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In this research, an image defogging algorithm is proposed for the electricity

transmission line monitoring system in the smart city. The electricity

transmission line image is typically situated in the top part of the image

which is rather thin in size. Because the electricity transmission line is situated

outside, there is frequently a sizable amount of sky in the backdrop. Firstly, an

optimized quadtree segmentation method for calculating global atmospheric

light is proposed, which gives higher weight to the upper part of the image

with the sky region. This prevents interference from bright objects on the

ground and guarantees that the global atmospheric light is computed in

the top section of the image with the sky region. Secondly, a method of

transmission calculation based on dark pixels is introduced. Finally, a detail

sharpening post-processing based on visibility level and air light level is

introduced to enhance the detail level of electricity transmission lines in the

defogging image. Experimental results indicate that the algorithm performs

well in enhancing the image details, preventing image distortion and avoiding

image oversaturation.

KEYWORDS

smart city, power lines, atmospheric scattering model, global atmospheric light, dark
pixels

1. Introduction

With the development of the Internet of Things sensor and image processing
technology, the monitoring requirements of the power system for the transmission line
are gradually improved. The transmission line can be equipped with image sensors to
observe its running status in real time, which leads to potential risks of prefabrication.
As an important part of power system, electricity transmission line is an important
way of power resource transmission. Its operation stability will have a direct impact on
power quality. People are always concerned with monitoring electricity transmission
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lines in order to guarantee the secure and reliable operation of
those lines. Electricity transmission lines are installed outdoors
and exposed to fog, rain, dew and other weather conditions for
a long time, and are greatly affected by the environment. Faults
such as insulator defects may occur, which will seriously affect
the normal use of the electricity transmission line and reduce
the service life of the line. Once the electricity transmission
line fails, accidents such as tripping and power outages may
occur, resulting in human and economic losses. Therefore,
regular inspection of the electricity transmission line is of great
significance to ensure the reliable, safe, and efficient operation
of the electricity transmission line. The inspection of electricity
transmission lines has been dominated by manual inspection
for a long time, but manual inspection requires staff to work in
the outdoor environment for a long time, which not only has
poor monitoring efficiency and accuracy, but also has potential
safety hazards for staff. Therefore, in recent years, the method
of monitoring electricity transmission lines through a video
monitor system has been widely used, which is of importance
to improve the monitoring efficiency of electricity transmission
lines and speed up the construction of smart cities.

In recent years, constant fog has become one of the terrible
weather situations damaging the power grid’s atmospheric
environment as a result of the rapid development of the
economic scale and the acceleration of urbanization. Fog is a
common occurrence in the atmosphere. In foggy circumstances,
the air is dense with atmospheric particles that not only
absorb and scatter the reflected light from the scene, but
also disseminate some of it into the observation equipment
(Xu et al., 2015). Therefore, in haze weather, the images
obtained by the monitoring system and the vision system will
be seriously degraded, such as image color offset, reduced
visibility, loss of details, and other problems, which seriously
affect image detection, tracking, recognition and the use of the
monitoring system (Su et al., 2020). Electricity transmission
line monitoring in hazy weather will face some problems, such
as reduced contrast, chromatic aberration, and unclear details,
which will significantly impact the visual impact of monitoring
power transmission lines, adversely affect transmission line
monitoring, and even cause misjudgment. Therefore, it is
necessary to conduct defogging research for transmission line
monitoring.

The two kinds of defogging algorithms that are now
most often utilized are image enhancement and image
restoration. Since computer hardware has improved quickly in
recent years, image defogging algorithms based on machine
learning have also been proposed (Sharma et al., 2021).
The image enhancement-based defogging algorithm merely
improves the image contrast and other characteristics using
image enhancement technology to achieve the defogging
goal. It does not take into account the physical process
of fog generation. Traditional image contrast enhancement
methods include histogram redistribution (Zhou et al., 2016),

intensity transformation (Sangeetha and Anusudha, 2017),
homomorphic filtering (Seow and Asari, 2006), wavelet
transform (Jun and Rong, 2013), and Retinex algorithm (Jobson
et al., 1997b). In Retinex theory, the image is made up of the
incident element which represents the brightness information
around the object and the reflection element which reflects
the reflection ability of itself, then the single scale Retinex
algorithm (SSR) is proposed. And then, multiscale Retinex
with color restoration (MSRCR) and the multiscale Retinex
(MSR) algorithm have both been developed on the foundation
of SSR (Jobson et al., 1997a). Defogging algorithm based
on image restoration is more commonly used at present.
Such algorithms need to consider the physical processes of
fog formation, and reasonably estimate the transmission and
atmospheric light. In the end, the atmospheric scattering model’s
calculations provide the restored image. Please note that the
word “transmission” mentioned here is not the same as the word
“transmission” in the electricity transmission line mentioned
above. The “transmission” mentioned here is a parameter in the
atmospheric scattering model that reflects the distance between
the object in the image and the observation point (such as the
camera). Without special circumstances, the t appears later to
refer to transmission in atmospheric scattering models.

Multiple image defogging is mainly based on polarization
method. Schechner proposed a method of defogging by
using two polarized images taken vertically and horizontally
(Schechner et al., 2001). Miyazaki et al. (2013) suggested a
fog removal method based on the polarization data of two
known photographs taken at various distances to predict the
characteristics of fog. Shwartz and Schechner (2006) suggested
a polarization defogging technique for images without sky areas
that choose two comparable characteristics in the scene to
estimate atmospheric scattering model parameters. However,
the polarization-based image defogging algorithm needs to take
multiple polarized images in the same weather condition, which
is hard to fulfill the practical needs.

