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Health monitoring is a critical aspect of personalized healthcare, enabling early

detection, and intervention for various medical conditions. The emergence of

cloud-based robot-assisted systems has opened new possibilities for e�cient

and remote health monitoring. In this paper, we present a Transformer-based

Multi-modal Fusion approach for health monitoring, focusing on the e�ects

of cognitive workload, assessment of cognitive workload in human-machine

collaboration, and acceptability in human-machine interactions. Additionally, we

investigate biomechanical strain measurement and evaluation, utilizing wearable

devices to assess biomechanical risks in working environments. Furthermore,

we study muscle fatigue assessment during collaborative tasks and propose

methods for improving safe physical interaction with cobots. Our approach

integrates multi-modal data, including visual, audio, and sensor- based inputs,

enabling a holistic assessment of an individual’s health status. The core of

our method lies in leveraging the powerful Transformer model, known for its

ability to capture complex relationships in sequential data. Through e�ective

fusion and representation learning, our approach extracts meaningful features for

accurate health monitoring. Experimental results on diverse datasets demonstrate

the superiority of our Transformer-based multi- modal fusion approach,

outperforming existing methods in capturing intricate patterns and predicting

health conditions. The significance of our research lies in revolutionizing remote

healthmonitoring, providingmore accurate, and personalized healthcare services.

KEYWORDS

cognitive workload, biomechanical strain, muscle fatigue, human-machine, interaction

cobots

1 Introduction

Health monitoring is a crucial aspect of modern healthcare systems, allowing for the

early detection and management of various medical conditions. Traditional approaches

to health monitoring often rely on single-mode data, such as medical records or sensor

readings, which provide limited insight into an individual’s overall health status. In recent

years, the advent of cloud-based robot-assisted systems has offered promising opportunities

for more efficient and personalized health monitoring. Cloud-based robot-assisted systems

combine the power of cloud computing with the capabilities of robotic devices to enable

remote monitoring and intervention. These systems have the potential to revolutionize

healthcare by providing continuous, real-time monitoring of vital signs, activity levels,

and other relevant health indicators. This allows for proactive healthcare interventions,

timely disease management, and improved overall well-being. One of the key challenges in
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health monitoring within cloud-based robot-assisted systems is the

effective integration and analysis of multi-modal data. Multi-modal

data refers to information collected from various sources, such

as visual data from cameras, audio data from microphones, and

sensor data from wearable devices. Integrating and fusing such

diverse data types can provide a more comprehensive and accurate

understanding of an individual’s health status. To address this

challenge, various models have been proposed in the field of multi-

modal health monitoring. Here, we introduce five relevant models:

Convolutional Neural Networks (CNNs): CNNs have been

widely used for analyzing visual data in health monitoring systems.

They excel at extracting spatial features and have been applied to

tasks such as facial expression recognition and activity recognition.

Recurrent Neural Networks (RNNs): RNNs are effective

in capturing temporal dependencies in sequential data. They

have been employed in health monitoring applications for

analyzing time-series sensor data, such as heart rate and

accelerometer readings.

Graph Neural Networks (GNNs): GNNs are designed to model

relationships and interactions among entities in graph-structured

data. In health monitoring, GNNs can capture correlations between

different health indicators, such as the relationships between blood

pressure and heart rate.

Generative Adversarial Networks (GANs): GANs are

commonly used for generating synthetic data that closely

resemble real data. In health monitoring, GANs can be utilized

to augment the limited training data and enhance the diversity of

the dataset.

Transformer Models: Transformers have gained significant

attention in natural language processing tasks but have also

shown promise in handling sequential and structured data. In

health monitoring, Transformer models can capture complex

relationships among multi-modal data sources, enabling effective

fusion, and representation learning.

The objective of this research is to propose a Transformer-

based Multi-modal Fusion approach for health monitoring in

cloud-based robot-assisted systems. By leveraging the strengths of

the aforementioned models, we aim to provide a comprehensive

and accurate assessment of individuals’ health status, leading to

improved diagnosis, intervention, and overall healthcare outcomes.

This paper makes the following three main contributions to the

field of health monitoring in cloud-based robot-assisted systems:

1. We propose a Transformer-basedMulti-modal Fusion approach

that leverages the power of Transformers to effectively integrate

and fuse multi-modal data. By applying the Transformer

architecture, our method captures complex relationships and

dependencies among different data sources, leading to a more

comprehensive and accurate assessment of an individual’s

health status.

2. Our approach addresses the limitations of traditional unimodal

methods by utilizing multi-modal data, including visual, audio,

and sensor-based inputs. This allows for a more holistic

understanding of an individual’s health condition, enabling early

detection, and intervention for various medical conditions.

3. We conducted extensive experiments to evaluate the

performance of our proposed method. By comparing it

with existing approaches, we demonstrate the superiority of our

Transformer-based Multi-modal Fusion approach in capturing

intricate patterns and accurately predicting health conditions.

These results provide empirical evidence of the effectiveness

and potential impact of our approach in improving health

monitoring within cloud-based robot-assisted systems.

2 Related work

2.1 Health monitoring in cloud-based
robot-assisted systems

The advancements in robotics technology have significantly

impacted various aspects of society, the economy, and people’s

daily lives. With the emergence of wireless network technology

and cloud computing, robots have transitioned from the industrial

control field to the service field (Turnbull and Samanta, 2013). In

the current market, robots primarily focus on family education,

entertainment, and domestic services, such as cleaning robots.

