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Deep learning has been widely used for inferring robust grasps. Although human-labeled

RGB-D datasets were initially used to learn grasp configurations, preparation of this

kind of large dataset is expensive. To address this problem, images were generated

by a physical simulator, and a physically inspired model (e.g., a contact model between

a suction vacuum cup and object) was used as a grasp quality evaluation metric to

annotate the synthesized images. However, this kind of contact model is complicated

and requires parameter identification by experiments to ensure real world performance.

In addition, previous studies have not considered manipulator reachability such as when

a grasp configuration with high grasp quality is unable to reach the target due to

collisions or the physical limitations of the robot. In this study, we propose an intuitive

geometric analytic-based grasp quality evaluation metric. We further incorporate a

reachability evaluation metric. We annotate the pixel-wise grasp quality and reachability

by the proposed evaluation metric on synthesized images in a simulator to train an

auto-encoder–decoder called suction graspability U-Net++ (SG-U-Net++). Experiment

results show that our intuitive grasp quality evaluation metric is competitive with a

physically-inspired metric. Learning the reachability helps to reduce motion planning

computation time by removing obviously unreachable candidates. The system achieves

an overall picking speed of 560 PPH (pieces per hour).

Keywords: bin picking, grasp planning, suction grasp, graspability, deep learning

1. INTRODUCTION

In recent years, growth in retail e-commerce (electronic-commerce) business has led to high
demand for warehouse automation by robots (Bogue, 2016). Although the Amazon picking
challenge (Fujita et al., 2020) has advanced the automation of the pick-and-place task, which is
a common task in warehouses, picking objects from a cluttered scene remains a challenge.

The key to the automation of pick-and-place is to find the grasp point where the robot can
approach via a collision free path and then stably grasp the target object. Grasp point detection
methods can be broadly divided into analytical and data-driven methods. Analytical methods
(Miller and Allen, 2004; Pharswan et al., 2019) require modeling the interaction between the
object and the hand and have a high computation cost (Roa and Suárez, 2015). For those reasons,
data-driven methods are preferred for bin picking.
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Many previous studies have used supervised deep learning,
which is one of the most widely used data-driven methods, to
predict only grasp point configuration (e.g., location, orientation,
and open width) without considering the grasp quality. Given an
RGB-D image, the grasp configuration for a jaw gripper (Kumra
and Kanan, 2017; Chu et al., 2018; Zhang et al., 2019) or a vacuum
gripper (Araki et al., 2020; Jiang et al., 2020) can be directly
predicted using a deep convolutional neural network (DCNN).
Learning was extended from points to regions by Domae et al.
(2014) and Mano et al. (2019), who proposed a convolution-
based method in which the hand shape mask is convolved
with the depth mask to obtain the region of the grasp points.
Matsumura et al. (2019) later learned the peak among all regions
for different hand orientations to detect a grasp point capable of
avoiding multiple objects.

However, in addition to the grasp configuration, the grasp
quality is also important for a robot to select the optimal grasp
point for bin picking. The grasp quality indicates the graspable
probability by considering factors such as surface properties.
For example, for suction grasping, although an object with a
complicated shape may have multiple grasp points, the grasp
points located on flat surfaces need to be given a higher selection
priority because they have higher grasp quality (easier for suction
by vacuum cup) than do curved surfaces. Zeng et al. (2018b)
empirically labeled the grasp quality in the RGB-D images of
the Amazon picking challenge object set. They proposed a multi-
modal DCNN for learning grasp quality maps (pixel-wise grasp
quality corresponding to an RGB-D image) for jaw and vacuum
grippers. However, preparing a dataset by manual labeling is time
consuming and so the dataset was synthesized in a simulator
to reduce the time cost. Dex-Net (Mahler et al., 2018, 2019)
evaluated the grasp quality by a physical model and generated
a large dataset by simulation. They used the synthesized dataset
to train a grasp quality conventional neural network (GQ-CNN)
to estimate the success probability of the grasp point. However,
defining a precise physical model for the contact between gripper
and object is difficult. Furthermore, the parameters of the model
needed to be identified experimentally to reproduce the salient
kinematics and dynamics features of a real robot hand (e.g., the
deformation and suction force of a vacuum cup).