Due to the large limitations of multiple image defogging, it
has not been widely used. The more commonly used defogging
method is the restoration-based single image defogging method.
To estimate necessary parameters based on atmospheric
scattering model, Fattal (2008) created the concept of surface
shading and the assumption that the transmission and surface
shadow are unrelated. Based on the supposition that fog-covered
images have less contrast than those taken in clear skies, Tan
(2008) proposed an defogging algorithm for images based on
the Markov random field optimization atmospheric scattering
model to maximize local contrast. Meng et al. (2013) offered a
technique to calculate the transmission of unknown scenes by
combining the boundary constraint of single image defogging
with context regularization based on weighted L1 norm. He
et al. (2010) proposed a defogging algorithm called dark channel
prior. For single image defogging, the dark channel prior
algorithm has developed as one of the most popular methods.
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In order to reduce halo and block artifacts generated by coarse
transmission estimation, He uses “soft matting” to smooth up
the coarse transmission. However, the soft matting technique
has the disadvantage of consuming too much time, so it is hard
to apply in actual situations. To resolve this issue, He et al.
(2012) proposed a guide filter and a fast guide filter (He and
Sun, 2015). The neighborhood pixels relationship of hazy images
may be transferred by the guided filter to improve air light
and transmission smoothness. However, dark channel prior
algorithm has some limitations. Dark channel prior algorithm
is ineffective for sky region or bright ground region, and the
result of defogging in this region is often oversaturated. And
dark channel prior algorithm is poor in the processing of depth
discontinuous region, and in the area where the foreground and
background of the image meet, “halo” phenomena are simple
to create. Tarel and Hautiere (2009) proposed a median filter
and its variants to replace soft matting, which can improve the
calculation speed. Ehsan et al. (2021) proposed a fog removal
method that uses local patches of different sizes to calculate
the two transmission maps and refine the transmission map
with gradient-domain guided image filtering. With the help of
training the sum of squared residual error, Raikwar and Tapaswi
(2020) suggested a method to determine the lower limit of
transmission based on the peak signal-to-noise ratio. Berman
and Avidan (2016) assumed that an image can be approximated
by hundreds of different colors, which form close clusters in
RGB space, and thus proposed a non-local prior method of
defogging.

More and more fog removal algorithms based on machine
learning have been presented as a result of the advancement
of computer neural networks and deep learning. Li et al.
(2017) reconstructed the atmospheric scattering model. Then,
to estimate the pertinent parameters of fog, an All-in-One
Dehazing Network was created utilizing residual learning
and convolutional neural network. GridDehazeNet is Liu’s
proposed end-to-end trainable convolutional neural network
for removing fog from a single image. It has pre-processing,
backbone, and post-processing, it is a multi-scale network
image defogging algorithm based on attention (Liu et al.,
2019). Cai et al. (2016) proposed a deep CNN structure for
fog removal, named Dehaze Net, to achieve end-to-end fog
removal. Zhang and Patel (2018) proposed an edge-preserving
densely connected encoder-decoder structure fusion end-to-
end densely connected pyramid defogging network, named
DCPDN. Pang et al. (2020) suggested a binocular image
dehazing Network, which requires the simultaneous use of
multiple images for defogging. Ren et al. (2018) suggested
a Gated Fusion Network for image defogging, which fuses
the three inputs preprocessed for foggy images to avoid halo
artifacts. Qin et al. (2020) proposed an attention-based feature
fusion single image dehazing network, named FFA-Net.

In order to promote the construction of smart cities, we
propose a defogging algorithm for electricity transmission line
monitoring. The following are the paper’s contributions:

• In order to solve the problem of inaccurate calculation
of global atmospheric light in the original dark channel
prior algorithm, according to the assumption that the
sky area of the electricity transmission line image is
usually in the upper half of the image, an improved
quadtree segmentation is proposed to calculate the global
atmospheric light value. The algorithm can avoid the
interference caused by the bright objects on the ground to
the solution of the global atmospheric light;
• The concept of dark pixel is introduced for the problem

that the dark channel prior is prone to the “halo” effect.
Dark pixels are located using super pixel segmentation and
a fidelity function is proposed to calculate the transmission;
• Due to the size of the electricity transmission line in

the image is tiny and difficult to observe, a detail
sharpening post-processing based on visibility and air light
is introduced to improve the image details of the electricity
transmission line.

The remainder of this paper is organized as shown below.
(Section “2 Related works) reviews atmospheric scattering
models and dark channel priors, and points out the limitations
of dark channel priors. (Section “3 Proposed method) presents
a defogging method for electricity transmission line images
based on improved quadtree segmentation and dark pixels, and
enhances image details. (Section “4 Experimental results and
discussion) evaluates the efficacy of the proposed method using
both qualitative and quantitative analyses. And the entire study
is summarized in (Section “5 Conclusion).

2. Related works

2.1. Physical model

The physical model of atmospheric scattering based on Mie
scattering theory was initially put out by McCartney (1976).
Narasimhan and Nayar (2001) believes that the wavelength of
visible light in a uniform atmosphere has nothing to do with the
scattering coefficient, and proposed a simplified version of the
atmospheric scattering model:

I (x) = I∞ρ (x) e−βd(x)
+ I∞

(
1− e−βd(x)

)
(1)

In formula (1), I is the brightness of the sky, ρ(x) denotes
the normalized radiance of a scene point x, β is the scattering
coefficient of the atmosphere, and d is the scene depth. However,
this model is too complicated, so a simplified atmospheric
scattering model is proposed. The simplified atmospheric
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FIGURE 1

Atmospheric scattering model.

scattering model developed by he is now the most used
atmospheric scattering model for expressing the principle of fog
(He et al., 2010). It is shown in the following formula:

I (x) = J (x) t (x)+ A (1− t (x)) (2)

where A is the global atmospheric light, which represents the
background lighting in the atmosphere, and I(x) and J(x) are
the fogging and defogging images, respectively. And x = (m, n) is
the coordinate of the image. t(x) is transmission. It represent the
transmission of a medium that is not scattered and successfully
entries into vision systems such as monitoring systems and
cameras. As per the atmospheric scattering theory, the scattering
of air light during the process of reaching the vision system and
the attenuation process of the reflected light from the surface of
the object reaching the vision system are the two main divisions
of the scattering of atmospheric particles. For equation (2),
J(x)t(x) is direct transmission, and A[1- t(x)] is airlight, denoted
as a(x). Direct transmission means the attenuation of the foggy
image directly passing through the air medium, and the airlight
is generated by the scattered light. The schematic diagram for
the atmospheric scattering model is shown in Figure 1. Note
that the solid line represents direct transmission and the dashed
line represents airlight.

For transmission t(x), we have:

t (x) = e−βd(x) (3)

In the above formula, d(x) represents the scene depth and,
at the same time, β is the atmospheric scattering coefficient. The
formula shows that the transmission decreases gradually as the
depth of the scene increases.

