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Aiming at the problems of slow convergence and easy fall into local optimal

solution of the classic ant colony algorithm in path planning, an improved

ant colony algorithm is proposed. Firstly, the Floyd algorithm is introduced

to generate the guiding path, and increase the pheromone content on the

guiding path. Through the di�erence in initial pheromone, the ant colony

is guided to quickly find the target node. Secondly, the fallback strategy is

applied to reduce the number of ants who die due to falling into the trap to

increase the probability of ants finding the target node. Thirdly, the gravity

concept in the artificial potential field method and the concept of distance

from the optional node to the target node are introduced to improve the

heuristic function to make up for the fallback strategy on the convergence

speed of the algorithm. Fourthly, a multi-objective optimization function is

proposed, which comprehensively considers the three indexes of path length,

security, and energy consumption and combines the dynamic optimization

idea to optimize the pheromone update method, to avoid the algorithm falling

into the local optimal solution and improve the comprehensive quality of the

path. Finally, according to the connectivity principle and quadratic B-spline

curve optimization method, the path nodes are optimized to shorten the path

length e�ectively.

KEYWORDS

Floyd algorithm, ant colony optimization, fallback strategy, multi-objective

optimization, quadratic B-spline curve

Introduction

The path planning of mobile robot is to plan the optimal path from the starting point

to the target point in the specified area (Chen et al., 2020). At present, path planning

algorithms is mainly presented in the form of traditional algorithms and intelligent

algorithms. The traditional algorithms include the A∗ Algorithm (Xiong et al., 2020),

Tabu Search (TS) (Khaksar et al., 2012), and D∗ Algorithm (Yao et al., 2021), etc. The

intelligent algorithms include Ant Colony Optimization (ACO) (Wang, 2020), Particle

Swarm Optimization (PSO) (Wang et al., 2020a), Genetic Algorithm (GA) (Chen and

Gao, 2020), etc.
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Intelligent algorithms can also be subdivided. Among them,

the ant colony algorithm and particle swarm optimization

algorithm belong to the swarm intelligent algorithm. Swarm

intelligent algorithm has been a hot spot in path planning.

There are two modes of swarm intelligence, namely, ant

colony algorithm and particle swarm optimization algorithm.

Swarm intelligence mainly refers to the intelligent behavior of

many non-intelligent individuals in a group through simple

cooperation. Swarm intelligence is applied to path planning,

taking the ant colony algorithm as an example. It shows that

a single ant in the ant colony has no intelligence, but through

cooperation to form a complete system, it evolves into an

intelligent whole that can explore the optimal path in a complex

environment. Therefore, it is widely studied and applied in

path planning.

Swarm intelligence is mainly manifested in five principles:

(1) Proximity principle; (2) Quality principle; (3) The

principle of diverse response; (4) Stability principle; (5)

Adaptability principle.

Swarm intelligence also has four features.

(1) The control of swarm intelligence is decentralized, and

there is no unified control center, so it can adapt to

various environments and has strong robustness. For

example, the ant colony algorithm can carry out path

planning in various complex environments and obtain

the optimal path.

(2) Each individual in the swarm can communicate by

changing the environment, which has good scalability.

For example, the ants change the pheromone content in

the environment by leaving pheromones on the path, to

realize communication with other individuals.

(3) The behavior of individuals in the swarm or the rules they

follow are very concise, so it is very convenient to realize

swarm intelligence. For example, individuals in the ant

colony only need to follow the state transition rules to find

the path and leave pheromones to inform the latecomers.

(4) The complex behavior of a swarm is the result of

individual communication and cooperation. Under

the guidance of appropriate rules, swarm intelligence

can play a role in some form of emergence through

communication and cooperation. For example,

individuals in the ant colony interact through

pheromones and then complete path exploration.

Then pheromone update mechanism plays a role in

guiding the ant colony to optimize the path further and

finally get the optimal path.

Ant colony algorithm in swarm intelligence fully reflects

the characteristics of swarm intelligence. It is simple to set

parameters, suitable for various complex environments, and has

strong robustness. Therefore, it is widely used in robot path

planning. In this paper, the ant colony algorithm will be deeply

studied and optimized.

Italian scholar Marco Dorigo proposed the ant colony

algorithm in 1992. The algorithm was derived from the path

finding behavior of ants looking for food sources in nature (Mac

et al., 2016). The most prominent feature of the ant colony

algorithm is the positive feedback mechanism (Zhang et al.,

2021) which is conducive to obtaining the optimal solution

quickly. Then, the ant colony can change the environment by

releasing pheromone, so as to communicate indirectly (Yi et al.,

2019). At last, the ant colony adopts the distributed computing

method to search the path (Zheng et al., 2020), and the parallel

computing is carried out by multiple individuals at the same

time. Nevertheless, the defects of slow convergence speed and

easy to fall into the local optimal solution cannot be ignored

(Yang et al., 2019).

For the defects of the ant colony algorithm,many researchers

have proposed optimization schemes that can be divided into

three categories. (1) In consideration of the slow convergence

speed of the ant colony algorithm, improve the initial

pheromone allocation method, or improve the state transition

probability matrix, such as Luo et al. (2020) and Li et al.

(2021); etc. (2) In order to optimize the defect of the ant colony

algorithm that it is easy to fall into local optimal solution, the

pheromonematrix updatingmethod is optimized or pheromone

concentration is limited, such as Akka and Khaber (2018) and

Wang et al. (2020), etc. (3) Many schemes to improve the path

smoothness of ant colony algorithm have been proposed. There

are mainly two ways: improving the heuristic function and

optimizing the path nodes, such as Dai et al. (2019) and Yang

et al. (2019), etc. Some optimization schemes will be introduced

in detail below.

To improve the ant colony algorithm, there are a lot of

optimization schemes (Akka and Khaber, 2018; Luo et al., 2020;

Li et al., 2021). In Luo et al. (2020), an improved ant colony

algorithm was proposed. The algorithm constructs unequally

distributed initial pheromone in the early stage of path planning.

At the same time, the pseudo-random state transition rule is

used to select the trail. The deficiency is that the algorithm only

sets the initial pheromone according to the position information

of the node, which is not conducive to avoiding obstacles in the

process of the ant search path, and the guidance of the ant colony

is not direct enough. In Li et al. (2021), an improved algorithm

based on turning angle constraint was proposed. Firstly, the

initial pheromone concentration between the starting node and

the target node is increased. Then, the evaluation function and

rotation constraint factor of the A ∗ algorithm is added to

the heuristic function. The nodes with the optimal path length

and rotation number can be selected in the next step. Finally,

in the pheromone updating part, the distribution principle

of the wolf swarm algorithm is introduced to strengthen

the influence of a high-quality population. The algorithm
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proposed by Li effectively avoids falling into optimal local

solutions, but the convergence speed in a complex environment

cannot meet the requirements. In Akka and Khaber (2018),

an improved ant colony optimization algorithm was proposed.