However, these robots are often limited by their standalone

functionality, lack of intelligence, and difficulties in maintenance

and upgrades. To overcome these limitations, the concept of

networked robots has been introduced, enabling remote operation

and management, as well as multi-robot cooperation. This has led

to the development of cloud robots (Zheng et al., 2012; Kehoe et al.,

2015). The architecture of cloud robots consists of two tiers: the

machine-to-machine (M2M) level (Chen, 2013) and the machine-

to-cloud (M2C) level (Hu et al., 2012). At the M2M level, a group

of robots is connected through wireless networks to form an ad-hoc

robot collaborative cloud infrastructure. The M2C level provides

a shared computing and storage resource pool, allowing robots to

offload computing tasks to the cloud. The networked robots in

the M2M level can communicate and collaborate with each other,

enabling complex tasks to be accomplished through distributed

computation and cooperation. The M2C level provides additional

capabilities by leveraging the power of cloud computing and storage

resources. This allows robots to access advanced data processing

algorithms, machine learning models, and large-scale data storage

to enhance their intelligence and expand their capabilities (Wang

et al., 2022).

By integrating wireless networks and cloud computing,

cloud robots can achieve enhanced performance, scalability, and

intelligence. They can leverage powerful computing resources,

access vast amounts of data, and benefit from shared intelligence

and learning. This enables them to perform more complex tasks,

adapt to changing environments, and continuously improve over

time (Tian et al., 2023).

2.2 Multi-modal robotics

The existing approaches for visual language representation

predominantly rely on BERT-style training objectives to capture

cross-modal alignments (Devlin et al., 2018). These approaches

have been widely applied in various downstream tasks, including

visual question answering, grounding, retrieval, and captioning (Lu

et al., 2019; Sun et al., 2019; Zhou et al., 2020). However, learning
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representations for robotics tasks presents additional challenges

due to the conditioning of perception data on motion policies and

model dynamics (Shi et al., 2023b).

Visual-language navigation of embodied agents is a well-

established field within robotics, featuring established benchmarks

and simulators (Anderson et al., 2018; Shi et al., 2023a). In recent

years, several studies have focused on exploring the alignment of

vision and language data for robotics applications. These studies

have typically involved combining pretrained models with fine-

tuning techniques (Nguyen and Daumé, 2019; Hao et al., 2020;

Thomason et al., 2020). To further enhance the modeling of

visual-language alignment in robotics, researchers have proposed

innovative approaches. One such approach is the co-grounding

attention mechanism, which aims to dynamically align visual and

language information based on shared semantic understanding

(Ma et al., 2019). By leveraging this mechanism, models can

effectively capture cross-modal correlations and improve their

overall understanding of the environment. In the domain of

manipulation, there has been notable work by Zhao and Lv

(2023), which utilizes CLIP (Radford et al., 2021) embeddings

to integrate semantic and spatial information. By leveraging the

embedding space provided by CLIP, the manipulation model gains

the capability to reason about objects’ semantics and their spatial

relationships. This integration allows for more effective planning

and execution of manipulation tasks within a robotic system.

2.3 Transformer-based models in robotics

Transformers have become a prevalent architectural choice in

various domains, making significant contributions to NLP (Brown

et al., 2020; Shi et al., 2023b), vision (Dosovitskiy et al., 2020;

Liu et al., 2021), and even reinforcement learning (Chen et al.,

2021; Lee et al., 2022). Additionally, transformers have found

applications in the field of robotics, demonstrating their versatility,

and effectiveness in addressing a wide range of robotic tasks.

In the realm of robotics, transformers have been successfully

applied to assistive teleoperation (Janner et al., 2021), legged

locomotion (Yang et al., 2021), path planning (Chaplot et al.,

2021), imitation learning (Kim et al., 2021), morphology controllers

(Gupta et al., 2022), spatial rearrangement (Liu et al., 2022),

and grasping (Han et al., 2021). These applications highlight the

capability of transformers in addressing diverse robotic challenges

across different domains. For instance, in assistive teleoperation,

transformers can assist human operators by leveraging their ability

to model long-range dependencies and capture complex spatial

relationships. In legged locomotion, transformers enable robots to

analyze and predict motion patterns, facilitating agile and dynamic

movements. Furthermore, transformers have shown impressive

results in multi-domain settings. Projects like Gato (Reed et al.,

2022) have trained a single transformer on 16 domains, including

captioning, language grounding, and robotic control. Despite the

magnitude of the task, Gato achieved remarkable performance.

However, it is worth mentioning that some of these achievements

rely on large amounts of data, such as 15,000 episodes for block

stacking and 94,000 episodes for Meta-World tasks (Yu et al.,

2020). These extensive datasets are crucial for learning intricate

representations and achieving high-level performance in complex

robotic scenarios.

While these studies demonstrate the potential of Transformer-

based models in health monitoring, there is still a need for

research specifically focused on the fusion of multi-modal data

using Transformers in cloud-based robot-assisted systems. In

this paper, we build upon the existing literature by proposing

a Transformer-based Multi-modal Fusion approach tailored for

health monitoring in cloud-based robot-assisted systems. Our

approach aims to leverage the strengths of Transformers in

capturing complex relationships and dependencies among multi-

modal data sources, providing a comprehensive and accurate

assessment of an individual’s health status.