Trying to imply the transmission t(x) and the global
atmospheric light value A into the atmospheric scattering
physical model yields the defogging image J, which is the

essential step in image defogging based on the atmospheric
scattering model. The following formula can be obtained by
deriving formula (2):

J (x) =
I (x)− A

t (x)
+ A (x) (4)

It can be seen from formula (4) that the key to calculating
the defogging image is to reasonably estimate the transmission
t(x) of the foggy image and the global atmospheric light value A.
At present, the most commonly used method of defogging is the
dark channel prior theory proposed by He et al. (2010).

2.2. Dark channel prior theory

He gained a statistical rule by observing a significant number
of images without fog: for a large number of non-sky local
patches, there is always at least one color channel with pixel
intensity so low that it is close to 0. So the dark channel Jdark(x)
is defined by the following formula:

Jdark (x) = min
y∈�(x)

{
min

c∈{r,g,b}

[
Jc (y)]} (5)

where �(x) is the local area centered at x, y is the pixel in the
local area�(x), JC is the color channel of the fog-free image J, C
is the three channels of the RGB image. And r, g, b represent the
red, green and blue channels of the RGB image, respectively.

He draws the following conclusion through observation:
for an outdoor fog-free image J, due to the shadows
caused by buildings in the city or leaves in the natural
landscape, the surfaces of colored objects with low
reflectivity, and the surfaces of dark objects, dark channel
intensity of J for non-sky regions is exceedingly low,
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almost nothing. So there is the following formula:

Jdark
→ 0 (6)

The transmission calculation formula may be constructed
using the dark channel prior theory and the atmospheric
scattering model above as follows:

t (x) = 1− ω min
y∈�(x)

{
min

c

[
Ic (y)

Ac

]}
(7)

The role of ω is to retain some fog to make the image appear
more natural. The value range of ω is (0, 1), and the value is
generally set to 0.95.

The transmission obtained by this method is not accurate,
and is prone to “halo” effect. The “halo” phenomenon is an
effect that tends to occur in images after the fog has been
removed. Since the foreground is close to the observation point
and the background is far from the observation point in the
image, the depth of field of different positions in the image
has a large gap, especially for the junction of the foreground
and background. Therefore, the “halo” phenomenon is usually
generated at the junction of the foreground and background of
the image, resulting in abnormal color distortion at the edge
of the observed object in the image after fog removal, and the
“halo” phenomenon gradually weakens when the image is far
away from the edge. Therefore, He optimized the transmission
using “soft matting” to get rid of the “halo” effect. However,
the “soft matting” consumes a lot of time, so it is not suitable
or practical applications. Therefore, He proposed the guided
filter, through which the transmission optimization time can be
greatly shortened, and the resulting image edges are sharper.

In order to prevent the image from being enhanced too
much due to too small transmission, it is required to define
the bottom bound of transmission t0, which is usually set to
0.1. Then the final result can be obtained from the following
equation:

J (x) =
I (x)− A

max (t (x) , t0)
+ A (8)

It can be seen from Formula (8) that for a given fogged image
I[x], to obtain the image after defogging [that is, J(x)], only
two unknown quantities need to be solved: global atmospheric
light value A and transmission t. Therefore, when using the
atmospheric scattering model for image defogging, the most
important two steps are the calculation of global atmospheric
light A and the calculation of transmission t.

2.3. Disadvantages of dark channel
priors

In the dark channel prior algorithm, the global atmospheric
light is chosen in the brightest color channel in the image.
He picks the pixels with the highest intensity as the global

atmospheric light after first detecting the brightest top 0.1
percent of the dark channel pixels. However, this process suffers
from large areas of white objects or objects that are too bright
in the image. At this point the global atmospheric light is
misestimated, resulting in a color shift in the recovered image.
Second, it is common to create a “halo” phenomenon in the
region separating the image’s foreground and background when
employing the dark channel prior algorithm for regions with
discontinuous depths. Finally, the atmospheric scattering in the
real situation is multiple scattering. The single scattering model
is the most often used atmospheric scattering model since it
is challenging to compute multiple atmospheric scattering. As
a result, the defogging images obtained by the dark channel
prior algorithm are often too smooth and lack of image details.
Therefore, this paper will optimize the dark channel prior
algorithm for these three aspects.

3. Proposed method

The defogging algorithm flowchart from this work is shown
in Figure 2. Electricity transmission lines and power towers are
often located outdoors, and their images often have large areas
of the sky. According to the statistical law that the sky area
often exists in the upper part of the image, in order to address
the issue of erroneous estimation of the global atmospheric
light due to the influence of a large area of white objects,
a global atmospheric light solution based on the optimized
quadtree algorithm is proposed. This ensures correct estimation
of global atmospheric light. Then we define dark pixels,
perform superpixel segmentation on the input foggy image,
and locate dark pixels in the segmented superpixel block. The
transmission is calculated through a fidelity function, and the
solved transmission is optimized for color correction. The next
step is to invert the atmospheric scattering model to produce a
preliminary defogging image. Due to the thin size of electricity
transmission line, which is not suitable for observation, and
the defogging image lacks details, a detail sharpening post-
processing algorithm based on airlight constraints and visibility
constraints are used for the preliminary defogging image to
improve the texture details of the image. Finally, the final
defogging image J(x) is obtained.

3.1. Global atmospheric light
estimation

The presence of fog in the image will lead to a brighter area
in the image, so the global atmospheric light is usually selected in
the bright area, usually in the sky area. However, white objects
on the ground or high-brightness objects can easily induce an
incorrect selection of the global atmospheric light, resulting
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FIGURE 2

The flow chart of the proposed method.

in chromatic aberration in the fog-free image. Therefore, it is
necessary to improve the selection of global atmospheric light.

