
ORIGINAL RESEARCH
published: 23 November 2021

doi: 10.3389/fnbot.2021.692183

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2021 | Volume 15 | Article 692183

Edited by:

Dingguo Zhang,

University of Bath, United Kingdom

Reviewed by:

Theerawit Wilaiprasitporn,

Vidyasirimedhi Institute of Science and

Technology, Thailand

Yinfeng Fang,

Hangzhou Dianzi University, China

*Correspondence:

Ana Luisa Trejos

atrejos@uwo.ca

Received: 07 April 2021

Accepted: 28 October 2021

Published: 23 November 2021

Citation:

Tryon J and Trejos AL (2021)

Evaluating Convolutional Neural

Networks as a Method of EEG–EMG

Fusion.

Front. Neurorobot. 15:692183.

doi: 10.3389/fnbot.2021.692183

Evaluating Convolutional Neural
Networks as a Method of EEG–EMG
Fusion
Jacob Tryon 1 and Ana Luisa Trejos 1,2*

1 School of Biomedical Engineering, Western University, London, ON, Canada, 2Department of Electrical and Computer

Engineering, Western University, London, ON, Canada

Wearable robotic exoskeletons have emerged as an exciting new treatment tool

for disorders affecting mobility; however, the human–machine interface, used by the

patient for device control, requires further improvement before robotic assistance

and rehabilitation can be widely adopted. One method, made possible through

advancements in machine learning technology, is the use of bioelectrical signals, such

as electroencephalography (EEG) and electromyography (EMG), to classify the user’s

actions and intentions. While classification using these signals has been demonstrated

for many relevant control tasks, such as motion intention detection and gesture

recognition, challenges in decoding the bioelectrical signals have caused researchers

to seek methods for improving the accuracy of these models. One such method is

the use of EEG–EMG fusion, creating a classification model that decodes information

from both EEG and EMG signals simultaneously to increase the amount of available

information. So far, EEG–EMG fusion has been implemented using traditional machine

learning methods that rely on manual feature extraction; however, new machine learning

methods have emerged that can automatically extract relevant information from a

dataset, which may prove beneficial during EEG–EMG fusion. In this study, Convolutional

Neural Network (CNN) models were developed using combined EEG–EMG inputs to

determine if they have potential as a method of EEG–EMG fusion that automatically

extracts relevant information from both signals simultaneously. EEG and EMG signals

were recorded during elbow flexion–extension and used to develop CNN models based

on time–frequency (spectrogram) and time (filtered signal) domain image inputs. The

results show a mean accuracy of 80.51 ± 8.07% for a three-class output (33.33%

chance level), with an F-score of 80.74%, using time–frequency domain-based models.

This work demonstrates the viability of CNNs as a new method of EEG–EMG fusion

and evaluates different signal representations to determine the best implementation of a

combined EEG–EMG CNN. It leverages modern machine learning methods to advance

EEG–EMG fusion, which will ultimately lead to improvements in the usability of wearable

robotic exoskeletons.
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1. INTRODUCTION

The field of assistive and rehabilitation robotics is rapidly
growing, seeking to leverage modern technological
advancements to help patients suffering from mobility issues to
restore their quality of life. With musculoskeletal disorders being
the largest contributor to worldwide disability (World Health
Organization, 2019), there is a large market for such devices to
help supplement the treatment provided by traditional therapy.
Wearable upper-limb robotic exoskeletons, in particular, present

a promising option for rehabilitation and assistance, since the
patient can use the device during daily life to help assist with
tasks, and they are not constrained to a single location during
rehabilitation therapy. These devices, however, are still limited in

their use, and one reason for this is that further development is
required to advance the intelligence of the control methods used
in these systems (Desplenter et al., 2020). The devices should
be controlled in such a way that their use feels natural and
comfortable for the user, regardless of the task being performed.

One popularly explored method to achieve this is the use of
bioelectrical signals, produced by the body during motion, to
directly control the wearable robotic exoskeletons by detecting
the user’s motion intention and movement activity based on
the information encoded in these signals. Two popularly used
bioelectrical signals are electroencephalography (EEG), recorded
from brain activity, and electromyography (EMG), recorded
from muscle activity (Sawangjai et al., 2020; Leelaarporn et al.,
2021). These signals are measured using electrodes on the skin
and can be decoded (often through the use of machine learning
techniques) to facilitate the control of wearable robotic systems.
Typically, devices will only make use of one bioelectrical signal
type at a time (Desplenter et al., 2020); however, studies have
emerged that have shown that the simultaneous use of EEG and
EMG together can improve system performance (Leeb et al.,
2011; Dulantha Lalitharatne et al., 2013; Xie et al., 2013; Novak
and Riener, 2015; Li et al., 2017; Wöhrle et al., 2017; Loopez-
Larraz et al., 2018; Sbargoud et al., 2019; Tryon et al., 2019;
Gordleeva et al., 2020; Tortora et al., 2020; Tryon and Trejos,
2021). It has been shown that EEG–EMG fusion can improve
classification accuracy as well as reliability, by leveraging the
benefits of both signal types simultaneously. An example of this
is the use of EEG–EMG fusion as a method to combat the effect
of muscle fatigue on system performance. Studies have shown
that EEG–EMG fusion models can maintain sufficient accuracy
even during EMG signal attenuation brought on by muscle
fatigue (Leeb et al., 2011; Tortora et al., 2020), demonstrating
the increased reliability that can be obtained through the use
of multiple signal types simultaneously. Typically, EEG–EMG
fusion is used with machine learning to perform a classification
task relevant to the control of a robotic exoskeleton device (for
example, motion intention detection). A commonly usedmethod
to incorporate EEG–EMG fusion into machine-learning-based
classification is to perform EEG–EMG fusion at the decision
level, meaning that two classifiers are trained (one for EEG,
one for EMG) and their outputs are combined using various
techniques (Leeb et al., 2011; Wöhrle et al., 2017; Sbargoud et al.,
2019; Tryon et al., 2019; Gordleeva et al., 2020; Tortora et al.,

