different elements can be separated

from each other.

Assume that the network input data D = {X,V ,W} is a set

composed of images x, conditional independent factors v, and

conditional correlation factors w. Suppose that the conditional

probability distribution of x, denoted by p(x |v,w ), is generated

from simulated real data consisting of v and w, which is shown in
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Equation (1):

p(x |v,w ) = Sim(v,w) (1)

where Sim() is the simulation operation.

It is hoped that the generative model will learn a model p(x |z )

that can generate pictures through a hidden layer z and make this

generative process as close as possible to real-world models. The

mathematical expression is shown in Equation 2.

p(x |z ) ≈ p(x |v,w ) = Sim(v,w) (2)

This model is controlled by the parameter θ . Therefore, an

appropriate goal is to maximize the marginal likelihood of the

observed data x in the expectation over the entire distribution of

the latent factor z. Which is shown in Equations (3) and (4).

pθ (x) =
∑

z

pθ (z)pθ (x |z ) = Epθ (z)[pθ (x |z )] (3)

max
θ

Epθ (z)[pθ (x |z )]. (4)

For p (z), as its definite form cannot be determined, it is often

approximated by a joint distribution model qφ (z |x ). In order

for qφ (z |x ) to be as simple as possible, it is approximated by a

Gaussian distribution p (z) ∼ N (0, I), as follows in Equation (5).

max
φ,θ

Ex∼D

[

Eqφ (z|x )

[

log pθ (x |z )
]

]

s.t.DKL(qφ(z |x )
∥

∥p (z) ) ≤ ε (5)

Rewrite the above equation as the Lagrange equation under the

Karush-Kuhn-Tucker (KKT) condition:

F (θ ,φ,β; x, z) = Eqφ (z|x )

[

log pθ (x |z )
]

− β
(

DKL(qφ(z |x )
∥

∥p(z) )− ε
)

(6)

Since β , ε ≥ 0, according to the complementary relaxation

degree KKT condition, Equation (6) can be rewritten to obtain the

β − VAE formula as the ultimate objective function, as follows in

Equation (7):

Lβ−KLD = F (θ ,φ,β; x, z) ≥ L (θ ,φ; x, z,β)

= Eqφ(z|x )

[

log pθ (x |z )
]

− βDKL

(

qφ (z |x )
∥

∥p (z)
)

(7)

As the value β becomes larger, qφ (z |x ) becomes simpler,

transmitting less information and still being able to reconstruct the

image well.

After sampling from the standard normal distribution ε, the

latent variable z obtained by the encoder is sent to the decoder,

which is used to predict the full-resolution semantic segmentation

label and to reconstruct the full-resolution RGB image. The output

of the decoder is then used to construct the RGB reconstruction

loss function Lr , as follows in Equation (8) and the maximum

cross-entropy loss function Ls to account for class bias,as follows

in Equation (9):

Lr = −
∑

i

(

xi log
(

pi
)

+ (1− xi) log
(

1− pi
))

(8)

Ls =
1

N

∑

i

Li =
1

N

∑

i

M
∑

c=1

yic log
(

pic
)

(9)

Here xi and pi represent the label of the input image and the

probability of the positive class output by the network behind

the softmax function, respectively. M represents the number of

categories, yic is the sign function (0 or 1), and pic is the probability

that the observation sample i belongs to category c, which is

obtained by the softmax function.

In the encoder part, the weight of the two encoders is shared

in the form of a triple network, and a sample is selected from

the dataset called anchor. Samples of the same type as the anchor

are selected. Distortion or darkening operations are performed,

and the movement of the camera is imitated to a certain extent.

This type of image is called a positive image. In the data of the

current training batch, the sample that is different from the anchor

is called a negative image. Anchor, positive image, and negative

image consist of a triplet. The global image descriptor is taken from

the latent variable µ. With the descriptors of a baseline image da, a

positive image dp, and a negative image dm, the triplet loss function

is defined as follows in Equation (10):

Lt = max(0, dTa
(

dn − dp
)

+m) (10)

wherem is the marginal hyperparameter.

This loss function expressed by Lt forces the network to learn

to use m to distinguish the similarity between positive and negative

images. The minimization of the damage function is obtained by

minimizing the cosine similarity between the reference image and

the negative image and maximizing the similarity between the

reference image and the positive image.

Finally, the overall objective function is defined as follows in

Equation (11):

L = λ0Lβ−KLD + λ1Lr + λ2Ls + λ3Lt (11)

where λi is the weight factor to balance the impact of each project.

2.2 Attention mechanism module

The attention mechanism squeeze-and-excitation networks

(SENet) (Hu et al., 2018) considers the relationship between feature

channels to improve the performance of the network. The attention

mechanism adopts a brand-new feature recalibration strategy,

which automatically acquires the importance of each feature

channel through learning. Then, useful features are promoted and

features that are not very useful for the current task are suppressed

based on feature weight.