An optimized quadtree segmentation algorithm is used to
estimate global atmospheric light in this study. Based on the
principle that the pixel value variance of the image is often
low in the foggy area, Kim et al. (2013) suggested an algorithm
based on quadtree segmentation to select the global atmospheric
light. The input image is first divided into four sections. Then
we name the upper left area as area A, the upper right area as
area B, the lower left area as area C, and the lower right area
as area D. Then, for each region, we determine the standard
deviation and mean of the pixel values for the three R, G, and
B channels, and subtract the standard deviation from the mean
to obtain a region score. The region with the highest score is
first determined. It is then divided into four smaller parts, and
the region with the highest score is selected from those four.
Repeat the aforementioned procedure up until the size of the
selected area is below the predetermined threshold. In the final
selected area, we look for the value of the pixel closest to the
white area as the global atmospheric light. For an RGB image,
the white part is the area where the three channels of R, G, and
B are all 255. Hence the estimate of global atmospheric light
can be transformed into finding the minimum of the following
formula: ∣∣∣∣(Ir (x) , Ig (x) , Ib (x)

)
− (255, 255, 255)

∣∣∣∣ (9)

In Formula (9), I represents the input image, r, g, b
represent the RGB color channel of the input image, x represents
the pixel value of each pixel of the input image, and 255
represents the white in the RGB space. Through the quadtree
segmentation method, the global atmospheric light can be
selected in a brighter area as much as possible. However, when
there are large areas of white objects or high-contrast objects
in the non-sky area, the quadtree segmentation algorithm will
still select the non-sky area as the global atmospheric light,
as shown in Figure 3. Images are from the OTS dataset
in the Realistic Single Image Dehazing dataset. We usually

call it RESIDE. The green line in the image represents the
quadtree segmentation process, and the red fill represents the
final selected area. It can be seen from Figure 3 that the
estimation of the global atmospheric light may be disturbed
by the white objects on the ground, and the final result
is chosen on the ground and the lake surface instead of
the sky.

We optimize the quadtree segmentation for estimating the
global atmospheric light to address this issue. For the four
regions A, B, C, and D, we calculate their regional scores and
record them as scoreA, scoreB, scoreC, and scoreD, and then
compare the scores. Because the sky is mostly concentrated in
the upper portion of the image, if the area with the highest
score in the first step is located in the upper half of the
image, that is, the scoreA or the scoreB has the highest score,
the subsequent segmentation operation will be continued. If
the region with the highest score in the first step is located
in the lower half of the image, that is, the scoreC or scoreD

has the highest score, then we assign the calculation weights
ξA and ξB to the scoreA and scoreB, respectively, and the
scores are recorded as ξA·scoreA and ξB·scoreB. Then calculation
process returns to the first segmentation process, and re-
compare the scores of ξA·scoreA, ξB·scoreB, scoreC, and scoreD,
so that the global atmospheric light can be located at the
top half of the image in the first step. To ensure that the
recalculated ξA·scoreA and ξB·scoreB can be larger than scoreC

and scoreD, the calculation weight ξ is set to 1.5. Finally,
the average value of the selected area is used as the global
atmospheric light. Figure 4 depicts the process mentioned
previously.

Figure 5 shows the global atmospheric light selection result
for the three foggy images given in Figure 3 using the optimized
quadtree segmentation algorithm. The selected area of the global
atmospheric light is changed from bottom half of images to
the sky area. This shows that for foggy images with a sky, this
method can locate the global atmospheric light in the sky area
in the upper half of the image, and avoid locating it on the
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FIGURE 3

Estimation of global atmospheric light using quadtree segmentation algorithm.
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Flowchart of the optimized quadtree segmentation algorithm.

ground or large areas of white objects and other interfering
objects.

3.2. Transmission optimization

Since the dark channel prior uses the minimum filter
to calculate the transmission, it is common for a depth
discontinuity to emerge at the image’s boundaries. Hence it is
easy to produce a “halo” phenomenon at the boundary between
the foreground and background. When the foggy image is
converted into a dark channel map to extract the clear part,
the size of the local patch � is difficult to determine. When
deriving the transmission calculation formula, the original
dark channel prior method assumes that the transmission
in the local patch � is a constant, which is not consistent
with the real situation. To optimize transmission, a method

combining super-pixel segmentation and the dark pixel is
utilized in this research.

Zhu pointed out in Zhu et al. (2019) that dark pixels are
widespread. First, this paper defines dark pixels as follows:

min
c

Jc (z)→ 0 (10)

Simple linear iterative clustering (Achanta et al., 2012) is
used for super-pixel segmentation of images. The technology
can be called SLIC for short. Superpixel segmentation
uses adjacent pixels with the same brightness and texture
characteristics to form irregular pixel blocks, and aggregates
pixels with similar characteristics to achieve the purpose of using
a small number of superpixel blocks to replace a large number of
pixels in original images. When the superpixel block is too large,
block artifacts and “halo” phenomena may also occur, which are
caused by the discontinuity of depth caused by the excessively
large superpixel, so the size of the superpixel block needs to
be selected reasonably. We partition the foggy image into 1,000
superpixels in this study. Next, we need to locate dark pixels in
the generated superpixel block. We locate dark pixels using the
local constant assumption (Zhu et al., 2019). Note that the local
constant assumption is only used to locate dark pixels, not to
estimate transmission. For each superpixel local patch �, there
is at least one dark pixel in it. From the assumption that the
amount of transmission in the local patch � of each superpixel
is constant, it can be known that dark pixels are found in each
superpixel local area � by finding a local minimum in minc Ic

w,
where minc Ic

w = minc [Ic (x)Ac
].

For each dark pixel, there is the following formula:

min
c

Ic (z)
Ac = [1+ t (z)]− t (z)min

c

Jc (z)
Ac (11)

A certain amount of fog should be preserved in order
to give the image a more realistic appearance, and take
Jc (z) /Ac

= 0.05 (Zhu et al., 2019). Bringing formula (10) into
formula (11), there is the following formula:

0.95t (z) ≈ 1−min
c

Ic (z)
Ac (12)

For any pixel x, the smaller the value of
minc [Ic (x) /Ac

] = min�,c [Ic (x) /Ac
] is, the closer
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FIGURE 5

Estimation of global atmospheric light using an optimized quadtree segmentation algorithm.

minc [Ic (x) /Ac
] is to the minimum value of the local patch �,

and the more likely the pixel is to be a dark pixel (Zhu et al.,
2019). To ensure that x is a dark pixel, minc [Ic (x) /Ac

] and
min�,c [Ic (x) /Ac

] should be close enough. Therefore we define
the fidelity function F(x) for the dark pixel x as follows:

F (x) = log0.001

{
max

[
min

c

Ic (x)
Ac −min

�,c

Ic (x)
Ac , 0.001

]}
(13)

As can be seen from the above, the closer minc [Ic (x) /Ac
]

and min�,c [Ic (x) /Ac
] are, the more likely pixel x is to be a

dark pixel. Formula (13) is a fidelity function. According to
this formula, when the difference between minc [Ic (x) /Ac