The algorithm uses stimulus probability to help ants select the

following grid, and uses new heuristic information to improve

visibility accuracy. In addition, the improved algorithm adopts

new pheromone updating rules and dynamically adjusts the

evaporation rate, which accelerates the convergence speed and

expands the search space. This algorithm does not consider the

requirements of path smoothness when effectively accelerating

the convergence speed, which is not conducive to reducing the

energy consumption and mechanical loss of the robot.

In summary, to solve the problems of slow convergence

rate and easily fall into the local optimal solution of ant colony

algorithm, this paper proposes an improved algorithm.

(1) For the difficulties in Luo et al. (2020), the Floyd

algorithm is introduced to generate the guidance path.

The path is a feasible path without collision with

obstacles. Setting the initial pheromone based on the track

can help the ant colony avoid blind search and take into

account the obstacle avoidance needs.

(2) Considering that the ants easily fall into the deadlock

and self-locking state, the fallback strategy is proposed

to reduce the number of dead ants and help improve the

success rate of the algorithm to solve the way.

(3) For the problems that have not been solved in Li et al.

(2021), the APF method and the concept of the distance

between the optional node and the target node are

introduced to optimize the structure of the heuristic

function, which improves the state transition probability

and accelerates the convergence rate.

(4) Given the shortcomings of Akka and Khaber (2018),

the connectivity principle and quadratic B-spline curve

optimizationmethod are proposed to optimize the corner

nodes, further shortening the path length and reducing

the mechanical loss of the robot in the working process.

(5) Moreover, this paper proposes a multi-objective

optimization method, taking into account the path

length, path safety, and path energy consumption, to

solve the bearing with the highest comprehensive quality.

The pheromone updating method is improved based on

the multi-objective optimization method and dynamic

principle, which prevents the algorithm from falling into

the local optimal solution to the greatest extent.

The rest of this paper is as follows. The second part briefly

describes the two-dimensional grid environment modeling

method, which is a crucial environment for algorithm operation.

The third part introduces the core part of the classic ant

colony algorithm. The fourth part gives the progress measures

of the algorithm in detail. In the fifth part, the classic ant

colony algorithm and the improved algorithm are compared

and analyzed. The sixth part summarizes the contributions

and shortcomings of the improved algorithm, and briefly looks

forward to future work.

Environment modeling

Environment modeling is the basic part of a path planning

algorithm (Mac et al., 2016). The grid method is used in mobile

robot path planning algorithms because of its simple modeling

method, easy programming, and ability to express irregular

obstacles. It is a commonly used environmental modeling

method (Ouyang and Yang, 2014). The grid method converts

environmental information into grid form (Zhang et al., 2019),

and distinctive blocks are regularly processed and properly

expanded, as shown in Figure 1, which greatly reduces the

difficulty of path planning.

In the grid map, the white grid is the free space and optional

node, represented by “0.” The black grid is the obstacle space and

belongs to the tabu node, represented by “1.”

In addition, the selection of grid size is also a key factor of

the algorithm. If the grid is too small, the map resolution is high,

which is not conducive to fast decision-making. If the grid is too

large, themap resolution will be low, which is conducive to quick

decision-making. Still, it cannot guarantee a viable path in the

dense obstacle environment.

Although the grid sequence number method saves more

memory, it is not conducive to the rapid iteration of the ant

colony algorithm (Xiao et al., 2021). To ensure the convergence

speed, the grid sequence number will be converted to coordinate

(x, y), and the conversion formula is as follows.

{

x = mod(i,M)− 0.5

y = M − ceil(i/M)+ 0.5
(1)

In the formula, Mis the map size, mod is the solution

function that returns the abscissa of the grid, and theceilprocess

returns the grid ordinate (Ali et al., 2020).

FIGURE 1

Obstacle rule processing.
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FIGURE 2

Grid coordinate diagram.

The coordinate form of the grid map is shown

in Figure 2.

Ant colony optimization algorithm

Ant colony algorithm is derived from the path finding

behavior of ants looking for food sources in nature, which

has strong robustness in complex environment. The classic

ant colony algorithm is easy to implement, the parameter

setting is convenient, and the requirement for the computing

environment is low (Zhang et al., 2020). The two important

mechanisms of the ant colony algorithm are positive feedback

and pheromone communication. The positive feedback

mechanism guarantees the convergence of the ant colony

algorithm. The higher the path quality, the more pheromones

will accumulate when the pheromone is updated, which will

encourage more ants to choose and realize the fast convergence

of the algorithm. The pheromone communication mechanism

is indirect communication for ant colony individuals. Ants

leave pheromones on the path they traversed. Other individuals

combine known environmental information and pheromones

on the course to become new prior knowledge, which

will help ant colonies reduce blind search and find target

nodes faster.

These two mechanisms evolve into two key links in

algorithm implementation: state transition probability

(Chen et al., 2021) and pheromone update (Li and Wang,

2020).

State transition probability

Ants need to go through many intermediate nodes in

the process of finding the path. For the selection of each

intermediate node, the state transition probability matrix of

the optional node should be established first, and then select

from the probability matrix by roulette operation (Wang et al.,

2020b).

The state transition probability is shown in equation (2).

Pkij(t) =















τα
ij (t)η

β
ij (t)

∑

j∈allowedk

τα
ij (t)η

β
ij (t)

s ∈ allowedk

0 s /∈ allowedk

(2)

ηij =
1

dij
(3)

dij =

√

(xi − xj)
2 + (yi − yj)

2 (4)

Where, τij is the pheromone content from node i to node j,

ηij is the heuristic function, dij is the Euclidean distance from

node i to node j, α is the pheromone heuristic factor, β is the

expected heuristic factor, and allowedk is the set of optional

nodes in the next step (Xiong et al., 2021).

Pheromone update mode

Individuals in the ant colony will leave pheromones

when passing through each path. As a prior knowledge of

subsequent individuals, ants communicate indirectly through

the pheromones. After several iterations, the ants traverse

the map, and the pheromone content of the path indicates

the quality of the trajectory. The higher the quality of the

path pheromone concentration is higher. In the algorithm

implementation process, to facilitate calculation, a pheromone

update is placed after each iteration of the ant complete

path search.

The pheromone update method is shown in equation (5).

τij(t + 1) = (1− ρ) ∗ τij(t)+ 1τij(t) (5)

1τij(t) =

m
∑

k=1

1τ kij (t) (6)

1τ kij (t) =

{

Q
Lk

tour(i, j) ∈ tourk

0 tour(i, j) /∈ tourk
(7)

Where, ρ is the pheromone volatilization rate, 1τij(t) is the

total pheromone increment of the path in this iteration, 1τ kij (t)

is the pheromone increment brought by the k-th ant, m is the

number of ants,Q is the pheromone increase intensity, and Lk is

the path length traveled by the k-th ant (Tao et al., 2021).

Improvement of ant colony
optimization algorithm

Initial pheromone matrix

The Floyd algorithm is named after Robert Floyd (Hao and

He, 2008), one of the founders. Floyd algorithm is a dynamic

programming algorithm, suitable for dense maps, simple and
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effective, and easy to implement. Its efficiency is higher than the

Dijkstra algorithm (Shi and Wang, 2009). Taking the optimal

path obtained by the Floyd algorithm as the guiding path of the

ant colony algorithm can help set the initial pheromone matrix

with a guiding effect (Tian, 2021a).

