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multi-robots with swarm
intelligence algorithms: A review

Junhan Wang, Yuezhang Lin, Ruirui Liu and Jun Fu*

Artificial Intelligence of Things and Robotics Laboratory, School of Computer Science and

Information Engineering, Zhejiang Gongshang University, Hangzhou, China

The use of robot swarms for odor source localization (OSL) can better adapt to

the reality of unstable turbulence and find chemical contamination or hazard

sources faster. Inspired by the collective behavior in nature, swarm intelligence

(SI) is recognized as an appropriate algorithm framework for multi-robot

system due to its parallelism, scalability and robustness. Applications of

SI-based multi-robots for OSL problems have attracted great interest over the

last two decades. In this review, we firstly summarize the trending issues in

general robot OSL field through comparing some basic counterpart concepts,

and then provide a detailed survey of various representative SI algorithms in

multi-robot system for odor source localization. The research field originates

from the first introduction of the standard particle swarm optimization (PSO)

and flourishes in applying ever-increasing quantity of its variants as modified

PSOs and hybrid PSOs. Moreover, other nature-inspired SI algorithms have

also demonstrated the diversity and exploration of this field. The computer

simulations and real-world applications reported in the literatures show

that those algorithms could well solve the main problems of odor source

localization but still retain the potential for further development. Lastly, we

provide an outlook on possible future research directions.

KEYWORDS

odor source localization, swarm intelligence algorithm, multi-robot system, particle

swarm optimization, mobile robot, nature-inspired computation

Introduction

What is robot OSL?

In nature, finding, locating, and recognizing odor information is a fundamental skill

for organisms. For example, foraging ants can use residues of pheromones to establish

the shortest route back from a food source (Hölldobler et al., 1990), and male moths

discover and find mates by tracking the odor released by female moths (Charlton and

Cardé, 1990). Inspired by the biological phenomena, since the 1990’s, some scholars have

started to study how to use mobile robots equipped with chemical sensors to “actively”

sniff out odor for various tasks, such as odor map construction, odor source localization,

and odor source classification. This type of research can be referred to as active olfaction

in a broad sense. Odor source localization (OSL) is a process in which single or multiple

mobile robots use sensors to “proactively” discover chemical plumes in the environment,

track them, and identify the source of the odor.
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FIGURE 1

A male moth (Spodoptera frugiperda) (a) locates its mate by

detecting and tracing the sex pheromone emitted from the

female (g), experiencing four stages: Plume finding (b), plume

reacquiring (d) after detaching from the odor coverage (c),

plume traversal (e), and source declaration (f).

The gas molecules released by the odor source are blown

away by the wind and will flutter in the air like a feather

to form a trajectory, which is called a plume (Murlis et al.,

1992). Typically, locating odor source can be divided into three

subtasks (Hayes et al., 2002): plume finding, plume traversal,

and source declaration. Plume finding is a process of initial

contact with the odor. Due to the stochasticity of plumes, plume

finding mainly uses a random search strategy. Plume traversal

is a process of making robots follow the plume to the odor

source. It requires robots to have more “professional” behavior.

It should move toward the odor source, and simultaneously, it

cannot detach from the coverage of the odor plume. Odor source

declaration refers to the robot’s confirmation that the current

location is the odor source rather than a local optimum. This

process does not necessarily use odor information, as typical

odor sources can also be determined by other means (such as

vision) at short distances. Additionally, a plume reacquiring

stage (Li et al., 2006) was proposed to be activated when the

robots appear to lose contact with the odor for a given period

during tracking plume. Figure 1 shows a male moth (Spodoptera

frugiperda) locates its mate by detecting and tracing the sex

pheromone emitted from the female, experiencing four stages.

In the early years, active olfaction for odor source

localization by mobile robots did not perform as well as the

fixed sensor approach. An essential reason is that under general

indoor ventilation conditions, odor diffusion is influenced by

turbulence, making the distribution of plumes show complex

characteristics such as time-varying, interval, and multi-

extremum. However, mobile robots only used chemotaxis to

collect concentration information for plume tracking, making

them easily trapped in the maximum local odor concentration

or too long to converge, leading to failure. Over the last two

decades, many studies have been conducted to make the robot

avoid local optima and improve the search performance of

algorithms in turbulent plumes.

Currently, there are four mainstream methods for locating

odor sources (Jing et al., 2021), viz., reactive methods, heuristic

search methods, probabilistic inference methods, and learning

methods. The heuristic search method treats odor source

localization as a functional optimization problem, that is,

finding the optimal odor concentration in a particular region.

Therefore, the OSL problem can be transformed into an optimal

optimization problem. Among heuristic search methods, the

swarm intelligence (SI) algorithms have been considered as a

promising approach for the following advantages:

• Swarm intelligence algorithms mainly complete the work

of complex tasks through self-organization by a population

of individuals with simple behavior. The simple search

behavior of a single robot is the continuation of a reactive

robot based on odor concentration.

• Swarm intelligence algorithms can coordinate multiple

robots to search for odor sources and effectively solve the

defects of a single robot in the process of odor source

localization, such as poor robustness and quickly falling

into a locally optimal solution.

• In contrast to probabilistic inference methods and learning

methods, the swarm intelligence algorithmmainly achieves

the optimal position of odor concentration by multiple

iterations of multi-robot individuals. It does not require the

continuity and derivability of odor concentration to fit with

the plume concentration’s discontinuous and multi-local

optimal characteristics in a natural turbulent environment.

Therefore, since 2006, researchers have begun to apply

swarm intelligence algorithms to odor source localization in

mobile robots. This paper gives an overview of odor source

localization, focusing on swarm intelligence algorithms applied

to this area.

Why this review?

So far, several investigations report on robot odor source

localization have been published. Lilienthal et al. (2006) sorted

out the literatures and published a review. However, the review

was published more than a decade ago. The experiments

mentioned were carried out in the indoor scenario, mainly

considering the two-dimensional search space and classifying

the applicable environmental conditions. The experimental

conditions considered are still significantly different from those

expected in most typical applications. It shows that the challenge

in the future is to evaluate how to effectively combine different

algorithms and test the corresponding implementation in a

natural environment. Kowadlo and Russell (2008) pointed out

that 3D localization will be further developed in the future, and
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more consideration will be given to obstacles and unstructured

environments. Ishida et al. (2012) reviewed three subtasks

of robotic odor localization. They argued that robotic OSL

research has moved from the simulation and experimental

stage to a more practical application-oriented stage, which is

instructive for subsequent research. Chen and Huang (2019)

used a new classification approach in their review: using

algorithmic principles at the top level of the classification

hierarchy, such as how to handle input signals (such as

chemotaxis and anemotaxis), classified existing OSL algorithms

into four categories, and noted that gradient-based algorithms

currently lack attention and that probability and map-based

algorithms are more attractive for research. In a recent review,

Jing et al. (2021) pointed out that the classificationmethod of the

former may lead to some overlap between different categories

and proposed a stricter classification method based on the

principle of method according to the literatures published in

recent years, and also emphasized some aspects not discussed in

previous studies: in-situ sensing and simulator development for

odor source direction and distance prediction. Meanwhile, they

pointed out that the algorithm extensions to 3D environments,

multiple robots, and their mixing situation have progressed in

the past 10 years. Francis et al. (2022) recently published a review

to overview the research on gas distributionmapping and source

localization for both controlled and uncontrolled environments

with robots, focusing on probabilistic algorithms developed for

both single robot and multi-robot applications.

In recent years, more and more researchers have started

to solve the OSL problem with swarm intelligence, and

many significant research results have been achieved. However,

to the best of our knowledge, review literature related to

this has not been seen reported yet, so in this paper,

we review multi-robot algorithms applied to odor source

localization from the perspective of swarm intelligence.

We review and discuss the main issues of odor source

localization in turn in the last decade. The application

of particle swarm optimization (PSO) algorithm and its

improved algorithms are emphasized. Hybrid particle swarm

algorithms combined with other independent algorithms

will also be discussed. Various bio-inspired meta-heuristic

optimization methods, which were not highlighted in the past

reviews and are hot research trends in recent years, will be

discussed separately.

How to categorize algorithms?

The existing swarm intelligence algorithms mainly applied

to multi-robot system for odor source localization (Figure 2) are

classified as follows according to the algorithm principle:

The standard PSO algorithm for OSL heavily relies on

chemotaxis. Its inherent algorithm principle allows it to

coordinate multiple robots, using current information,

individual history information, and global history

information to localize the target.

The modified PSO algorithms realize the optimization

of the standard PSO to adjust particle position in the

next iteration mainly by introducing more environment

information (such as wind direction or velocity) or other

useful characteristics (such as repulsion or sensor denoise),

so that the PSO algorithms can be faster out of local

optimumor suitable formulti-odor source localization, and

so on.

The hybrid PSO algorithms are obtained through

concatenating and incorporating PSO with other swarm

intelligence algorithms in order to solve PSO defects such

as premature convergence, falling into local optimum, slow

convergence speed, and so on.