2020; Tryon and Trejos, 2021). Use of this method has been
successfully demonstrated for tasks such as motion classification,
for example, obtaining an accuracy of 92.0%while outperforming
EEG and EMG only models (Leeb et al., 2011). Some examples
exist of EEG–EMG fusion happening at the input level, meaning
that EEG and EMG features are used simultaneously to train one
classifier (Xie et al., 2013; Li et al., 2017; Loopez-Larraz et al.,
2018; Tryon et al., 2019; Gordleeva et al., 2020; Tryon and Trejos,
2021). Studies that focus on this technique have been able to
show accuracies similar to decision-level fusion studies, in one
example obtaining an accuracy of 91.7% using a single classifier
for gesture recognition (Li et al., 2017); however, when compared
with decision-level fusion in the same study, input-level fusion is
often found to yield poorer results (Gordleeva et al., 2020; Tryon
and Trejos, 2021).

Despite promising results, further development is needed
for EEG–EMG fusion techniques to improve their viability for
use in wearable robotic systems. The vast majority of EEG–
EMG fusion has been done using traditional machine learning
methods that rely on manual feature extraction before training
the classifier. Recently, new machine learning methods (often
referred to as deep learning) have emerged that are capable of
automatically extracting feature information from inputs. One
of the most notable implementations of deep learning is the
Convolutional Neural Network (CNN). These CNN models,
originally developed for the image processing domain, work by
using convolution layers that extract information from around
an image before feeding it into traditional neural network layers
(called Fully Connected layers). The model is not only able to
learn patterns from within the data, like traditional machine
learning, but also automatically learn what relevant information
to extract from the input (instead of relying on the user to specify
this manually through selection of appropriate features). The
success of CNN classifiers have caused them to move beyond
the image processing domain into other areas, with bioelectical
signal classification being one of them. For both EEG (Roy et al.,
2019) and EMG (Phinyomark and Scheme, 2018), CNNs are the
most popularly used deep learning technique. Many studies have
shown great results when using CNNs with EEG (Schirrmeister
et al., 2017; Wang et al., 2018; Amin et al., 2019; Chaudhary et al.,
2019; Dai et al., 2019; Ditthapron et al., 2019; Li et al., 2019;
Tayeb et al., 2019; Zhang et al., 2019; Zhao et al., 2019; Tang
et al., 2020; Wilaiprasitporn et al., 2020) and EMG (Atzori et al.,
2016; Zhai et al., 2017; Ameri et al., 2018; Ding et al., 2018; Xia
et al., 2018; Zia ur Rehman et al., 2018; Côté-Allard et al., 2019;
Duan et al., 2019; Chen et al., 2020; Fang et al., 2021) signals and
have been able to perform many tasks relevant to control, such
as hand gesture recognition or the implementation of a Brain
Computer Interface, based on Motor Imagery, to send device
commands. A brief selection of CNN-based EEG/EMG literature
with control-relevant tasks can be seen in Table 1. Despite the
popularity of CNN models in EEG and EMG literature, the
area of EEG–EMG fusion has yet to widely adopt the use of
this technique. One study showed that CNNs can be used to
fuse EEG and EMG (along with Electrooculography, known
as EOG) for sleep stage classification (Banluesombatkul et al.,
2021); however, it remains to be seen how an EEG–EMG CNN
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TABLE 1 | A summary of select literature examples using CNN models with EEG

or EMG signals.

Signal type Application Reference

EEG 2 Class motor imagery (e.g.,

left hand, right hand)

Wang et al., 2018; Chaudhary

et al., 2019; Dai et al., 2019;

Tayeb et al., 2019; Tang et al.,

2020

4 Class motor imagery (e.g.,

left hand, right hand, feet,

tongue)

Schirrmeister et al., 2017; Amin

et al., 2019; Li et al., 2019; Xu

et al., 2019; Zhang et al., 2019

6 Class motor imagery (i.e.,

elbow flexion/extension,

forearm

supination/pronation, hand

open/close)

Zhao et al., 2019

Person identification Wilaiprasitporn et al., 2020

P300 Classification Ditthapron et al., 2019

EMG Hand gesture classification Zhai et al., 2017; Ding et al.,

2018; Zia ur Rehman et al.,

2018; Côté-Allard et al., 2019;

Duan et al., 2019; Chen et al.,

2020; Fang et al., 2021

Wrist movement

classification

Ameri et al., 2018

Hand movement/Gesture

classification

Atzori et al., 2016; Zhai et al.,

2017

Hand position estimation Xia et al., 2018

The references are grouped by signal type and application.

classifier would perform if used during motion tasks that are
relevant for control of assistive and rehabilitation robots. It is
possible that the CNN model may extract information about the
relationship between the two signals, recorded while the user is
moving, that is not currently captured using manually selected
features that have been combined for input-level fusion. There
is further evidence of CNNs being able to extract information
from both EEG and EMG, since a study was done where
transfer learning (initially training a classifier for one type of
data, then using that classifier with a different set of data)
was performed between EEG and EMG datasets with CNNs.
The study found that transfer learning was possible between
the two signal types to classify concentration levels (EEG) and
hand gestures (EMG) (Bird et al., 2020). This may indicate
that there is a relationship between the bioelectrical signals
that a CNN can detect; therefore, more experimentation is
needed to further evaluate CNNs as a method of input level
EEG–EMG fusion.

