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Multi-user motion recognition
using sEMG via discriminative
canonical correlation analysis
and adaptive dimensionality
reduction

Jinqiang Wang, Dianguo Cao*, Yang Li, Jiashuai Wang and

Yuqiang Wu

School of Engineering, Qufu Normal University, Rizhao, China

The inability of new users to adapt quickly to the surface electromyography

(sEMG) interface has greatly hindered the development of sEMG in the

field of rehabilitation. This is due mainly to the large di�erences in sEMG

signals produced by muscles when di�erent people perform the same

motion. To address this issue, a multi-user sEMG framework is proposed,

using discriminative canonical correlation analysis and adaptive dimensionality

reduction (ADR). The interface projects the feature sets for training users

and new users into a low-dimensional uniform style space, overcoming the

problem of individual di�erences in sEMG. The ADR method removes the

redundant information in sEMG features and improves the accuracy of system

motion recognition. The presented framework was validated on eight subjects

with intact limbs, with an average recognition accuracy of 92.23% in 12

categories of upper-limbmovements. In rehabilitation laboratory experiments,

the average recognition rate reached 90.52%. The experimental results suggest

that the framework o�ers a good solution to enable new rehabilitation users

to adapt quickly to the sEMG interface.

KEYWORDS

surface electromyography, discriminative canonical correlation analysis, adaptive

dimensionality reduction, multi-user, motion recognition

1. Introduction

Surface electromyography (sEMG) signals are electrical signals that occur

on the surface of human skin when the motor unit motion potential of a

motor-associated muscle propagates along the muscle fibers (Vigotsky et al.,

2018; Medved et al., 2020). These signals contain a wealth of information

including muscle contraction force and joint torque (Disselhorst-Klug et al.,

2009). In recent years, extensive research has been conducted into human–

robot collaborative robots, teleoperated surgical robots, rehabilitation robots,

wearable monitoring devices, and medical diagnosis based on sEMG signals
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(Ghassemi et al., 2019; Li et al., 2020; Luo et al., 2020a, 2021;

Qi and Aliverti, 2020; Su et al., 2020, 2022; Qi et al., 2021).

In particular, for stroke patients and patients with limb muscle

injuries, a rehabilitation method in which the healthy side drives

the affected side (an exoskeleton robot drives the limb on the

affected side by recognizing the movements of the healthy

side) can accelerate neurological remodeling and rehabilitation.

However, people in these groups cannot provide a large dataset

for training classifier models because of their limited physical

fitness (Fang et al., 2020). Moreover, muscle strength, amount

of subcutaneous fat, skin impedance, the fixed position of the

electrodes, the degree of muscle fatigue, and limb posture all

differ significantly among different users. All of this makes it

difficult for new users to fit models trained on other users (Lobov

et al., 2018).

Owing to these problems, there has been much research on

various aspects of sEMG, including signal preprocessing, feature

extraction, feature optimization, and classification (Elamvazuthi

et al., 2015; Bi et al., 2019; Simao et al., 2019). For instance,

Pan et al. (2018) developed a general sEMG interface for

continuous prediction of coordinated movements between the

palmar fingers and wrist flexion/extension. This model can

be customized based on the musculoskeletal model of the

individual user, and it can fit multiple users, including upper-

limb amputees. User-generic musculoskeletal models capture

generalized relationships between neuromuscular signals and

human-generated limb movements. The successful application

of this model reportedly relies on recording sEMG signals of

specific muscles. This means that the patient must determine

the exact location of the upper extremity muscles, which

poses some challenges in practical applications for upper

extremity rehabilitation patients. Xue et al. (2021) proposed

a new framework called CCA-OT to handle the problem

of multi-user gesture recognition. The CCA-OT framework

reduces the differences in the distribution of the feature

matrix. However, it was reported that the data distribution

differed significantly between the training and testing sets of

the framework. The framework incorporates a new feature

dimension of 45 dimensions, so there is room for further

optimization. Matsubara and Morimoto (2013) proposed a

bilinear model comprising (i) user-related and (ii) motion-

related linear factors; it extracts user-independent features from

users and classifies them with a support vector machine (SVM)

classifier, and the classification recognition rate indicated that

the model outperformed non-multi-user methods. However, the

dimensions of the style and content variables were chosen by

trial and error, which added to the difficulty of the experiment,

and the performance of the model was affected significantly

by the electrode placement offset. Despite some progress,

considerable challenges remain in applying these findings to

clinical implementation (Samuel et al., 2019; Jarque-Bou et al.,

2021).

Herein, a novel multi-user sEMG framework is proposed,

based on discriminative canonical correlation analysis (DCCA)

and adaptive dimensionality reduction (ADR), to reduce the

variability of human sEMG, eliminate complex redundant

information, improve recognition rates, and even reduce the

training time required for classifier models. First, we propose

an ADR optimization method based on the derived DCCA

algorithm and design an ADR–DCCA architecture suitable

for multiple-user action recognition. Then, the ADR–DCCA

framework is verified to be superior to other CCA extensions

through comparative experiments. Finally, the ADR-DCCA

framework is used for an upper limb rehabilitation task in

which the healthy side of the user drives the affected side. The

contributions of this work can be summarized as follows.