Unlike Dex-Net, this study proposes an intuitive suction grasp
quality analytic metric based on point clouds without the need
for modeling complicated contact dynamics. Furthermore, we
incorporate a robot reachability metric to evaluate the suction
graspability from the viewpoint of the manipulator. Previous
studies have evaluated grasp quality only in terms of grasp quality
for the hand. However, it is possible that although a grasp point
has high grasp quality, the manipulator is not able to move
to that point. It is also possible for an object to have multiple
grasp points with same the level of graspability but varying
amounts of time needed for the manipulator to approach due to
differences in the goal pose and surrounding collision objects. Bin
picking efficiency can therefore be improved by incorporating a
reachability evaluation metric. We label suction graspability by
the proposed grasp quality and reachability metric and generate
a dataset by the physical simulator. An auto-encoder is trained to
predict the suction graspability given the depth image input and

a graspability clustering and the ranking algorithm is designed to
propose the optimal grasp point.

Our primary contributions include (1) Proposal of an intuitive
grasp quality evaluation metric without complicated physical
modeling. (2) Proposal of a reachability evaluation metric for
labeling suction grapability in addition to grasp quality. (3)
Performance of a comparison experiment between the proposed
intuitive grasp quality evaluationmetric and a physically-inspired
one (Dex-Net). (4) Performance of an experiment to investigate
the effect of learning reachability.

2. RELATED WORKS

2.1. Pixel-Wise Graspability Learning
In early studies, deep neural networks were used to directly
predict the candidate grasp configurations without considering
the grasp quality (Asif et al., 2018; Zhou X. et al., 2018; Xu et al.,
2021). However, since there can be multiple grasp candidates for
an object that has a complicated shape or multiple objects in a
cluttered scene, learning graspablity is required for the planner
to find the optimal grasp among the candidates.

Pixel-wise graspablity learning uses RGB-D or depth-only
images to infer the grasp success probability at each pixel.
Zeng et al. (2018b) used a manually labeled dataset to train
fully convolutional networks (FCNs) for predicting pixel-wise
grasp quality (affordance) maps of four pre-defined grasping
primitives. Liu et al. (2020) performed active exploration by
pushing objects to find good grasp affordable maps predicted
by Zeng’s FCNs. Recently, Utomo et al. (2021) modified the
architecture of Zeng’s FCNs to improve the inference precision
and speed. Based on Zeng’s concept, Hasegawa et al. (2019)
incorporated a primitive template matching module, making the
system adaptive to changes in grasping primitives. Zeng et al. also
applied the concept of pixel-wise affordance learning to other
manipulation tasks such as picking by synergistic coordination
of push and grasp motions (Zeng et al., 2018a), and picking
and throwing (Zeng et al., 2020). However, preparing huge
amounts of RGB-D images and manually labeling the grasp
quality requires a large amount of effort.

Faced with the dataset generation cost of RGB-D based
graspability learning, researchers started to use depth-image-
only based learning. The merits of using depth images are
that they are easier to synthesize and annotate in a physical
simulator compared with RGB images. Morrison et al. (2020)
proposed a generative grasping convolutional neural network
(GG-CNN) to rapidly predict pixel-wise grasp quality. Based
on a similar concept of grasp quality learning, the U-Grasping
fully convolutional neural network (UGNet) (Song et al.,
2019), Generative Residual Convolutional Neural Network
(GRConvNet) (Kumra et al., 2020), and Generative Inception
Neural Network (GI-NNet) (Shukla et al., 2021) were later
proposed and were reported to achieve higher accuracy than
GG-CNN. Le et al. (2021) extended GG-CNN to be capable
of predicting the grasp quality of deformable objects by
incorporating stiffness information. Morrison et al. (2019) also
applied GG-CNN to a multi-view picking controller to avoid
bad grasp poses caused by occlusion and collision. However,
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the grasp quality dataset of GG-CNN was generated by creating
masks of the center third of each grasping rectangle of the
Cornell Grasping dataset (Lenz et al., 2015) and Jacquard
dataset (Depierre et al., 2018). This annotation method did
not deeply analyze the interaction between hand and object,
which is expected to lead to insufficient representation of
grasp robustness.

To improve the robustness of grasp quality annotation, a
physically-inspired contact force model was designed to label
pixel-wise grasp quality. Mahler et al. (2018, 2019) designed
a quasi-static spring model for the contact force between the
vacuum cup and the object. Based on the designed compliant
contact model, they assessed the grasp quality in terms of grasp
robustness in a physical simulator. They further proposed GQ-
CNN to learn the grasp quality and used a sampling-based
method to propose an optimal grasp in the inference phase, and
also extended their study by proposing a fully convolutional GQ-
CNN (Satish et al., 2019) to infer pixel-wise grasp quality, which
achieved faster grasping. Recently, (Cao et al., 2021) used an auto-
encoder–decoder to infer the grasp quality, which was labeled by
a similar contact model to that used in GQ-CNN, to generate
the suction pose. However, the accuracy of the contact model
depends on the model complexity and parameter tuning. High
complexity may lead to a long computation cost of annotation.
Parameter identification by real world experiment (Bernardin
et al., 2019) might also be necessary to ensure the validity of the
contact model.