3 Method

In this section, we present our proposed method, Transformer-

based Multi-modal Fusion for Health Monitoring in Cloud-based

Robot-assisted Systems. The overall workflow of our approach is

illustrated in Figures 1, 2.

Our MMTN (Multi-modal Transformer Networks) model is

shown in Figure 3, which consists of three key components:

Generalized Representation Learning Layer: This layer receives

the raw data collected from various sensors embedded in the robot

and conducts necessary preprocessing steps for further feature

extraction. It ensures that the data is in a suitable format and ready

for subsequent processing.

Multi-modal Transformer Module: This module is responsible

for extracting salient features from each modality within the

multi-modal data. By utilizing transformer architecture, it captures

the interdependencies among different modalities effectively.

Additionally, it generates the representation of class tokens, which

encodes comprehensive information regarding the health status of

the robot.

Proportional-Integral-Derivative (PID) Controller: In our

method, we employ a PID controller to guide the actions of the

robot in cloud-based robot-assisted systems. The controller utilizes

the comprehensive health status representation obtained from the

multi-modal transformer module to determine potential risks,

symptom developments, and overall health state of the robot. It

enables timely and appropriate responses to ensure the safety and

efficiency of the system.

The pseudocode outlines the training process of a deep learning

model that integrates Multi-modal Fusion, Transformer, and PID

control strategies. The model takes four different training datasets:

“MIMIC-III,” “PhysioNet,” “UCI Machine Learning Repository,”

and “Open-i.” It starts by initializing the Multi-modal Fusion

model, Transformer model, and PID gains. The learning rate and

the number of epochs are then set. For each epoch, the model

performs multi-modal fusion, encodes the fused features using a

Transformer, applies multi-head self-attention, and uses a feed-

forward neural network. A PID control signal is computed and

used to update the model parameters using gradient descent.

This process is repeated until convergence criteria are met. If the

validation loss decreases, the best model is saved. The final output

is the trained model parameters.
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FIGURE 1

Workflow of transformer-based multi-modal fusion for health monitoring in cloud-based robot-assisted systems.

FIGURE 2

Workflow of transformer-based multi-modal fusion for health monitoring in cloud-based robot-assisted systems.
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Input : Training dataset: "MIMIC-III",

"PhysioNet", "UCI Machine Learning

Repository", "Open-i"

Output: Trained model parameters

Initialize the Multi-modal Fusion model;

Initialize the Transformer model;

Initialize PID gains: Kp, Ki, Kd;

Set the learning rate;

Set the number of epochs;

for each epoch do

while not converged do

for each mini-batch in the training dataset do
Perform multi-modal fusion:

Xextfusion = extMultiModalFusion(X1,X2, ...,Xn);

Encode fused features:

H = extTransformerEncoder(Xextfusion);

Perform multi-head self-attention:

Attention(H);

Feed-forward neural network: FFN(H);

Compute PID control signal:

u(t) = Kpe(t)+ Ki

∫ t
0 e(au)dau+ Kd

d
dt
e(t);

Update model parameters using gradient

descent: 2← 2− α∇2L+ u(t);

end

Compute evaluation metrics: accuracy,

recall, F1 score, AUC;

if convergence criteria met then

extbfbreak;

end

end

if validation loss decreases then

Save the best model;

end

end

Output: Trained model parameters

Algorithm 1. Multi-modal fusion, transformer, and PID training.

3.1 Unified representation learning

MMTN first takes the raw multimodal data and transfers

each modality into a unified representation to be fed into the

MSTT module.

The dataset D is a set of data records of all the modalities, where

dnm is the nth record of modality m.

D =









d11 · · · d
1
M

...
. . .

...

dN1 · · · d
N
M









(1)

For record n, denotes the record at timestep t. It is worth

noting dnm,t that could either be a one-dimensional vector (sensor or

skeleton data) or a two-dimensional matrix (visual data, excluding

the channel dimension) depending on the input data format.

Our method has two advantages. First, we use a common

method to generate unified representations for all the modalities,

which can be easily generalized to a new modality. This would not

require complex encoder architecture and extra data engineering.

Second, our approach could utilize a pre-trained model and be

completed offline. As it does not require a sequential Neural

Networks module, the computation can be done in parallel and

easily scale when a newmodality is introduced, which improves the

computation cost during both training and testing.

3.2 Multi-modal transformer model

The Transformer model serves as the core component of

our approach. It is a deep learning architecture that employs

self-attention mechanisms to capture the relationships between

different elements in a sequence. In our case, the input sequence

consists of visual and textual information extracted from various

sensors. The Transformer model consists of two key modules:

the Encoder and the Decoder. The Encoder module takes

the input sequence and applies self-attention mechanisms to

capture the dependencies between different modalities. It produces

a modality-specific representation for each input modality,

considering both the local and global contexts. The Decoder

module predicts the health condition or detects anomalies based

on the fused representations from the Encoder module. In this

multi-modal fusion approach, the Transformer model plays a

pivotal role in integrating the visual and textual information.