The objective of this work was to evaluate CNNs as a method
of EEG–EMG fusion, and to perform an analysis of the feasibility
of this technique when used for a classification task relevant to the
control of assistive and rehabilitation robots. Multiple methods
of representing and combing the EEG/EMG signals at the input
level were investigated to see which method of EEG–EMG fusion
would provide the best performance within the CNN classifier.
This work provides an example of EEG–EMG fusion happening
within the CNN classifier, and highlights the most promising

methods to use for further development. To facilitate this
evaluation, it was decided to train models to classify task weight
during dynamic elbow flexion–extension motion. Task weight is
the weight a user is holding during movement. This is relevant
to the control of wearable robotic exoskeletons during assistance
and rehabilitation because the presence of an external weight can
affect the stability of a bioelectrical-signal-based control system
(Desplenter and Trejos, 2018; Desplenter et al., 2020), as well as
the accuracy of control-relevant classification tasks, such as hand
gesture recognition (Teh and Hargrove, 2020). These control
systems are often tuned for specific movement conditions; hence,
being able to detect what the user is holding, will allow the control
system to dynamically adapt to the new disturbance and provide
more robust performance as the user changes tasks during
their daily life. Measuring task weight during dynamic elbow
flexion–extension motion provides a more realistic evaluation
of the models (as opposed to isometric muscle contraction),
since the end goal of EEG–EMG fusion is to use it within a
wearable robotic exoskeleton during different motions. Dynamic
movement, as well as the more indirect force measurement of
task weight, can greatly increase the challenge of performing
classification tasks with EEG and EMG signals; hence, EEG–
EMG fusion provides a good opportunity to investigate potential
improvements to address these limitations. The authors’ previous
work evaluated EEG–EMG fusion methods for task weight
classification, and obtained accuracies of 83.01% using decision-
level fusion and 80.75% using input-level fusion; however, this
was done using fusion methods based on traditional machine
learning classifiers with manual feature extraction (Tryon and
Trejos, 2021). This paper focuses on evaluating CNN-based
EEG–EMG fusion on the same classification task as a means
of comparison.

2. METHODS

2.1. Data Collection and Signal Processing
To develop EEG–EMG-fusion-based CNN models, a dataset of
EEG and EMG signals were collected during elbow flexion–
extension motion from 32 healthy subjects (mean age 24.9 ± 5.4
years) who were voluntarily recruited following approval from
the Human Research Ethics Board atWestern University (Project
ID: 112023). The data obtained from these subjects were also
used in previous studies by the authors (Tryon et al., 2019; Tryon
and Trejos, 2021). The subjects were instructed to perform the
motion at two speeds level (approximately 10◦/s and 150◦/s)
and three weight levels (0 lbs, 3 lbs, 5 lbs), implementing a 2
× 3 full factorial repeated measures study design. This resulted
in six combinations of weight and speed being recorded (each
pairing referred to as a trial). The order in which the trials were
performed was randomized for each subject to limit any potential
biasing effects caused by the ordering of the speed/weight
pairings. Within each trial, elbow flexion–extension motion was
performed for three repetitions using the subject’s dominant arm
(30 right handed, 2 left handed), with a 3 s pause in-between
repetitions. Between each trial, subjects were given a 1-min rest
period. While performing the elbow flexion–extension motion,
the subject would self-regulate their motion speed to achieve an
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approximation of the targeted speed. Subjects were instructed by
the experimenter to count seconds while performing each elbow
flexion–extension repetition such that a 30 s motion duration was
obtained for the slow speed (10◦/s) repetitions and a 2 s duration
was obtained for the fast speed (150◦/s) repetitions. Assuming a
150◦ range of motion, this resulted in approximately the desired
speed for each targeted speed level, while still allowing the subject
to move dynamically in an unrestricted manner.

During data collection, the EEG and EMG signals were
recorded using an Intronix 2024F Physiological Amplifier System
(Intronix Technologies, Bolton, Canada). Both EEG and EMG
were sampled at 4,000 Hz and a ground electrode was placed over
the elbow bone of the subject’s non-dominant arm to act as the
system ground for the differential amplifier. The sampling rate of
the measurement system was fixed for all channels and could not
be altered, which is why it was higher than necessary, particularly
for the EEG signals. In an actual wearable robotic device, this
sampling rate would be lower to reduce hardware demands.

To record EEG signals, wired gold-cup electrodes, filled with
electrically conductive paste, were placed on the subject’s scalp
above the C3, C4, and Cz locations, as specified by the 10–20
International System. These locations were chosen for this study
since they correspond with the motor cortex of the brain, and
should provide relevant signal information during movement.
Prior to placing the electrodes, the subject’s scalp was cleaned
at the location of electrode placement with an abrasive gel to
ensure that a proper electrical connection was established. Signals
were recorded using bipolar channels, configured for a reference
montage, with the reference point being an ear-clip electrode
attached to the subject’s ear lobe. During recording, the EEG
signals were filtered with a 0.5–100 Hz band pass filter built into
the Intronix 2024F system. After recording, the EEG signals were
filtered again in software using a 0.5–40 Hz band pass filter (3rd

order Butterworth) (Vaid et al., 2015).
To record EMG signals, bipolar electrodes were placed

over the biceps and triceps of the subject’s dominant arm, as
specified by the SENIAM Project guidelines. These muscles were
chosen for this study since they are two of the main muscles
that contribute to elbow flexion–extension motion. Prior to
electrode placement, the subject’s skin at the location of electrode
placement was cleaned using an alcohol swab. During recording,
the EMG signals were filtered with the measurement system’s
built-in 20–500 Hz band pass filter. Following recording, the
EMG signals had the DC offset removed and were filtered again
with another 20–500 Hz band pass filter (4th order Butterworth)
(De Luca, 2002).

After filtering, the signals were segmented to remove the
portions of the recording where the subject was not moving.
This was done using markers that were placed at the beginning
and end of the subject’s movement. The markers were placed
manually by the experimenter during data recording using an
external trigger system. Synchronized video recordings of the
subject moving were also recorded for verification.

All signal processing and image generation was done offline
using MATLAB 2019b with the Signal Processing Toolbox.
An overview of the full data processing pipeline can be seen
in Figure 1.