Floyd algorithm can calculate the shortest path between each

node in the map environment, and the core idea is to solve

the shortest path matrix (Lyu et al., 2021). There are only two

possible shortest paths from nodeito nodej. One is the Euclidean

distance of two nodes. That is, two nodes are connected, and the

other is from node i to node j through several intermediate nodes

(Yang, 2020). Therefore, Dis(i, j) is set as the Euclidean distance

from nodeito nodej, and then all nodeskexcept these two nodes

are judged. IfDis(i, k)+Dis(k, j) < Dis(i, j)holds, it is proved that

the path fromnodeito nodekand then to node jis shorter than the

path from nodeito nodej, then let Dis(i, j) = Dis(i, k)+ Dis(k, j).

After traversing node k, the shortest distance from node i to node

j is recorded inDis(i, j).

The implementation of the Floyd algorithm is as follows.

(1) Initialize the shortest distance matrixDistas the adjacency

matrix of themap, and the path nodematrix pathis empty.

The elements in the adjacency matrix are initialized to

infinity. If two nodes have edges, the corresponding

elements in the matrix are set as weight values.

(2) For node i to node j, traversing the remaining nodes to

determine whether there is nodekmakes the distance from

node i to node k and then to node j shorter than the

known path. If it exists, updatematrixDistandmatrixpath.

The state transition equation is shown in equation (8).

Dist(i, j)

=

{

Dist(i, j) Dist(i, k)+ Dist(k, j) ≥ Dist(i, j)

Dist(i, k)+ Dist(k, j) Dist(i, k)+ Dist(k, j) < Dist(i, j)

(8)

After determining the starting node and the target node, the

Floyd algorithm can quickly obtain the optimal path. Then take

the generated path as the guidance to change the pheromone

content on the path so that it is different from other paths.

Because the ant will be affected by pheromone when choosing

the path, it is easier to choose the guidance path. The pheromone

difference between the guide path and other paths will make the

ant tend to the former to quickly find the target node. The initial

pheromone matrix is set as follows.

τij(0) =

{

k ∗ C tour(i, j) ∈ tourF

C tour(i, j) /∈ tourF
(9)

Where, τij(0)is the initial pheromone matrix. tourF is the

guiding path generated by the Floyd algorithm, and the

pheromone concentration of the guiding path is set toktimes of

other paths.

The APF has also been used to generate the guidance path of

the ant colony algorithm. Therefore, under the same conditions,

the path planning results of APF method and Floyd algorithm

are compared. The results are shown below.

According to Figure 3 and Table 1, the path of APF method

will pass through obstacles, which is not allowed, while the path

of Floyd algorithm fully realizes the requirements of obstacle

avoidance. In addition, the Floyd algorithm has few redundant

nodes, and the length is only 51.40 % of the APF method.

The Floyd algorithm is much better than the APF method.

Therefore, introducing the optimal path of the Floyd algorithm

as the guiding path will help the ant colony algorithm quickly

find the target node and accelerate the convergence speed of

the algorithm.

Ant fallback strategy

The ants often encounter deadlock problems when exploring

paths (Dai et al., 2019), including self-locking and deadlock

caused by obstacles. The deadlock problem will cause excessive

death of ants, weaken the ability of the ant colony to explore

the path, and slow down the convergence speed of the algorithm

(Tian, 2020b; Wang, 2020).

Obstacles that will form ant deadlocks are usually concave.

Because the ant follows the rule of putting the passed nodes in

the tabu list when exploring the path to reduce the generation of

redundant nodes, when ants encounter concave obstacles, this

rule will make ants unable to stay away from the obstacles and

thus trapped near the obstacles. Self-locking is due to that ants

have no clear direction of the target node at the beginning of the

iteration, only blind search, and ultimately face the plight of no

optional nodes. The above two deadlock problems are shown in

Figure 4.

The particles in Figure 4 are the ants searching path. On

the left side of Figure 4, the ant at node P1 chooses the left

node P2. It cannot retreat away from the obstacles because

of the tabu list rules. The ant can only continue to select the

left node P3, and finally, it is trapped in the barrier. On the

right side of Figure 4, the ant at node P1 does not get a clear

direction of the target node and can only choose the next

node based on roulette. The ant follows the series of nodes

likeP1 → P2 → P3 → P4 → P5 → P6and finally, the ant

is trapped in a self-locking dilemma. In the classic ant colony

algorithm, ants are usually discarded after they fall into the

deadlock dilemma so that subsequent ants continue to search the

path. The situation when ants fall into deadlock can be described

by the following formula.

allowedi ∩ Obs = allowedi (10)
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FIGURE 3

Comparison of boot paths.

TABLE 1 Comparison of boot paths length.

APF method Floyd algorithm

Optimal path length 74.4853 38.2843

Where, allowediis the list of optional nodes, Obsis the

tabu list.

To solve the deadlock problem, the ant fallback strategy

is proposed. When the ant has no optional node and has not

reached the target point, the fallback strategy is implemented.

That is, the current node is added to the tabu list and returned

to the previous node, and the pheromone concentration at the

current node is reduced. If there are new optional nodes at this

time, the fallback strategy will end. If not, continue to execute the

fallback strategy until there are optional nodes for ants to select.

The fallback strategy is shown in Figure 5.

In Figure 5, the ant at node P3 falls into the deadlock and

starts to perform the fallback strategy. The node P3 is added to

the tabu list, and the ant returns to node P2. There is no optional

node for the ant to choose, so the ant continues to implement the

strategy. When returning to node P1, the ants find new optional

nodes. At this time, it ends the execution of the fallback strategy.

The ant selects the node P4 by the roulette rule and continues to

explore new paths. Since the trap has been added to the tabu list,

subsequent ants will no longer fall into the deadlock dilemma

here. The treatment of the self-locking dilemma is similar (Tian

and Chen, 2021a).

The pheromone update method when executing the fallback

strategy is as follows.

τij(t + 1) = (1− λ) ∗ τij(t) (11)

Where, λ is the pheromone penalty evaporation coefficient,

which reduces the pheromone concentration of the trap nodes

and helps the ant avoid the trap.

Heuristic function optimization strategy

To better solve the slow convergence problem of the ant

colony algorithm, some optimization schemes are proposed for

the heuristic function.

The heuristic function of the ant colony algorithm is the

reciprocal of the Euclidean distance between the current node

and the optional node, as follows.

ηij =
1

dij
, dij =

√

(xi − xj)
2 + (yi − yj)

2 (12)

The heuristic function does not contain the information of

the target node, and the ant lacks guidance in finding the path,

which is easy to search blindly, resulting in the slow convergence

of the algorithm. This paper proposes the concept of distance

between the optional node j and target node E, replacing the

original heuristic function, as follows.

ηij =
1

djE
, djE =

√

(xE − xj)
2 + (yE − yj)

2 (13)
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FIGURE 4

Deadlock and self-locking.