• The DCCA algorithm is applied to the variability of human

sEMG to project the views of two sEMGs of different

users into a low-dimensional uniform style space. In this

space, the intra-class correlation of the new features is

guaranteed to be maximized and the inter-class correlation

is minimized.

• The ADR optimization method is proposed; this is the

main contribution of this work. This method selects the

most suitable dimension for motion recognition from

the new features, which effectively reduces the redundant

information.

The framework presented here can further extract the common

information of training users and new users, effectively reduce

personality information, and find the most suitable dimension

for new users’ action classification. New users can adapt to the

sEMG interface using only a few sets of actions. In addition, the

framework can be used to build an accurate model for a new

user when two channels of the sEMG signal are missing. It is

important for the patient to quickly obtain amodel of the healthy

side to drive the affected side. A multi-user contralateral-driven

rehabilitation system is shown in Figure 1.

The structure of this paper is as follows. Section 2 describes

the CCA and DCCA methods and then introduces the multi-

user sEMG motion recognition framework. Section 3 describes

the experimental data acquisition scheme. Section 4 shows the

effectiveness of the proposedmulti-user sEMG interface through

multiple sets of comparative tests and analyses. Finally, Section 5

concludes the paper and discusses possible extensions and future

directions.

2. Methods

CCA technique, which was introduced by Hotelling

in 1936 (Hotelling, 1992), is a multivariate statistical
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FIGURE 1

A multi-user health-side-driven rehabilitation system with an ADR-DCCA framework. The sEMG signals are collected from the healthy side arm

of a new user and processed accordingly in the ADR-DCCA framework. The recognition is done by an upper limb exoskeleton robot.

method for studying the correlation between two sets of

variables. It quantifies the association between two sets of

variables and transforms the analysis of the correlation

into an analysis between linear combinations of the two

sets of variables. CCA has been widely used in the fields

of data mining, machine learning, signal processing,

biomedical engineering, healthcare data analysis, genetics,

etc. However, to our knowledge, researchers have not

yet addressed the problem of processing new feature

dimensions after projection. Here, we develop an ADR-

DCCA framework by combining the values of the fitness

functions of SVM.

2.1. Theory of discriminative canonical
correlation analysis

In our framework, an improved CCA method maps
the sEMG features of different individuals into the same
low-dimensional space to train a classifier model, which
improves the applicability and generalization ability of the
model to some extent. Considering the properties of the

training user feature matrix and the new user calibration
feature matrix, we define two column vectors, X =
(

X
(1)
1 , · · · ,X(1)

n , · · · · · · ,X(c)
1 , · · · ,X(c)

n

)T
and

Y =
(

Y
(1)
1 , · · · ,Y(1)

n , · · · · · · ,Y(c)
1 , · · · ,Y(c)

n

)T
. Here, c is the

motion category; n is the number of samples of the same type of
motion; p and q are the number of features of a single sample in
X and Y , respectively; and X and Y are standardized by column

and expressed as

X =













































X
(1)
1

T

.

.

.

X
(1)
n

T

.

.

.

.

.

.

X
(c)
1

T

.

.

.

X
(c)
n

T













































=















































X
(1)
11

T
· · · X

(1)
1p

T

.

.

.
. . .

.

.

.

X
(1)
n1

T
· · · X

(1)
np

T

.

.

.
.
.
.

.

.

.
.
.
.

X
(c)
11

T
· · · X

(c)
1p

T

.

.

.
. . .

.

.

.

X
(c)
n1

T
· · · X

(c)
np

T















































, (1)

Y =













































Y
(1)
1

T

.

.

.

Y
(1)
n

T

.

.

.

.

.

.

Y
(c)
1

T

.

.

.

Y
(c)
n

T













































=















































Y
(1)
11

T
· · · Y

(1)
1q

T

.

.

.
. . .

.

.

.

Y
(1)
n1

T
· · · Y

(1)
nq

T

.

.

.
.
.
.

.

.

.
.
.
.

Y
(c)
11

T
· · · Y

(c)
1q

T

.

.

.
. . .

.

.

.

Y
(c)
n1

T
· · · Y

(c)
nq

T















































. (2)

The basic idea of CCA is to find the variables A =
[

a1, · · · , ap
]T

and B =
[

b1, · · · , bq
]T

that maximize the correlation coefficient

between the linear combinations Ui = XAi and Vi = YBi,

Ai ∈ A, Bi ∈ B, Ui ∈ U, Vi ∈ V(Hardoon et al., 2004; Sun

et al., 2005). We choose the pair with the highest correlation
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coefficient in the linear combinations as the first set of canonical

variables, the pair with the second-highest correlation coefficient

as the second group of canonical variables, and so on until the

correlation between X and Y is extracted (Sun et al., 2010); the

correlation coefficient between canonical variables is called the

canonical correlation coefficient. The optimization problem for

Ui and Vi is given by

argmax
A,B

ρ = corr(U,V) =
cov(U,V)

√
D(U)

√
D(V)

. (3)

To simplify the expression, we let cov(X,Y) = C12, cov(X,X) =
C11, cov(Y ,Y) = C22, and we add the qualification D(U) =
ATC11A = 1,D(V) = BTC22B = 1 to limit the occurrence

of linear transformations of variables A and B. Then, the

optimization function is

argmax
A,B

ρ = corr(U,V)

=
ATC12B

√

ATC11A
√

BTC22B

= ATC12B

such that (s.t.) ATC11A = 1,BTC22B = 1.