2.2. Image Generation
Once the EEG and EMG signals were processed and segmented,
the next step was to convert the dataset into images that can
act as suitable inputs to a CNN classifier. Since CNNs were
developed initially as a tool for image recognition problems, their
architecture relies on images as inputs; however, since an image
is simply an array with a numerical value at each pixel location,
it is possible to represent bioelectrical signals in such a way. In
previous works that have used EEG and EMG signals as inputs
to CNN models, there are two commonly used methods for
representing the signals as images: calculating a time–frequency
domain representation of the signal to generate spectrogram
images (Zhai et al., 2017; Wang et al., 2018; Xia et al., 2018;
Chaudhary et al., 2019; Côté-Allard et al., 2019; Dai et al., 2019;
Duan et al., 2019; Tayeb et al., 2019) or organizing the processed
signals in the time domain to create signal images (Atzori et al.,
2016; Schirrmeister et al., 2017; Ameri et al., 2018; Ding et al.,
2018; Zia ur Rehman et al., 2018; Amin et al., 2019; Côté-Allard
et al., 2019; Li et al., 2019; Tayeb et al., 2019; Zhang et al., 2019;
Zhao et al., 2019; Chen et al., 2020; Tang et al., 2020; Fang
et al., 2021). Note that the term image here refers merely to a
CNN input and does not require the use of an image in the
colloquial sense (such as a picture). For example, signal images
are just the time series data reshaped into a proper CNN input
(discussed further in section 2.2.2) and the convolution is actually
being done on the time series signal data directly. Both methods
show prominent use with EEG and EMG-based models, with
neither method demonstrating an obvious supremacy when it
comes to model performance. Also, since EEG and EMG have
never been used simultaneously as inputs to a CNN model to
classify task weight, it is unclear which image type will allow
for the best fusion of EEG and EMG within the classifier. Since
both image types use a different domain representation, there
is a chance they may target different responses of the signal,
offering different information to the CNN classifier. Spectrogram
images (time–frequency domain) may trend toward representing
the oscillatory behavior of the signals, while the signal images
(time domain representation) may trend toward representing
time-varying behavior, such as changes in amplitude. However,
this is not a given, as the CNN model is free to extract
information it deems relevant from the inputs, and it remains to
be seen which input method will provide the best performance
when classifying task weight. For these reasons, both image
types (spectrogram images and signal images) will be evaluated
to determine which is the most suitable method to use for
EEG–EMG fusion.

To increase the number of images to use for classifier training,
during image generation the signals were windowed using a 250
ms window with 50% overlap. This windowing was used for both
image types, with both a spectrogram and signal image being
generated for each window. A window length of 250 ms was
chosen, since studies have shown that 300 ms is the maximum
amount of delay a system can experience before the user becomes
unable to control the device (Tang et al., 2014). Even though
this study was performed offline, limiting the window length
to a time that fits within the real-time delay target allows
for a more realistic evaluation of the EEG–EMG-fusion-based
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FIGURE 1 | The protocol followed to process the EEG/EMG signals, generate the spectrogram and signal images, and train the CNN models using different

EEG–EMG fusion methods. The top path (purple) shows the steps used to develop the CNN models based on spectrogram image inputs, while the bottom path

(green) shows the steps used to develop the CNN models based on signal image inputs. For all EEG–EMG-fusion-based CNN model types (represented by the final

step of all paths), an EEG and EMG only version was also trained, to provide a baseline comparison for evaluating EEG–EMG Fusion.

CNN models as a potential method of control for assistive and
rehabilitation robots.

2.2.1. Spectrogram Images
To generate the spectrogram images, a Short-Time Fourier
Transform (STFT) was calculated for each window of the
EEG and EMG signals, providing a time–frequency domain
representation of the signals. The time and frequency resolution
of the STFT was chosen so the resulting images would be of a
suitable size for use as an input to a CNNmodel: large enough to
have an appropriate time/frequency resolution, but not so large
as to require an infeasible amount of memory and computational
power. Using trial and error, a spectrogram image size of 68 ×

32, for each signal channel, was chosen. For the time resolution,
the STFT was calculated using a Hann window with a length of
56 samples and 75% overlap, which resulted in an image width
of 68 pixels (for the 4,000 Hz sampling rate of the measurement
system). The frequency resolution of the STFT was chosen so that
an image height of 32 pixels would be obtained for the frequency
range of interest for both EEG (0.5–40 Hz) and EMG (20–500
Hz). Due to the differences in bandwidth, this meant that EEG
and EMG had different STFT frequency resolutions, but their
image height was kept the same to simplify their combination
into a single image during fusion. The STFTwas calculated across
the entire frequency range of 0–4,000 Hz using an FFT size of
3,200 for EEG and 256 for EMG. Then, the images were cropped
to only include the portions of the image within the respective
bandwidth of each signal type. This resulted in five spectrogram

images (3 EEG channels and 2 EMG channels) of size 68× 32 for
each time window.

Following image generation, the pixel values of the
spectrogram images were normalized to be between 0 and
1. Due to the highly variable nature of EEG and EMG signals
between subjects, and the different scale in frequency magnitudes
for EEG and EMG obtained from the STFT, the images were
normalized for each subject and each signal type. After all
spectrogram images were calculated for one subject, the
max/min frequency magnitude value for EEG and the max/min
frequency magnitude value for EMG were recorded and used
to normalize all spectrogram images of that respective signal
type for that subject. This ensured that both EEG and EMG
spectrograms were given equal proportion within the image,
regardless of the differences in signal amplitude present when
recording both bioelectrical signals. This also ensured that
differences observed in subject recordings did not cause certain
images in the dataset to be improperly scaled based on an
outlier subject.