Our approach also labeled the grasp quality in synthesized
depth images. Unlike GQ-CNN, we proposed a more intuitive
evaluation metric based on a geometrical analytic method
rather than a complicated contact analytic model. Our results
showed that the intuitive evaluation metric was competitive
with GQ-CNN. A reachability heatmap was further incorporated
to help filter pixels that had high grasp quality value but
were unreachable.

2.2. Reachability Assessment
Reachability was previously assessed by sampling a large
number of grasp poses and then using forward kinematics
calculation, inverse kinematics calculation, or manipulability
ellipsoid evaluation to investigate whether the sampled poses
were reachable (Zacharias et al., 2007; Porges et al., 2014, 2015;
Vahrenkamp and Asfour, 2015; Makhal and Goins, 2018). The
reachability map was generated off-line, and the feasibility of
candidate grasp poses was queried during grasp planning for
picking static (Akinola et al., 2018; Sundaram et al., 2020) or
moving (Akinola et al., 2021) objects. However, creating an off-
line map with high accuracy for a large space is computationally
expensive. In addition, although the off-line map considered
only collisions between the manipulator and a constrained
environment (e.g., fixed bin or wall) since the environment
for picking in a cluttered scene is dynamic, collision checking
between the manipulator and surrounding objects is still needed
and this can be time consuming. Hence, recent studies have
started to learn reachability with collision awareness of grasp
poses. Kim and Perez (2021) designed a density net to learn the

reachability density of a given pose but considered only self-
collision. Murali et al. (2020) used a learned grasp sampler to
sample 6D grasp poses and proposed a CollisionNet to assess the
collision score of sampled poses. Lou et al. (2020) proposed a 3D
CNN and reachability predictor to predict the pose stability and
reachability of sampled grasp poses. They later extended the work
by incorporating collision awareness for learning approachable
grasp poses (Lou et al., 2021). These sampling-based methods
have required designing or training a good grasp sampler for
inferring the reachability. Our approach is one-shot, which
directly infers the pixel-wise reachability from the depth image
without sampling.

3. PROBLEM STATEMENT

3.1. Objective
Based on depth image and point cloud input, the goal is to find
a grasp pose with high graspability for a suction robotic hand to
pick items in a cluttered scene and then place them on a conveyor.
The depth image and point cloud point are directly obtained from
an Intel RealSense SR300 camera.

3.2. Picking Robot
As shown in Figure 1A, the picking robot is composed of
a 6 degree-of-freedom (DoF) manipulator (TVL500, Shibaura
Machine Co., Ltd.) and a 1 DoF robotic hand with two vacuum
suction cups (Figure 1B). The camera is mounted in the center
of the hand and is activated only when the robot is at its home
position (initial pose) and, hence, can be regarded as a fixed
camera installed above the bin. This setup has the merit that the
camera can capture the scene of the entire bin from the view
above the bin center without occlusion by the manipulator.

3.3. Grasp Pose
As shown in Figure 1C, the 6D grasp poseG is defined as (p, n, θ),
where p is the target point position of the vacuum suction cup
center, n is the suction direction, and θ is the rotation angle
around n. Given the point cloud of the target item and p position,
the normal of p can be calculated simply by principal component
analysis of a covariance matrix generated from neighbors of p
using a point cloud library. n is the direction of the calculated
normal of p. As n determines only the direction of the center axis
of the vacuum suction cup, a further rotation degree of freedom
(θ) is required to determine the 6D pose of the hand. Note that
the two vacuum suction cups are symmetric with respect to the
hand center.

4. METHODS

The overall picking system diagram is shown in Figure 2.
Given a depth image captured at the robot home position,
the auto-encoder SG-U-Net++ predicts the suction graspability
maps, including a pixel-wise grasp quality map and a robot
reachability map. The auto-encoder SG-U-Net++ is trained
using a synthesized dataset generated by a physical simulator
without any human-labeled data. Cluster analysis is performed
on two maps to find areas with graspbility higher than the

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2022 | Volume 16 | Article 806898

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jiang et al. Learning Grasp Quality and Reachability

FIGURE 1 | Problem statement: (A) Picking robot; (B) Suction hand; (C) Grasp pose.

FIGURE 2 | System diagram.

thresholds. Local sorting is performed to extract the points with
the highest graspbility values in each cluster as grasp candidates.
Global sorting is further performed to sort the candidates of all
clusters in descending order of graspbility value, and this is sent
to the motion planner. The motion planner plans the trajectory
for reaching the sorted grasp candidates in descending order
of graspability value. The path search continues until the first
successful solution of the candidate is found.