(4)

Using Lagrange multipliers, we convert the above optimization

problem into a conditional extreme-value problem. By solving

Equation (4), it is easy to obtain

C11
−1C12C22

−1C21A− λ2A = 0, (5)

C22
−1C21C11

−1C12B− λ2B = 0. (6)

From Equations (5) and (6), we know that C11
−1C12C22

−1C21

and C22
−1C21C11

−1C12 have the same eigenroots λ2, with A

and B as the corresponding eigenvectors. The feature roots are

arranged from largest to smallest, and the feature vectors are

arranged in order of the corresponding feature roots. The feature

vector that corresponds to the largest feature root is transformed

m times according to the qualification to obtain the first set of

A1,B1.

After that, we keep solving for the second set of canonical

variables. Find variablesA2 and B2 thatmaximize the correlation

between U2 = XA2 and V2 = YB2 under the qualification

D(U2) = A2
TC11A2 = 1,D(V2) = B2

TC22B2 = 1. The first

pair of canonical variables has been extracted, so the second

pair should be extracted without the information in the first

pair (orthogonal to the first pair). We add a new qualification,

cov(U1,U2) = A1
2C11A2 = 0, cov(V1,V2) = B1

2C22B2 = 0,

with which we obtain

C11
−1C12C22

−1C21A2 − λ2A2 = 0, (7)

C22
−1C21C11

−1C12B2 − λ2B2 = 0. (8)

It is clear that the results A2,B2 of Equations (7) and (8) are

the same A,B as those obtained from Equations (5) and (6).

Therefore, the eigenvector corresponding to the next-largest

eigenvalue is the one that we seek. Continuing in this way, it is

easy to obtain the rth pair of eigenvectors, where r < min(p, q).

DCCA is based on CCA, which finds the largest intra-

class correlation while minimizing the correlation across classes.

DCCA can effectively improve the robustness of the generated

features, thereby improving the performance of the whole

system (Gatto and dos Santos, 2017). We define the vector

enk = [0
(1)
1 , · · ·, 0(1)n , · · · · · ·, 1(k)1 , · · ·, 1(k)n , · · · · · ·, 0(c)1 , · · ·, 0(c)n ],

k ∈ (1, c), and then the intra-class correlation matrix is

Cw =
c
∑

k=1

n
∑

i=1

n
∑

j=1

Xi
(k)TYj

(k) =
c
∑

k=1

(enkX)
T(enkY). (9)

We also define the row vector 1n = [1, · · · , 1]1×(c×n); then, the

inter-class correlation matrix is

Cb =
c
∑

k1=1

c
∑

k2=1
k2 6=k1

n
∑

i=1

n
∑

j=1

Xi
(k1)TYj

(k2)

=
c
∑

k1=1

c
∑

k2=1

n
∑

i=1

n
∑

j=1

Xi
(k1)TYj

(k2) −
c
∑

k=1

n
∑

i=1

n
∑

j=1

Xi
(k)TYj

(k)

= (1nX)
T(1nY)−

c
∑

k=1

XTenk
TenkY

= −
c
∑

k=1

XTenk
TenkY .

(10)

As both the X and Y datasets are column normalized, we have

(1nX)
T(1nY) = 0. DCCA can be described as solving

max
A,B

(

ATCwB− ATCbB
)

= max
A,B

(

c
∑

k=1

ATXTenk
TenkYB

)

s.t. ATXTXA = 1,BTYTYB = 1.

(11)

Given the specificity of enk, it is easy to prove that

max
A,B

(

c
∑

k=1

ATXTeTnkenkYB

)

=max
A,B

(

ATXT
c
∑

k=1

(

enk
Tenk

)

YB

)

.

(12)

Therefore, the optimization function can be written as

max
A,B

(

ATXT
c
∑

k=1

(

enk
Tenk

)

YB

)

s.t. ATXTXA = 1,BTYTYB = 1,

(13)

and using Lagrangian multipliers to tackle Equation (13) gives

C11
−1CwC22

−1Cw
TA− λ2A = 0,

C22
−1Cw

TC11
−1CwB− λ2B = 0.

(14)
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Solving this system of equations shows thatC11
−1CwC22

−1Cw
T

and C22
−1Cw

TC11
−1Cw have the same characteristic root λ2

and that A and B are the corresponding eigenvectors, which is

the same conclusion as that obtained with CCA.