Once the spectrogram images had been normalized, they
were combined to facilitate the fusion of EEG and EMG at
the input level. Multiple methods of combining the EEG and
EMG spectrogram images were performed, to investigate which
method of fusing the EEG and EMG spectrogram images would
provide the best model performance. In the first method of
fusion (referred to here as the grouped method), the EEG and
EMG spectrograms were grouped by signal type and stacked
vertically to create a single 68 × 160 image comprised of the
five spectrograms. The three EEG spectrograms were placed at
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the top of the image (in the order of C3, C4, and Cz from
top to bottom) and the two EMG spectrograms were placed on
the bottom of the image (in the order of biceps, then triceps
from top to bottom). This fusion method grouped spectrograms
of the same signal type together within the image, causing the
convolution of the image to initially happen within the same
signal type and only fusing the signals initially along the single
border between EEG and EMG. An example of this method can
be seen in Figure 2A. The second fusion method (referred to
here as the mixed method) stacked images vertically once again,
but this time EEG and EMG spectrograms were alternated to
provide a better mix between signal types. The order from top
to bottom went C3, biceps, C4, and triceps, Cz. This method
of fusion provides more areas within the image were EEG
and EMG will be convolved together during the initial CNN
layer, since there are more borders between the EEG and EMG
portions of the image. An example of this method can be seen
in Figure 2B. The final fusion method (referred to here as the
stacked method) stacked the images depth-wise to create a multi-
channel image, similar to how a color picture will have three
values per pixel location to represent levels of red, green, and
blue. In this case, every pixel location contained 5 values (one
for each EEG and EMG spectrogram) to result in an image with
a shape of 68 × 32 × 5. An example of this method can be seen
in Figure 2C. To provide a baseline comparison for evaluating
the fusion methods, spectrograms containing only EEG and
only EMG signal information were also generated to see if
fusion can outperform using one signal alone. Two spectrogram
types were generated for both EEG and EMG: vertically stacked
spectrograms (68× 96 for EEG and 68× 64 for EMG) to provide
single-channel spectrograms to compare to the grouped/mixed
methods, and depth-wise stacked spectrograms (68 × 32 × 3
for EEG and 68 × 32 × 2 for EMG) to provide multi-channel
spectrograms to compare to the stacked method.

2.2.2. Signal Images
Conversely, generating the signal images only required the time
series signals to be organized into an array to form the image,
since the convolution is being performed on the time series data
directly. After filtering, the five signal channels from eachwindow
were stacked vertically to create an image where the width was the
number of time samples in that window, and the height was the
number of signal channels. This resulted in a 1,000 × 5 image
for each window, in which the pixels values of the image were
the signal amplitude at that time point (in mV). The width of
1,000 resulted from the 250 ms window length with the 4,000 Hz
sample rate used by the measurement system.

The signal images were normalized using the same method
as the spectrogram images, by subject and by signal type. The
max/min amplitude value of EEG and EMG for each subject
was recorded and used to scale all signal values between 0 and
1. To account for magnitude differences between the two signal
types, the EEG portion of the image was scaled using the EEG
min/max and the EMG portion of the image was scaled using
the EMG min/max, preventing the larger EMG values from
dominating the image by diminishing the contribution of the
smaller magnitude EEG signals. A graphical representation of the

normalized signal image can be seen in Figure 3. Similar to the
spectrogram images, signal images comprising of only EEG and
only EMG were also generated to provide a comparison point for
evaluating EEG–EMG fusion.

2.2.3. Qualitative Image Response
To help illustrate the response of the EEG/EMG signals during
task weight changes, an example normalized spectrogram image
along with a plot of the normalized signals for all three weight
levels (0 lbs, 3 lbs, and 5 lbs) can be seen in Figure 4. Based on
this qualitative assessment of the signal and spectrogram images,
it can be seen that the images show different behavior in both
the time domain and the time–frequency domain, depending
on task weight. The distribution of frequency magnitudes across
time/channels is different in the spectrogram images and the
shape of the time domain signal varies in the signal images.
This provides a qualitative demonstration that there are changing
patterns within the images for different task weights, which may
be able to be detected by the CNN models and used to train a
classification model.

2.3. CNN Model Training
Once the dataset of images was developed, the CNN models
based on fused EEG–EMG inputs were trained to classify task
weight. Model training was done using TensorFlow 2.3.0 with
Keras 2.4.3 (Chollet, 2015) in Python 3.8. The models trained
were subject specific, meaning that each subject had a model
trained using only their data. To accomplish this, each subject’s
data were split into three parts: training, validation, and testing.
The first two repetitions of each speed–weight combination
were dedicated as training data, while images generated from
the third repetition were separated into two equally sized
groups: validation and testing data. To ensure that no bias
was induced by the split, the order of the windows within the
third motion repetition was randomized and a stratified split
was used to ensure a 50/50 division, while keeping the number
of observations of each class balanced within the validation
and testing set. The validation dataset was used during model
optimization while the testing set was kept separate until the final
model evaluation, in order to reduce potential for model bias
and overfitting.

Model training had two stages. First, the base configuration
of the model was determined (via trial and error) to determine
design factors such as number of layers, batch size, and optimizer
choice, among others. The base configuration used for each
model type was the same for all subjects and is discussed further
in sections 2.3.1 and 2.3.2. Once a base configuration for the
model had been determined, the second stage of training was
to tune the model further using hyperparameter optimization.
This tuning focused on finding optimal parameter values for
the setting of the layers within the set base model design. The
structure of the model (e.g., number of layers, types of layers
used, etc.) was not changed during this optimization, only select
hyperparameter values were updated. Using Keras-Tuner 1.0.1
(O’Malley et al., 2019), the values of select hyperparameters were
tuned using the Random Search optimization method to find the
set that resulted in the best validation performance. The search
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FIGURE 2 | A sample normalized spectrogram image to demonstrate the three EEG–EMG fusion methods used, where (A,B) show single-channel spectrograms and

(C) visualizes a multi-channel spectrogram. (A) Shows the grouped method, where signal channels of the same type are grouped together within the image. (B)

Shows the mixed method, where EEG and EMG channels are alternated to mix signal types. (C) Provides a visualization of the stacked method, where a

multi-channel spectrogram is generated by combining the different EEG/EMG spectrograms in depth-wise manner.