FIGURE 5

Fallback strategy.

The heuristic value of the optional node closest to the target

node is the largest, and the probability of being selected is

also the largest. With the information of the target node, the

ant colony has a clear direction in exploring the path, and the

convergence speed will be accelerated.

Based on the new heuristic function, considering further

improving the convergence speed of the algorithm, the APF

method is an option. The APF method has the advantages of

low calculation and fast convergence speed, so it is considered

to optimize the heuristic function (Wang et al., 2020c).

As one of the widely used path planning algorithms, the APF

method was first proposed by Khatib. O in 1985 (Pan et al.,

FIGURE 6

Artificial potential field method.

2019). The main idea of the APF method is to regard the motion

environment of the robot as a virtual force field (Li and Wang,

2022). The target node and obstacles generate gravitational and

repulsive forces, respectively, in the robot, and the motion of

the robot is controlled by the resultant force. The effect of the

APF method is shown in Figure 6. The particle is a mobile robot

(Wang and Wang, 2020a).

After simulation experiments, the gravity concept of the

target node to the robot in the APF method is used to optimize

the heuristic function, which is as follows.
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Gra = sigma ∗

√

(xE − xj)
2 + (yE − yj)

2 (14)

djE = 1/

√

(xE − xj)
2 + (yE − yj)

2 (15)

ηij =
power(0.5,Gra)

djE
(16)

Where, Grais the gravitational effect of the target node on

the optional node, sigmais the gravitational constant, poweris the

power function that returns the value of the exponential power

of the given bottom number. j is the optional node and E is the

target node.

In the early iterations, the pheromone is accumulating, and

the state transition probability is dominated by the heuristic

function. In the middle and late iterations, the ants complete

the path exploration, and the pheromone accumulates a lot.

The pheromone dominates the state transition probability.

Therefore, the heuristic function needs to be adjusted adaptively

to match the pheromone matrix, so as to improve the update

mode of the state transition probability matrix.

The adaptive adjustment of the heuristic function is related

to the number of iterations. Therefore, the normal distribution

function is introduced and combined with the heuristic

function, as shown below.

Nd_function = e(−((k/K)ˆ2)/2) (17)

Pkij(t) =















τα
ij (t)∗(Nd_function∗ηij(t))

β

∑

j∈allowedk

τα
ij (t)∗(Nd_function∗ηij(t))

β s ∈ allowedk

0 s /∈ allowedk

(18)

Where, Nd_functionis the deformation of the standard

normal distribution function, omitting the coefficient, kis the

current number of iterations, Kis the maximum number of

iterations, Pkij(t)is the optimized state transition probability.

Optimization strategy of pheromone
updating method

In the classic ant colony algorithm, the pheromone updating

method is only related to the path length. The shorter the

path, the higher the pheromone increment. The updating

method ignores other requirements, such as path security and

energy consumption. In addition, the pheromone volatilization

coefficient is constant and does not dynamically update with

iterations. In the late iterations, the optimal path has been fixed.

The behavior of finding a better path has stopped, which causes

the local optimal solution (Wang and Wang, 2020b).

To solve the above problems, this paper proposes a

pheromone updating method based on the multi-objective

optimization method (Guo et al., 2020) and dynamic principle

(Tian et al., 2020; Tian, 2021b).

Multi-objective optimization has been used in other path

planning algorithms, mainly to improve the quality of the

algorithm. Based on the idea of multi-objective optimization,

this section puts forward three optimization objectives: path

length, path security, and path energy consumption, which are

used as the standard to update the pheromone matrix. Where,

the path length is the sum of the distances of the path nodes,

denoted as Length; path safety is the number of dangerous nodes

on the path, denoted as Risk; path energy consumption depends

on the number of turns and turning angles of the path, denoted

asConsumption. The multi-objective optimization function is

shown below.

Length =

j=E
∑

i=S

dij (19)

Risk =
∑

D_nodes (20)

Consumption =
∑

0.5 ∗ N_corner + 0.5 ∗ T_angle (21)

J_quality = k1 ∗ Length+ k2 ∗ Risk+ k3

∗ Consumption (22)

k1 + k2 + k3 = 1 (23)

Where, Length is the sum of distances of all nodes in the

path. Riskis the sum of dangerous nodes that the path passes.

Dangerous nodes refer to nodes whose ratio of optional nodes

to obstacle nodes is <1. Consumptionis the sum of the number

of corners and the turning angles of the path. J_qualityis the

comprehensive quality, a comprehensive index composed of

path length, path safety, and path energy consumption with

different proportions. The smaller the value is, the higher the

comprehensive quality of the path is.

Replacing the path length with the comprehensive quality

is the way to realize the multi-objective optimization idea. The

improved pheromone update method is as follows.

1τ kij (t) =











Q
Jbest

+
b∗Q
BEST tour(i, j) ∈ tourbest

Q
Jworst

−
w∗Q

WORST tour(i, j) ∈ tourworst
Q
J tour(i, j) ∈ tourother

(24)

1τij(t) =

m
∑

k=1

1τ kij (t) (25)

τij(t + 1) = (1− ρ) ∗ τij(t)+ 1τij(t) (26)

Where, Jbest is the comprehensive quality of the local optimal

path, bis the number of ants on the local optimal path, BESTis

the comprehensive quality of the global optimal path. Jworst is the

comprehensive quality of the local worst path, wis the number

of ants on the local worst path, WORSTis the comprehensive

quality of the global worst path. The optimal path, the worst path
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and other paths update the pheromone according to the three

forms in equation (24), respectively.

The optimized pheromone updating method is based on the

comprehensive quality of the path. The reward and punishment

system is implemented for the optimal path and the worst path,

and the pheromone gap between them gradually increases. The

subsequent ants will be more inclined to the optimal path, which

helps to accelerate the convergence speed of the algorithm (Dai

et al., 2022).

In the late iteration of classic ant colony algorithm, the

pheromone accumulation is completed, and ants are affected by

pheromone, so it is difficult to continue to explore other paths,

and the local optimal solution needs to be solved (Tian and

Chen, 2021b).

In this paper, the concept of dynamic updating volatility

coefficient is proposed. In the late iterations, if the quality of the

optimal path of five consecutive iterations does not change, the

volatility coefficient is dynamically updated, which can increase

the volatilization of pheromone and weaken the attraction of

pheromone. This helps ants explore other paths. The dynamic

volatility coefficient is shown below.

ρ =

{

1.2 ∗ ρ J(k) = J(k− 5), k ≥ 35

0.8 ρ ≥ 0.8
(27)

Where, J(k)andJ(k− 5)are the comprehensive quality of the

optimal path of this iteration and five iterations ago, respectively.

In the late iterations, if the Jbest does not change in the five

consecutive iterations, the volatilization coefficientρ increases,

and the volatilization is enhanced, which makes the ants explore

better solutions. The upper limit of the volatilization coefficient

is 0.8.