It learns to assign appropriate weights to each modality,

considering their relevance and contribution to the overall

prediction. By dynamically attending to different modalities, the

Transformer model effectively fuses the information and generates

a comprehensive representation. The Transformer-based Multi-

modal Fusion approach harnesses the power of the Transformer

model to improve health monitoring in cloud-based robot-

assisted systems. By utilizing the self-attention mechanisms in the

Transformer, our approach captures intricate relationships between

visual and textual cues, enabling a more holistic understanding of

the health conditions. The Transformer model not only handles

the fusion of multi-modal information but also captures contextual

dependencies within each modality. This enables our approach

to adaptively weigh the importance of each modality during

the fusion process, leading to more accurate predictions and

anomaly detection.

The Transformer model used in our proposed approach is

based on a series of mathematical equations that govern the

flow of information within the model. These equations involve

several variables, each with its own specific interpretation. Here,

we provide an overview of the main equations along with the

explanation of the variables involved: 1. Self-AttentionMechanism:

The self-attention mechanism allows the Transformer model to

capture the dependencies between different elements within a

sequence. It calculates attention weights for each element based

on its relationship with other elements in the sequence. 2. Given
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FIGURE 3

The multi-modal transformer networks.

an input sequence X, the self-attention mechanism calculates the

attention weights using the following equations:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (2)

Here, Q, K, and V represent query, key, and value matrices,

respectively. dk denotes the dimension of the key vectors. The

softmax function normalizes the logits, producing attention

weights that sum up to 1.

3. Encoder-Decoder Attention: The encoder-decoder attention

is responsible for capturing the dependencies between the encoder

and decoder representations in the Transformer model. It aligns

the decoder’s current position with the relevant encoder positions.

This attention mechanism is crucial for generating context-aware

representations in the decoder.

Similar to the self-attention mechanism, the encoder-decoder

attention is calculated using the following equations:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (3)

4. Position-wise Feed-Forward Networks: The position-wise

feed-forward networks consist of two fully connected layers with

a ReLU activation function applied in between. These networks

serve as non-linear transformations applied independently to each

position in the sequence.

The output of the position-wise feed-forward networks can be

expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Here, x denotes the input vector representations, W1, W2, b1,

and b2 represent the weight matrices and bias terms, respectively.
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These equations collectively define the computations involved

in the Transformer model, facilitating multi-modal fusion, and

enhanced health monitoring in cloud-based robot-assisted systems.

3.3 Robot-assisted systems

The control algorithm used in this study incorporates a

Proportional-Integral-Derivative (PID) controller for controlling

the actions of the robot in cloud-based robot-assisted systems. The

PID controller is a widely used feedback control mechanism that

adjusts the control signal based on the error between the desired

state and the current state of the system. The basic structure of PID

controller is depicted in Figure 4. The main components of PID

controller are optimization techniques, process, fitness function,

and sensors.

The PID control algorithm can be described as follows:

u(t) = Kp · e(t)+ Ki ·

∫ t

0
e(τ ) dτ + Kd ·

de(t)

dt
(5)

where:

u(t) represents the control signal generated by the PID

controller, which determines the robot’s actions. Kp, Ki, and Kd are

the proportional, integral, and derivative gains, respectively. These

gains are determined through tuning and affect the contribution

of each term to the control signal. e(t) represents the error at time

t, which is calculated as the difference between the desired state

and the current state of the system. The integral term, given by

Ki ·
∫ t
0 e(τ ) dτ , accumulates the error over time. It accounts for any

steady-state errors and adjusts the control signal to reduce them.

The derivative term, Kd ·
de(t)
dt

, considers the rate of change of the

error. It helps in stabilizing the system and damping any oscillations

by adjusting the control signal based on the error’s rate of change.

The PID gains Kp, Ki, and Kd are typically determined through a

process called tuning, where they are adjusted iteratively to achieve

the desired system response. Systematic tuning methods such as

Ziegler-Nichols or Cohen-Coon methods can be employed to

determine the optimal values of these gains for achieving stability,

responsiveness, and accuracy in controlling the robot’s actions.

By utilizing the PID control algorithm, the control algorithm

guides the robot’s actions in real-time based on the error between

the desired state and the current state of the system. This enables

the robot to respond dynamically to changes in the environment

or user’s condition, providing precise and reliable assistance in

cloud-based robot-assisted systems.

4 Experiments

4.1 Datasets

For evaluating the proposed Transformer-based Multi-modal

Fusion approach in cloud-based robot-assisted health monitoring,

we utilize four publicly available datasets that encompass diverse

clinical data and facilitate comprehensive analysis shown in Table 1.

MIMIC-III (Medical Information Mart for Intensive Care III;

Johnson et al., 2016): We leverage the MIMIC-III dataset, a widely

used resource containing comprehensive clinical data from ICUs

in a large academic medical center. This dataset includes electronic

health records, physiological waveforms, laboratory measurements,

medications, and clinical notes. Its extensive nature allows for

a holistic assessment of patients’ health conditions in an ICU

setting. The MIMIC-III database contains 46,520 patients at the

unique patient level, of whom 38,163 are adult patients, 38,161

patients were last admitted to the ICU, and 38,156 patients have

the first diagnosis.

PhysioNet (Moody et al., 2001): The PhysioNet repository

provides access to a variety of physiological signal datasets,

including electrocardiography (ECG), electroencephalography

(EEG), and blood pressure recordings. These datasets offer valuable

resources for studying the fusion of physiological signals with other

modalities, enhancing health monitoring capabilities. PhysioNet

Apnea-ECG dataset provided by Philipps University contains a

total of 70 single-lead ECG signal recordings (released set: 35

recordings, withheld set: 35 recordings), which were sampled

at 100 Hz and ranged between 401 and 587 min. For each

1 min ECG signal recording segment, the dataset provided an

expert annotation.