FIGURE 3 | A graphical representation of a sample normalized signal image. The image height contains 5 rows, one for each signal channel, and the image width is

dictated by the number of samples in each 250 ms window (1,000 samples at the 4,000 Hz sampling rate).

space checked 50 random combinations of hyperparameters,
and trained each combination twice to account for variance in
model training. Using the validation dataset, the hyperparameters
were evaluated and the set that resulted in the lowest validation
loss was selected as the final hyperparameters to use for model
training. Bayesian optimization was also tested as a potential
method for hyperparameter tuning, but it was found to result
in a slight reduction in performance compared to the Random
Search method, so it was not used during training of the final
models. Early Stopping (using a patience value of five and an
epoch limit of 50) was also implemented into model training,
using Keras, to stop classifier training once improvements were

no longer seen in the validation loss of the model. This was
done to prevent overfitting and to speed up training time. All
models were optimized and trained using batch size of 32, which
was found using trial and error. Categorical Cross-Entropy was
used as the loss function with Adaptive Moment Estimation
(ADAM) being used as the optimizer for all model types. A
Stochastic Gradient Decent (SGD) optimizer was also tested,
but it resulted in a reduction in accuracy and longer training
times, so ADAMwas chosen instead. The hyperparameters being
tuned, and their range of possible values, were the same for all
subjects; however, each subject had their own hyperparameter
optimization performed to adjust the models better to the
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FIGURE 4 | Example normalized spectrogram images and graphical representations of sample normalized signal images for each of the three weight levels, showing

the qualitative variations in the images as task weight changes. During different task weights, the distribution of frequency magnitudes across time/channels is different

in the spectrogram images and the shape of the time domain signal varies in the signal images. The columns each represent a different task weight level (described by

the label above), with the rows being a matched spectrogram and signal image taken from the same time window. The spectrograms shown use the grouped fusion

method to arrange the channels. The images shown follow the same labeling convention as the sample images shown in Figures 2, 3, excluded here to avoid clutter.

TABLE 2 | The hyperparameters tuned during optimization, with the range of

possible values used by the Random Search algorithm.

Hyperparameter Parameter values

Kernel size (Spectrogram) 3×3, 5×5, (third layer only) 7×7

Kernel width (Signal) 3–55 (step size of 2)

Filters 8, 16, 32, 64, 128, 256, 512, 1,024

Dropout % 0.0–0.5 (step size of 0.05)

Units (FC Layers) 20–500 (step size of 20)

ADAM learning rate 10−5–10−2 (logarithmic sampling)

Unless specified (in brackets next to the hyperparameter name), all hyperparamters and

value ranges shown were used for all model types. Two exceptions to this are the kernel

size for the stacked models, which were limited to 3 × 3 to account for the smaller image

size, and the split convolution filter, which did not include the 1,024 filter setting to prevent

an out of memory error while training.

behavior seen in their specific EEG and EMG signals. The
hyperparameters that were tuned for each model type can be
seen in Table 2 and are discussed further in sections 2.3.1
and 2.3.2.

2.3.1. Spectrogram CNN Models
A summary of the base model configuration for the spectrogram
models can be seen in Figure 5. The base configuration for the
spectrogram CNN models consisted of three convolution layers
followed by two Fully Connected (FC) layers, with a third FC

layer used to output the class probabilities. All convolution was
done used valid padding, a stride of 1 × 1 and the Rectified
Linear Unit (ReLu) for the activation function. Each convolution
layer included three sub-layer steps: convolution, followed by a
max pooling layer (with a size and stride of 2 × 2), and then
a dropout layer to reduce overfitting. Both FC layers contained
two sub-layers: the FC step, followed by a dropout layer. Batch
Normalization was tested as an alternative to using dropout for
the convolution layers, but it led to a reduction in accuracy so
it was not used. The output FC layer used a softmax activation
function to perform classification. This configuration was used
for both the single-channel and multi-channel models (as well
as their EEG and EMG only equivalents); the only difference
between model types being the size of the inputted image. The
hyperparameters chosen for tuning, and the range of values
included in the search space, are shown in Table 2. Note that
these are the same for both model types except for one deviation:
the kernel size. For the multi-channel models, the kernel size was
fixed at 3× 3. This was to account for the smaller image size being
fed into the model; with certain combinations of larger kernels,
the tensor that was passed between convolution layers could be
reduced below the minimum allowable size, causing an error in
model training.

2.3.2. Signal CNN Models
For the signal CNN models, two base configurations were tested,
shown in Figure 6. The first configuration employed a method
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FIGURE 5 | The base model configuration used for all three spectrogram CNN model types. All spectrogram model types used three convolution layers, followed by

two FC layers and an output FC layer to perform the final classification. Each convolution layer had three sub-layer steps (convolution, max pooling, and dropout) and

each FC layer had two sub-layer steps (the FC step followed by dropout). Note, that repeated layers only show the sub-layers for the first layer, to reduce redundancy

and condense the diagram.

commonly used when developing CNN models based on time
domain signal inputs for EEG (Schirrmeister et al., 2017; Amin
et al., 2019; Li et al., 2019; Zhao et al., 2019), referred to here as
split convolution. The name arises from that fact that it takes
the first convolution layer and splits it into two back-to-back
convolution steps. This method sets the kernel size of the first
two convolution layers such that convolution is only happening
across one axis of the image at time, with Layer 1 having a kernel
size of 1 × kernel width (to only convolve temporally across the
time axis of the image) and Layer 2 having a kernel size of image
height × 1 (to only convolve spatially across signal channels).
The output of the temporal convolution layer is fed directly
into the spatial convolution layer, with both layers using valid
padding, stride of 1 × 1, and ReLu for the activation function.
The output of the temporal convolution layer is fed into a max
pooling layer (with a size and stride of 1 × 2), followed by a
dropout layer. This is followed up by two FC layers (both using
ReLu as the activation function and a dropout sub-layer), then
a third output FC layer using a softmax activation function to
perform the final classification. A summary of the base model
configuration for the split convolution signal model can be seen
in Figure 6A.