Path smoothing

The path obtained by classic ant colony algorithm has

many redundant nodes and corners, which not only affects

the path length, but also is not conducive to reducing the

energy consumption of the robot. Therefore, the improved

ant colony algorithm needs to optimize the path nodes. In

this paper, the connectivity processing and quadratic B-spline

curve optimization method are proposed to optimize the nodes,

which further shortens the path length and reduces the energy

consumption of the robot (Tian, 2020a; Tian et al., 2021).

Aiming at the path feature of the ant colony algorithm,

which is composed of a series of nodes, the connectivity principle

is proposed. Due to the limitation of step size, there are many

redundant nodes. Connectivity processing is an effective method

for eliminating redundant nodes, and its principle is shown in

Figure 7.

As can be seen from the Figure 7, the line between P1 and

P5 does not cross obstacles, so the two nodes are connected. P2,

P3, and P4 are redundant nodes. After connectivity processing,

the corner is reduced, and the path length is shortened, which is

beneficial to the robot.

The connectivity processing of the complete path is shown

in Figure 7.

As can be seen from the Figure 7, the left side is the

path obtained by the classic ant colony algorithm. There are

redundant nodes, and the path length is 43.6985. The right side

is the path processed by connectivity. The corner is reduced,

and the path length is 39.1901. It can be seen that the effect of

connectivity processing is significant.

In addition to redundant nodes, the path smoothing also

includes the smoothness operation of the corner. Therefore,

this paper introduces the quadratic B-spline curve optimization

method to optimize the corner.

In 1946, Schoenberg proposed a spline-based approach to

approximate curves. In 1972, based on Schoenberg’s work,

Gordon and Riesenfeld proposed B-spline curves and a series of

corresponding geometric algorithms. The B-spline curve is the

generalization of the Bezier curve, which solves the problem that

the Bezier curve is difficult to smooth transition at the endpoint.

Besides, the B-spline curve has higher accuracy (Zeng et al.,

2019). The definition of the B-spline curve is as follows.

P(t) =

n
∑

i=0

PiNi,k(t) (28)

Ni,k(t) =
1

k!
∗

k−i
∑

j=0

(−1)j ∗ C
j
k+1

∗ (t + k− i− j)k (29)

0 ≤ t ≤ 1, i = 0, 1, . . . , k− 1,C
j
k+1

=
(n+ 1)!

j! ∗ (n+ 1− j)!
(30)

Where, Piis the original endpoint, Ni,k(t)is the basic

function, andP(t)is the set of points on the curve.

The quadratic B-spline method needs only three endpoints

to construct a smooth curve. And it can meet the requirements

of curve smoothness. Therefore, this paper selects the quadratic

B-spline method to deal with the corner problem.

Whenn = 2in equation (28), the quadratic B-spline curve

of the following form can be obtained through the spline

basis function.

P(t) =
1

2
∗ (1− t)2 ∗ P0 +

1

2
∗ (−2 ∗ t2 + 2 ∗ t + 1)

∗ P1 +
1

2
∗ t2 ∗ P2 (31)

The quadratic B-spline method is shown below.

As can be seen from the Figure 8, the black path is the

original path, and the red path at the corner is the new path

generated by the quadratic B-spline method.

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.955179
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.955179

FIGURE 7

Connectivity processing.

The comparison results between the path after connectivity

processing and the path generated by the quadratic B-spline

method based on connectivity processing is shown in Figure 8.

As can be seen from the Figure 8, the corner processed by

the quadratic B-spline method is smoother. The path length

before processing is 39.1901, and the path length after processing

is 38.9281.

There is almost no redundant node of the path processed by

connectivity and the quadratic B-splinemethod, which is shorter

than the path generated by the classic ant colony algorithm and

is more suitable for mobile robots.

Algorithm flow

To sum up, the flow of the improved ant colony algorithm is

shown in Figure 9.

The execution steps of the algorithm are as follows.

Step 1: Initialize the parameters of the improved ant colony

algorithm and Floyd algorithm.

Step 2: Set up the grid map, initialize the pheromone

matrix and tabu list according to the guidance path

generated by the Floyd algorithm.

Step 3: Build candidate solutions according to the tabu list

and state transition rules and select the next node by

roulette principle.

Step 4: Determine whether the ants fall into the deadlock. If

so, execute the fallback strategy until the ants get out

of the trap. Otherwise, continue step 5.

Step 5: Update the tabu list and record the path nodes

and length.

Step 6: Determine whether the ant reaches the target node.

If so, continue step 7. Otherwise, return to step 3.

Step 7: Determine whether the number of ants reaches the

upper limit. If so, continue step 8. Otherwise, return

to step 3.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.955179
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.955179

FIGURE 8

Quadratic B-spline curve.

Step 8: Smooth the path and update the global pheromone.

Step 9: Determine whether the maximum number of

iterations is reached. If so, outputs the optimal

solution and ends. Otherwise, return to step 3.

Step 10: Draw the algorithm iteration diagram and the

optimal path curve.

Experimental results and discussions

In this section, the effectiveness of the improved algorithm

in path planning is verified through different scenarios.

All experiments were performed using the same PC. The

MATLAB (R2016b) programming platform was used to

encode and implement all algorithms. In order to obtain

real experimental results and avoid accidental situations, all

experiments were carried out independently under the same

experimental conditions.

The 26 × 26 scale grid map is adopted in this paper. There

are three different environments, namely, the concentrated

obstacle environment, the partially dispersed obstacle

environment, and the decentralized obstacle environment.

The algorithm in this paper, the classic ant colony algorithm,

and the algorithm of Li et al. (2021), Luo et al. (2020), and Akka

and Khaber (2018) are compared experimentally. The algorithm

parameters are set as shown in Table 2.
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FIGURE 9

Flow chart of improved ant colony optimization algorithm.

TABLE 2 Parameter setting.

Parameter

Starting point S 1

Target point E 676

Maximum number of iterations K 100

The number of antsM 50

Pheromone heuristic factor α 1

Expected heuristic factor β 6

Pheromone volatilization factor ρ 0.6

Pheromone intensity factor Q 1

Pheromone penalty evaporation coefficient λ 15

Concentrated obstacle environment

In the concentrated obstacle environment with the 26 × 26

scale grid, the experimental results of five algorithms are shown

in Figure 10.

The specific results of the experiment are shown in Table 3.

Index 1 is the average path length, index 2 is the optimal path

length, index 3 is the average number of iterations, and index 4

is the average number of corners.

It can be seen from Figure 10 and Table 3 that the

comprehensive performance of the improved algorithm in this

paper is the best in the concentrated obstacle environment.

In terms of the optimal path length, the improved algorithm

is 4.29% less than the classic ant colony algorithm, 2.82%

less than the algorithm in Li et al. (2021), 8.10% less than

the algorithm in Luo et al. (2020), and 2.04% less than the

algorithm in Akka and Khaber (2018). In terms of the average

path length, the improved algorithm is 4.43, 2.68, 9.70, and

1.99% less than other algorithms, respectively. In terms of the

average number of iterations, the improved algorithm is 63

times less, 2 times more, 5 times less and 3 times less than

other algorithms, respectively. In terms of the average number

of corners, the improved algorithm is 41.67, 22.22, 53.33, and

30% less than other algorithms respectively. To sum up, in

the concentrated obstacle environment, the performance of the

improved algorithm in this paper is better than the other four

algorithms, including the classic algorithm.