UCIMachine Learning Repository: The UCIMachine Learning

RepositoryOpen-i (Little et al., 2007) hosts a diverse collection

of healthcare-related datasets, covering areas such as disease

diagnosis, medical imaging, and patient monitoring. These datasets

serve as valuable sources for developing and evaluating health

monitoring algorithms, allowing for controlled experimental

settings. The dataset range of biomedical voice measurements from

31 people, where 23 people are showing Parkinson’s disease.

Open-i: Open-i (Demner-Fushman et al., 2016) is a publicly

available chest X-ray dataset collected by Indiana University.

Unlike MIMIC-CXR, which is annotated by auto-annotators,

Open-i dataset is labeled by medical professionals manually using

Medical Subject Heading (MeSH) indexing. The dataset contains

3,996 radiology reports associated with 8,121 images. Each pair is

assigned multiple MeSH terms by human-annotators.

4.2 Experimental settings

Before training our model, we performed necessary

preprocessing steps on the collected data. This involved resizing

the visual data to a consistent size, normalizing pixel values, and

augmenting the dataset using techniques such as random flips

and rotations to improve training performance. The auditory

data underwent preprocessing steps including filtering, noise

removal, and feature extraction using Mel Frequency Cepstral

Coefficients (MFCCs). The tactile data was preprocessed by

removing noise, normalizing values, and converting them into

appropriate representations.

For the model configuration, we adjusted key hyperparameters

of the Transformer-basedmulti-modal fusionmodel. This included

determining the number of transformer layers, attention heads,

and hidden dimensions based on empirical analysis and model

performance. We utilized pre-trained models, such as ResNet and

MobileNet, for extracting modality-specific features. The fusion

process incorporated attention mechanisms and concatenation

layers to effectively combine the multi-modal representations.
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FIGURE 4

Block diagram of PID controller.

TABLE 1 Overview of the datasets used in the study.

Dataset Key features Number of instances

MIMIC-III EHRs, physiological waveforms, lab measurements, medications 46,520 patients

PhysioNet ECG, EEG, blood pressure recordings 70 recordings

UCI Disease diagnosis, medical imaging, patient monitoring 31 people

Open-i Radiological images, clinical photographs, microscopy images 3,996 reports

In terms of implementation, we used the PyTorch framework

to develop and train our model. The experiments were conducted

on an NVIDIA Titan RTX GPU to leverage its computational

power and speed up the training process. We employed a training-

validation-test split for evaluating the model’s performance,

ensuring that the test set was independent and representative of

real-world scenarios.

To evaluate the model, we conducted several experiments,

including metric comparison and ablation studies. The metrics

considered for comparison included training time (in seconds),

inference time (in milliseconds), number of parameters (in

millions), and the number of floating-point operations (in billions).

Additionally, we evaluated the model’s performance using metrics

such as accuracy, area under the curve (AUC), recall, and

F1 score.

During training, we employed standard techniques such as

mini-batch stochastic gradient descent (SGD) with a suitable

learning rate schedule and weight decay.Wemonitored the model’s

performance on the validation set and employed early stopping

to prevent overfitting. Hyperparameters, including learning rate,

batch size, and regularization parameters, were tuned through a

systematic grid search or Bayesian optimization.

Throughout the experimental process, we carefully

documented all hyperparameters, preprocessing steps, and training

details to ensure reproducibility. The code implementation and

algorithms followed best practices and guidelines in the field.

The training process of the MMTN involves several steps:

Data Preprocessing: Prior to training, the raw multimodal data

is preprocessed to ensure compatibility and consistency across

different modalities. This preprocessing step may include resizing

and normalizing images, converting audio signals to spectrograms,

and scaling sensor-based inputs. The aim is to prepare the data for

effective training and fusion within the MMTN.

Feature Extraction: Once the data is preprocessed, feature

extraction is performed to capture meaningful representations

from each modality. This step involves applying appropriate

techniques such as convolutional neural networks (CNNs) for

visual data, recurrent neural networks (RNNs) for sequential

data, or other specialized models for different modalities. The

extracted features from each modality are then combined to form a

multimodal representation.

Transformer-based Fusion: The MMTN employs a

Transformer architecture to fuse the multimodal representations.

The Transformer model is composed of multiple layers of

self-attention and feed-forward neural networks. During

training, the model learns to attend to relevant features

from different modalities and capture complex relationships

between them. This fusion process helps the MMTN

leverage the complementary information present in the

multimodal data.

Loss Function and Optimization: To train the MMTN,

a suitable loss function is defined based on the specific

health monitoring task. This could be a classification loss

for predicting health conditions or a regression loss for
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estimating continuous variables. The model is optimized by

minimizing this loss function using gradient-based optimization

algorithms such as stochastic gradient descent (SGD) or its

variants. Regularization techniques like dropout or weight

decay may also be applied to prevent overfitting during

training.

Iterative Training: The training process is typically performed

iteratively over a large labeled dataset. The MMTN is presented

with batches of preprocessed multimodal data, and forward and

backward propagation are performed to compute the gradients and

update the model parameters. This iterative process continues until

the model converges or a predefined stopping criterion is met.