Other nature-inspired SI algorithms mainly imitate the

behavioral strategies of individuals in certain groups

of organisms in nature through local perception and

behavioral communication to achieve foraging, migrating,

and escaping from natural enemies, to implement

collaborative discovery, tracking, and localizing of odor

sources in multi-robot systems.

The rest of this paper is organized as follows. Section

Trending issues of robot OSL: An overview briefly discusses the

trending issues of robot OSL. Section PSO and its variants in

OSL: Origins and progress reviews the OSL methods based on

PSO and its variants in detail. Section Other nature-inspired

SI algorithms in OSL: Diversity and exploration reviews other

swarm intelligence algorithms applied to robot OSL. Section

Trends and challenges presents some trends and challenges in

the future development of the robot active olfaction research.

Finally, in last section, Conclusions are drawn.

Trending issues of robot OSL: An
overview

After more than two decades of development, the researches

on mobile robots’ odor source localization have gone through

a process from simplicity to complexity, theory to application,

broadly in the following aspects.

Odor source: From single to multiple

Most robot OSL studies were conducted in the early years for

single-point odor source environments. However, in a realistic

situation, there may be point or surface odor sources with

unknown numbers and locations emitting the same gas in the

search area (Li et al., 2015).
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FIGURE 2

The diagram of existing swarm intelligence algorithms applied

to multi-robot system for odor source localization.

Unlike the case of a single odor source, using multiple robots

to locate multiple sources faces the following new problems.

How to maintain the exploration-exploitation
balance in the search process

In earlier approaches, studies tended to emphasize

exploitation, which would lead to premature convergence of

the robot population once the extrema were found. Too many

robots gathered in the same region tend to lose the diversity

of individuals (Ghalia, 2008). However, if too much emphasis

is placed on exploration, the algorithm will slow down the

convergence. The dilemma is an extremely challenge faced by all

multi-robot systems and swarm intelligence is advantageous but

still need strictly assess in vastly different circumstances (Kwa

et al., 2022).

How to search multiple odor sources in parallel

Traditional methods often take a sequential approach to

locate multiple odor sources (Luo et al., 2008). In other words,

only a single odor source can be located in a complete cycle

(Zhang et al., 2015a), which affects the efficiency of odor

source search.

How to avoid repeated searches for the same
odor source

Such as how to issue a uniqueness statement for a specific

odor source (Jatmiko et al., 2009b), determine whether the robot

finds an existing odor source (Zhang J. et al., 2014), and how the

robot swarm that finds an odor source continues searching for

other odor sources.

To address the above shortcomings, some scholars have

introduced the Niche technique into the OSL, which will be

described in detail in the subsequent sections.

Airflow environment: From di�usion to
turbulence

The difference in the airflow environment signifies

that the primary way of odor transmission is different.

The current studies mainly focus on two types of

environments: diffusion-dominated environment and

turbulence-dominated environment.

In diffusion-dominated environment, where there is no

turbulence, molecular diffusion becomes the determining

factor for odor propagation, such as in the subsurface.

Therefore, a simple gradient search can approach the

odor source along the plume—most of the early studies

used diffusion-dominated environment settings for

simulation experiments.

In a turbulence-dominated environment, turbulent

diffusion mainly affects odor transport, while molecular

diffusion can be neglected (Smyth and Moum, 2001). The

odor source forms a plume under the wind effect. The

chaotic character of turbulence tends to cause random

bending of the plume, producing vortices of different

sizes. Large-scale vortices cause the entire plume to twist

and wind, making tracking more complex (Yee et al.,

1994), while small-scale vortices tear the plume into many

filaments. Localized high concentration odor filaments

can lead to localized abrupt concentration changes and

concentration discontinuities (Kowadlo and Russell, 2008). In

this environment, available wind speed/direction sensors can

detect relatively accurate values, such as in general outdoor and

ventilated indoor environments.

Another environment type is the weak fluid environment

under turbulent dominance. In this environment,

turbulence controls odors, but existing wind speed/direction

sensors cannot obtain reliable data. For example, closed

indoor environments do not exchange fluids with the

outside world but generate weak convection through

temperature differences. This environment is more

demanding than others, and less relevant research

is available.

In a turbulence-like dominant environment,

discontinuous concentration gradients and sudden

concentration shifts make it difficult for chemotaxis

strategies to locate the odor source effectively anymore.

Therefore, more sophisticated search strategies

and algorithms are needed to escape the local

optimum. The algorithms applicable to various airflow

environments are described in more detail in the

following section.
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Reactive principle: From chemotaxis to
chemotaxis-anemotaxis

Chemotaxis and anemotaxis are two ways mobile robots

utilize environmental information.

Chemotaxis refers to a method of mimicking organisms

to rely on the concentration of the pheromone to reach the

odor source. The robot uses the concentration measurements

at different locations to calculate the concentration gradient

and locates the odor source by climbing the odor concentration

gradient. Plume dispersion is a steady process when the

odor source is placed in a laminar (i.e., low Reynolds

number) environment, which results in spatially coherent plume

trajectories (Wang and Pang, 2021). In this case, the chemotaxis

is effective. However, the odor concentration gradient in the

actual case is not as smooth as expected because turbulence-

dominated odor plumes are usually produced with vortices,

and vortices of different sizes disrupt the shape of the

plume with a smooth concentration gradient, which renders

chemotaxis ineffective in this environment (Wang and Pang,

2021). Therefore, the utilization of wind information becomes

an essential clue for odor source localization.

Anemotaxis is the process of some organisms in nature

(e.g., dung beetles and silkworm moths) approaching an odor

source against the wind or upstream in foraging and eventually

locating the odor source. Inspired by this, earlier researchers

have proposed to use wind information of organisms for

OSL studies, mainly the Zigzag approach (Ishida et al., 1994),

Silkworm moth algorithm (Russell et al., 2003), and Spiral

Surge algorithm (Hayes et al., 2002). However, these studies

are conducted in specific environments such as wind tunnels.

The localization of odor sources cannot be effectively performed

in a natural turbulent environment. In the last decade, the

methods of anemotaxis have gradually changed from using wind

information to using wind speed information combined with

wind direction information. The upwind search ensures that the

robot does not waste time searching in the wrong direction,

and the wind speed helps the robot to adapt to the dynamic

turbulent environment, which improves the search efficiency.

Representative methods include the WUI and WUII methods

(Jatmiko et al., 2016), adding upwind terms (Feng et al., 2019b),

etc. The swarm intelligence algorithms utilizing both chemotaxis

and anemotaxis will be described in detail in Sections PSO and

its variants in OSL: Origins and progress and Other nature-

inspired SI algorithms in OSL: Diversity and exploration.

Agent: From individual to swarm

Embryonic single-robot active olfaction used a reactive

principal to locating hazardous odor sources. Such robots

acquire odor concentration signals through sensors, which

trigger a preset sequence of behaviors for odor source search.

The behavior of mobile robots often does not involve historical

information, and the subsequent behavior of the robot is directly

related to the sensor measurements in the present moment.

The benefits of using multiple robots in odor source

localization are very intuitive. The OSL problem can be

considered as the problem of finding the location of the

maximum odor concentration in the target space. Therefore, it

can be transformed into an optimization problem (Genovese

et al., 1992). The global search in the target area can be

completed faster and with a better multi-odor source search

capability by using multiple agents. Compared to single robot,

multiple robots require more “intelligent” algorithms to better

plan robot swarm and avoid collisions with each other.

Otherwise, multiple robots without mutual collaboration would

instead cause degradation of search performance (Chen and

Huang, 2019).

The following limitations are still present when using multi-

robots to deal with the actual odor finding problem:

• Sensor cost limitations. The odor sensors employed in

multi-robot systems cannot be too expensive. The response

and recovery time of the sensors is slow, and the accuracy

is not high.

• Working environment limitations. In the natural

environment, there are often differences between the

coordinate position values given by the robot positioning

system and the actual position the robot is in, and the

robots are prone to collision with each other;

• Sensor installation location limitations. Robots often can

only detect the odor concentration at a vertical height.

Due to these factors, the odor concentration measurements

are often inaccurate and contain noise. Under the influence

of noise, the robot search process often appears to be

prematurely stalled or meandered and sometimes even misled

so that the robot is trapped in a pseudo-odor source location

(Zhang Y. et al., 2014). In the subsequent sections, we will

discuss how the improved PSO algorithm and the hybrid PSO

algorithm weaken the effect of noise.

Experimental validation: From computer
simulation to real-life scenario

At present, three means are mainly used in active olfaction

research, viz., simulation experiments, wind tunnel experiments,

and field experiments to validate the OSL method. Experiments

in a natural environment are the closest to the application

scenarios. However, the experiments are difficult and costly

to reproduce. They cannot meet the requirements of the high

frequency of experiments and many changes in experimental
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conditions in the early research stage. Therefore, simulation was

an essential tool in the initial research stage of OSL. Simulation

can provide arbitrary configuration and reproducible virtual

airflow environment for accurate simulation of odor plume and

flow field, which helps to compare and verify the effect between

different algorithms and between different improvements of the

same algorithm and solve the problem of difficult reproduction

and accurate comparison of odor experiments (Fan et al., 2017).