] and
min�,c [Ic (x) /Ac

] is less than 0.001, it can be seen from the
property of logarithmic function that the value of F(x) is 1,
thus minc [Ic (x) /Ac

] = min�,c [Ic (x) /Ac
]. Therefore, it can

be approximately considered that the pixel x is the expected dark
pixel. Therefore, there is the following formula:

∼

t (x) ≈

[
1−min

c
Ic(x)

Ac

]
0.95

=

1−min
�

[
min

c
Ic(x)

Ac

]
0.95

(14)

The final transmission is obtained by optimizing the
following energy function:

E (t) =
∑

x
F (x)

[
t (x)− t̃ (x)

]2

+λ

[
ax,N(t̃)

(
∂t
∂x

)2
+ ay,N(t̃)

(
∂t
∂y

)2
]

(15)

where ax,N(̃t) and ay,N(̃t) are weight coefficients, defined as:

ax,N(t̃) =

∣∣∣∣∣∂
(
Ic/Ac)
∂x

∣∣∣∣∣
2

+ ε

−1

(16)

ay,N(t̃) =

∣∣∣∣∣∂
(
Ic/Ac)
∂y

∣∣∣∣∣
2

+ ε

−1

(17)

The final transmission can be obtained from the above
formula, as shown in the following formula:

−→t =
(
−→
F + λ

−→
L
)−1−→

F
−→
t̃ (18)

where −→t is the vector form of t,
−→
t̃ is the vector form of t̃. And

−→
F is a sparse diagonal matrix composed of elements in F,

−→
L is

the Laplace matrix. The value of λ is 0.02.
The restored fog-free image may have color offset problems

such as too dark color in non-sky area and overexposure color
in bright sky area. It is necessary to perform color correction on
the obtained transmission. Color correction for transmission t
is performed by the following formula:

t =
max

(
t, 1−min

c
Ic(x)

Ac

)
+ σ

1+ σ
(19)

where 0.2 is used as the value for σ .
Figure 6 shows the comparison of the dark channel prior

method and proposed method on transmission and recovered
images. As shown in Figure 6C, when the transmission is
estimated using the dark channel prior algorithm, the dark
channel map contains some depth-independent details. And
for thin overhead lines of electricity transmission lines, the
range of the transmission map will be overestimated, resulting
in halo artifacts near the overhead lines in the defogging
results. As shown in Figure 6E, the proposed method can avoid
overestimating the transmission of the overhead line, avoid halo
artifacts near overhead line, and provide better transition at the
junction of overhead line and sky. Comparing the method to the
ground truth in Figure 6B, color saturation may also be avoided.

3.3. Detail sharpening

The transmission line is thin in size and difficult to observe,
so it is necessary to enhance the details of the defogging image
in order to better observe the electricity transmission line.
The actual atmospheric scattering is multiple scattering, while
the commonly used atmospheric scattering model is only one
scattering, which will lead to the loss of details and blurred
images in the defogging image. Therefore, it is necessary to
sharpen the details of the defogging image. Image blur caused
by multiple scattering is mainly related to two factors: visibility
level and airlight level. The visibility level is related to detail,
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FIGURE 6

The effect of this method on transmission line transmittance optimization. (A) Hazy image; (B) ground truth (C) transmission of dark channel
prior; (D) result of dark channel prior; (E) transmission of our method; (F) preliminary result of our method.

and the airlight level is related to depth (Gao et al., 2018). If
the airlight level in a certain area of the image is high, the
image details in that area will be smoother, so the degree of
image sharpening is proportional to the airlight level. And the
smoothness of the image details is poor when there is high
visibility in a certain area, hence the degree of image sharpening
is inversely related to the visibility level. The following is a
definition of the sharpening coefficient:

S
(
x, y

)
= S1

(
x, y

)
◦ S2

(
x, y

)
(20)

In formula (20), S(x, y) represents the sharpening coefficient
matrix. The function determined by the airlight level is
represented by S1(x, y), while the function determined by the
visibility level is represented by S2(x, y). S(x, y) means the
multiplication of the corresponding elements of the S1(x, y) and
S2(x, y) matrices.

Sigmoid function can satisfy the requirement that the
airlight level is proportional to the sharpening coefficient, and
the visibility level is inversely proportional to the sharpening
coefficient. We use the cumulative distribution function as the
constraint functions for the airlight level and visibility level. This
function is a sigmoid function, expressed as follows:

φ (x) =
1
2

[
1+ erf

(
x
√

2

)]
(21)

The following formula is the error function erf (x):

erf (x) =
2
√
π

∫ x

0
e−t2

dt (22)

The cumulative distribution function 8(x) is an sigmoid
function that increases monotonically with x. The cumulative
distribution function can meet the requirement that the
airlight level is proportional to the sharpening coefficient
and the visibility level is inversely proportional to the
sharpening coefficient. For the cumulative distribution function,
it approaches 0 as x approaches −∞ and 1 as x approaches
∞, and the cumulative distribution function is a monotonically
increasing function. If we add a minus sign to the cumulative
distribution function, we get a monotonically decreasing
function. Therefore, the cumulative distribution function can
be used as the constraint function of airlight level and visibility
level. As a result, the following definitions apply to the airlight
level and visibility level constraints:

S1
(
x, y

)
=

1
2

{
1+ erf

[
a
(
x, y

)
− aave

√
2k1

]}
(23)

S2
(
x, y

)
= 1−

1
2

{
1+ erf

[
C
(
x, y

)
− Cave

√
2k2

]}
(24)

where a(x, y) denotes the airlight level, and C(x, y) represents the
visibility level. aave represents the average value of the airlight
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FIGURE 7

Comparison of local details between the two methods. (A) Preliminary defogging result without sharpening; (B) Final defogging result after
sharpening; (C) Local detail of intermediate defogging result (insulators); (D) Local detail of final defogging result (insulators); (E) Local detail of
intermediate defogging result (buildings); (F) Local detail of final defogging result (buildings).