4.1. Learning the Suction Graspability
SG-U-Net++ was trained on a synthesized dataset to learn
suction graspability by supervised deep learning. Figure 3A

shows the overall dataset generation flow. A synthesized cluttered
scene is first generated using pybullet to obtain a systematized
depth image and object segmentation mask. Region growing
is then performed on the point cloud to detect the graspable
surfaces. A convolution-based method is further used to find the
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FIGURE 3 | Data generation pipeline: (A) Dataset generation flow; (B) Cluttered scene generation; (C) Graspable surface detection; (D) Grasp quality evaluation; (E)

Robot reachability evaluation.

graspable areas of vacuum cup centers where the vacuum cup
can make full contact with the surfaces. The grasp quality and
robot reachability are then pixel-wise evaluated by the proposed
metrics in the graspable area.

4.1.1. Cluttered Scene Generation
The object set used to synthesize the scene contains 3D CAD
models from the 3DNet (Wohlkinger et al., 2012) and KITObject
database (Kasper et al., 2012). These models were used because
they had previously been used to generate a dataset for which
a trained CNN successfully predicted the grasp quality (Mahler
et al., 2017). We empirically removed objects that are obviously
difficult for suction to finally obtain 708 models. To generate
cluttered scenes, a random number of objects were selected from
the object set randomly and were dropped from above the bin in
random poses. Once the state of all dropped objects was stable, a
depth image and segmentation mask for the cluttered scene was
generated, as in Figure 3B.

4.1.2. Graspable Surface Detection
As shown in Figure 3C, in order to find the graspable area of
each object, graspable surface detection was performed. Given
the camera intrinsic matrix, the point cloud of each object can
be easily created from the depth image and segmentation mask.
To detect surfaces that are roughly flat and large enough for
suction by the vacuum cup, a region growing algorithm (Rusu
and Cousins, 2011) was used to segment the point cloud. To
stably suck an object, the vacuum cup needs to be in full contact
with the surface. Hence, inspired by Domae et al. (2014), a

convolution based method was used to calculate the graspable
area (set of vacuum cup center positions where the cup could
make full contact with the surface). Specifically, as shown in the
middle of Figure 3C, each segmented point cloud was projected
onto its local coordinates to create a binary surface mask. Each
pixel of the mask represents 1 mm. The surface mask was then
convolved with a vacuum cup mask (of size 18× 18, where 18 is
the cup diameter) to obtain the graspable area. At a given pixel,
the convolution result is the area of the cup (π ∗ 0.0092 for our
hand configuration) if the vacuum cup can make full contact
with the surface. Refer to Domae et al. (2014) for more details.
The calculated areas were finally remapped to a depth image to
generate a graspable area map (right side of Figure 3C).

4.1.3. Grasp Quality Evaluation
Although the grasp areas of the surfaces were obtained, each
pixel in the area may have a different grasp probability, i.e., grasp
quality, owing to surface features. Therefore, an intuitive metric
Jq (Equation 1) was proposed to assess the grasp quality for each
pixel in the graspable area. The metric Jq is made up of Jc which
evaluates the normalized distance to the center of the graspable
area and Js which evaluates the flatness and smoothness of the
contact area between the vacuum cup and surface.

Jq = 0.5Jc + 0.5Js (1)

Jc (Equations 2, 3) was derived based on the assumption that the
closer the grasp points are to the center of the graspable area, the
closer they are to the center of mass of the object. Hence, grasp
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points close to the area center (higher Jc values) are considered to
be more stable for the robot to suck and hold the object.

Jc = 1−maxmin(‖p− pc‖2) (2)

maxmin(x) =
x−min(x)

max(x)−min(x)
(3)

where p is a point in a graspable area of a surface, pc is the
center of the graspable area, and maxmin(x) is a max-min
normalization function.

Js (Equations 4–6) was derived based on the assumption that
a vacuum cup generates a higher suction force when in contact
with a flat and smooth surface than a curved one. We defined
ps as the point set of the contact area between the vacuum cup
and the surface when the vacuum cup is sucked at a certain
point in the graspable area. As reported in Nishina and Hasegawa
(2020), the surface flatness can be evaluated by the variance of
the normals, the first term of Js assesses the surface flatness by
evaluating the variance of the normals of ps as in Equation (5).
However, it is not sufficient to consider only the flatness. For
example, although a vicinal surface has a small normal variance,
the vacuum cup cannot achieve suction to this kind of step-like
surface. Hence, the second term (Equation 6) was incorporated
to assess the surface smoothness by evaluating the residual error
to fit ps to a plane Plane(ps) where the sum of the distance
of each point in ps to the fitted plane is calculated. Note that
the weights in the equations were tuned manually by human
observations. We adjusted the weights and parameters until we
observed that the Jq map was physically plausible for grasping.
We finally empirically set weights of Jc and Js to 0.5, scaled res(ps)
by 5.0, and added weights 0.9 and 0.1 to two terms in Equation 4
to obtain plausible grasp quality values.