The SENet module in this article changes the input from the

previous pooling layer: Ftr :X → U, X ∈ R
H′×W′×C′

, U ∈

R
H×W×C and transmits it to the next layer. Then, the output can

be written as follows in Equation (12):

uc = vc ∗ X =

C
∑

s=1

vsc ∗ x
s (12)

Here Ftr is the pooling operator,V = [v1, v2, . . . , vC] represents

the filter, vc represents the parameters of the c-th filter, C represents

the number of channels in the feature graph, H represents the

height of the feature graph, and W represents the width of the

feature graph.

The goal is to ensure that the network is sensitive to its

informative features so that they can be exploited subsequently and

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1301785
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Song et al. 10.3389/fnbot.2023.1301785

FIGURE 3

The squeeze-and-excitation block of SENet-VAE.

FIGURE 4

An example of final matches after performing RANSAC.

suppress useless features. Therefore, before the response enters the

next transformation, it is divided into three parts, namely, squeeze,

excitation, and scale, to recalibrate the filter response.

First, the squeeze operation encodes the entire spatial feature

into a global feature by using global average pooling. Specifically,

each two-dimensional feature channel is turned into a real number,

which has a global receptive field to some extent, and the output

dimension matches the number of input feature channels. It

represents the global distribution of the response on the feature

channel and enables the layers to be close to the input to obtain

the global receptive field.

The statistic z ∈ R
C is generated by reducing the set U of the

local descriptor to the spatial dimension H × W, where the c-th

element of z is calculated by Equation (13):

zc = Fsq (uc) =
1

H ×W

H
∑

i=1

W
∑

j=1

uc
(

i, j
)

(13)

The second part is the excitation operation, which fully captures

the channel dependencies by utilizing the information gathered in

the squeeze operation. This part consists of two fully connected

layers. The first layer is a dimension reduction layer with the

parameter W1 ∈ R
C
r ×C , which is activated by the ReLU activation

function. The second layer is the dimensionality-increasing layer

with the parameter W2 ∈ R
C× C

r , which is restored to the original

dimension and uses the sigmoid activation function, as follows in

Equation (14). Here, δ refers to the ReLU activation function.

s = Fex (z,W) = σ
(

g (z,W)
)

= σ (W2δ (W1z)) (14)

Finally, the scale operation part multiplies the learned

activation values of each channel (sigmoid activation, value 0 to 1)

by the original features on U, which is shown in Equation (15):

x̃c = Fscale (uc, sc) = sc · uc (15)

The construction of the squeeze-and-excitation block in the

network is shown in Figure 3.

3 Loop closure detection based on a
variational autoencoder

In this section, we use the neural network described above to

extract the image features and use it to perform back-end image

feature matching to achieve loop closure detection. During the

image-matching process, key point mismatches are eliminated by

geometric checking, which improves the accuracy of detection.

3.1 Image feature description

The global descriptor for the image is taken from the output of

the convolutional layer where the latent variable µ is located in the

sampling layer of the network. After the encoder, the latent variable

z is split channel-wise into 14 local descriptors of size 1/4 of the

input image size. One of the slices is dedicated to reconstructing the

full-resolution RGB image, while the other is sent to the decoder,

concatenated, and then used to predict a full-resolution semantic

segmentation label. Since the local descriptor dimension is 192

dimensions, the global descriptor consisting of 14 local descriptors

has a dimension of 10,752 dimensions. It can be interpreted as a

set of 10,752 dimensional vectors of length l, with V(I) denoting the
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corresponding output for a given input image, which is shown in

Equation (16):

V(I) = (v
(I)
1 , v

(I)
2 , . . . , v

(I)
l
) ∈ R

l (16)

For the extraction of image key points, the method proposed

by Garg et al. (2018) is used. It extracts key points from the

maximum activation area of the underlying Conv5 layer of the

network encoding. The largest activation area in a 48× 64 window

is selected as a key point on the feature map. After the key

points are extracted, the key point descriptor is inspired by the

BRIEF (Calonder et al., 2010) descriptor. Taking the extracted

key point as the center, certain point pairs are selected in a 3 ×

3 size field for comparison. After all point pairs are compared,

a 256-dimensional key point descriptor is obtained. During key

point matching, these descriptors are directly compared using the

Euclidean distance metric.

3.2 Loop closure detection

In order to detect loop closures, first build a database of

historical image descriptors through global image descriptors.