FIGURE 8

Experimental results of different methods for Figure 1: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.
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FIGURE 9

Experimental results of different methods for Figure 2: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 10

Experimental results of different methods for Figure 3: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

level, Cave represents the average value of the visibility level, and
k1 and k2 are the slope control coefficients. The visibility level
C has a relationship with the Weber brightness (Hautiere et al.,
2008). The expression for visibility level C is as follows:

C (x) =
1L

(
x, y

)
Lb
(
x, y

) = Lt
(
x, y

)
− Lb

(
x, y

)
Lb
(
x, y

) (25)

In the above formula, 1L is the brightness difference
between the preliminary defogging result and the background
image, Lt is the brightness of the preliminary defogging result,
and Lb is the brightness of the image background. RGB
space is the most commonly used color space, including three
basic colors: red (R), green (G), and blue (B), while YCbCr
is another color space, including luminance component (Y),
blue chrominance component (Cb), and red chrominance
component (Cr). To calculate the brightness difference, the
image needs to be transferred from RGB space to YcbCr space.

The preliminary defogging result is converted from RGB to
YCbCr space, and the brightness component Lt is extracted,
then the preliminary defogging result is low-pass filtered to
produce Lb.

The final enhancement result is as follows:

Jfinal
(
x, y

)
= J

(
x, y

)
+ θ · S

(
x, y

)
◦T
(
x, y

)
(26)

For formula (26), Jfinal(x,y) is the final defogging result,
J(x,y) is the preliminary defogging result, and the upper bound
on the enhancement is constrained using θ . T(x,y) is the
high-frequency value of the preliminary result J(x,y), which is
obtained by Gaussian filtering on J(x,y) to prevent excessive
enhancement of flat areas such as the sky. The preliminary
defogging result J (x, y) in Formula (26) refers to the defogging
result obtained by formula (8) after calculating the global
atmospheric light A and transmission t of the input image I (x)
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FIGURE 11

Experimental results of different methods for Figure 4: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 12

Experimental results of different methods for Figure 5: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

through the methods of (Section “3.1 Global atmospheric light
estimation”) and (Section “3.2 Transmission optimization”).
That is, the fog-free image without detail sharpening.

The final defogging result after detail sharpening has more
accurate local details. Figure 7 shows the comparison between
the preliminary defogging results without sharpening and the
final defogging results after sharpening. The details of the
electricity transmission lines and insulators after sharpening
are richer. According to Figure 7D, the electricity transmission
line and insulator have more prominent image details after
sharpening. In addition, the details of distant buildings have
also become clearer. As shown in Figures 7E, F, the details
of buildings in the image after detail sharpening are more
prominent.

4. Experimental results and
discussion

The efficiency of proposed defogging algorithm is
examined through qualitative and quantitative comparisons
with widely utilized defogging methods. We select foggy
images with electricity transmission lines in the RESIDE
dataset and compare with the methods of He et al. (2010),
Fattal (2008), Meng et al. (2013), Tarel and Hautiere
(2009), Ehsan et al. (2021), Berman and Avidan (2016),
and Raikwar and Tapaswi (2020). The following parameters
are selected for this study: ξ = 1.5, λ = 0.02, ε = 0.00001,
σ = 0.2, k1 = 25, k2 = 0.01, θ = 3. The experimental
platform is a 64-bit Windows 10 operating system laptop.
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FIGURE 13

Experimental results of different methods for Figure 6: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

FIGURE 14

Experimental results of different methods for Figure 7: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(F) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

The CPU is Inter(R) Core i7-11800 H and clocked at
2.30 GHz. The GPU is NVIDIA RTX3060. The computer
memory is 40 GB. The software platform is MATLAB
2021b.

4.1. Qualitative comparison

We select 8 foggy images with electricity transmission lines
or power towers from the OTS dataset in the RESIDE dataset
with ground truth as research objects. We name images as
Figures 1–8. The defogging results are shown in Figures 8–15.
Note that the post-processing of the transmission of He’s method
employs guided filter, rather than soft matting.

It can be seen from Figures 8–15 that dark channel prior
and Meng’s method will over enhance the sky area, resulting
in color deviation or over saturation of the sky area, while it
is too dark for the non-sky area. Therefore, the fog removal
image is very different from the ground truth. The reason for

this is that the transmission is often underestimated when using
these methods. At the same time, it is noted that when He’s
method is used to defog the electricity transmission line, because
the power tower and electricity transmission line are used as
the foreground and the sky area is used as the background,
there is a depth discontinuity between the foreground and the
background, so there will be an obvious “halo” effect at the edge
of the electricity transmission line, which is not conducive to
observation. The “halo” phenomenon will lead to the transition
area of color deviation between the image to be observed and
the background, and produce abnormal colors of white or other
colors around the image, affecting the observation of the image.
This phenomenon is particularly obvious when dealing with
Figures 2, 3, 4, 8.

For Fattal’s method, the sky area in the defogging image
will be overexposed, resulting in chromatic aberration in the sky
area. In addition, due to the tine size of the transmission line,
the image of the electricity transmission line occupies a small
proportion in the entire image, so the image information of the
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FIGURE 15

Experimental results of different methods for Figure 8: (A) input image; (B) ground truth; (C) dark channel prior; (D) Fattal et al.; (E) Meng et al.;
(E) Tarel et al.; (G) Ehsan et al.; (H) Berman et al.; (I) Raikwar et al.; (J) proposed.

TABLE 1 Comparison of peak signal-to-noise ratio (PSNR) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 17.4379 16.3903 15.4995 12.5983 16.2771 14.9417 13.8952 19.82

II 12.4694 14.655 12.1856 15.3734 12.0424 13.0669 12.7189 18.5631

III 14.8967 13.5464 13.5908 14.4461 13.599 16.1208 14.8689 20.7617

IV 11.8169 14.5616 11.985 14.6685 11.2372 15.6598 11.4271 18.2309

V 16.8005 12.7247 16.6877 10.9627 15.965 18.8939 16.0547 19.2684

VI 11.6662 12.5876 13.9475 13.1485 11.4975 15.1161 13.0413 17.9578

VII 14.7942 12.2326 15.6319 12.8542 14.4614 19.006 13.8794 19.6325

VIII 16.0436 11.5157 16.8198 16.5496 15.0584 20.0116 14.0607 20.1302

Average 14.4907 13.5267 14.5435 13.8252 13.7673 16.6021 13.7433 19.2956

TABLE 2 Comparison of structural similarity index measurement (SSIM) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 0.7908 0.6541 0.7542 0.6952 0.7373 0.7186 0.5402 0.7857