Partially decentralized obstacle
environment

In the partially decentralized obstacle environment with the

26× 26 scale grid, the experimental results of five algorithms are

shown in Figure 11.
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FIGURE 10

Experimental results of three algorithms in the concentrated obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li et al.

(2021), and Akka and Khaber (2018) (B) Improved algorithm and comparison of five algorithms.
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TABLE 3 Comparison of five algorithms.

Index Concentrated obstacle Partially decentralized Decentralized obstacle

environment obstacle environment environment

Classic ACO 1 39.2843 41.4578 43.2763

2 38.8701 40.0416 41.4558

3 70 65 75

4 12 14 18

Li et al. (2021) 1 38.5772 39.9771 48.6639

2 38.2843 39.1127 46.2543

3 5 10 18

4 9 12 15

Luo et al. (2020) 1 41.5772 40.4056 43.2132

2 40.4807 39.6985 41.7990

3 12 9 8

4 15 15 16

Akka and Khaber (2018) 1 38.3045 40.8078 41.3356

2 37.9793 39.6853 40.9214

3 10 10 12

4 10 13 16

Improved algorithm 1 37.5438 39.0204 39.6872

2 37.2033 38.9281 39.1280

3 7 11 10

4 7 9 11

The specific results of the experiment are shown in Table 3.

As can be seen from Figure 11 and Table 3, the performance

of the improved algorithm in this paper is still better than

that of other algorithms in the partially decentralized obstacle

environment. In terms of the optimal path length, the improved

algorithm is 2.87% less than the classic ant colony algorithm,

0.47% less than the algorithm in Li et al. (2021), 1.94% less

than the algorithm in Luo et al. (2020), and 1.91% less than

the algorithm in Akka and Khaber (2018). In terms of the

average path length, the improved algorithm is 5.88, 2.39, 3.43,

and 4.38% less than other algorithms respectively. In terms of

the average number of iterations, the improved algorithm is 54

times less, 1 time more, 2 times more and 1 time more than

other algorithms respectively. In terms of the average number

of corners, the improved algorithm is 35.71, 25, 40, and 30.77%

less than other algorithms respectively. It can be seen from the

above that the performance of the improved algorithm in this

paper still has certain advantages in the partially decentralized

obstacle environment.

Decentralized obstacle environment

In the decentralized obstacle environment with the 26×26

scale grid, the experimental results of five algorithms are shown

in Figure 12. The specific results of the experiment are shown in

Table 3.

It can be seen from Figure 12 and Table 3 that the improved

algorithm in this paper has more obvious advantages than other

algorithms in the decentralized obstacle environment. In terms

of the optimal path length, the improved algorithm is 5.62%

less than the classic ant colony algorithm, 15.41% less than the

algorithm in Li et al. (2021), 6.39% less than the algorithm in

Luo et al. (2020), and 4.38% less than the algorithm in Akka

and Khaber (2018). In terms of the average path length, the

improved algorithm is 8.29, 18.45, 8.16, and 3.99% less than

other algorithms, respectively. In terms of the average number

of iterations, the improved algorithm is 65 times less, 8 times

less, 2 times more and 2 times less than other algorithms,

respectively. In terms of the average number of corners, the

improved algorithm is 38.89, 26.67, 31.25, and 31.25% less than

other algorithms, respectively. From the above comparisons,

as the complexity of the environment increases, the improved

algorithm in this paper always has significant advantages.

From the above experiments, it can be seen that in the simple

environment, except for the classic ant colony algorithm, the

other three algorithms are close to the improved algorithm.

As the complexity of the environment increases, the indicators

of the five algorithms have changed, and the performance of

the improved algorithm has always remained stable, which has

been better than the other four algorithms, including the classic
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FIGURE 11

Experimental results of three algorithms in the partially decentralized obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li

et al. (2021), and Akka and Khaber (2018). (B) Improved algorithm and comparison of five algorithms.
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FIGURE 12

Experimental results of three algorithms in the decentralized obstacle environment. (A) Classic ant colony algorithm, Luo et al. (2020), Li et al.

(2021), and Akka and Khaber (2018). (B) Improved algorithm and comparison of five algorithms.
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algorithm. Among the five algorithms, the improved algorithm

is the best, which is most conducive to the energy-saving and

stable operation of the robot.

Conclusion

The ant colony algorithm is widely used in robot path

planning. However, the classic ant colony algorithm still has the

problems of slow convergence speed and easily fall into the local

optimal solution. Therefore, this paper proposes an improved

ant colony algorithm. Firstly, the Floyd algorithm is introduced

to generate the guidance path to optimize the initial pheromone

matrix and effectively accelerate the initial convergence speed

of the ant colony algorithm. Ant fallback strategy can help

avoid ants dying due to the deadlock dilemma and improve the

global search ability of the algorithm. The improved heuristic

function proposed by referring to the gravity concept in the

APFmethod accelerates the convergence speed of the ant colony

algorithm. It makes up for the influence of the fallback strategy

on the convergence rate. The pheromone updating method

based on a multi-objective optimization idea and dynamic

principle considers the path length, path security, and path

energy consumption. It helps the ant colony algorithm avoid

the local optimal solution and improves the comprehensive

performance of the algorithm, which is more suitable for mobile

robots. Connectivity processing and the quadratic B-spline

method effectively reduce the redundant nodes of the path,

improve the smoothness of the path and further shorten the

path length.

Through experimental comparisons, as can be seen, the

improved algorithm has strong stability. From the simple

obstacle environment to the complex obstacle environment, it

can always maintain the optimal comprehensive performance,

the shortest path, and the least corner. The problems of the

classic ant colony algorithm has been solved. In addition, the

multi-objective optimization idea and the node optimization

method introduced in the improved algorithm can effectively

help the mobile robot to save energy and improve the

work efficiency.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: https://pan.baidu.com/s/

1QQiLWLKRe3_SM1QdnwwaqA?pwd=100d.