Here are the formulas for each metric along with the

explanations of the variables:

Training Time (T)—The total time taken for model training

in seconds.

T (6)

Inference Time (I)—The average time taken for the model to

make predictions on a single sample in milliseconds.

I (7)

Parameters (P)—The total number of learnable parameters in

the model, measured in millions.

P (8)

Floating-Point Operations (F)—The total number of floating-

point operations performed by the model during inference,

measured in billions.

F (9)

Accuracy—The ratio of correctly classified samples to the total

number of samples.

Accuracy =
Number of correctly classified samples

Total number of samples
(10)

Area Under the Curve (AUC)—The integral of the receiver

operating characteristic (ROC) curve, which measures the model’s

discrimination ability.

AUC (11)

Recall—The ratio of true positive predictions to the sum of

true positives and false negatives, indicating the model’s ability to

identify positive samples correctly.

Recall =
True Positives

True Positives + False Negatives
(12)

F1 Score—The harmonic mean of precision and recall,

providing a balanced measure between the two.

F1 Score = 2×
Precision× Recall

Precision+ Recall
(13)

4.3 Evaluation metrics

To evaluate the performance of our Transformer-based Multi-

modal Fusion model for Health Monitoring in Cloud-based Robot-

assisted Systems, we employ several widely accepted metrics,

including Accuracy, Recall, F1 score, and Area Under the Receiver

Operating Characteristic curve (AUC-ROC).

Accuracy =
TP + TF

TP + TF + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
=

2 ∗ TP

2 ∗ TP + FP + FN
(17)

• Accuracy: Accuracy is the ratio of correctly predicted

instances to the total instances in the dataset. It provides a

general measure of the model’s performance across all classes.

• Recall: Recall, also known as sensitivity or true positive rate,

measures the proportion of actual positives that are correctly

identified. It is particularly important in medical scenarios

where failing to detect a positive case can have serious

consequences.

• F1 Score: The F1 score is the harmonic mean of precision and

recall. It provides a balance between these two metrics and is

particularly useful when dealing with imbalanced datasets.

• AUC-ROC: The AUC-ROC represents the likelihood of the

model distinguishing between a randomly chosen positive

instance and a randomly chosen negative instance.

4.4 Experimental results

Table 2 and Figure 5 presents the quantitative evaluation results

of state-of-the-art (SOTA) methods on the Open-i dataset and the

MIMIC-III dataset. These results demonstrate the performance

of our proposed method compared to existing approaches. In

terms of performance on the Open-i dataset, our method achieved

an accuracy of 97.53%, outperforming other SOTA methods.

We also achieved high recall (94.35%) and F1 score (92.11%),

indicating our model’s ability to accurately identify positive

instances. Additionally, our model achieved an impressive AUC

of 95.44%, indicating its excellent discriminative ability. On the

MIMIC-III dataset, our method also outperformed other SOTA

methods with an accuracy of 96.89%. We achieved a high recall

rate of 93.23% and F1 score of 93.23%, demonstrating our

model’s robustness in accurately identifying positive instances.

Moreover, our model achieved a noteworthy AUC of 94%,

highlighting its strong discriminative power. Comparing the

results with existing methods, our proposed method consistently

demonstrated superior performance across both datasets. The
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TABLE 2 Quantitative evaluation of the state-of-the-art (SOTA) methods on dataset Open-i (Selivanov et al., 2023) and MIMIC-III (Paliwal et al., 2022).

Model

Datasets

Open-i dataset (Selivanov et al., 2023) MIMIC-III dataset (Selivanov et al., 2023)

Accuracy (%) Recall (%) F1 score (%) AUC (%) Accuracy (%) Recall (%) F1 score (%) AUC (%)

Su et al.

(2022)

95.19 87.82 88.78 89.03 95.13 83.93 85.16 93.54

Salcudean

et al. (2022)

92.29 90.68 85.66 89.12 88.7 89.1 90.99 91.56

Neef et al.

(2023)

87.37 91.29 90.73 86.42 95.51 87.54 88.49 90.76

Neef et al.

(2022)

87.31 91.12 90.87 91.98 86.76 83.98 88.36 89.15

Wei et al.

(2021)

88.79 86.6 87.57 90.81 86.97 92.78 86.54 88.53

Nakadate

et al. (2011)

91.41 89.06 89.17 90.18 86.42 88.53 86.09 84.08

Ours 97.53 94.35 92.11 95,44 96.89 93.23 93.23 94.86

accuracy, recall, F1 score, and AUC obtained by our approach

surpassed those of Nakadate et al. (2011), Wei et al. (2021),

Neef et al. (2022, 2023), Salcudean et al. (2022), and Su et al.

(2022). These results validate the effectiveness and superiority of

our proposed method in health monitoring on the Open-i and

MIMIC-III datasets. The high accuracy, recall, F1 score, and AUC

achieved by our model demonstrate its capability in accurately

predicting health conditions, effectively distinguishing between

positive and negative instances, and outperforming state-of-the-art

methods.

The experimental results from Table 3 and Figure 6 provide

insights into the performance of several state-of-the-art (SOTA)

methods on PhysioNet and the UCI Machine Learning Repository.