2.2. Multi-user sEMG interface with ADR
and DCCA

The above derivation leads to the conclusion that DCCA

seeks a pair of linear transformations or non-linear changes to

maximize the intra-class correlation of two sets of features while

ensuring the minimum inter-class correlation. The new features

extracted by DCCA in different categories of the same feature

set are statistically uncorrelated; thus, redundant information

in different categories of features is eliminated. The proposed

architecture is able to train classifier models with less data

than traditional pattern recognition methods. The training data

maintains a somewhat linear or non-linear relationship with

the new test data, which helps new rehabilitation users to

obtain accurate models faster. To the best of our knowledge, its

use in developing an sEMG interface for multi-user is novel.

We mapped the DCCA theory into the sEMG signal feature

matrix and designed the framework shown in Figure 2, in which

DCCA analyzes the training user feature matrix X and the new

user calibration feature matrix Y1 (which is used to tune the

parameters of the framework). The parameters that give strong

correlation between the training user features and the new user

features are obtained, which in this case are two independent

matrices, namely, A and B. Then, new training features are

obtained by A interacting with training user features X.

In this framework, the dimension of A is changed

continuously according to the fitness function information

provided by the SVM until the best model is found. Specifically,

a1 denotes the first column ofA, a2 denotes the first two columns

of A, and so on; al (1 ≤ l ≤ r) denotes the first l columns of A.

Thus, we can easily obtain the matrix Ul of different dimensions

under the action of al. By defining the SVM fitness function f (t),

the value of the fitness function f (Ul) can be obtained. The ADR

problem can be expressed as an optimization problem for the

following functions:

argmax
{

f (U1), f (U2), . . . , f (Ur)
}

. (15)

Finally, the new testing features are obtained based on the new

user feature matrix Y2 and the matrix Bl.

3. Signal acquisition

In the experiments described here, a customized Delsys

wireless sEMG acquisition device was used for multichannel

acquisition of sEMG signals. This device is a distributed contact

electrode, which has the advantages of flexible placement

and wireless convenience and is not affected by the lack of

channels. The sampling rate of each sEMG channel of this

device is 2,000 Hz with 16-bit resolution. The sEMG signals

were displayed and stored in a PC client using sEMG-recorder

software developed in-house, and the data for each action were

saved in a separate .csv file.

The experiments involved eight participants (called N1 to

N8) who were in good physical condition and had healthy limbs.

The participants comprised seven men and one woman between

the ages of 23 and 27 years; they participated voluntarily and

were informed of the subject matter and signed an informed-

consent form prior to participating in the experiments. The

sEMG signals were recorded from the subject’s right arm. Based

on human physiology and upper-limb muscle distribution, we

chose the deltoid (channel 1), pectoralis major (channel 2),

biceps brachii (channel 3), triceps brachii (channel 4), flexor

carpi radialis (channel 5), extensor carpi radialis (channel 6),

extensor carpi ulnaris (channel 7), and flexor carpi ulnaris

(channel 8). Position tracking was performed to determine

the exact positions of the electrodes according to the criteria

developed by the SENIAM (Surface ElectroMyoGraphy for

the Non-Invasive Assessment of Muscles) European concerted

action in the Biomedical Health and Research Program

(BIOMED II) of the European Union (Hermens et al., 2000).

The accurate muscle positioning is shown in Figure 3. Prior to

data acquisition, the subjects’ electrode pasting locations were

cleared to prevent interference from hair; the skin at the relevant

locations was then wiped with alcohol, and the electrodes

were disinfected and finally pasted onto the prescribed muscle

positions.

During acquisition, each participant used no more than 80%

of their maximum voluntary contraction to maintain control

of their movements (Cheng et al., 2018). To ensure that the

force used by the subject in performing the motion was within

the required range, each subject was evaluated for force using

a high-definition haptic device from QUANSER prior to data

collection. During the recording process, the subject was asked

to perform the following 12 upper-limbmotormovements to the

best of their ability with moderate constant force contractions:

(i) palm extension, (ii) fist clenching, (iii) wrist abduction, (iv)

wrist adduction, (v) wrist extension, (vi) wrist flexion, (vii)

elbow flexion, (viii) elbow extension, (ix) elbow flexion and

shoulder flexion, (x) elbow flexion and shoulder extension, (xi)

shoulder horizontal adduction, and (xii) shoulder horizontal

abduction (see Figure 4). When the subject heard a beep from

the computer, they performed the specified movement, holding

the final position for 3 s and then resting for 3 s before the

next movement. Each subject completed the 12 movements 100

times, and in total 9,600 sets of experimental data were recorded

from the eight participants. Considering that participants might

become fatigued during sEMG collection, data were collected for

no more than 5 min at a time.
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FIGURE 2

A multi-user surface electromyography (sEMG) motion-recognition framework was designed using discriminative canonical correlation analysis

(DCCA) and adaptive dimensionality reduction (ADR).

FIGURE 3

A map of precise locations of muscles for upper-limb movements.