The distribution of the odor plume in the natural

environment presents complex characteristics such as

time-varying, interval, and multiple values (Meng et al.,

2011), which are difficult to describe by constructing an

accurate model. Therefore, most studies use relatively

simplified numerical computational models. The plume

models currently used in the OSL field mainly include

the static Gaussian dispersion model (Ishida et al., 2005,

2006), Filament-based atmospheric dispersion model (Farrell

et al., 2002), Lattice plume model (Balkovsky and Shraiman,

2002), Plume model based on CofinBox software package

(Marques et al., 2006), etc.

PSO and its variants in OSL: Origins
and progress

Standard PSO

Particle swarm optimization is an iterative optimization

algorithm based on a simplified social population, inspired by

the swarm behavior of a bird’s flock: a flock of birds is searching

for food randomly. There is only one piece of food in the

area. All birds do not know where the food is, but they know

the distance between their current position and the food. The

best strategy in such a situation is to search the area around

the bird that is currently closest to the food. Kennedy and

Eberhart (1995) firstly proposed this algorithm for non-linear

function optimization. In each iteration of PSO, every particle

updates itself by tracking two “extremes” through experiences

of individual and population which mean local optima and

global optima, respectively. The PSO algorithm exhibits the

weak computational properties of a single particle and the

strong coordination of a population of particles. Therefore, it is

considered as one of the most suitable optimization algorithms

for multi-robot odor source localization.

The target search space is assumed to be D-dimensional

in the standard PSO, and the position of the ith particle at

time t can be represented as a D-dimensional vector Xi(t) =
(xi1, xi2, . . . , xiD). The optimal position of the ith particle so

far is Pi(t) =
(

pi1, pi2, . . . , piD
)

. The best position searched by

the whole particle swarm so far is Pg (t) =
(

pg1, pg2, . . . , pgD
)

,

Equation 1 gives the velocity of the ith particle in the D-

dimensional search space. The three terms on the right-hand

side represent themotion direction of the original, the individual

optimal, and the population optimal, respectively. Equation 2

updates particles’ new position. Learning factors c1 and c2 are

weights for options if the system is designed to tend to individual

optimal or population optimal; r1 and r2 are two random

numbers ranging from 0 to 1,w is the inertial factor, which tends

to maintain the original direction with larger values.

V i (t + 1) = wVi (t) + c1r1 (Pi (t) − Xi (t))

+ c2r2
(

Pg (t) − Xi (t)
)

(1)

Xi (t + 1) = Xi (t) + Vi (t + 1) (2)

Marques et al. (2006) first applied PSO to multi-robot

collaboration to locate odor sources. In the plume discovery

stage (which the author calls global search), they adopt a

global random search strategy, integrating the repulsive force

between agents and the biased crosswind motion. Once the local

plume is found, it enters the local search stage, and the PSO

algorithm is used for plume tracking. In this process, the fitness

value of the particle is the concentration value of the pollutant

where the particle is located. In the simulation experiment,

the author compared the time of finding all odor sources in

different atmospheric stability environments with three search

algorithms: BRW local search, concentration gradient tracking,

and particle swarm local search. The experiment showed that

the PSO algorithm performs worst in a stable atmospheric

molecular diffusion environment. However, in an unstable

airflow environment with turbulence, i.e., the most realistic

situation, the particle swarm search algorithm has an excellent

advantage. Chen et al. (2017) proposed a multi-robot search

method based on the PSO algorithm, incorporating a divergence

search strategy for plume discovery and a mass flux divergence

method for odor source declaration. The method was validated

in a time-varying source environment with different ventilation

environments, intensity variations, and obstructions.

The PSO algorithm can organize robots for search behavior

but still has some drawbacks that need improvement, such

as easily falling into local optima in non-ideal environments,

inability to perform a multi-source search, and requiring a

certain number of robots to ensure convergence speed. For

better performance, scholars have made many improvements,

which will be presented in the following subsection.

Modified PSOs

Table 1 summarizes various of modified PSOs for odor

source localization. The column names and their meanings are

as follows: the aim of the study (Aim), the name of the modified

algorithm (Algorithm), authors of the work (Author), the

principal modification of the study (Modification), the reactive

principle (Rec), the validation method (Val), the number of odor

source being located (Odor), and the airflow environment (Air).
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TABLE 1 Summary of the modified PSOs for odor source localization.

Aim Algorithm References Modification Rec Val Odor Air

Escape from local

optimum

WU-PSO Jatmiko et al. (2007) Introduces wind

information

C/A S 1 Dynamic turbulence

environment with

obstacles

E-PSO Ferri et al. (2007) Introduces PI index and

expands search area

C S 1 Stable weak turbulence

environment

RW-PSO Gong et al. (2012) Introduces adaptive

learning factors

C/A S 1 Time-varying turbulence

environment

P-PSO Li et al. (2008) Introduces

probability-based fitness

C/A S 1 Stable turbulence

environment

P-PSO Meng et al. (2011) Introduces

probability-based fitness

C/A S 1 Time-varying turbulence

environment

Adaptation to

time-varying

turbulent

environments

UOA-PSO Feng et al. (2019b) Introduces wind-up

terms and obstacle

avoidance algorithms

C/A S 1/N Time-varying turbulence

environment with

obstacles (periodic and

decay sources)

CPSO Feng et al. (2019a) Integrates source

identification algorithm

and divergent search

strategy

C/A S/F 1 Time-varying turbulence

environment

(mechanical ventilation)

URPSO Feng et al. (2019c) Adds a wind-up term

and a random

interference term

C/A S/F 1 Stable turbulence

environment

ED-PSO Feng et al. (2020) Introduces the

maximum concentration

method and divergence

search strategy

C S/F 1 Stable turbulence

environment

P-PSO Li et al. (2010) Combines Bayesian

inference with

variable-universe fuzzy

inference

C/A S 1 Stable turbulence

environment with

obstacles

Niche-PSO Jatmiko et al.

(2009a)

Introduces niche

operations

C/A S 1/N Dynamic turbulence

environment

Charged PSO Jatmiko et al.

(2006a,b)

Introduces the mutual

repulsive force

C S 1 Dynamic turbulence

environment with

obstacles

DR-PSO Jatmiko et al.

(2006a,b)

incorporates the change

detection and

responding mechanisms

C S 1 Dynamic turbulence

environment with

obstacles

FPSO Lu et al. (2014a,b) Introduces a non-linear

damping term

C/A S 1 Stable turbulence

environment

Search for multiple

odor sources

RS-PSO Jatmiko et al.

(2009b)

Adopts niche operations

and parallel search

C/A S/F 1/N Dynamic turbulence

environment

Niching-PSO Zhang J. et al.

(2014)

Introduces niche

operations

C S 1/N Stable turbulence

environment with and

without obstacles

(Continued)
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TABLE 1 (Continued)

Aim Algorithm References Modification Rec Val Odor Air

Multi-robot

collaboration

PSO-S-Consensus Lu and Han (2010) Adopts distributed

coordination control

scheme

C S 1 Stable turbulence

environment

PSO-CCF Lu et al. (2016) Applies a collaborative

control framework

C/A S 1 Dynamic turbulence

environment

diverse-PSO Jain et al. (2019) Employs social spider

optimization and

formation operations

C S 1/N Stable turbulence

environment

APF-PSO Fu et al. (2019) Introduced an artificial

potential field

C S/F 1 Stable turbulence

environment/outdoor

ventilation environment

MGC-PSO Wang et al. (2017) Introduces MCMC C/A S 1 Stable turbulence

environment

Balance local search

with global search

RR-GC-PSO Yan et al. (2018) Introduces a “request

and reset” strategy

C/A S 1 Air dispersion

environment

Solve the noise

problem of sensing

input data

BB-PSO Zhang Y. et al.

(2014)

Adopts dynamical

statistic method

C S 1 Stable turbulence

environment

Quickly complete

the smoke plume

discovery

DCS-PSO Lu et al. (2013) Applies decision-control

system

C/A S 1 Stable turbulence

environment

Locate the odor

source faster

SMC-PSO Sinha et al. (2020) Utilizes event-triggered

sliding mode control

C/A S 1 Stable turbulence

environment

The letter C means chemotaxis, A means anemotaxis, N means multiple sources, S means simulation, and F means field experiment.

How agents escape from local optima

In the ventilated indoor environment, the odor plume

fluctuates and is intermittently influenced by turbulence. Larger

vortices may easily lead to lengthy local maxima. To solve this

problem, Jatmiko et al. (2007) were the first to exploit the

chemotaxis with wind information by introducing the angle θ

between the wind vector W (t) and the robot motion vector

V∗
i (t) . Two WU-PSO methods are proposed for odor source

localization in turbulent environments with obstacles. WUI is

to set a forbidden area opposite the upstream direction of the

turbulent flow, as shown in Equation 3, to ensure that particles

move against the wind direction. WUII uses θ to calculate

parameters χθ and then calculates the next updated position of

particles through Equation 4.