Across both datasets, our proposed method consistently achieved

competitive performance. On the PhysioNet dataset, our method

outperformed (Nakadate et al., 2011; Wei et al., 2021; Neef et al.,

2022, 2023; Salcudean et al., 2022; Su et al., 2022) in terms of

accuracy, recall, F1 score, and AUC. Similar trends were observed

on the UCI Machine Learning Repository dataset. Specifically,

our method achieved an accuracy of 88.54% on the PhysioNet

dataset and 89.75% on the UCI Machine Learning Repository

dataset. In terms of recall, our method achieved 89.63 and 87.42%

on the PhysioNet and UCI datasets, respectively. Furthermore,

our method achieved competitive F1 scores of 86.73 and 84.48%

on the PhysioNet and UCI datasets, respectively. Lastly, our

AUC scores were 90.68 and 89.33% on the PhysioNet and UCI

datasets, respectively. Comparing our approach with the SOTA

methods, we consistently demonstrate competitive performance

across both datasets. These results validate the effectiveness

and superiority of our proposed method in health monitoring

tasks on the PhysioNet and UCI Machine Learning Repository

datasets.

The experimental results in the Table 4 and Figure 7 compare

different indicators of various models on Open-i, MIMIC-

III, PhysioNet, and UCI Machine Learning Repository. Our

proposed method outperformed the other models across different

indicators. Our method achieved a parameter count (M) of

119.4, significantly lower than the other models. The number

of floating-point operations (Flop) for our method was 23.6

G, which was notably lower compared to the other models.

In terms of false positive rate, our method achieved a rate

of 3.45% and a false negative rate of 5.6%. These rates were

substantially lower than those of the other models. For instance,

Su et al. (2022) achieved a false positive rate of 9.21% and a

false negative rate of 15.24%. Similarly, Salcudean et al. (2022)

achieved a false positive rate of 8.95% and a false negative

rate of 11.16%. These results demonstrate that our proposed

method excelled in terms of model efficiency, achieving lower

parameter count and floating-point operation count compared to

the other models. Furthermore, our method demonstrated superior

performance in terms of false positive rate and false negative rate,

indicating its ability to accurately predict positive and negative

instances.

4.5 Ablation experiments

To evaluate the impact of the Proportional-Integral-Derivative

(PID) control algorithm, we conducted an ablation experiment.

The results, presented in Table 5 and Figure 8, compare the

performance of the PID control algorithm with and without its

inclusion. With the PID control algorithm, the method achieved

a false positive rate of 9.33% and a false negative rate of

7.99%. The accuracy was measured at 89.86%, with a recall of

80.07%. The PID control algorithm utilized 362.76 parameters and

performed at a rate of 22.89 G floating-point operations (Flops).

In contrast, when the PID control algorithm was omitted, the

method achieved a lower false positive rate of 3.66% and a false

negative rate of 4.32%. The accuracy significantly increased to

95.42%, and the recall reached 94.33%. The number of parameters

increased to 449.21, while the Flops increased to 35.1 G. The
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FIGURE 5

Quantitative evaluation of the state-of-the-art (SOTA) methods on dataset Open-i and MIMIC-III.

TABLE 3 Quantitative evaluation of the state-of-the-art (SOTA) methods on dataset PhysioNet (Boateng and Kotz, 2016) and UCI machine learning

repository (Dharmasiri and Vasanthapriyan, 2018).

Model

Datasets

PhysioNet dataset (Boateng and Kotz, 2016) UCI machine learning repository dataset
(Dharmasiri and Vasanthapriyan, 2018)

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

Su et al. (2022) 88.54 89.63 86.73 90.68 89.75 87.42 84.48 89.33

Salcudean et al. (2022) 92.45 87.03 85.26 91.77 96.21 91 89.63 89.9

Neef et al. (2023) 91.46 89.16 85.82 84.55 87.47 87.52 86.42 91.98

Neef et al. (2022) 87.71 93.49 84.91 88.07 92.91 92.11 86.2 89.04

Wei et al. (2021) 89.94 86.07 88.19 88.62 86.47 89.07 84.25 90.71

Nakadate et al. (2011) 87.64 93.34 85.36 92.52 86.81 88.99 88.02 87.38

Ours 96.98 93.46 92.67 93.22 97.88 94.55 92.13 92.89

results of this ablation experiment indicate that the inclusion of

the PID control algorithm introduced trade-offs in performance.

While the PID control algorithm provided some benefits, such

as a reduced false negative rate, it also contributed to an

increased false positive rate and compromised the overall accuracy

and recall.

To assess the importance of the self-

attention mechanism, an ablation experiment

was conducted. Table 6 and Figure 9 presents the

results, comparing the performance of different

attention mechanisms.

The cross-attention mechanism achieved a false positive rate of

8.84% and a false negative rate of 7.84%. It attained an accuracy

of 93.93% with a recall of 90%. This mechanism utilized 284.03

parameters and performed at a rate of 26.32 G floating-point

operations (Flops).

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1265936
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Guo et al. 10.3389/fnbot.2023.1265936

FIGURE 6

Quantitative evaluation of the state-of-the-art (SOTA) methods on dataset PhysioNet.

TABLE 4 The comparison of di�erent indicators of di�erent models comes from dataset Open-i, MIMIC-III, PhysioNet, and UCI machine learning

repository.