4. Experiments and analysis

In this section, we describe howwe evaluated the recognition

capability of the proposed ADR-DCCA framework to show

its feasibility. The preprocessing, feature extraction, and

classification processes were carried out in the sEMG signal-

processing pipeline.

In multichannel sEMG studies, preprocessing is necessary,

mainly to reduce noise (Brunelli et al., 2015). In sEMG

signals, this consists mainly of system noise, artifacts, industrial

frequency interference, and channel cross-talk (De Luca et al.,

2010). In the experiments, we used the wavelet algorithm, chose

the sym5 wavelet function with five decomposition layers, and

used henrsure to de-baseline and drift the sEMG signal of each

channel. The signal was filtered with a fourth-order Butterworth

filter to improve the signal-to-noise ratio and to keep the signal

in the range of 20–500 Hz while removing external noise and

artifacts.

Feature extraction is an important step in signal processing,

as it reduces the amount of data while also extracting useful

features into low-dimensional data. As EMG signals are known

to suffer from lack of smoothness, windowing was performed

on the sEMG signals after pre-processing (Ashraf et al., 2021).

The window length was 300 samples with a time period of

150 ms, and the window shift was 50 samples with a time

period of 25 ms (Luo et al., 2020b). After adding windows to
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FIGURE 4

Upper-limb movements defined in present study: 1—palm extension; 2—fist clenching; 3—wrist abduction; 4—wrist adduction; 5—wrist

extension; 6—wrist flexion; 7—elbow flexion; 8—elbow extension; 9—elbow flexion and shoulder flexion; 10—elbow flexion and shoulder

extension; 11—shoulder horizontal adduction; 12—shoulder horizontal abduction.

the sEMG data, features including mean absolute value, root

mean square, variance (Ahsan et al., 2011), maximum mean

absolute value (MMAV), maximum root mean square (MRMS),

maximum variance (MVAR) (MMAV, MRMS, and MVAR are

improved features by the authors), fourth-order power spectral

density, and power spectrum estimation (Zhang et al., 2011;

Khushaba, 2014). The dimensionality of the extracted features

was 64 features per motion, i.e., 8 channels× 8 features.

Based on the data gathered as described in Section 3, the

experiments reported in this section used a fully separate design

method for the training and testing sets. That is, one of the

eight users was selected as a new user, and the remaining

7 people’s data were treated as training user data. We call

the process after selecting the new user a trial. There were

eight trials in total. According to the seven training users’

data, up to seven recognition rates can be determined for

each new user. We calculated the average recognition rate for

each trial. The above method was used for both Experiment 1

and Experiment 2. Experiment 1 involved (i) testing the

present dataset using the CCA-OT framework proposed by

Xue et al. (2021), (ii) testing the present dataset using the

CCA framework proposed by Khushaba (2014), (iii) testing the

present dataset after adding ADR optimization to the framework

of (ii), and (iv) testing the present dataset using the proposed

ADR-DCCA method. For Experiment 2, Experiment 1 was

repeated but with two channels removed randomly from the user

test set.

4.1. Experiment 1

4.1.1. User-independent CCA-OT framework

One of the eight participants was selected as a new user,

while the other seven were selected as training users. The tests

were performed according to the CCA-OT analysis method

described by Xue et al. (2021), and the recognition rates for the

eight trials are given in Table 1.

4.1.2. User-independent CCA-without-ADR
framework

Testing was carried out according to the CCA method

described by Khushaba (2014), which reduces the differences in

sEMG signal properties when the same motion is performed by

different people. The recognition rates for the eight trials are

given in Table 2.

4.1.3. User-independent CCA-with-ADR
framework

Following the CCA method described by Khushaba (2014),

we performed ADR optimization of the framework. The ADR

optimization method chooses the most suitable reconstructed

features for user classification. The recognition rates for the eight

trials are given in Table 3.
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TABLE 1 Experimental results for user-independent CCA-OT framework.

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 83.78 88.47 88.69 93.96 95.71 88.85 96.00

N2 84.27 N/A 86.02 84.37 94.42 95.84 91.81 87.79

N3 87.20 85.01 N/A 93.76 89.93 93.56 91.12 91.23

N4 84.01 85.93 88.78 N/A 94.58 91.05 95.38 95.77

N5 85.80 86.66 86.00 90.04 N/A 91.89 82.85 85.67

N6 91.30 86.09 85.61 88.71 93.86 N/A 84.68 85.39

N7 90.65 90.89 90.01 86.29 88.19 93.24 N/A 92.66

N8 93.96 84.20 85.13 87.02 95.04 88.07 85.71 N/A

Average

accuracy
88.17 86.08 87.15 88.41 92.85 92.76 88.63 90.65

TABLE 2 Experimental results for user-independent CCA-without-ADR framework.