II 0.6939 0.4905 0.6952 0.7566 0.6577 0.652 0.5856 0.7621

III 0.6798 0.6411 0.6309 0.8271 0.6425 0.5822 0.6662 0.8238

IV 0.706 0.6852 0.6622 0.7349 0.7057 0.7057 0.7057 0.6986

V 0.7357 0.487 0.6886 0.7378 0.7095 0.7411 0.6692 0.785

VI 0.6548 0.5038 0.795 0.7476 0.6958 0.5672 0.5852 0.8185

VII 0.7135 0.4965 0.7285 0.7521 0.6884 0.8242 0.6088 0.7868

VIII 0.8501 0.5455 0.8467 0.8562 0.8287 0.9023 0.7999 0.862

Average 0.7281 0.563 0.7252 0.7634 0.7082 0.7117 0.6451 0.7903

electricity transmission line in the defogging image is partially
or completely lost, which is not conducive to the observation
of the electricity transmission line. This phenomenon has a
particularly obvious impact on the results of the Fattal’s method
for defogging in Figures 5–8. For Tarel’s method, this method
cannot completely remove fog, the image still retains a part
of fog after defogging, and the overall image looks hazy with

low saturation. For Ehsan’s method, there is a large chromatic
aberration in the sky area, and there is a “halo” effect around the
electricity transmission line, which is particularly evident in the
defogging images of Figures 1, 3, 4, 6, 8. For Berman’s method,
serious color distortion and color shift occur in the sky area
of some defogging images, as shown in Figures 2, 3, 5, which
are quite different from the ground truth. This is because this
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TABLE 3 Comparison of information entropy of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 7.1639 6.586 7.3179 7.0902 7.0475 7.2592 6.9901 7.3549

II 7.4548 4.1126 7.4348 7.3702 7.3647 7.3263 7.3466 7.5985

III 7.5324 5.6041 7.4242 6.8307 7.3969 7.5966 7.5963 7.4889

IV 7.5499 5.5866 7.4739 7.2516 7.438 7.7022 6.9906 7.5764

V 7.3755 6.5764 7.3821 6.5202 7.2797 7.3142 7.5267 7.4763

VI 7.1002 5.2216 7.246 6.9646 7.1061 7.3705 7.1291 7.4727

VII 7.4989 5.6138 7.5771 6.9565 7.3666 7.5943 7.5273 7.6219

VIII 7.5316 5.6522 7.5435 6.678 7.4648 7.4519 7.5322 7.6213

Average 7.4009 5.6192 7.4249 6.9578 7.308 7.4519 7.3299 7.5264

TABLE 4 Comparison of mean squared error (MSE) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 1172.9902 1492.9522 1832.8653 3574.8292 1532.4007 2084.0716 2651.9413 677.7674

II 3682.4637 2226.287 3931.1625 1886.8427 4062.9096 3209.1541 3476.8593 905.2525

III 2105.7584 2873.7249 2844.4478 2335.9851 2839.0908 1588.5627 2119.313 545.6503

IV 4279.4657 2274.6594 4117.0035 2219.371 4890.5339 2256.9768 4681.292 977.2104

V 1358.4117 3472.2773 1394.1472 5209.7195 1646.554 1646.554 1612.9123 769.5488

VI 4430.6094 3583.5926 2620.1912 3149.4204 4606.1166 2002.0382 3228.1386 1040.6388

VII 2156.0511 3888.8094 1777.8414 3370.2747 2327.7683 817.48 2661.5958 707.6773

VIII 1617.0443 4586.8511 1352.3898 1439.1915 2028.7847 648.512 2552.7462 631.0411

Average 2600.3493 3049.8942 2483.7561 2898.2043 2991.7698 1781.6687 2873.0998 781.8483

TABLE 5 Comparison of universal quality index (UQI) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 0.8314 0.7429 0.8439 0.6734 0.7999 0.7679 0.5632 0.8665

II 0.726 0.6864 0.8223 0.7922 0.7022 0.7529 0.6101 0.9369

III 0.8077 0.8525 0.8725 0.8331 0.7643 0.902 0.7829 0.9638

IV 0.7683 0.8261 0.7391 0.7753 0.7278 0.7912 0.5586 0.8571

V 0.8791 0.7446 0.9149 0.6979 0.8565 0.898 0.7825 0.9234

VI 0.6906 0.7417 0.8542 0.7017 0.7494 0.8552 0.6078 0.883

VII 0.8367 0.7472 0.8857 0.7334 0.8224 0.9041 0.6716 0.8886

VIII 0.9238 0.8622 0.9433 0.9232 0.9023 0.9645 0.8122 0.9781

Average 0.808 0.7755 0.8595 0.7663 0.7906 0.8545 0.6736 0.9122

method needs to preset a gamma value for each image, and the
most suitable gamma value for different images is an unknown
quantity. If the best gamma value for each image is unknown,
Berma recommends trying to set the default gamma value to
1. Therefore, Berman’s algorithm cannot satisfy all situations,
and has limitations for practical use. Raikwar’s method can
eliminate the “halo” phenomenon effectively, but it will still
cause color saturation in the sky area, resulting in color shift.
At the same time, the method also has low contrast in the non-
sky area, which leads to darkness in the non-sky area of the

defogging image and affects the observation of power towers on
the ground.

For our algorithm, the color saturation of the image after
defogging is moderate, the sky area is not over-saturated, and
the ground area is not too low in brightness, the “halo” effect
can be reduced at the same time. And the visual effect is most
similar to the ground truth. In addition, because the proposed
method sharpens and enhances the details of the defogging
image, the power towers and electricity transmission lines in the
defogging image have a clearer visual effect, retaining clearer
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TABLE 6 Comparison of average gradient (AG) of the defogging images.