The second base configuration tested for the signal-image-
based CNNs used regular one dimensional (1D) convolution
layers to train the models. Unlike the split convolution, this
layer type convolves across both the time and signal channel
axis simultaneously as it moves across the time axis of the image
(for this reason only a kernel width is specified, since all signal
channels are always included in the convolution). This is a
common method of using CNNs for time series signals, so it is
useful to see how it compares to the split convolution method
commonly seen in the EEG literature. This configuration was
similar in makeup to the spectrogram base configuration (except
using 1D convolution instead of 2D convolution), comprising
of three convolution layers followed by two FC layers and a
third FC layer for classification. All convolution layers used valid
padding, a stride of 1 and ReLu for the activation function. Each

convolution layer followed up the convolution step with a max
pooling layer (with a size and stride of 2) then a dropout layer to
reduce overfitting. Both FC layers used a dropout layer after the
FC step. The output FC layer used a softmax activation function
to perform the final classification. A summary of the base model
configuration for the 1D convolution signal model can be seen
in Figure 6B.

Both signal image model types used similar hyperparameter
tuning settings; however, there were slight variations between
them to account for the differences in the configurations. Due
to an out-of-memory error while training, the split convolution
models could not use a filter setting of 1,024 and was limited to
512 as the maximum number of filters for any one convolution
layer. For both model types, the hyperparameters chosen for
tuning, and the range of values included in the search space, are
shown in Table 2.

2.4. Model Evaluation
Once the optimized models for each subject were trained, they
were evaluated to assess the performance of CNN-based EEG–
EMG fusion. To achieve this, the withheld test data for each
subject were inputted to their final models to obtain predictions
about what task weight was being held during each test image.
Since three task weights were used during data collection (0
lbs, 3 lbs, and 5 lbs), each classifier was trained to output a
three-class prediction, where each output label corresponded
to one of three task weights. This output was compared with
the actual class label to obtain an accuracy score for each
model. This accuracy was then averaged across all subjects
to obtain an overall accuracy score for each fusion method,
which was then used to compare performance via statistical
analysis (performed using IBM SPSS 27). First, the merits of
each fusion method were evaluated by comparing EEG–EMG
fusion to using EEG and EMG alone. The accuracy scores for
each fusion method were compared to the accuracy scores of
the EEG/EMG only models of the same model type to see if
the increase in accuracy obtained via EEG–EMG fusion was
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FIGURE 6 | The base model configurations used for the (A) split convolution and (B) 1D convolution models. Visual representations of the differences between both

convolution types are shown in the expanded view below each diagram, detailing the changes in kernel size used to facilitate both types of convolution. Split

convolution used one split convolution layer comprised of temporal and spatial convolution sub-layers, followed by a max pooling and dropout sub-layer. 1D

convolution used three convolution layers, each with three sub-layer steps (convolution, max pooling, and dropout). All signal model types followed convolution with

two FC layers (containing two sub-layer steps: the FC step followed by dropout) and an output FC layer to perform the final classification. Note, that repeated layers

only show the sub-layers for the first layer, to reduce redundancy and condense the diagram.

statistically significant. A one-way Within-Subjects Analysis of
Variance (ANOVA), followed by pairwise comparisons with the
Bonferroni post-hoc test, was performed on the accuracy scores
for the models of each type (four one-way ANOVAs in total).
Separate ANOVAs were used for each model type to account
for the different number of models present, depending on the
type (the single-channel spectrogram model type contained 4
models, because of the use of both the grouped and mixed
fusion methods, while the other model types only contained
three models each). This prevents model type from being a
factor for a two-way ANOVA, so separate one-way ANOVAs
were used instead. Following this, the methods of EEG–
EMG fusion were compared to each other using a one-way
Within-Subjects ANOVA, (using the Bonferroni post-hoc test
for pairwise comparisons) to determine if statistically significant

differences exist between the accuracy obtained from each fusion
method. The purpose of this was to see if any particular EEG–
EMG fusion method provided a clear advantage in regard to
classification accuracy.

To evaluate the robustness of each model further, the effect of
movement speed on accuracy was also evaluated. The classifier
output predictions were separated depending on the speed at
which the movement was being performed, and accuracy was
calculated separately for the fast and slow movement speed
groups. Since changes in movement speed during dynamic
motion can greatly affect bioelectrical signals, it is important
to know how the CNN EEG–EMG fusion models will perform
in the presence of such variability. To be useful in the control
of robotic devices, the models need to be able to operate
adequately during the different speeds required to perform
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FIGURE 7 | The mean accuracy of all (A) spectrogram and (B) signal based CNN models, calculated across both speeds and all task weights. Error bars represent

one standard deviation. Note that the y axis begins at 30% (chance level for these models is 33.33%).

various rehabilitation and assistance tasks. To see if the effect
of speed was statistically significant, a two-way Within-Subjects
ANOVA was performed on the speed-separated accuracies
for each model type. Similar to the model accuracy one-way
ANOVA, the two-way ANOVA was performed between models
of the same type, resulting in four two-way ANOVAs in total.
Note, for all statistical tests performed (on both the overall
model accuracy and the speed specific accuracy), a significance
threshold of p < 0.05 was used.

As a final analysis of model performance, the class predictions
from every subject were combined and used to plot a confusion
matrix for each CNN model. This was done to observe how the
models performed for each task weight and to further verify that
the classifiers were adequately trained. To evaluate the model
fitting of each classifier further, the confusion matrices were
used to calculate the class-wise precision (the likelihood that
a class prediction is correct) and recall (the likelihood that all
observations of a specific class are correctly classified) scores, to
check the balance between both metrics.