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 82.93 89.02 87.11 95.84 95.78 87.74 95.11

N2 85.10 N/A 84.70 82.63 89.14 95.16 88.05 89.08

N3 88.30 84.93 N/A 96.00 89.11 90.74 89.22 90.10

N4 81.32 84.58 87.43 N/A 89.68 90.12 92.80 93.42

N5 79.70 85.41 81.38 90.94 N/A 87.21 80.56 86.81

N6 89.57 89.43 85.99 84.67 92.12 N/A 82.41 85.35

N7 87.30 88.19 88.53 88.50 84.19 88.67 N/A 94.51

N8 90.20 82.46 84.22 87.27 95.07 83.49 85.77 N/A

Average

accuracy
85.93 85.42 85.90 88.16 90.73 90.17 86.65 90.63

TABLE 3 Experimental results for user-independent CCA-with-ADR framework.

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 86.75 89.17 88.08 95.75 95.83 88.67 96.75

N2 86.00 N/A 85.17 85.00 88.83 95.42 90.08 88.50

N3 89.08 85.00 N/A 96.00 90.58 93.83 93.08 90.92

N4 83.67 87.00 90.17 N/A 93.75 91.92 94.83 94.92

N5 84.58 85.08 85.08 91.33 N/A 91.67 84.67 86.92

N6 92.58 89.08 86.25 88.67 95.92 N/A 87.08 85.08

N7 89.75 88.58 82.83 88.33 86.75 93.00 N/A 93.58

N8 93.58 85.08 87.25 86.33 95.58 87.67 85.67 N/A

Average

accuracy
88.46 86.65 86.56 89.11 92.45 92.76 89.15 90.95

4.1.4. User-independent DCCA-with-ADR
framework

Using the method proposed herein, data from the training

users and new user were fed into the ADR-DCCA framework.

The user characteristics were rebuilt into low-dimensional

features independent of individual styles via parameter pair

optimization, and the user features overcame individual

differences. This framework has the advantages of that
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of Khushaba (2014) while also minimizing the inter-class

correlation of different motion features and adaptively selecting

new feature dimensions that are most beneficial to the

classification performance; this reduces classifier training time

and improves classification accuracy. The recognition rates for

the eight trials are given in Table 4.

In Experiment 1, the dataset used in this study was tested

with four methods, respectively. For each method, results were

recorded for eight trials denoted N1 to N8. For the different

methods, we plotted the mean values of each trial as histograms.

In Figure 5, histograms of the same color show the average

recognition accuracy for each test user with the same method,

and error bars represent the standard deviation of this user’s

motion recognition rate on different training sets.

4.2. Experiment 2

The sEMG data of all test users were reduced randomly

by two channels and then tested again as in Experiment 1 to

verify the robustness of the method proposed herein. Tables 5–

8 record the recognition results of eight trials (N1 to N8) for

each method under 4 methods, and the average recognition

rate of each trial was calculated. As in Experiment 1, for the

different methods we plotted the average result of each test as

a histogram. In Figure 6, histograms in the same color show the

average recognition accuracy for each test user under the same

method, and error bars represent the standard deviation of this

user’s motion recognition rate on different training sets.

4.3. Results and discussion

For this subsection, we performed preprocessing and feature

extraction and extracted a feature set of 64 features per

movement ([6 time-domain features + 2 frequency-domain

features] × 8 channels). For the classification, we chose the

well-known SVM LIBSVM (Chang and Lin, 2011), as Khushaba

(2014) reported that a global SVM performs better in this

type of action recognition. In our experimental approach, the

training and calibration sets were completely independent, i.e.,

the training user and the new user were different individuals, and

the experimental results were obtained through multiple cross-

validations. Khushaba (2014) and Xue et al. (2021) performed

CCA (i) between a training feature matrix and an expert feature

matrix and (ii) between a test feature matrix and an expert

feature matrix. In the present framework, DCCA is used to

directly extract the correlation between the training user feature

matrix and the new user feature matrix, thereby eliminating

the intermediate link. The correlation between the training

feature matrix and the test feature matrix is enhanced, and

the distribution differences between classes are strengthened.

The adaptive dimensionality-reduction method eliminates the

redundant information in the high-dimensional features and

retains the low-dimensional features that are highly correlated

between the new user and the training users. High classification

accuracy and good robustness were achieved in classifying

12 categories of upper-limb movements in eight subjects. In

Experiment 1, the motion recognition rate of the ADR-DCCA

framework proposed in this paper was 92.23; this was 2.89,

4.28, and 2.72 higher than the average recognition rates of the

CCA-OT framework, the conventional CCA framework, and

the ADR-CCA framework, respectively. In particular, compared

with the 26–126 dimensions in the technique described by

Khushaba (2014), we used 5–8 dimensions of features that

were obtained by fusing 64 dimensions of features, thereby

achieving higher accuracy in motion recognition. In Experiment

2, the identification accuracies of the CCA-OT framework,

the conventional CCA framework, the ADR-CCA framework,

and the ADR-DCCA framework were 85.01, 81.09, 84.81,

and 88.75%, respectively. The experimental results show that

the framework described herein maintains high classification

accuracy even after being deprived of data from two channels,

which indicates that the framework is robust. Moreover, the

accuracy of motion classification was maintained at 88.75%

in the test involving the random removal of two channels,

despite the poor performance of the subjects compared with

the full-channel subjects. The random channel deletion feature

in the proposed framework provides a possible solution for

the rehabilitation of muscle-deficient patients and motion

recognition of missing channel users.