When the image to be queried is input, the global image descriptor

is used to perform a K-Nearest neighbor search in the established

database, and images with relatively high similarity scores are

selected to form a candidate image set. Then, K candidates are

screened in the candidate set through the key points described

before, and the random sample consensus (RANSAC) algorithm

is used to filter out false matches. The RANSACN algorithm finds

an optimal homography matrix H through at least four sets of

feature-matching point pairs, and the size of the matrix is 3 ×

3. The optimal homography matrix H is supposed to satisfy the

maximum number of matching feature points. Since the matrix

is often normalized by making h33 = 1, the homography matrix,

which is expressed by Equation (17), has only eight unknown

parameters:

s







x′

y′

1






=







h11 h12 h13
h21 h22 h23
h31 h32 h33













x

y

1






(17)

where
(

x, y
)

is the corner point of the target image,
(

x′, y′
)

is the

corner point of the scene image, and s is the scale parameter.

Then, the homography matrix is used to test other matching

points under this model. Use this model to test all the data, and

calculate the number of data points and projection errors that

satisfy this model through the cost function. If this model is the

optimal model, the corresponding cost function should obtain the

minimum value. The equation for calculating the cost function J is

as follows in Equation (18):

J =

n
∑

i=1

(

x′i −
h11xi + h12yi + h13

h31xi + h32yi + h33

)2

+

(

y′i −
h21xi + h22yi + h23

h31xi + h32yi + h33

)

(18)

After filtering out invalid matches, the matched key points can

be used to calculate the effective homography matrix as the final

matching result. An example of final matches after performing

RANSAC can be seen in Figure 4.

4 Experiments

In this section, the feasibility and performance of the proposed

method will be tested on the Campus Loop dataset. The

hyperparameters used in the experiments are shown in Table 1. The

proposed method is compared with the BOW model and other

CNN-based methods. The performance of the proposed method is

measured using the precision-recall curve. There are mainly two

metrics used to interpret the precision-recall curve. (1) Area under

the curve (AUC), which is the area enclosed by the precision-recall

curve and the coordinate axis. The closer the AUC is to 1.0, the

higher the accuracy of the detection method is. (2) The maximum

recall rate at 100% accuracy is represented by Max-Recall, which

is the value of the recall rate when the accuracy drops from 1.0

for the first time. Finally, the KITTI odometry dataset is used to

test the application and effectiveness of the proposed method in

real scenarios.

4.1 Datasets and evaluation methodology

The accuracy rate describes the probability that all the loops

extracted by the algorithm are real loops, and the recall rate refers

to the probability of being correctly detected in all real loops. The

functions are as follows in Equations (19) and (20):

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

The accuracy rate and recall rate are, respectively, used as the

vertical axis and horizontal axis of the precision-recall rate curve.

TABLE 1 List of hyperparameters.

Parameter Symbol Value

Learning rate η 10−3

Input image size I 192× 256

Batch size NT 12

Weight function λ0 10−4

Weight function λ1 10−4

Weight function λ2 1.0

Weight function λ3 1.0

Beta parameter β 250

Margin parameter m 0.5

TABLE 2 Classification of loop closure detection results.

Result/fact True loop False loop

True loop True positive (TP) False positive (FP)

False loop False negative (FN) True negative (TN)
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FIGURE 5

Comparison of precision-recall curves.

FIGURE 6

Results of precision-recall curves (the closer the AUC is to 1.0, the higher the accuracy of the detection method is; higher maximum recall means

more false detections can be avoided).

There are four types of results for loop closure detection, as shown

in Table 2. True positives and true negatives are cases where the

prediction is correct. False positives are no loop closure situations

that are mistaken for correct loop situations similar to potential

diatheses for psychosis also known as perceptual bias (Safron et al.,

2022); and false negatives are cases where a true loop situation is not

detected, also known as a perceptual variance. Perceptual variance

means that two images are in the same scene, but due to lighting,

lens angle distortion, etc., the algorithm may misinterpret them as

different scenes.

The Campus Loop dataset (Merrill and Huang, 2018) is a

challenging dataset for the proposed method. The dataset consists

of two sequences. These sequences are a mixture of indoor and

outdoor images of the campus environment. The dataset contains

large viewpoint variations, as well as illumination and appearance

TABLE 3 List of dataset parameters.

Sequence
number of
the dataset

00 05 06

Image size 1,241× 376 1,241× 376 1,241× 376

Number of images 4,540 2,760 1,100

Trajectory length

(m)

3,724.187 2,205.576 1,232.876

variations. Furthermore, each image contains different viewpoints

and many dynamic objects.

On this dataset, the proposed method is compared with the

following methods: (1) CNN—Zhang et al. (2017) proposed a

convolutional neural network (CNN)-based loop closure detection
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FIGURE 7

Results of loop closure detection using KITTI-odometry [sequence 00]: (A) The screen of online loop closure detection; (B) Performance of the

proposed method on the practical outdoor dataset.

method to input images into a pre-trained CNN model to extract

features. (2) SDA—Gao and Zhang (2017) used an improved

stacked denoising autoencoder (SDA) to solve the loop detection

problem of the visual SLAM system. The network is trained in

an unsupervised way, and the data is represented by the response

of the hidden layer, which is used to compare the similarity of

images. (3) DBOW—Use the DBoW2 vocabulary tree from the

state-of-the-art ORB-SLAM (Mur-Artal and Tardós, 2017).