Vi (t + 1) =

{

0 if θ <
∣

∣θforbidden
∣

∣

Vi (t + 1) Otherwise
(3)

Vi (t + 1) = χθ · V∗
i (t + 1) (4)

Ferri et al. (2007) proposed an explorative PSO algorithm (E-

PSO) in an environment without strong winds, using an index

based on the peak and average of historical odor concentrations

as fitness and increasing the degree of exploration of the

search area. Gong et al. (2012) proposed a modified PSO

algorithm (RW-PSO) through introducing repulsive force and

wind factors, which was validated in a time-varying simulation

environment. Li et al. (2008) proposed a probabilistic particle

swarm optimization (P-PSO) algorithm. The odor source

probabilities estimated by Bayesian inference and variable

universe fuzzy inference are used as expressions of the

adaptation function. In P-PSO, they used wind information

for constructing local probabilities of odor sources based on

Bayesian inference, used concentration information for local

probability maps of odor sources based on fuzzy inference,

and then fused local probability distribution maps of odor

sources from multiple robots to form a global raster probability

map. Therefore, Pi (t) and Pg (t) in Equation 1 changed to

the grid of the local maximum odor source probability up

to the point in time and the global maximum odor source

probability grid, respectively. Meng et al. (2011) proposed a

plume estimation-searching framework based on P-PSO (Li

et al., 2008) for slowly varying airflow environments (e.g., a

slightly wandering large-scale advection-diffusion plume). It

fuses the odor source probability distribution maps estimated

independently by different robots at different times into

a combined map based on the superposition of distances.
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The combined odor source probability distribution map

expresses the adaptation function. The experimental simulation

results show that it can approach the odor source with

fewer robots.

How agents adapt to turbulent environments

Most studies have been conducted in a mechanically

ventilated, steady turbulent environment. However, winds in

realistic scenarios tend to be time-varying, with unstable

wind direction and speed, making the robot more susceptible

to local optima due to large-scale vortices. In order to

get out of the local optimum in a dynamically turbulent

environment with obstacles, Li et al. (2010) further refined

the proposed Probability-fitness-function based particle swarm

optimization (P-PSO) algorithm, which integrates information

on the size of odor concentration, concentration variation, and

wind direction.

Pg (t) = argmax
mxy

(

pgnom
(

mxy, t
))

(5)

Pi (t) = argmax
mxy

(

pL
(

mxy | zi,1 : t
))

(6)

where zi,1 : t is the detection event of the ith robot from

moment 1 to moment t. pL
(

mxy | zi,1 : t
)

denotes the detection

event of the raster mxy passing the ith robot at time t.

pgnom
(

mxy, t
)

denotes the normalized odor source probability

value of the rastermxy at time t. Jatmiko et al. (2009a) proposed

an modified PSO algorithm (Niche-PSO) incorporating the

Niche technique, considering chemotaxis and anemotaxis. They

later proposed two improved PSO methods (Jatmiko et al.,

2006a,b), Detect and Respond PSO (DR-PSO) andCharged PSO.

In the Charged PSO algorithm, the robot is divided into neutral

and charged robots. The repulsive force between the charged

robot and other charged robots obeys Coulomb’s law, as shown

in Figure 3, to ensure the diversity of some robots.

For a neutral robot, its position and velocity updating

method are the same as Equations 1, 2; for charged robots,

its position updating method refers to the Equation 2, and the

velocity updating position method is like the Equation 7, ai (t)

represents the total repulsive force of the robot at time t.

Vi (t + 1) = wVi (t) + c1r1 (Pi (t) − Xi (t))

+ c2r2
(

Pg (t) − Xg (t)
)

+

{

ai(t)
repulsive force

(7)

Lu et al. (2014a,b) proposed a finite-time particle swarm

optimization (FPSO) algorithm based on a continuous-time

model and a discrete-time version of the FPSO algorithm. In

order to make particles converge in a finite time interval, a non-

linear damping term is introduced. The simulation results show

that the discrete-time version of FPSO can successfully locate the

odor source.

FIGURE 3

Interaction of the charged swarm robots (Jatmiko et al., 2007).

In order to adapt to the dynamic turbulence environment,

Feng et al. (2019b) proposed a PSO algorithm with an upwind

term and obstacle avoidance algorithm (UOA-PSO), which adds

an upwind term to the standard PSO algorithm to utilize wind

information for locating time-varying attenuation sources and

time-varying periodic sources with higher success rate than

standard PSO and WUII methods. In the algorithm, an upwind

velocity Vu
i (t) at moment t is added to the Equation 1 for the

ith robot position and velocity, as shown in Equation 5, where

c3 reflects the effect of airflow on the robot velocity and r3 is a

random number in [0, 1].

Vi (t + 1) = wVi (t) + c1r1 (Pi (t) − Xi (t) )

+ c2r2
(

Pg (t) − Xi (t)
)

+ c3r3V
u
i (t) (8)

Subsequently, Feng et al. (2019a) proposed a comprehensive

particle swarm optimization (CPSO) method that combines

a source identification algorithm and a strategy to escape

from local extremal regions based on the previous UOA-

PSO method (Feng et al., 2019b). The effectiveness of method

was realistically verified by three robots in a typical time-

varying airflow environment and compared with standard PSO

and WUII methods in an experimental setting, concluding

that the CPSO has higher source localization efficiency. To

avoid successive local extrema, Feng et al. (2019c) proposed

another multi-robot sniffing approach (URPSO) based on an

adaptive particle swarm optimization algorithm. This method

incorporates an upwind term and a random interference term,

and combines a divergence search strategy and a maximum

concentration method. Feng et al. (2020) further proposed

a modified PSO algorithm (ED-PSO) introducing extremum

disturbance factors, which can be independent of any airflow

information. The individual optimal position Pi (t) and the

global optimal position Pg (t) are updated as follows:

Pi (t)
′ = Pi (t) + c3VmaxP

r
i (9)
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Pg (t) ′ = Pg (t) + c4VmaxP
r
g (10)

where Vmax is the maximum magnitude of the velocity

vector of each robot, namely, the maximum step length of

each robot. Pri and Prg are two disturbance vectors uniformly

distributed in [−1, 1]. c3 and c4 are dimensionless parameters

that reflect the disturbance magnitudes of two disturbance

vectors on Pi(t) and Pg (t), respectively. The method consists of

three core algorithms: an improved PSO algorithm introducing

extreme value disturbance factors, a maximum concentration

method for plume source declaration, and a dispersion search

strategy for plume finding and escape from local extreme value

regions. The robustness of method was demonstrated in an

experimental environment with indoor mechanical ventilation.

How agents find multiple odor sources

Jatmiko et al. (2009b) proposed a modified PSO algorithm

(RS-PSO), where they used niche and parallel search

characteristic to deal with multi-peak and multi-source

problems. In addition, a range subgroups method was

introduced to improve the efficiency of the search capability.

Zhang J. et al. (2014) proposed a Niching PSO-based method for

cooperative localization of odor sources by robots. A random

search algorithm is used to search for the plume in the global

search phase. After finding the plume, the particle and the

particles within the neighboring radius R form a niche, and

all particles inside the niche will track the same plume while

different niches are applied to locate different odor sources

simultaneously. To locate different odor sources efficiently,

a dynamic adjustment strategy of niche size based on the

degree of aggregation and a merging strategy based on optimal

similarity are applied. In addition, practical conditions such as

the sampling/recovery time of the sensor and the speed limit of

the robot are also considered.

The particle velocity update method is as follows:

Vk (t + T) = wVk (t) + c1r1
(

Pk (t) − Xk (t)
)

+ c2r2
(

Pg (t) − Xg (t)
)

(11)

The difference with Equation 1 is that k = 1, 2, . . . ,Ni, Ni in

Equation 11 is the size of the ecotone, and T is the sum of sensor

sampling and recovery time. The method was simulated in a

naturally ventilated indoor environment with obstacles, and the

results show that the algorithm can locate several odor sources

simultaneously with a high success rate.

How to coordinate agents

In previous literature, robots were often treated as mass

points. However, in reality, they are not. In order to coordinate

the movement between multiple robots and prevent collisions

between robots, Lu and Han (2010) designed a distributed

coordination control method (PSO-S-Consensus) consisting of

an artificial layer and a control layer. Trajectory level has

been employed in the proposed control scheme. Lu et al.