Figure He Fatal Meng Tarel Ehsan Berman Raikwar Our

I 6.2546 9.3965 7.9195 7.2134 6.1852 7.6195 7.6144 10.391

II 4.8603 4.7456 6.3885 5.1114 4.6492 5.3087 5.7916 8.4631

III 7.138 7.2709 8.193 5.6889 7.006 8.3407 8.1677 10.0117

IV 8.6812 8.9836 10.0807 8.1328 8.8091 9.1037 10.1014 12.2277

V 8.215 12.1108 9.1919 6.1002 7.9448 8.7118 9.3035 12.5756

VI 2.7866 3.4014 2.8994 2.9219 2.5547 3.1448 2.8588 4.902

VII 5.4091 4.6841 6.4485 4.4309 5.0904 5.7151 6.1237 7.6858

VIII 11.7685 10.2167 14.1335 7.9979 11.8835 12.1639 13.4144 17.8921

Average 6.8892 7.6012 8.1569 5.9497 6.7654 7.5135 7.9219 10.5186

outlines and more detailed details. It is convenient to observe
electricity transmission lines and power towers. The qualitative
study above shows that our method has better visual effects, and
the fog removal effect is better and more realistic.

4.2. Quantitative comparison

The proposed defogging algorithm will be compared and
analyzed with previous defogging algorithms utilizing various
test metrics in the section on quantitative comparison. The
following are the evaluation methods used in this study: peak
signal-to-noise ratio (PSNR), information entropy, structural
similarity index measurement (SSIM), mean squared error
(MSE), universal quality index (UQI), average gradient (AG).
According to whether there is a reference image, image
evaluation methods can be divided into full reference image
quality assessment and no reference image quality assessment.
Full reference image quality assessment refers to comparing the
difference between the image to be evaluated and the reference
image when there is an ideal image as the reference image. No
reference image quality assessment refers to directly calculating
the visual quality of an image when there is no reference image.
PSNR, SSIM, MSE, and UQI belong to full reference image
quality assessment, while information entropy and AG belong
to no reference image quality assessment. PSNR is the most
commonly used image quality evaluation metric, which is an
objective standard to measure the level of image distortion. The
similarity between the fog removal image and the ground truth is
directly proportional to the value of PSNR. A larger PSNR value
means that the smaller the distortion of the defogging image and
the better the defogging effect. SSIM is a measurement metric
that objectively compares the brightness, contrast, and structure
of two images to determine how similar they are to one another.
The value of SSIM is a number in the range of 0 to 1, and the
closer the value is to 1, the more closely the defogging images
resemble the ground truth image. For an image, the average
amount of information can be determined via the information
entropy. The more details and richer colors of the image after

defogging, the greater the information entropy. The UQI can
reflect the structural similarity between two images. The larger
the value of UQI, the closer the two images are. The AG is related
to the changing characteristics of the image detail texture and
reflects the sharpness. The clearer the image, the higher the value
of AG. Note that SSIM and UQI belong to the full reference
image quality assessment and need to be compared with the
reference image when calculating. Therefore, we selected the
ground truth of OTS data set as the reference image, compared
the defogging images obtained by different methods with the
ground truth, and obtained the evaluation results. Similarly,
PSNR and MSE also chose ground truth as the reference image.

Tables 1–6 show the results of evaluation metrics
obtained when different defogging algorithms are adopted
in Figures 1–8. For each row in the table, the bold value
represents that the evaluation metric can obtain the optimal
result when the defogging algorithm corresponding to the value
is adopted for the image.

As shown in Tables 1–6, for PSNR, MSE and AG,
compared with other comparison algorithms, the algorithm
proposed in this paper achieves the best effect for each image,
and obviously the average evaluation results also achieve
the best effect. For SSIM, information entropy and UQI,
the proposed method achieves the highest or relatively high
performance on single image metrics, respectively, and the
best performance on average score. For SSIM, the average
value obtained by the method proposed in this paper is
0.7903, which is 3.4% higher than that of Tarel, the second
highest ranking method, and 28.76% higher than that of
Fattal, the lowest ranking method. For information entropy,
the method proposed in this paper achieves an average value
of 7.5264, which is 0.99% higher than Berman’s method with
the second highest ranking and 25.34% higher than Fattal’s
method with the lowest ranking. For UQI, the method proposed
in this paper achieves an average value of 0.9122, which is
5.78% higher than that of Meng, the second highest ranking
method, and 26.16% higher than that of Raikwar, the lowest
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ranking method. Quantitative analysis show s that the image
obtained by using the proposed method has better structure
similarity, rich information content, better color restoration and
clarity. As a result, the proposed method has good visual effect.

For the evaluation results of a single defogging image,
Berman’s method and Raikwar’s method will cause color shift
and over-saturation in the sky area, making the sky area more
yellow or blue. And the information entropy is an indicator that
reflects the richness of the color, so the information entropy is
sometimes higher when using Berman’s method and Raikwar’s
method. At the same time, Berman’s method requires a gamma
value to be set in advance, so the application scenarios are
limited. Although Tarel’s method is used for some images
to obtain the best SSIM, Tarel’s method cannot completely
remove the fog, and the details of electricity transmission
lines in the defogging image are not obvious, which is not
conducive to observation.

In general, this method can enhance image details,
avoid image distortion and color offset, and has a good
defogging effect.

5. Conclusion

In this study, we propose an image defogging algorithm
for power towers and electricity transmission lines in video
monitoring system. First of all, in view of the statistical law that
most of the outdoor electricity transmission line images have a
sky area in the upper part of the image, the proposed algorithm
uses an improved quadtree segmentation algorithm to find the
global atmospheric light, then locates the global atmospheric
light in the sky area containing the electricity transmission line,
preventing the white or bright objects on the ground interfere
with the calculation of global atmospheric light. Second, to solve
the “halo” effect when the transmission is computed by the
dark channel prior, the algorithm in this paper introduces the
concept of dark pixels, and uses superpixel segmentation to
locate the dark pixels and use a fidelity function to compute
the transmission. Finally, in view of the problem that the size
of outdoor electricity transmission lines is tiny and unsuitable
for observation, this paper introduces a detail enhancement
post-processing based on visibility level and air light level to
enhance the details of defogging images. We assess the efficacy
of the proposed method by quantitatively and qualitatively
assessing defogging images of power towers and transmission
lines that were acquired using various methods. The results of
the experiment proved that the defogging images restored by
suggested algorithm have better detail level, structural similarity
and color reproduction, and can effectively remove fog, which
is superior to existing algorithms. In addition, the algorithm
proposed in this paper can not only be used in power system
online monitoring, but also can be extended to community
monitoring, UAV monitoring, automatic driving, industrial

production, Internet of Things and other fields, with broad
application space. In the further work, we are going to do
research on image defogging combined with dark image en-
hancement to expand the application range of the algorithm.
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