Js = 0.9var(ns)+ 0.1e−5res(ps) (4)

var(ns) =

N∑

i=1

ns,i − n̄s

N − 1
(5)

res(ps) =

N∑

i=1

‖ps,i − Plane(ps)‖2 (6)

where ps are the points in the contact surface when the vacuum
cup sucks at a point in the graspable area, N is the number of
points in ps, ns are the point normals of ps, var(ns) is the function
to calculate the variance of ns, Plane(ps) is a plane equation fitted
by ps using the least squares method, and res(ps) is the function
to calculate the residual error of the plane fitting by calculating
the sum of the distance from each point in ps to the fitted plane.

Figure 3D shows an example of the annotated grasp quality.
Points closer to the surface center had higher grasp quality values,
and points located on flat surfaces had higher grasp quality (e.g.,
surfaces of boxes had higher grasp quality values than cylinder
lateral surfaces).

4.1.4. Robot Reachability Evaluation
The grasp quality considers only the interaction between the
object and the vacuum cup without considering the manipulator.
As a collision check and inverse kinematics (IK) solution search
for the manipulator are needed, online checking and searching
for all grasp candidates is costly. Learning robot reachability
helped to rapidly avoid the grasp points where the hand and
manipulator may collide with the surroundings. It also assessed
the ease of finding IK solutions for the manipulator.

As described in Section 3.3, p and n of a grasp pose G can
be calculated from the point cloud. θ is the only undetermined
variable for defining a G. We sampled the θ from 0◦ to 355◦ in
step intervals of 5◦. IKfast (Diankov, 2010) and Flexible Collision
Library (FCL) (Pan et al., 2012) were used to calculate the
inverse kinematics solution and detect the collision check for
each sampled θ . The reachability evaluation metric (Equations
7–8) assessed the ratio of the number of IK valid θ (had collision
free IK solution) to the sampled size Nθ .

Ja =

Nθ∑

i=1

Solver(p, n, θi)

Nθ

(7)

Solver(p, n, θi) =

{
1 if collision free and IK solution exists

0 else

(8)
where Nθ is the size of sampled θ and Solver is the IK solver and
collision checker for the robot.

Note that because the two vacuum cups are symmetric with
respect to the hand center, we evaluated the reachability score
of only one cup. Figure 3E shows an example of the robot
reachability evaluation.

4.1.5. SG-U-Net++

As shown in Figure 4, a nest structured auto-encoder–decoder
called suction graspability U-Net++ (SG-U-Net++) was used
to learn the suction graspability. We used the nested architecture
because it was previously reported to have high performances
for semantic segmentation. Given a 256 × 256 depth image,
SG-U-Net++ outputs 256 × 256 shape grasp quality and robot
reachability maps. SG-U-Net++ resembles the structure of U-
Net++ proposed by Zhou Z. et al. (2018). SG-U-Net++ consists
of several sub encoder–decoders connected by skip connections.
For example, X0,0 → X1,0 → X0,1 is one of the smallest sub
encoder–decoders, and X0,0 → X1,0 → X2,3 → X3,0 → X4,0 →

X3,1 → X2,2 → X1,3 → X0,4 is the largest encoder–decoder. The
dense block for Xi,j consists of two 3 × 3 × 32 ∗ 2i convolution
(conv) layers, each of which is followed by batch normalization
and rectified linear unit (ReLU) activation. The output layer
connected to X0,4 is a 1 × 1 × 2 conv layer. MSELoss (Equation
9) was used for supervised pixel-wise heatmap learning.

Loss =
1

H

1

W

H∑

i=0

W∑

j=0

0.5∗(Jq(i, j)−̂Jq(i, j))
2+0.5∗(Ja(i, j)−̂Ja(i, j))

2

(9)
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FIGURE 4 | The architecture of SG-U-Net++.

whereH andW are the image height and width. Ĵq and Ĵa indicate
the ground truth.