The training dataset and calibration dataset were passed

through the CCA and DCCA algorithms, respectively, to obtain

two sets of parameters V . These two sets of V were used to

construct each user’s test feature matrix. After projection, two

new sets of test feature matrices were obtained. The data in the

top three columns of the most favorably identified features were

plotted as a three-dimensional scatter plot. Figures 7A–D show

the post-projection features observed by the CCA method from

four directions, and Figures 7E–H show the same for the DCCA

method. Compared with the plots for the CCA method, those

for the DCCA method have more cohesive color blocks more

cohesive and show lower intra-class variance while maintaining

good inter-class separability, which is beneficial to classification

performance. The results of the three-dimensional scatter plots

also verify our hypothesis on the performance of DCCA.

We also analyzed how the number of samples in the

calibration process affects the classification accuracy, as well

as the direct relationship among the number of samples

and the new feature dimension. In this case, we tested the

performance of the ADR-CCA and ADR-DCCA frameworks

by selecting a certain number of samples from the calibration

dataset. As shown in Figure 8, the accuracy of the classification

significantly improved and the dimensionality of the features

effectively decreased as the size of the calibration dataset

increased. In addition, we performed experiments in which
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TABLE 4 Experimental results for user-independent DCCA-with-ADR framework.

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 89.88 92.42 91.67 96.42 98.25 90.67 97.00

N2 88.75 N/A 86.50 89.58 89.08 94.58 93.33 92.50

N3 90.33 91.50 N/A 96.67 97.67 96.67 95.42 91.50

N4 87.25 90.67 94.42 N/A 93.00 95.75 96.17 94.00

N5 87.33 87.92 88.50 92.17 N/A 96.67 91.17 89.50

N6 93.17 90.28 86.58 91.00 96.67 N/A 88.67 91.33

N7 89.50 92.58 88.33 94.00 89.17 97.83 N/A 93.75

N8 94.67 89.67 90.92 93.17 96.58 91.08 90.85 N/A

Average

accuracy
90.14 90.36 89.67 92.61 94.08 95.83 92.33 92.80

FIGURE 5

Histogram of average accuracies of 12 campaigns classified by four methods for eight users.

the classifier was trained directly with calibration data, where

both calibration and test data were obtained from the same

human body. Figure 8 shows the recognition results obtained

when training the classifier with the calibration data in these

experiments. Directly training the classifier with the calibration

data using 3–4 sets of calibration data clearly resulted in better

performance compared with the CCA method. Unfortunately,

the classification performance of all three methods did not meet

the application requirements. However, the proposed method

ADR-DCCA method had the highest classification accuracy at

5–10 sets of calibration data. Smaller calibration datasets were

chosen because this study was intended to target specific groups

such as rehabilitation patients. Here, 3–10 sets of corrected data

were selected for testing, and a good classification effect could

be achieved with eight sets. The experimental results indicate

that the ADR-DCCA framework has advantages over other CCA

extension frameworks for multi-user sEMG interfaces.

5. Conclusion

In order to solve the problem of stroke patients or patients

with limb muscle injuries being unable to quickly obtain

a suitable contralateral model for rehabilitation training, a
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TABLE 5 Experimental results for user-independent CCA-OT framework (the sEMG data of all test users were reduced randomly by two channels).

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 74.87 83.91 79.03 92.82 96.48 84.59 96.70

N2 78.62 N/A 84.59 82.55 90.76 93.68 82.87 84.93

N3 81.24 78.70 N/A 89.26 81.94 89.07 90.12 90.03

N4 84.88 83.41 88.72 N/A 87.22 86.23 94.37 90.76

N5 76.22 78.16 85.80 89.99 N/A 82.55 80.80 80.43

N6 91.04 84.02 79.29 85.42 84.18 N/A 76.33 84.47

N7 90.70 82.06 87.70 83.08 83.58 83.71 N/A 83.58

N8 92.72 81.39 77.31 86.47 86.89 78.86 81.41 N/A

Average

accuracy
85.06 80.37 83.90 85.12 86.77 87.22 84.36 87.27

TABLE 6 Experimental results for user-independent CCA-without-ADR framework (the sEMG data of all test users were reduced randomly by two

channels).

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 78.78 80.61 77.15 91.84 82.27 76.09 89.95

N2 76.96 N/A 73.67 74.97 83.23 89.58 86.88 78.47

N3 86.77 75.31 N/A 90.22 85.58 89.97 84.89 81.87

N4 79.37 77.05 78.52 N/A 85.68 86.16 84.44 88.16

N5 66.61 71.64 81.65 83.21 N/A 76.07 69.42 76.59

N6 81.56 90.19 85.79 85.42 80.04 N/A 74.83 75.71

N7 81.20 76.70 75.32 79.02 85.18 81.58 N/A 89.77

N8 82.45 70.05 81.29 83.79 83.64 84.21 73.58 N/A

Average

accuracy
79.28 77.10 79.55 81.97 85.02 84.26 78.59 82.93

TABLE 7 Experimental results for user-independent CCA-with-ADR framework (the sEMG data of all test users were reduced randomly by two

channels).