Author contributions

LW and HW proposed this contribution, verified, and

concluded simulation results. XC and BW gave suggestions for

manuscript writing. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported by the National Natural

Science Foundation of China under Grant (31901400 and

61903351), Natural Science Foundation of Zhejiang under

Grant LY22F030009, Special Project for Cultivating Young

Scientific and Technological Talents (Class A) (2022YW20),

National Key Technologies Research and Development of China

(2018YFB2101004).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Akka, K., and Khaber, F. (2018). Mobile robot path planning using an
improved ant colony optimization. Int. J. Adv. Robot. Syst. 15:1729881418774673.
doi: 10.1177/1729881418774673

Ali, H., Gong, D. W., Wang, M., and Dai, X. L. (2020). Path planning
of mobile robot with improved ant colony algorithm and MDP to produce
smooth trajectory in grid-based environment. Front. Neurorobotics 14:44.
doi: 10.3389/fnbot.2020.00044

Chen, H., Niu, L., and Ji, Y. (2020). Research on path planning of robot based
on adaptive ACS fused with SHAA neural network. Meas. Control 53, 1911–1919.
doi: 10.1177/0020294020959751

Chen, X., and Gao, P. (2020). Path planning and control of soccer robot
based on genetic algorithm. J. Ambient Intell. Humaniz. Comput. 11, 6177–6186.
doi: 10.1007/s12652-019-01635-1

Chen, Y., Bai, G., Zhan, Y., Hu, X., and Liu, J. (2021). Path planning and obstacle
avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive
early-warning. IEEE Access 9, 40728–40742. doi: 10.1109/ACCESS.2021.30
62375

Dai, W., Wang, L., Wang, B., Cui, X., and Li, X. (2022). Research on WNN
greenhouse temperature prediction method based on GA. Phyton Int. J. Exp. Bot.
91, 2283–2296. doi: 10.32604/phyton.2022.021096

Frontiers inNeurorobotics 17 frontiersin.org

https://doi.org/10.3389/fnbot.2022.955179
https://pan.baidu.com/s/1QQiLWLKRe3_SM1QdnwwaqA?pwd=100d
https://pan.baidu.com/s/1QQiLWLKRe3_SM1QdnwwaqA?pwd=100d
https://doi.org/10.1177/1729881418774673
https://doi.org/10.3389/fnbot.2020.00044
https://doi.org/10.1177/0020294020959751
https://doi.org/10.1007/s12652-019-01635-1
https://doi.org/10.1109/ACCESS.2021.3062375
https://doi.org/10.32604/phyton.2022.021096
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.955179

Dai, X., Long, S., Zhang, Z., and Gong, D. (2019). Mobile robot path planning
based on ant colony algorithm with A∗ heuristic method. Front. Neurorobotics
13:15. doi: 10.3389/fnbot.2019.00015

Guo, X., Ji, M., Zhao, Z., Wen, D., and Zhang, W. (2020). Global path planning
and multi-objective path control for crewless surface vehicle based on modified
particle swarm optimization (PSO) algorithm. Ocean Eng. 216, 107693–107708.
doi: 10.1016/j.oceaneng.2020.107693

Hao, Z., and He, S. (2008). Some discussions on the
Floyd algorithm. J. Chongqing Univ. Technol. 22, 156–159.
doi: 10.3969/j.issn.1674-8425-B.2008.05.039

Khaksar, W., Hong, T., Khaksar, M., and Motlagh, O. (2012). Sampling-based
tabu search approach for online path planning. Adv. Robot. 26, 1013–1034.
doi: 10.1163/156855312X632166

Li, E., and Wang, Y. (2022). Research on obstacle avoidance trajectory of mobile
robot based on improved artificial potential field. Comput. Eng. Appl. 58, 296–304.
doi: 10.3778/j.issn.1002-8331.2108-0122

Li, K., Liu, S., Hu, Q., and Tang, Y. (2021). Path planning for improved ant
colony optimization algorithm based on corner constraints. J. Comput. Appl. 41,
2560–2568. doi: 10.11772/j.issn.1001-9081.2020111713

Li, X., and Wang, L. (2020). Application of improved ant colony optimization
in mobile robot trajectory planning. Math. Biosci. Eng. 17, 6756–6774.
doi: 10.3934/mbe.2020352

Luo, Q., Wang, H., Zheng, Y., and He, J. (2020). Research on path planning of
mobile robot based on improved ant colony algorithm. Neural Comput. Appl. 32,
1555–1566. doi: 10.1007/s00521-019-04172-2

Lyu, D., Chen, Z., Cai, Z., and Piao, S. (2021). Robot path planning by leveraging
the graph-encoded Floyd algorithm. Futur. Gener. Comp. Syst. 122, 204–208.
doi: 10.1016/j.future.2021.03.007

Mac, T., Copot, C., Tran, D., and DeKeyser, R. (2016). Heuristic
approaches in robot path planning: a survey. Robot. Auton. Syst. 86, 13–28.
doi: 10.1016/j.robot.2016.08.001

Ouyang, X., and Yang, S. (2014). Obstacle avoidance path planning of mobile
robot based on potential field grid method. Control Eng. China 21, 134–137.
doi: 10.3969/j.issn.1671-7848.2014.01.031

Pan, Z., Li, D., Yang, K., and Deng, H. (2019). Multi-robot obstacle avoidance
based on the improved artificial potential field and PID adaptive tracking control
algorithm. Robotica 37, 1883–1903. doi: 10.1017/S026357471900033X

Shi, W., and Wang, K. (2009). Floyd algorithm for the shortest
path planning of mobile robot. Chin. J. Sci. Instrum. 30, 2088–2092.
doi: 10.19650/j.cnki.cjsi.2009.10.014

Tao, Y., Gao, H., Ren, F., Chen, C., Wang, T., Xiong, H., et al. (2021). A mobile
service robot global path planning method based on ant colony optimization and
fuzzy control. Appl. Sci. 11, 3605–3619. doi: 10.3390/app11083605

Tian, Z. (2020a). Preliminary research of chaotic characteristics and prediction
of short-term wind speed time series. Int. J. Bifurcation Chaos 30: 2050176.
doi: 10.1142/S021812742050176X

Tian, Z. (2020b). Short-termwind speed prediction based on LMD and improved
FA optimized combined kernel function LSSVM. Eng. Appl. Artif. Intell. 91:103573.
doi: 10.1016/j.engappai.2020.103573

Tian, Z. (2021a). Approach for short-term traffic flow prediction based on
empirical mode decomposition and combination model fusion. IEEE Trans. Intell.
Transp. Syst. 22, 5566–5576. doi: 10.1109/TITS.2020.2987909

Tian, Z. (2021b). Modes decomposition forecasting approach for ultra-short-
term wind speed. Appl. Soft. Comput. 105:107303. doi: 10.1016/j.asoc.2021.107303

Tian, Z., and Chen, H. (2021a). A novel decomposition-ensemble prediction
model for ultra-short-term wind speed. Energy Conv. Manag. 248:114775.
doi: 10.1016/j.enconman.2021.114775

Tian, Z., and Chen, H. (2021b). Multi-step short-term wind speed
prediction based on integrated multi-model fusion. Appl. Energy 298:117248.
doi: 10.1016/j.apenergy.2021.117248

Tian, Z., Li, H., and Li, F. (2021). A combination forecastingmodel of wind speed
based on decomposition. Energy Rep. 7, 1217–1233. doi: 10.1016/j.egyr.2021.02.002

Tian, Z., Li, S., and Wang, Y. (2020). A prediction approach using ensemble
empirical mode decomposition-permutation entropy and regularized extreme
learning machine for short-term wind speed. Wind Energy 23, 177–206.
doi: 10.1002/we.2422

Wang, L. (2020). Path planning for unmanned wheeled robot based
on improved ant colony optimization. Meas. Control 53, 1014–1021.
doi: 10.1177/0020294020909129

Wang, L., Liu, L., Qi, J., and Peng, W. (2020a). Improved quantum particle
swarm optimization algorithm for offline path planning in AUVs. IEEE Access 8,
143397–143411. doi: 10.1109/ACCESS.2020.3013953