4.2. Clustering and Ranking
The clustering and ranking block in Figure 2 outputs the ranked
grasp proposals. To validate the role of learning reachability,
we proposed two policies (Policy 1: use only grasp quality;
Policy 2: use both grasp quality and reachability) to propose the
grasp candidates. Policy 1 extracted the area of grasp quality
values larger than threshold thg . Policy 2 extracted the area of
grasp quality score values larger than threshold thg and the
corresponding reachability score values larger than thr . Filtering
by reachability score value was assumed to help to remove pixels
with high grasp quality values that are not reachable by the
robot due to collision or IK error. The values of thg and thr
were empirically set to 0.5 and 0.3, respectively. The extracted
areas were clustered by scipy.ndimage.label (Virtanen et al.,
2020). Points in each cluster were ranked (local cluster level) by
the grasp quality values, and the point with the highest grasp
quality was used as the grasp candidate for its owner clusters
(refer to Ranked grasp candidates in Figure 2). Finally, the grasp
candidates were further ranked (global level) and sent to the
motion planner.

4.3. Motion Planning
Given the grasp candidates, goal poses were created for move.
It (Chitta et al., 2012) to plan a trajectory. As described in 3.3,
the values of p and n of a goal pose could be obtained from the
corresponding point cloud information of the grasp candidates

so that only θ was undetermined. As a cartesian movement path
is required for the hand to suck the object, p was set to a 1 cm
offset away from the object along the n direction. θ was sampled
from 0◦ to 180◦ at step intervals of 5◦. For each sampled goal
pose, the trajectory was planned for left and right vacuum cups,
respectively, and the shorter trajectory was selected as the final
solution. The planned trajectory was further time parametrized
by Time-Optimal Path Parameterization (toppra) (Pham and
Pham, 2018) to realize position control for the robot to approach
the goal pose. After reaching the goal pose, the robot handmoved
down along n to suck the object. Once the contact force between
the vacuum cup and object, which was measured by a force
sensor, exceeded the threshold, the object was assumed to be
sucked by the vacuum cup and was then lifted and placed on
the conveyor.

5. EXPERIMENTS

5.1. Data Collection, Training, and
Precision Evaluation
We used the proposed suction graspability annotation method
in pyBullet to generate 15,000 data items, which were split into
10,000 for training and 5,000 for testing. The synthesized data
was then used to train SG-U-Net++, which was implemented
by pyTorch. The adam optimizer (learning rate = 1.0e−4) was
used to update the parameters of the neural network during the
training. The batch size was set to 16. Both data collection and
training were conducted on an Intel Core i7-8700K 3.70 GHz PC
with 64G RAM and 4 Nvidia Geforce GTX 1080 GPUs.
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To evaluate the learning results, we used a similar evaluation
method to that reported in Zeng et al. (2018b) on the testing
set. For practical utilization, it is important for SG-U-Net++ to
find at least one point in ground truth suction graspable area
or manipulator reachable area. We defined suction graspable
area as the pixels whose ground truth grasp quality scores are
larger than 0.5 and approachable area as the pixels whose ground
truth reachability scores are larger than 0.5. The inferred grasp
quality and reachability scores were divided by thresholds into
Top 1%, Top 10%, Top 25%, and Top 50%. If pixels larger
than the threshold were located in the ground truth area, the
pixels were considered true positive, otherwise, the pixels were
considered false positive. We report the inference precision for
the four thresholds above for SG-U-Net++ and compare them
with Dex-Net.

5.2. Real World Picking Experiments
To evaluate and compare the performance of different policies
for the picking system, a pick-and-placement task experiment
was conducted. In order to investigate whether SG-U-Net++

could predict the graspability of objects with different shape
complexities, we used primitive solids (a simple shape with large
surfaces), commodities (general shape), and 3D-printed objects
(a complex shape with small surfaces) as experimental object
set (refer to Figure 5). All of the objects are novel objects that
were not used during training. During each trial, the robot was
required to pick 13 randomly posed objects (except for the cup)
from a bin and then place them on the conveyor. Note that the
cup was placed in the lying pose because it could not be grasped if
it was in a standing pose. A grasp attempt was treated as a failure
if the robot could not grasp the object in three attempts.

We conducted 10 trials for Policy 1, Policy 2, and Dex-Net 4.0
(suction grasp proposal by fully convolutional grasping policy),
respectively. Note that because Dex-Net had its own grasp
planning method, we directly sorted the inferred grasp quality
values without clustering. To compare our proposed intuitive

FIGURE 5 | Experiment object set.

grasp quality evaluation metric (Equation 1) with the one used
in Dex-Net, we evaluated and compared the grasp planning
computation time cost and success rate of Policy 1 and Dex-Net.
To evaluate the effect of incorporating the reachability score, we
evaluated and compared the grasp planning computation time
cost, motion planning computation time cost, and success rate of
Policy 1 and Policy 2.