(2016) designed a cooperative control framework for the PSO

algorithm implementing a collective decision mechanism for

the ordered motion behavior of the particles. The cooperative

control framework consists of a position coordination term, a

velocity coordination term, and amotion direction coordination

term. Based on this framework, the PSO-CCF algorithm was

proposed for the OSL problem, which can coordinate the relative

positions between robots and ensure the orderly motion of

robots to avoid collision and capture time-varying plumes. Jain

et al. (2019) proposed a cooperative multi-robot localization

method based on diverse-PSO and introduced four kinds of

robot formation operation. Five different robot behaviors are

added in the plume tracking phase. In the three-dimensional

turbulent simulation environment with and without errors, the

experimental results show that the diverse-PSO algorithm is

superior to theModified PSO,Niche-PSO, and R-PSO (Yan et al.,

2018).

Searching with swarms of unmanned aerial vehicles (UAVs)

can be regarded as odor source localization in three-dimensional

space, allowing odor source detection in more complex

contaminated environments than employing ground-based

robotic teams to search for odor sources. Traditionally, particle

swarm optimization algorithms treat robots as prime points, and

this concept obviously cannot be applied to UAV search. Fu

et al. (2019) proposed an APF-PSO algorithm using an artificial

potential field method for generating safe and smooth UAV

swarm flight paths, which improves the safety of the algorithm.

Meanwhile, adaptive inertia weights and exclusion zones are

introduced to help particles escape from the local optimum.

Simulation experiments show that the adoption of this algorithm

has a significant impact on the search success rate and efficiency.

How to improve other performances

To better balance local search with global search at different

stages, Yan et al. (2018) introduced a “request and reset” strategy

into the Guaranteed Convergence PSO (Van den Bergh and

Engelbrecht, 2002) and Dissipative PSO (Xie et al., 2002) and

both added a modified learning factor and inertia weight, to

form two modified PSOs (RR-GC-PSO and MD-PSO). The

“Request and Reset” strategy can remove the low-fitness particles

and re-incorporate them into the global search to enhance

the algorithm’s global search capability. The simulation results

show that the RR-GC-PSO algorithm converges faster and has

a higher success rate for robots in a large environment with

small population size. The velocity update equation of robot in

“optimal group” in RR-GC-PSO, as shown in Equation 12, is

quite different from that in standard PSO.

Vi (t + 1) = wVi (t) − Pi (t) + Pϕg + ρ(1− 2r2) (12)

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.949888
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.949888

where pϕg is the global optimal position detected by robot ϕ,

and ρ is a scaling factor related to the size of the search area.

To improve the localization accuracy of the algorithm,

Wang et al. (2017) proposed a combined approach using both

static and mobile sensors, using modified genetic algorithms

(MGA), Markov Chain Monte Carlo (MCMC), and MGC-

PSO algorithms. In this study, OSL was divided into three

stages: static sensors for data acquisition, a rough calculation

of the search area, and a mobile robot swarm for odor source

localization. First, the MGA algorithm estimates a possible

source of leakage as the initial sampling point for MCMC

sampling. The MCMC then calculates search areas that are

likely to contain odor sources. Finally, the mobile robot uses

the MGC-PSO algorithm to locate the leakage source accurately.

Simulation results show that the method can locate the odor

source within one meter.

The odor concentration sensors measured by robots

during source localization commonly contain noise. Zhang

Y. et al. (2014) proposed a collaborative multi-robot search

method based on Bare-Bones PSO (BB-PSO) to solve this

problem. Dynamic statistics estimates the noise intensity of

odor concentration measured by the robot, and the fitness

value of particles in a noisy environment is expressed by

interval number. Particles’ position update based on the defined

particle probability dominance relation. Let the measured odor

concentration value of the robot at position Xi (t) be f
(

aj
)

, and

the intensity of the measured odor concentration value of the

robot at the current position Xi (t) affected by noise is estimated

as follows:

ρi (t) =
1

m

m
∑

j=1

∣

∣f
(

aj
)

− 0.5
(

f
(

aj−1
)

+ f
(

aj+1
))∣

∣ (13)

where t is the number of iterations, the absolute difference

is calculated by the measured odor concentration value and

the estimated value (the average of the measured odor

concentration values at adjacent positions on both sides of

position j). The true odor concentration value of the location

Xi (t) of will fall with a high probability in the interval
[

f (Xi (t)) − ρi (t) , f (Xi (t)) + ρi (t)
]

. This interval is used as

the fitness of the particles in the current position for particle

update, and the probability interval method is used to avoid

the influence of noise. In the turbulent simulation environment,

the experimental results show the excellent performance of

the method.

To enable robots to find odor cues quickly, Lu et al. (2013)

introduced finite-time parallel and cyclic controllers for parallel

motion and circular motion of robot groups and designed a

PSO method based on two-layer decision-control system (DCS-

PSO) for a hierarchical response. The wind information is

introduced in the decision layer. The convergence of the finite-

time algorithm is analyzed by using the Lyapunov method,

and simulation experiments verify the effectiveness of the

proposed method.

In order to locate the odor source faster for effective decision

making under communication and computational resource

constraints, Sinha et al. (2020) proposed a PSO algorithm

based on a hierarchical cooperative control strategy (SMC-PSO)

including a group decision layer and a robust collaborative

control layer. In the group decision layer, the modified PSO,

which introduces odor concentration information and wind

information, is used to make a group decision and send it to

the robust collaborative control layer. The robust collaborative

control layer implements a sliding mode controller in an event-

triggered fashion, which ensures that the robot can converge to

the equilibrium point in a limited time.

Hybrid PSOs

The simulated annealing algorithm (SA) is derived from the

simulation of the solid annealing process (Kirkpatrick et al.,

1983) and is a kind of heuristic Monte Carlo method. It can be

applied to optimization problems, namely to locate an excellent

approximation to the global minimum of a given function in

a vast search region. To prevent premature convergence of

the particle swarm, Gong et al. (2012) proposed a SA-RWPSO

algorithm that combines SA algorithm and multiple dynamic

factors (here RWPSO is PSO based on repulsive force and

wind). In the standard PSO algorithm, if the current position

of a particle is better than the historical best position Pbest ,

the current position will become the new best position Pbest .

The direct replacement strategy will result in a tendency for the

particles to converge to the optimal position Pbest prematurely,

and particles are more likely to lose diversity. In SA, the

algorithm can accept deteriorating solutions with a certain

probability and accept optimized solutions. The particle will

accept the new position Xi (t + 1) of the ith particle at moment

t with probability δpro in the case that Xi(t + 1) is inferior to

Pi(t). Moreover, δpro will decrease as the number of temperature

iterations increases. This indicates that particle diversity can be

preserved in the initial stage of the algorithm, and convergence

is guaranteed in the later stages, which represents that the

simulated annealing algorithm can both jump out of the local

optimum and converge to the vicinity of the global optimum

solution. Therefore, the SA algorithm is feasible for solving

the OSL problem with multi-polar concentration functions

indoors. Simulation results in four typical scenarios show that

the proposed algorithm can guide the multi-robot system to

quickly and accurately locate the odor source.

Also, to prevent particles from being trapped locally, Zhang

et al. (2015b) proposed a refined hybrid PSO algorithm that

combines two bacterial foraging optimization (BFO) operations

for odor source localization in robot swarms. In the proposed

algorithm, the authors integrate the convergence operation into
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the PSO algorithm to guide the robot to track the plume and

employ the elimination-dispersion operation to avoid particles

falling into local minima. In standard PSO algorithm, if the

current position of a particle is very close to the individual

optimal position and the globally optimal position in the late

iteration, the velocity of all particles will drop to very small,

or even zero, which will cause all particles to stop updating

prematurely and the algorithm will converge to a false local

optimum. Hence, the authors adopt a better approach by

proposing an improved BFO elimination and diffusion method

that searches for a better solution near the wrong local optimum

instead of stopping the movement. In the BFO-PSO algorithm,

the particle swarm, after being updated by Equations 1, 2, will be

updated again using the chemotactic equation as:

Xi (t + 1) = Xi (t) + S (i) Vi(t+1)√
Vi(t+1)TVi(t+1)

(14)

where S (i) is the unit travel length of the agents. From

Equation 14 it can be seen that the agent will move further

along the velocity direction. This is followed by an improved

elimination and dispersion of BFO to prevent convergence to

localization, as follows:

Xi (t + 1) =

{

Xi (t) + S (i) 1(i)√
(1(i))T1(i)

if rand () < Ped

Xi (t) , otherwise
(15)

where 1 (i) is the random direction vector and Ped is the

probability of elimination and dispersion.

To balance exploration and exploitation in multi-robot

target search, Jain et al. (2018) used the gray wolf optimization

(GWO) in concatenation with the PSO algorithm. In the

GWO algorithm, the prey’s surrounding behavior will help

keep the robot within the plume area. Two GWO-PSO

and PSO-GWO plume tracking algorithms are proposed by

the concatenated method for multi-robot collaboration and

prevention of premature local convergence. However, this

method cannot locate multiple odor sources in parallel.

Nevertheless, the BFO-based PSO algorithm, the GWO-

based PSO algorithm, and most of the hybridization algorithms

require the tuning of control parameters to achieve the best

efficiency. This represents a difference in the search efficiency of

the algorithms in different environments. Gaurav et al. (2020)

proposed a parameter-free hybrid teaching learning particle

swarm algorithm (HTLPSO). In this method, the teaching

phase of TBLO is merged with the PSO algorithm, which

helps to improve the computational speed and efficiency.