Figures 5, 6 describe the results of loop closure detection

on this dataset. It can be seen that the proposed method can

maintain a good accuracy rate even at a high recall rate compared

with other methods. Through the AUC index, it can be found

that the proposed method is more than 50% compared with

the BOW model and 20% higher than the other two deep

learning methods. In addition, it can also be found in the

Max-Recall index that the proposed method also maintains a
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FIGURE 8

Results of loop closure detection using KITTI-odometry [sequence 05]: (A) The screen of online loop closure detection; (B) Performance of the

proposed method on the practical outdoor dataset.

higher level than other methods. Due to the environmental

changes in the dataset, such as illumination and obstruction

of dynamic objects, the proposed method performs better than

the traditional BOW model. For CNN and SDA, they directly

use the output of the underlying network in the convolutional

network. Although they are more accurate than the bag-of-

words model, they can easily produce false detection and affect

positioning accuracy.

4.2 Loop closure detection in a practical
environment

In order to further test the effectiveness of the proposedmethod

in a practical environment, we selected sequence images of three

complex scenes (sequence numbers 00, 05, and 06) in the KITTI

odometry dataset (Geiger et al., 2012) for our experiments; the

sequence information is shown in Table 3.
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FIGURE 9

Results of loop closure detection using KITTI-odometry [sequence 06]: (A) The screen of online loop closure detection; (B) Performance of the

proposed method on the practical outdoor dataset.

In this experiment, the image resolution is adjusted to 192

× 256. The final experimental results are presented in Figures 7–

9. Part (A) of each figure shows the real-time online detection

of the frame, where the red part of the figure represents the

image match results with the historical database detected when

running to that frame, and the result of the image match is

shown on the left. Part (B) of each figure represents the overall

trajectory of each sequence. In the figures, the horizontal plane

X-axis and Y-axis represent the distance, and the vertical axis

represents the frame index. The red vertical line in the figures

represents the detection of a loopback when the trajectory is run to

that frame.

For performance evaluation, the number of occurrences of loop

closure detection and the accuracy of correctly matching images

for each sequence were counted. The test results are shown in

Figure 10.
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FIGURE 10

Loop closure detection results under di�erent environments (KITTI dataset of sequence numbers 00, 05, and 06).

TABLE 4 Ablation experiments on di�erent modules of the network.

Method β = 1 β = 250 SENet Metrics

KLD
loss

AUC

Ours
√

1,575.23 0.7723

Ours
√

42.73 0.8042

Ours
√ √

44.68 0.8453

The bold values represent the final values obtained by the model after improving the loss

function and adding the attention mechanism.

4.3 Ablation experimental analysis

As mentioned before, this research paper proposes to

incorporate an attention mechanism in the network to filter image

features based on feature relevance to improve the performance of

the network. This section analyzes the improvement effect of the

network from a quantitative point of view and Table 4 shows the

results of the experiment. The proposed method is trained on the

COCO dataset (Caesar et al., 2018). It should be noted that when

β = 1, it is equivalent to the original Kullback-Leibler divergence

loss. When increasing the value β , we can see that the Kullback-

Leibler divergence loss has a significant decrease, which indicates

that the encoder maps the input distribution closer to the desired

normal distribution, and the model has a better disentangling

ability. Furthermore, with the addition of the attention mechanism,

the model improves by 4.9% in recall and accuracy compared to not

adding the module.

5 Conclusions

In this research paper, a loop closure detection method

based on a variational autoencoder is documented, which uses a

neural network to learn the representation of the image from the

original image to replace the traditional handicraft features. We

incorporate an attention mechanism in the coding layer of the

neural network, which can automatically obtain the feature weight

of each feature channel, and then improve the performance of the

network in extracting image features by improving the features

that are useful for the current task and suppressing the useless

ones according to this feature weight. At the same time, the loss

function of the variational autoencoder (VAE) is improved. By

adding a hyperparameter β to the second KL divergence term of

the loss function, the VAE shows better disentanglement ability

and improves the performance and convergence of the network.

Experiments on the Campus Loop dataset show that the proposed

method can maintain high accuracy at a high recall rate. In

addition, experiments on the datasets for three different scenarios

indicate that the method is robust to environmental changes, and

can maintain high accuracy even in the presence of viewing angle

changes and object occlusions. Our future work will consider

lightweight design and modification of the method to adapt it to

practical high-speed scenarios.
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