6. RESULTS AND DISCUSSION

6.1. Inference Precision Evaluation
Table 1 shows the inference precision of grasp quality and
reachability. Both SQ-U-Net++ and Dex-Net achieved high
precisions for Top 1% and Top 10% but the precision of Dex-
Net decreased to lower than 0.9 for Top 25% and Top 50%. This
result indicates that the performance of our proposed intuitive
grasp quality evaluation metric (Equation 1) was as good as
a physically inspired evaluation metric. Learning the suction
graspability annotation by point cloud analytic methods might
not be so bad compared to dynamics analytic methods for
the suction grasp task. However, the inference precision of the
reachability for SQ-U-Net++ also achieved larger than 0.9 for
Top 1% and Top 10%, but decreased sharply for Top 25% and
Top 50%. The overall performance of reachability inference was
poorer than grasp quality, indicating that reachability is more
difficult to learn than grasp quality. This is probably because
grasp quality can be learned from the surface features, but
reachability learning requires more features such as the features
of surrounding objects in addition to the surface features, leading
to more difficult learning.

6.2. Picking Experiments
6.2.1. Overall Performance
Table 2 shows the experimental results of Dex-Net and our
proposed method. Although all three methods achieved a
high grasp success rate (>90%), our method took a shorter
time for grasp planning. Moreover, the motion planning
computation time was reduced by incorporating the learning of
reachability. The SQ-U-Net++ Policy 2 achieved a high speed
picking of approximately 560 PPH (piece per hour) (refer to
Supplementary Video).

6.2.2. Comparison With Physically-Inspired Grasp

Quality Evaluation Metric
As shown in Table 2, although our method was competitive with
Dex-Net, it was faster for grasp planning. This result indicates
that our geometric analytic based grasp quality evaluation is good
enough for the picking task compared with a physically-inspired
one. The evaluation of contact dynamics between a vacuum cup

TABLE 1 | Inference precision.

Score Method Top 1% Top 10% Top 25% Top 50%

Grasp quality Dex-Net 91.9 91.0 88.7 84.2

SQ-U-Net++ 99.8 99.6 99.2 97.5

Reachability SQ-U-Net++ 95.8 91.1 80.7 61.2
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and the object surface might be simplified to just analyze the
geometric features of the vacuum cup (e.g., the shape of the cup)
and surfaces (e.g., surface curvature, surface smoothness, and
distance from the cup center to the surface center). In addition,
similar to the report in Zeng et al. (2018b), the grasp proposal of
Dex-Net was farther from the center of mass. Figure 6 shows an
example of our method and Dex-Net. Our predicted grasps were
closer to the center of mass of the object than the ones inferred

TABLE 2 | Experiment results.

Method Success Grasp planning Motion planning

rate (%) cost (s) cost (s)

Dex-Net 4.0 Suction 91.5 0.60 2.91

(FC-GQCNN-4.0-SUCTION)

SQ-U-Net++ Policy1 94.6 0.15 1.71

(grasp quality only)

SQ-U-Net++ Policy2 95.4 0.17 0.90

(grasp quality+ reachability)

Bold values indicates the best performance among three methods in the Table. For the

success rate, the higher the better. For the cost (computation time) of grasp planning and

motion planning, the shorter the better.

by Dex-Net. This is because we incorporated Jc (Equation 2) to
evaluate the distance from the vacuum cup center to the surface
center, helping the SQ-U-Net++ to predict grasp positionsmuch
closer to the center of mass.

6.2.3. Role of Learning Reachability
Despite that the grasp success rate might be dominant by the
grasp quality score, it is possible that although a grasp point
has high grasp quality, the manipulator is not able to move to
that point, leading to a longer time for motion planning. The
success rate and overall system efficiency are both important
for the task of bin picking. Hence, reachability learning was
incorporated to assess the grasp success probability from the view
point of the manipulator. The reachability heatmap helped to
filter out the candidates which were with high grasp quality but
the manipulator could not reach to improve the efficiency. As
shown in Table 2, although learning reachability increased the
grasp planning cost a little bit by 0.02 s due to the processes such
as clustering and ranking of the reachability heatmap, it helped
to reduce the motion planning cost (Policy 2: 0.90 s vs. Policy
1: 1.71s) to improve the overall system efficiency, indicating that
learning reachability is worthy.

Figure 7 shows an example of the role of learning reachability.
Policy 2 predicted grasps with lower collision risks with

FIGURE 6 | Example of Dex-Net grasp prediction that is farther from the center of mass of the object.