Simulation results in single odor source and multiple odor

source environments demonstrate the search effectiveness of

HTLPSO and its high accuracy convergence even with a small

number of agents.

Table 2 summarizes various of hybrid PSOs for odor source

localization. The column names and their meanings are as

follows: the name of the hybrid algorithm (Algorithm), the

purpose of the study (Aim), authors of the work (Author), the

algorithm combined with PSO (Com), the reactive principle

(Rec), the validation method (Val), the number of odor source

being located (Odor), and the airflow environment (Air).

Other nature-inspired SI algorithms
in OSL: Diversity and exploration

Table 3 summarizes various of nature-inspired SI algorithms

applied to odor source localization. The column names and their

meanings are as follows: the name of SI algorithm (Algorithm),

authors of the work (Author), the principal operation of the

work (Operation), the reactive principle (Rec), the validation

method (Val), the number of odor source being located (Odor),

and the airflow environment (Air).

Cuckoo search optimization

Cuckoo search optimization (CSA; Yang and Deb, 2009)

is inspired by the parasitic brooding behavior of cuckoo

populations and the Lévy flight behavior during nest migration.

The cuckoo search algorithm has the advantages of simplicity,

few parameters, and easy implementation. In dealing with

complex optimization problems, there is no need to set many

parameters in CSA. In fact, in addition to the population number

n, there is only one parameter P in CSA. Lévy flight and

preference random walk are two critical components of the

cuckoo search algorithm, which makes the CSA better global

searchability and have solid local searchability. They can get

better results for almost all optimization problems.

Wang et al. (2016) proposed a method for locating odor

source based on the CSA algorithm. In the plume discovery

phase, this method introduces the concept of a taboo position.

The distance of the robot’s new target location should be greater

than the distance between the taboo position and the distance

threshold. In the plume tracking phase, a master-slave robot

search mechanism is employed. It uses the robot that detects the

highest odor concentration among all robots to guide the other

robots to search for the odor source in its upwind direction.

Let the serial number of the master agent at the gth iteration

be Nbest , and the location be Xbest . At the g + 1th iteration, all

agents will be updated at the position Xbest of the master agent

with Equation 16:

Xg+1,i = Xg,best + Li, (i = 1, 2, · · · ,N) (16)

whereXg+1,i represents the updated position of the ith robot

at the g + 1st iteration, Li (i = 1, 2, . . . ,N) is the step vector

whose modulus d obeys the Lévy distribution and N is the

number of robots. To improve the search efficiency, the method
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TABLE 2 Summary of the hybrid PSOs for odor source localization.

Algorithm References Aim Com Rec Val Odor Air

RWPSO Gong et al. (2012) Prevents premature convergence of the

swarm

SA C/A S 1/N Stable turbulence

environment

BFO-PSO Zhang et al. (2015b) Prevents particles from being trapped

locally

BFO C S 1 Stable turbulence

environment

GWO-PSO Jain et al. (2018) Balances between exploration and

exploitation of the workspace.

GWO C/A S 1 Stable turbulence

environment

PSO-GWO Jain et al. (2018) Balances between exploration and

exploitation of the workspace.

GWO C/A S 1 Stable turbulence

environment

HTLPSO Gaurav et al. (2020) Improves search performance in MOS

and SOS environments

TLBO C S 1/N Stable turbulence

environment

The letter C means chemotaxis, A means anemotaxis, N means multiple sources, S means simulation, and F means field experiment.

TABLE 3 Summary of other nature-inspired SI algorithms applied to odor source localization.

Algorithm References Operation Rec Odor Val Airflow

CSA Wang et al. (2016) Sets up a restricted position C/A 1 S Stable turbulent environment

Wu and Wang (2021) Introduces the concept of territory C 1/N S Stable turbulent environment

ACO Meng et al. (2006) Combines with GA C 1 S Stable turbulent environment

Zou and Luo (2008)

and Zou et al. (2009)

Adds an odor source verification

strategy

C 1/N S Stable turbulent environment

Meng et al. (2010) Adds upwind search algorithm C/A 1 S/F Time-varying turbulent

environment

Cao et al. (2013) Introduces selective olfaction and

continuous source statements

C/A 1/N S Outdoor natural turbulent

environment

Che et al. (2018) Shares global pheromone distribution

map

C/A 1 S Time-varying turbulent

environment

GSO Krishnanand and

Ghose (2005) and

Krishnanand et al.

(2006)

Introduces variable local decision fields C 1/N S Dynamic turbulent

environment

Zhang et al. (2011) Introduces the forbidden area C 1/N S Constant diffusion

environment

GWO Shen et al. (2021) Employs vision sensors C/V 1 S/F Constant diffusion

environment

WOA Yang et al. (2019) Introduces wind tendency C/A 1 S Time-varying turbulent

environment

Jiang et al. (2022) and

Zhou et al. (2022)

Introduces wind information C/A 1 S/F Time-varying turbulent

environment

AEO Fu et al. (2021) Introduces discrete wind system C/A 1 S Stable turbulent environment

The letter C means chemotaxis, A means anemotaxis, V means vision information, N means multiple sources, S means simulation, and F means field experiment.

incorporates upwind search and a local odor concentration

optimization mechanism. In a simulated environment with

indoor ventilation, it is verified that the method can guide

multiple robots to search for odor sources faster compared with

the U-ACO algorithm.

In order to further improve the cuckoo algorithm source

finding efficiency with an extensive range search for multiple

scent sources, Wu and Wang (2021) proposed an improved

CSA. The forbidden areas were introduced as the cuckoo’s

territory to prevent the cuckoo from falling into local

optimal positions. When a certain number of cuckoos are

close to the same scent source, the best local cuckoo in

the area acts as the center of the area, declared as the

forbidden area. The area is no longer repeatedly searched

Frontiers inNeurorobotics 13 frontiersin.org

https://doi.org/10.3389/fnbot.2022.949888
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Wang et al. 10.3389/fnbot.2022.949888

by other robots. The concept of forbidden area merging

was introduced to prevent repeated discovery of the same

odor source. Simulation results show that the method can

accurately locate multiple odor sources in a Gaussian diffusion

model environment.

Ant colony optimization

Ant colony optimization (ACO) is proposed to simulate

the foraging behavior of ant colonies in nature (Dorigo

et al., 1996). It has the characteristics of positive feedback,

parallel computing, good robustness, etc. Ants will continuously

secrete pheromones during their out-feeding walk, and as the

pheromones accumulate, most ants later will follow this shortest

path. The traditional ant system consists of three main parts:

initialization, solution construction, and pheromone update.

Through the accumulation of pheromones, its search results

have strong robustness, but there are still many shortcomings.

For example, in the early stage of global search, the uniform

distribution of pheromones may slow down the iteration speed

andmake ants search blindly. Meanwhile, the algorithm is prone

to fall into local optimal solutions. Meng et al. (2006) were the

first to use an improved ACO combined with a genetic algorithm

for solving the OSL problem: in the iterative process, the genetic

algorithm is first used for local search, then the ACO for global

search, and finally pheromone updates. In the global search

phase, under appropriate conditions, robot i performs a global

search with probability p
(

i, j
)

for the region where robot j is

located for a certain number of steps as follows:

p
(

i, j
)

= τα(j)e
dijβ

∑m
j=1 τα(j)e

dijβ
,
(

j = 1, 2, · · · ,m
)

(17)

where dij = C
(

j
)

− C (i) is the difference between robot j

and the locally optimal concentration in the region where robot

i is located, τα
(

j
)

is the pheromone of robot j, α and β are

the weight parameters, and m is the number of robots. After

all robots have completed the global search, if n robots move

toward the region where robot i is located and increase their

concentration, the pheromone in the region where robot i is

located will be updated as follows:

τ (i) = λ · τ (i) +
n

∑

j=1

C
(

j
)

(18)

where λ is a coefficient describing the degree of pheromone

decay, in (0, 1). This method can find the location of an odor

source with fewer iterations, but the effectiveness of the method

for searching multiple odor sources has not been verified. Zou

and Luo (2008) and Zou et al. (2009) proposed an improved

search strategy for the ACO by redefining the pheromone and

heuristic functions, adding two search modes, local traversal

search and global random search, and including a validation

procedure for recording multiple odor sources in a single

iteration. Simulation results demonstrate the effectiveness of

the improvement. However, the method causes the robot to

repeatedly converge to the searched odor sources, which reduces

the search efficiency of multiple odor sources. Meng et al.

(2010) will propose an improved ant colony algorithm (US-

ACO) combined with an upwind search algorithm for a time-

varying indoor odor environment and validate its effectiveness

in a natural indoor turbulent environment. Further, Cao et al.