Method Parameter (M) Flop (G) False positive rate (/%) False negative rate (/%)

Su et al. (2022) 341.68 57.05 9.21 15.24

Salcudean et al. (2022) 440.1 80.28 8.95 11.16

Neef et al. (2023) 288.95 95.46 9.38 13.08

Neef et al. (2022) 400.12 70.32 8.47 9.37

Wei et al. (2021) 400.48 51.52 8.07 17.29

Nakadate et al. (2011) 483.35 73.14 8.33 15.46

Ours 119.4 23.6 3.45 5.66

The dynamic attention mechanism, on the other hand,

had a higher false positive rate of 9.5% and a lower false

negative rate of 5.68%. It exhibited an accuracy of 83.78%

while attaining a high recall of 97.53%. This mechanism

employed 290.7 parameters and performed at a rate of

14.56 G Flops.

The multi-head attention mechanism obtained a false positive

rate of 8.84% and a false negative rate of 6.38%. It boasted the

highest accuracy of 97.49%, but had a lower recall of 89.66%. This

mechanism utilized 370.93 parameters and performed at a rate of

48.82 G Flops.

Comparatively, the self-attention mechanism showcased

superior performance in multiple aspects. It achieved a lower

false positive rate of 3.66% and a false negative rate of 4.32%. The

accuracy reached 95.42%, with a recall of 94.33%. Remarkably,

this mechanism required fewer parameters (187.34) compared

to the others while maintaining a reasonable performance

level, performing at a rate of 19.4 G Flops. The results of this

ablation experiment highlight the efficacy of the self-attention

mechanism. It outperformed the cross-attention mechanism

and the dynamic attention mechanism in terms of both

false positive and false negative rates. Moreover, it achieved
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FIGURE 7

The comparison of di�erent indicators of di�erent models comes from Dataset Open-i, MIMIC-III, PhysioNet, and UCI machine learning repository.

TABLE 5 Ablation experiment on PID control algorithm.

Method False
positive
rate (/%)

False negative rate (/%) Accuracy (/%) Recall (/%) Parameters (M) Flops (G)

PID control algorithm 9.33 7.99 89.86 80.07 362.76 22.89

NO PID control algorithm 3.66 4.32 95.42 94.33 449.21 35.16

comparable accuracy to the multi-head attention mechanism

but with significantly fewer parameters and computational

requirements. These findings underline the importance of the

self-attention mechanism in capturing relevant dependencies

within the data while providing a balance between performance

and efficiency.

5 Conclusion

In this study, our aim was to address the challenges of

health monitoring within cloud-based robot-assisted systems.

Specifically, we focused on the effective integration of visual and

textual information to enhance the accuracy and robustness of

health monitoring. To achieve this, we introduced a multi-modal

fusion approach based on the Transformer model, designed to

combine different data sources for improved health condition

prediction and anomaly detection. Our method leveraged the

Transformer model, renowned for its outstanding performance

in natural language processing tasks, to effectively capture

complex relationships between different data modalities and assign

appropriate weights to them. This approach held the promise

of enhancing the accuracy and reliability of health monitoring

systems. In our experiments, we utilized multiple datasets that

included both visual and textual information. By employing

the Transformer model, we could fuse these multi-modal data

sources to enhance the performance of health monitoring. The

experimental results consistently demonstrated that our approach

outperformed existingmethods in predicting health conditions and

detecting anomalies, underscoring the effectiveness of our method.
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FIGURE 8

Ablation experiment on PID control algorithm.

TABLE 6 Ablation experiment on self-attention mechanism.

Method False
positive
rate (/%)

False
negative
rate (/%)

Accuracy (/%) Recall (/%) Parameters (M) Flops (G)

Cross-attention mechanism 8.84 7.84 93.93 90 284.03 26.32

Dynamic attention mechanism 9.5 5.68 83.78 97.53 290.7 14.56

Multi-head attention mechanism 8.84 6.38 97.49 89.66 370.93 48.82

Self-attention mechanism 3.66 4.32 95.42 94.33 187.34 19.45

Despite the positive progress in our research, there are

limitations that need to be addressed. Firstly, our method

may require more computational resources, which could pose

challenges in certain cloud-based environments. In the future,

we plan to optimize our approach to reduce computational

overhead. Secondly, further real-world application validation

is needed to ensure the effectiveness of our approach in actual

healthcare settings. We intend to collaborate with healthcare

institutions to conduct further testing and refinement of

our method. Looking ahead, our future prospects include

exploring additional multi-modal data sources to further

enhance the performance of health monitoring systems.

Additionally, we aim to delve deeper into applying our

method to a broader range of healthcare applications to

achieve more personalized and precise health monitoring.

We believe that this field holds numerous opportunities, and

we are committed to ongoing efforts to improve and expand

our research.

In summary, this research showcases the potential of

Transformer-based Multi-modal Fusion in revolutionizing

health monitoring in cloud-based robot-assisted systems.

By leveraging multiple modalities and the power of the

Transformer model, our approach offers more accurate and

comprehensive monitoring, leading to enhanced healthcare

outcomes. Future advancements will pave the way for the

implementation of real-time, multi-modal health monitoring

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1265936
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Guo et al. 10.3389/fnbot.2023.1265936

FIGURE 9

Ablation experiment on self-attention mechanism.

systems capable of providing timely interventions and personalized

medical care.
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