Wang, L., and Wang, B. (2020a). Construction of greenhouse environment
temperature adaptive model based on parameter identification. Comput. Electron.
Agric. 174:105477. doi: 10.1016/j.compag.2020.105477

Wang, L., and Wang, B. (2020b). Greenhouse microclimate environment
adaptive control based on a wireless sensor network. Int. J. Agric. Biol. Eng. 13,
64–69. doi: 10.25165/j.ijabe.20201303.5027

Wang, L., Wang, B., and Zhu, S. (2020b). Multi-model adaptive fuzzy control
system based on switch mechanism in a greenhouse. Appl. Eng. Agric. 36, 549–556.
doi: 10.13031/aea.13837

Wang, X., Shi, H., and Zhang, C. (2020c). Path planning for intelligent parking
system based on improved ant“‘ colony optimization. IEEE Access 8, 65267–65273.
doi: 10.1109/ACCESS.2020.2984802

Xiao, S., Tan, X., and Wang, J. (2021). A simulated annealing algorithm and grid
map-based UAV coverage path planningmethod for 3D reconstruction. Electronics
10, 853–868. doi: 10.3390/electronics10070853

Xiong, N., Zhou, X. Z., Yang, X. Q., Xiang, Y., and Ma, J. Y. (2021). Mobile
robot path planning based on time taboo ant colony optimization in dynamic
environment. Front. Neurorobotics 15:642733. doi: 10.3389/fnbot.2021.642733

Xiong, X. Y., Min, H. T., Yu, Y. B., and Wang, P. Y. (2020). Application
improvement of A∗ algorithm in intelligent vehicle trajectory planning. Math.
Biosci. Eng. 18:1. doi: 10.3934/mbe.2021001

Yang, H., Qi, J., Miao, Y., Sun, H., and Li, J. (2019). A new robot navigation
algorithm based on a double-layer ant algorithm and trajectory optimization. IEEE
Trans. Ind. Electron. 66, 8557–8566. doi: 10.1109/TIE.2018.2886798

Yang, J. (2020). Application of Floyd algorithm in designing a coastal tourism
route optimization system. J. Coast. Res. 106, 668–671. doi: 10.2112/SI106-151.1

Yao, Y., Liang, X., Li, M., Yu, K., Chen, Z., Ni, C., et al. (2021). Path planning
method based on D∗ lite algorithm for unmanned surface vehicles in complex
environments. China Ocean Eng. 35, 372–383. doi: 10.1007/s13344-021-0034-z

Yi, G., Feng, Z., Mei, T., Li, P., Jin, W., and Chen, S. (2019). Multi-AGVs path
planning based on improved ant colony algorithm. J. Supercomput. 75, 5898–5913.
doi: 10.1007/s11227-019-02884-9

Zeng, D., Zhu, P., Zhang, P., and Chen, H. (2019). Cubic B-spline curve for
obstacle avoidance trajectory planning of unmanned vehicle. J. Tongji Univ. 47,
159–163.

Zhang, C., Pu, J., and Si, Y. (2021). An adaptive improved ant colony system
based on population information entropy for path planning of mobile robot. IEEE
Access 9, 24933–24945. doi: 10.1109/ACCESS.2021.3056651

Zhang, C., Pu, J., Si, Y., and Sun, L. (2020). Survey on application of ant
colony algorithm in path planning of mobile robot. Comput. Eng. Appl. 56, 10–19.
doi: 10.3778/j.issn.1002-8331.1912-0160

Zhang, W., Ma, Y., Zhao, H., Zhang, L., Li, Y., and Li, X. (2019).
Obstacle avoidance path planning of intelligent mobile based on improved
fireworks-ant colony hybrid algorithm. Control Decis. 34, 335–343.
doi: 10.13195/j.kzyjc.2017.0870

Zheng, Y., Luo, Q., Wang, H., Wang, C., and Chen, X. (2020). Path planning
of mobile robot based on adaptive ant colony algorithm. J. Intell. Fuzzy Syst. 39,
5329–5338. doi: 10.3233/JIFS-189018

Frontiers inNeurorobotics 18 frontiersin.org

https://doi.org/10.3389/fnbot.2022.955179
https://doi.org/10.3389/fnbot.2019.00015
https://doi.org/10.1016/j.oceaneng.2020.107693
https://doi.org/10.3969/j.issn.1674-8425-B.2008.05.039
https://doi.org/10.1163/156855312X632166
https://doi.org/10.3778/j.issn.1002-8331.2108-0122
https://doi.org/10.11772/j.issn.1001-9081.2020111713
https://doi.org/10.3934/mbe.2020352
https://doi.org/10.1007/s00521-019-04172-2
https://doi.org/10.1016/j.future.2021.03.007
https://doi.org/10.1016/j.robot.2016.08.001
https://doi.org/10.3969/j.issn.1671-7848.2014.01.031
https://doi.org/10.1017/S026357471900033X
https://doi.org/10.19650/j.cnki.cjsi.2009.10.014
https://doi.org/10.3390/app11083605
https://doi.org/10.1142/S021812742050176X
https://doi.org/10.1016/j.engappai.2020.103573
https://doi.org/10.1109/TITS.2020.2987909
https://doi.org/10.1016/j.asoc.2021.107303
https://doi.org/10.1016/j.enconman.2021.114775
https://doi.org/10.1016/j.apenergy.2021.117248
https://doi.org/10.1016/j.egyr.2021.02.002
https://doi.org/10.1002/we.2422
https://doi.org/10.1177/0020294020909129
https://doi.org/10.1109/ACCESS.2020.3013953
https://doi.org/10.1016/j.compag.2020.105477
https://doi.org/10.25165/j.ijabe.20201303.5027
https://doi.org/10.13031/aea.13837
https://doi.org/10.1109/ACCESS.2020.2984802
https://doi.org/10.3390/electronics10070853
https://doi.org/10.3389/fnbot.2021.642733
https://doi.org/10.3934/mbe.2021001
https://doi.org/10.1109/TIE.2018.2886798
https://doi.org/10.2112/SI106-151.1
https://doi.org/10.1007/s13344-021-0034-z
https://doi.org/10.1007/s11227-019-02884-9
https://doi.org/10.1109/ACCESS.2021.3056651
https://doi.org/10.3778/j.issn.1002-8331.1912-0160
https://doi.org/10.13195/j.kzyjc.2017.0870
https://doi.org/10.3233/JIFS-189018
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Research on smooth path planning method based on improved ant colony algorithm optimized by Floyd algorithm
	Introduction
	Environment modeling
	Ant colony optimization algorithm
	State transition probability
	Pheromone update mode

	Improvement of ant colony optimization algorithm
	Initial pheromone matrix
	Ant fallback strategy
	Heuristic function optimization strategy
	Optimization strategy of pheromone updating method
	Path smoothing
	Algorithm flow

	Experimental results and discussions
	Concentrated obstacle environment
	Partially decentralized obstacle environment
	Decentralized obstacle environment

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