(2013) introduced the concept of selective olfaction based on

the US-ACO algorithm and proposed an asynchronous ant

colony optimization algorithm (SoACO) for fast localizing

multiple odor sources. Specifically, the concentration sensor

will selectively stop working during the search to jump out of

the local optimum and the multi-source search. This approach

successfully found multiple odor sources continuously within

fewer robots in the simulation experiments. Che et al. (2018)

divided the robots into two groups according to the pheromone

concentration to perform the tasks of upwind search and

improved ant colony algorithm search, respectively. In the

process of global pheromone update, the influence of time-

varying wind field on odor plume was considered, in which

the wind speed determines the update frequency. Simulation

results show that the algorithm has a high success rate and

search efficiency.

Glowworm swarm optimization

Glowworm swarm optimization (GSO) can be employed

to compute multiple optimal values of multimodal functions

simultaneously. The algorithm was originally proposed by

Krishnanand and Ghose (2009) as a variant of the ACO

algorithm, but several significant modifications exist. Like the

ACO, where each motion area is associated with a pheromone

value, the agents in the glowworm algorithm also carry a

luminous quantity. Agents are considered to be glowworms,

which emit light of an intensity proportional to the associated

quantity of luminescence and have a circular sensor range. The

glowworm k has a circular sensor range rks , to define the variable

local decision domain rk
d

(

0 < rk
d

< rks

)

for computing motion

(as shown in Figure 4). As with the ACO, each agent i has a

certain probability pj (t) to move to the region where neighbor

j is located, and the discrete-time model for an agent position

update is as follows:

Xi (t + 1) = Xi (t) + s
(

Xj(t)−Xi(t)
‖Xj(t)−Xi(t)‖

)

(19)

s =

{

δ, if d
(

i, j
)

≥ δ

d
(

i, j
)

, otherwise
(20)

where d
(

i, j
)

denotes the distance between robot i and robot

j. To simulate the decay of fluorescein with time, the rule for
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FIGURE 4

Glowworm i is in the sensor range of (and is equidistant to) both

j and k. However, j and k have di�erent local-decision domains,

and only j uses the information of i (rkd < r
j

d < rks < r
j
s). Figure

modified from Krishnanand et al. (2006).

FIGURE 5

Schematic diagram of the hierarchy of GWO.

updating the fluorescein of robot j at moment t is as follows:

ℓj (t + 1) = max
{

0, (1− ρ) ℓj (t) + γ Jj (t + 1)
}

(21)

where Jj (t) denotes the value of the luciferin level of agent

j at moment t, γ is the proportionality constant used to

increase the luciferin level, and ρ is the luciferin decay constant

(0 < ρ < 1 ).

Benefiting from the property that the GSO can find the

optimal solution of multiple optimal continuous functions

(Krishnanand and Ghose, 2005; Krishnanand et al., 2006;

Zainal et al., 2013) used the GSO for solving the multi-source

localization problem. Variable local decision domains are also

applied to glowworms. The variable local decision domain

update formula for glowworm i at time t + 1 is as follows, and

the explicit threshold parameter nt is introduced to attenuate the

oscillatory behavior of the decision domain:

ri
d
(t + 1) =

{

ri
d
t + β1 |Ni (t)| , if |Ni (t)| ≤ nt

ri
d
t − β2 |Ni (t)| , otherwise

(22)

where β1 and β2 are constant parameters. This algorithm

proved its superiority over the ACO in a multi-source

environment through simulation and field experiments. Zhang

et al. (2011) proposed a multi-robot cooperation strategy based

on a modified GSO (M-GSO). The concept of forbidden area

was introduced, and they argued that the forbidden area setting

has two goals. One is to ensure that the robots inside the

forbidden area are released so that they have the opportunity

to find another odor source. The other is to ensure that robots

outside the forbidden area do not repeatedly locate this odor

source. Simulation results in a benchmark environment of

multiple odor source localization show that M-GSO can find all

indoor odor sources with fewer iterations than the traditional

GSO algorithm.

Gray wolf optimization

Gray wolf optimization is a population intelligence

optimization algorithm inspired by gray wolf populations

(Mirjalili et al., 2014). The method mimics the strict four social

classes and hunting behaviors within the gray wolf population.

Different social classes of gray wolves will be responsible for

decision-making, training, hunting, scouting and patrolling,

and other divisions of the wolf pack.

To improve the speed of early plume search and the

reliability of plume tracking, Shen et al. (2021) made the

autonomous mobile robot simulate the social mechanism and

hunting behavior of gray wolf populations to plan the robot

path and find the optimal value in plume tracking. Using the

four different classes of gray wolf groups, a hierarchical structure

suitable for robot search is constructed. The four levels decrease

from top to bottom as alpha, beta, delta, and omega, respectively

(Figure 5). The field experimental results show that this method

can successfully locate the leakage odor source in some three-

dimensional diffusion environments, but only a single robot is

employed. Mamduh et al. (2018) tried to propose a cooperative

multi-robot strategy based on GWO that uses the prey search

phase of gray wolves to track plumes. Before approaching the

odor source, the robots will surround the odor source, thus

avoiding the searched odor source being different from the

actual location, as in other algorithms. Robots are divided

based on social hierarchy in the process. Robots with the three

best solutions are defined as alpha (α), beta (β), and delta (δ)

based on the sampled concentration data. The other robots are

assumed to be omega (ω). The ω robots generally are guided

by the α, β, and δ robots. After the wolves have surrounded
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the searched scent source, the wolves will hunt and update the

location as Equations 23–25:

Dµ =
∣

∣C1 · Xµ − X
∣

∣

Dβ =
∣

∣C2 · Xβ − X
∣

∣

Dδ = |C3 · Xδ − X|
(23)

X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

(24)

X (t + 1) = X1+X2+X3
3 (25)

whereDα denotes the encirclement vector of the robot α,Xα

denotes the target position vector of the robot α, X denotes the

movement vector of the robot, and A∗ and C are the computed

coefficient vectors.

Moreover, in the literature already reviewed in the previous

section, Jain et al. (2018) proposed amulti-robot systemwith two

algorithms in tandem. It achieved good results by concatenating

the gray wolf optimizer with the particle swarm optimizer.

Whale optimization

Whale optimization (WOA) finds the optimal solution by

imitating the search process of whales catching food in the ocean

(Mirjalili and Lewis, 2016). The algorithm has the characteristics

of a simple structure and few parameters. It is faster and more

accurate than standard PSO and genetic algorithm in solving

multivariate functions and can jump out of local optimization

(Mirjalili and Lewis, 2016).

To rapidly locate indoor time-varying pollution sources,

Yang et al. (2019) pioneered standard WOA (SWOA) for multi-

intelligence active olfaction and proposed an improved WOA

method by introducing an upwind term. In the plume tracking

phase, theWOA algorithm simulates the hunting behavior of the

humpback whale by three operators, namely, the encircling prey

operator, bubble-net attacking operator, and searching for prey

operator. The operation of the encircling prey operator is similar

to the GWO algorithm. For the robot position at the moment

t + 1 will be updated as Equation 26:

X (t + 1) = Pg (t) − A · D
D =

∣

∣C · Pg (t) − X (t)
∣

∣

(26)

where A and C are the computed coefficient vectors.

The bubble-net attacking operator imitates the prey attacking

behavior of humpback whales, which consists of Shrinking

encircling and Spiral updating processes. The Shrinking

encircling process is similar to the previous stage, and each

iteration of Spiral updating has a certain probability of indicating

the simulated real situation with Equation 27:

X (t + 1) =

{

Pg (t) − A · D p < 0.5

D
′
· ebl · cos(2πl)+ Pg(t) p ≥ 0.5

(27)

where D′ is the distance between a robot and the current

global maxima location, b is a constant for defining the shape of

the logarithmic spiral, p and l are random numbers in the range

of [0, 1] and [−1, 1], respectively. For IWOA, the upwind term

Vu(t) is added to the position update. The update process being

improved as Equation 28:

X(t + 1) = D′ · ebl · cos(2πl)+ X∗(t)+ Vu(t) (28)

Searching for prey operator is the global search phase of

the robot, and the t-moment algorithm randomly selects the

robot position Xrand (t) as a reference for updating the position

to maintain diversity. Compared with the standard PSO and

IPSO, simulation results show that the success rate of the SWOA

method for locating time-varying pollution sources is within the

acceptable level only. However, the cost is lower, and the IWOA

success rate is higher than the improved PSO (IPSO), but the

localization efficiency is worse than IPSO.

Jiang et al. (2022) experimentally validated and compared

the SWOA and IWOA algorithms with standard PSO and

IPSO in a natural field. The experiments considered two typical

time-varying sources (periodic and decaying sources) and two

source locations (downwind zone and recirculation zone). The

results show that IWOA has a significantly higher success

rate and positioning accuracy in locating odor sources than

IPSO. Zhou et al. (2022) made further experimental verification

and compared the above algorithms. The results show that

the IWOA method requires fewer average steps to locate

the periodic source, has a higher success rate, and is more

challenging to locate the decay source.