FIGURE 7 | Example of grasps predicted by Dex-Net and Policy 1 that are unreachable or difficult to reach.
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neighboring objects than did Policy 1 and Dex-Net (e.g., Figure 7
Left: Policy 1 and Dex-Net predicted grasps on a wooden cylinder
that had high collision risks between the hand and 3D printed
objects). Furthermore, an object might have surfaces with the
same grasp quality (e.g., Figure 7 Right: box with two flat
surfaces). Whereas, Policy 2 selected the surface that was easier
to reach, Policy 1 might select the one that is difficult to reach
(Figure 7 Right), since it does not consider the reachability.
Therefore, Policy 2 was superior to Policy 1 and Dex-Net because
it removed the grasp candidates that were obviously unable or
difficult to approach. However, for Policy 1 and Dex-Net, as they
considered only the grasp quality, the motion planner might first
search the solutions for the candidates with high grasp quality,
but those candidates might be unreachable for the manipulator
and, thus, increase the motion planning effort.

6.2.4. Limitations and Future Work
Our study was not devoid of limitations. Several grasp failures
occurred when picking 3D printed objects. Since the synthesized
depth images differ from real ones because real images are
noisy and incomplete, the neural network prediction error
increased for real input depth images. This error was tolerable
for objects with larger surfaces like cylinders and boxes but
intolerable for 3D printed objects that have complicated shapes
where the graspable areas are quite small. In the future, we
intend to conduct sim-to-real (Peng et al., 2018) or depth
missing value prediction (Sajjan et al., 2020) to improve the
performance of our neural network. Another failure was that
although not very often, the objects fell down during holding
and placement because the speed of the manipulator was too
high to hold the object stably. We addressed this problem by
slowing down the manipulator movement during the placement
action but this sacrificed the overall system picking efficiency.
In the future, we want to consider a more suitable method
for object holding and placement trajectory such as model
based control.

Our study determined the grasping sequence by finding
the grasp pose with the highest predicted grasp quality score
among the filtered grasp pose candidates. The effect of other
strategies such as the one that selects the target object which
will not contact with the adjacent objects during the whole
pick-and-place actions, or the reinforcement learning based
policy (Mahler and Goldberg, 2017) will be investigated in
the future.

Experiment results showed that our intuitive grasp quality
evaluation metric was competitive with a physically-inspired
metric, indicating that our method was plausible for bin picking
of common rigid objects (e.g., primitive solids and commodities)
in an electronic commerce warehouse. However, to apply our
method to general industrial bin picking, object dynamics might
need to be considered because the mass and materials of objects
may vary in an industrial warehouse.Wewill investigate the effect
of grasp quality metric incorporating object deformability (Xu
et al., 2020; Huang et al., 2021), friction and mass distribution
(Price et al., 2018; Zhao et al., 2018; Veres et al., 2020), and
instability caused by robot acceleration (Khin et al., 2021) in
the future.

Moreover, there is a trade-off between learning grasp quality
and reachability. Increasing the weight of grasp quality loss
in Equation (9) might improve the accuracy of grasp quality
prediction and, thus, improve the success rate. However, it
might also lead to an increased error of reachability, resulting
in a long time for the motion planner to find the trajectory.
Currently, we empirically set both weights to 0.5 in Equation
9, and the experimental result indicated that such a setup of
weights was fine. In the future, we will investigate the influence of
different weight values on the experimental result so as to find the
optimal setup of weights to ensure both success rate and overall
system efficiency.

Furthermore, the reachability heatmap considered the
collision status of the hand goal pose for sucking the target
object. The motion planner further checked whether the
trajectory from the initial pose to the goal pose was collision
free. This ensured that the robot could avoid colliding with other
objects when grasping the target object. However, the grasped
object might contact its neighboring objects when the robot
lifted it after grasping. One way to avoid that is to learn the
occlusion of the target object (Yu et al., 2020). If the target object
was not occluded by any other objects, there would be a lower
risk to make the movement of its neighboring objects when it
was lifted. Another way is to predict the locations of objects by
object segmentation (Araki et al., 2020; Hopfgarten et al., 2020)
or object pose estimation (Tremblay et al., 2018) to make sure
that there is a safe distance between the target object and its
neighboring objects.

We will also extend the proposed framework for grasping by
a gripper in the future. Previous studies reported that the grasp
quality evaluation metric for a gripper could be designed based
on geometric features (Domae et al., 2014), force closure (Miller
and Allen, 2004; Roa and Suárez, 2015), or simulated gripper-
object interaction (Eppner et al., 2019). For the reachability
evaluation metric, the open width of a gripper should also be
considered in addition to the grasp poses during evaluation.

7. CONCLUSION

We proposed an auto-encoder–decoder to infer the pixel-
wise grasp quality and reachability. Our method is intuitive
but competitive with CNN trained by data annotated
using physically-inspired models. The reachability learning
improved the efficiency of the picking system by reducing
the motion planning effort. However, the performance of
the auto-encoder–decoder deteriorated because of differences
between synthesized and real data. In the future, sim-to-real
technology will be adopted to improve performance under
various environments.
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