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 85.75 83.82 78.84 91.59 87.52 85.68 89.55

N2 86.81 N/A 76.21 78.52 82.41 88.51 90.61 80.96

N3 87.11 81.54 N/A 91.84 81.74 88.67 85.73 88.27

N4 77.45 77.25 85.35 N/A 90.47 87.72 92.27 94.21

N5 81.00 79.76 82.74 85.81 N/A 86.70 77.85 80.71

N6 83.77 82.52 83.95 87.69 90.58 N/A 84.47 83.67

N7 89.72 80.36 79.85 86.23 77.75 88.70 N/A 91.01

N8 93.26 77.05 77.62 86.99 88.51 88.05 76.42 N/A

Average

accuracy
85.59 80.60 81.36 85.13 86.15 87.98 84.72 86.91

suitable multi-user sEMG motion-recognition framework is

presented here. First, the training dataset and the new user

calibration dataset are projected into the same style space. New

features for training users and new users are recreated based

on the parameters obtained after the projection. Second, the

dimensionality of the new features is optimized iteratively using
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TABLE 8 Experimental results for user-independent DCCA-with-ADR framework (the sEMG data of all test users were reduced randomly by two

channels).

Training user
Test user

N1 N2 N3 N4 N5 N6 N7 N8

N1 N/A 84.78 87.49 85.37 94.25 95.72 90.25 91.86

N2 84.23 N/A 83.97 84.17 87.19 90.63 92.83 85.57

N3 90.57 87.74 N/A 89.49 95.39 92.80 89.73 91.96

N4 79.26 82.99 93.07 N/A 93.51 93.71 93.69 91.81

N5 83.49 81.50 82.69 90.32 N/A 95.60 88.41 85.82

N6 88.99 88.78 86.84 87.92 95.05 N/A 85.54 89.08

N7 85.65 88.84 82.75 89.83 83.30 95.79 N/A 90.65

N8 93.60 83.04 89.81 90.97 89.65 86.83 85.23 N/A

Average

accuracy
86.54 85.38 86.66 88.30 91.19 93.01 89.38 89.54

FIGURE 6

Histogram of average accuracies of 12 campaigns classified by four methods for eight users (randomly reducing the user test set by two

channels).

an adaptive dimensionality-reduction optimization method to

obtain the dimensionality of the system features that are most

suitable for motion recognition. Finally, a model is constructed

that is suitable for new users and shows good classification

performance in user test set classification. The experimental

results indicate that the DCCA algorithm is effective at

extracting the relevant information between the new user test

set and the training user feature set, and that the ADR method

effectively reduces the redundant information between the two

datasets. These are both important factors in the improvement in

motion recognition performance obtained with the framework.

This framework also better addresses the problem of large

differences in muscle-generated sEMG signals when different

people perform the same movement and enables new users

to engage in contralateral-driven rehabilitation patterns more

quickly. The accuracy of motion classification was maintained

at 88.75% in the test involving the random removal of two

channels, despite the poor performance of the subjects compared

with the full-channel subjects. The random channel deletion

feature in the proposed framework provides a possible solution
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FIGURE 7

Three-dimensional scatter plots of three new features reconstructed using the CCA framework (A–D) and DCCA framework (E–H). The 12

di�erent-colored balls represent the di�erent motions of the new user (the black ball at the bottom is the coordinate rotation mark).

FIGURE 8

Relationships between sample size and classification accuracy

and between sample size and new feature dimensions.

ADR-DCCA and ADR-CCA denote the classification accuracy of

the ADR-DCCA architecture and ADR-CCA with di�erent

numbers of calibration sets, respectively. ADR-DCCA-FD and

ADR-CCA-FD are the corresponding feature dimensions under

classification accuracy. TCCD indicates the classification

accuracy when training the classifier model directly with the

calibration dataset.

for the rehabilitation of muscle-deficient patients and motion

recognition of missing channel users. Finally, we tested the

proposed method in the rehabilitation laboratory, and the

accuracy of action recognition reached 90.52%. In conclusion,

our proposed ADR-DCCA method has important potential

applications in the field of rehabilitation.

Although this work implemented sEMG-based action

recognition for rehabilitation movements of upper limb

exoskeleton robots and glove robots, the experiments only

considered human variation and channel loss in sEMG

action recognition. In fact, there are many sources of

uncertainty in sEMG action recognition, including fatigue

differences and electromagnetic interference. In addition,

the sEMG-based information is limited. In future work,

we will continue to improve the proposed framework and

integrate EEG signals and acceleration-sensing information to

enable it to cope with more non-ideal situations, thereby

improving the comprehensive performance of action

recognition.
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