Artificial ecosystem-based optimization

Artificial ecosystem-based optimization (AEO; Zhao et al.,

2020) was inspired by the phenomenon of energy flowing along

the food chain between producers, consumers, and decomposers

in the ecosystem. Thismechanism ofmaintaining a stable energy

transfer for optimization algorithms has excellent potential, and

experiments have shown that AEO outperforms its advanced

counterparts in terms of optimization performance (Zhao et al.,

2020). Especially for real-world engineering problems, AEO

is more competitive than other reported methods in terms

of convergence speed and calculation cost. In our previous

work (Fu et al., 2021), we proposed an improved AEO

algorithm through incorporating a discrete wind direction

system to solve the uncertainty of concentration thresholds

in different odor source environments during odor source

localization. Producers, consumers, and decomposers share

concentration and wind direction information throughout the

process. The algorithm combines individual stochasticity and

consumption factors to perform plume tracking strategies in low

concentration regions, enhancing the algorithm’s robustness.
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In this algorithm, the producer is mainly employed for

global search, and the ith robot position update equation in a

population of n robots is as follows:

Xi (t + 1) = (1− a)Xn (t) + aXrand (t) (29)

where Xrand is a random position in the search space and a

is a linear weighting coefficient. There are three consumption

strategies for consumers to become herbivores, carnivores, or

omnivores, and the consumer. Robot will randomly choose to

become one of them. Position change occurs after consumers

“eat” different types of robots. The consumption process adds

a consumption factor to avoid local optima. Subsequently,

the decomposer will decompose the organisms to obtain

concentration information, location information, and wind

direction information to update the location of robot i as:

Xi (t + 1) = Xn (t) + D
[

eXn (t) − hXi (t)
]

+ Rd ×Wor × r4 ×
−wi

|wix| +
∣

∣wiy

∣

∣

(30)

where D is the decomposition factor, e and h are the weight

coefficients, and r4 random coefficients in the range of [0, 1]. Rd
is the decomposer wind direction factor, wi is the wind speed

vector at the current robot,wix andwiy are the x-axis wind speed

component vectors and y-axis wind speed component vectors at

the current robot.Wor is the adaptive step size factor.

Finally, wind chasers are added and divided into two levels

to perform different operations according to anemotaxis, with

the following equation:

{

Xi (t + 1) = Xi (t) + Rw ×Wor × r5 × −wi

|wix |+|wiy| , i = [1, · · · , Pw]
Pw = Cwn

(31)

Xi (t + 1) = Xi (t) + Rw ×Wor × r5 ×
−wi

|wix| +
∣

∣wiy

∣

∣

, r6 > Le

(32)

where Rw is the wind direction factor of the wind chaser,

r5 and r6 are uniformly distributed random numbers in the

range of [0, 1], Pw is the number of robots that become chasers,

Cw is the proportion chasers among all robots, and Le is the

stratification factor. The simulation results show that the time

spent and success rate of odor source locating has a greater

advantage than CPSO andWU-PSO when the number of robots

is small.

Trends and challenges

Other SI algorithms to be explored

In addition to the swarm intelligence and extension

algorithms mentioned above, many widely discussed swarm

intelligence algorithms have not been applied to odor source

localization. The artificial fish swarm algorithm (AFS) is mainly

based on fish foraging behavior in the natural environment.

It adopts the bottom-up design idea, mainly using the three

operators of artificial fish’s foraging, clustering, and tailing

finding, to construct the bottom behavior of individuals, which

has the advantages of reliable global search ability and fast

convergence (Tang et al., 2021). The bat algorithm is a random

search algorithm that simulates the prey detection and obstacle

avoidance behavior of bats in nature using echolocation. It

can achieve single and multiple target search and localization

in continuous space (Yang and Hossein Gandomi, 2012). The

artificial bee colony optimization (ABC) algorithm simulates

bees’ foraging behavior. In addition to the primary selection

mechanism of bees and simple interactions between bees, the

ABC algorithm introduces local and global search mechanisms,

making the algorithm capable of solving search problems in

multi-objective fields (Karaboga and Basturk, 2007). Those

algorithms have their own advantage to deal with different

kinds of problems in various scenarios and are worthy to be

considered for exploring in OSL applications according to No

Free Lunch Theorem.

From 2D to 3D

The study of OSL methods in three-dimensional space is

more in line with the propagation characteristics of odors in

the natural environment compared to that in two-dimensional

plane. Therefore, it is more conducive to solving the needs

of practical application. As far as equations are concerned,

most swarm intelligence algorithms mentioned above can easily

switch from 2D plane to 3D space. The difficulties may lie mainly

in three aspects. (1) How to achieve the 3D spatial dynamic

simulation of the sniffing robots. Robots in three-dimensional

space can no longer be considered as mass points, and the large-

scale flight operations of rotorcraft swarms will change the odor

distribution on a macroscopic scale. How to simulate the change

of odor distribution also needs to be taken into account. (2)

How to solve the effect of UAV rotor blades on odor diffusion.

The plume above the UAVs will be sucked by the rotor blades

and emitted from below when UAVs passed through the smoke

plume. In this case, the concentration, wind direction, and wind

speed of the plume cannot be accurately measured. How to

install the sensor at the right position to measure the accurate

value will be the key consideration of scholars. (3) How to

avoid mutual collision of UAVs in 3D turbulent space. Swarms

of drones flying in dynamic turbulence will be susceptible to

position shifts and collisions, so more conservative strategies to

avoid mutual collisions need to be considered. To solve these

problems, some researchers have turned to study airflow in

3D environments to extend the chemical sensing capabilities

of mobile robots to 3D environments (Ishida et al., 1999; Feng

et al., 2018). The rapid development of UAV technology has

provided an excellent platform, which has led to the 3D spatial
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OSL problem based on the UAV platform receiving the attention

of most researchers (Jing et al., 2021). Preliminary research

results have been achieved (Neumann et al., 2013; Pobkrut et al.,

2016; Villa et al., 2016; Luo et al., 2018; Gunawardena et al.,

2021; Liu et al., 2022). However, compared with OSL in two

dimensions, these results are still far from adequate and need

further exploration.

Fusion of multimodal sensing information

Biological evidence proves that other sensing modalities also

play an essential role in odor source localization of organisms.

Sensing inputs of odor concentration information and wind

information are now widely used for odor source localization.

Nevertheless, odor sensors have certain information blindness.

The sensor accuracy sometimes cannot meet the operational

requirements, and the slow response and prolonged recovery

time of sensors limit the localization efficiency. On the other

hand, wind direction information cannot independently apply

to odor source localization. When the chemical concentration

sensor is not working, the fusion of information from multiple

sensing modules ensures the iterative process. This will enhance

the search performance and accuracy of the system. There

have been few results in visual research (Jing et al., 2021),

and Ishida et al. (2006) proposed a new method for locating

odor sources using a combination of visual, odor, and wind

direction information. The method assembles a mobile robot

with CMOS cameras, odor sensors, and airflow sensors. It

employs a behavior-based navigation strategy to successfully

locate a bottle containing the source of a leaking odor in

an indoor experiment. Shen et al. (2021) designed a multi-

sensor information fusion decision strategy and incorporated

the vision and olfactory sensor fusion for tracking plumes and

declaring the odor source in a partial 3D diffusion environment.

In addition to visual sensors, we hope that sensors related to

temperature gradient, wind speed and hearing as well as other

complex sensors [IMU, Insect-behavior-based Olfactory Sensor

(Horibe et al., 2021), Lidar] can be further investigated in the

future for applications in certain special situations, such as fire

scenes, narrow caves, etc. Corresponding to multimodal sensing

information fusion is a multi-source, asynchronous decision

framework. How to develop an optimal strategy based on this

requires in-depth study.

Conclusion

Swarm intelligence algorithms solve complex optimization

problems through the communication and collaboration

of multiple simple individuals, emerging as a distributed,

self-organizing group intelligence. Multi-robot odor source

localization is for searching the optimal odor concentration in

the target space by multiple robots. It is coherent in purpose

with the swarm intelligence optimization algorithm. Therefore,

employing swarm intelligence optimization algorithms to solve

OSL problems has become mainstream in the last two decades.

This review briefly reviews the history and basic concepts of

OSL research and summarizes the core issues and trends in

OSL field. Multi-robotics for localizing multiple odor sources

in natural environments using chemotaxis-anemotaxis of multi-

sensing information is the leading research direction. To achieve

this goal, scholars have introduced standard PSO and its various

variant versions into the research field, including applicability

improvements to standard PSO and hybrid algorithms that

combine other optimization algorithms. Further, various nature-

inspired SI algorithms have also been introduced into OSL,

such as CSA, ACO, GWO, GSO, WOA, and AEO. SI-based

multi-robots for odor source localization is on the rise. Finally,

we believe that based on the principle of no free lunch

theorem, other swarm intelligence algorithms, through adaptive

modifications, also have the potential to be introduced into this

research area to solve specific problems.
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