3. RESULTS

3.1. Model Accuracy
The accuracy results for the spectrogram-based CNN models are
summarized in Figure 7A. For all models, the mean accuracy was
above chance level (33.33%). The highest accuracy was obtained
by the grouped fusion method (80.51 ± 8.07%). This was higher
than the other single-channel models, beating the EEG (50.24
± 17.06%, p < 0.001) and mixed fusion method (79.72 ±

8.19%, p = 0.025) models, and trending toward a higher mean
accuracy than EMG (78.98± 4.66%, p= 1.000), but the difference
between these two was not statistically significant. The next
highest performing spectrogram model was the stacked fusion
method (80.03± 7.02%), which outperformed the multi-channel

EEG model (48.44 ± 15.32%, p < 0.001), and trended toward a
higher accuracy than the multi-channel EMG model (78.09 ±

5.65%, p = 0.382), but again this increase in accuracy was not
statistically significant. The stacked fusion method also showed
a higher mean accuracy than all other single-channel models
(except for the grouped fusion method). When comparing
the spectrogram fusion methods to their equivalent EEG/EMG
model types, the increase in accuracy for all fusion models was
statistically significant for EEG, but not EMG; however, a clear
trend did emerge, where mean accuracy increased when using
EEG–EMG fusion.

The accuracy results for the signal-based CNN models are
summarized in Figure 7B. Again, all models showed a mean
accuracy higher than chance level. The highest accuracy was
observed from the 1D convolution EEG–EMG fusion model
(78.40± 8.70%), which showed a statistically significant increase
in accuracy over using EEG alone (41.44 ± 12.25%, p < 0.001),
but not EMG alone (74.73 ± 6.90%, p = 0.054), even though the
trend is toward an increase in accuracy. The split convolution
EEG–EMG fusion model (74.28 ± 7.42%), while lower than
1D convolution fusion, also showed a statistically significant
improvement over using only EEG (42.16 ± 13.67%, p < 0.001),
but not EMG (72.70 ± 7.60%, p = 0.401); however, as with 1D
convolution, the mean accuracy tends to increase between the
split convolution fusion and EMGonlymodels.When comparing
the signal fusion methods to their equivalent EEG/EMG model
types, the increase in accuracy for both fusion models was
statistically significant for EEG, but not EMG; however, once
again a trend did emerge where mean accuracy increased when
using EEG–EMG fusion.

For comparing the EEG–EMG fusion methods of all model
types together, the results of the pairwise comparisons can be
seen in Table 3. The mean accuracy for split convolution was
found to be statistically significantly lower than all other fusion
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TABLE 3 | The p values obtained from the pairwise comparisons in the one-way

ANOVA comparing the accuracy of the different CNN based EEG–EMG fusion

methods.

Fusion method Grouped Mixed Stacked Split Conv. 1D Conv.

Grouped - 0.041 1.000 <0.001 0.431

Mixed 0.041 - 1.000 0.003 1.000

Stacked 1.000 1.000 - <0.001 1.000

Split Conv. <0.001 0.003 <0.001 - 0.018

1D Conv. 0.431 1.000 1.000 0.018 -

Statistically significant values (p < 0.05) are shown in bold.

methods, indicating that it is the worst performing method of
fusion. The difference in accuracy between grouped and mixed
fusion was also found to be statistically significant, meaning that
grouped fusion performed better than mixed within this sample
group. Stacked, grouped, and 1D convolution fusion showed
no statistical significance in their accuracy differences, meaning
that these methods demonstrate similar performance within this
sample group. In general, there was a trend of spectrogram-
based methods having a higher mean accuracy than signal-based
methods (which held true for both EEG–EMG fusion, as well as
EEG and EMG alone).

3.2. Speed Specific Accuracy
The accuracy results, separated into the fast and slow speed
groups, can be seen in Figure 8. For all four model types,
the effect of speed was statistically significant (p < 0.001 for
all). Looking at the plot, it can be seen that performance was
significantly worse during the fast speed for all models. All
models still remained above the chance level during the fast
motion speed; however, EEG accuracy decreased almost to this
point (with 1D convolution in particular being essentially at the
chance level). It can also be seen that, even when accounting for
speed, the trend of EEG–EMG fusion outperforming EEG and
slightly increasing accuracy over EMG still remained; however,
the increase was much less during fast motion (and in the case
of 1D convolution, EMG alone was slightly higher than fusion
during the fast speed).

3.3. Classifier Performance
The confusion matrices for all four model types can be seen
in Figures 9–12, with each figure corresponding to one type of
model. For each model type, a confusion matrix is presented
for every model (fusion, EEG, and EMG), shown as sub-
figures. Looking at the class outputs, it can be seen that all
models successfully classified 0 lbs at a much higher rater rate
when compared to 3 and 5 lbs (which were similar to each
other in performance). An exception to this trend is the two
signal-based EEG models (shown in Figures 11B, 12B for split
and 1D convolution, respectively), which had generally poor
performance for all weight classes. The precision and recall
scores for the spectrogram-based models are relatively similar
between the two metrics, demonstrating that on average the fit
of the models was balanced in its performance. The signal-based

models show less balance between the twometrics comparatively,
although not to a large degree.

4. DISCUSSION

The goal of this study was to evaluate if CNNs could be used as
a new method of input level EEG–EMG fusion to classify task
weight during dynamic elbow flexion–extension motion. The
hope was that the CNN’s ability to automatically learn relevant
information from an inputted image may capture aspects of
the EEG–EMG relationship not yet found when using manual
feature extraction techniques. To this end, this study investigated
several methods of representing the EEG–EMG signals as images
(to convert the bioelectrical signals into a form suitable for
input into a CNN), as well as ways to fuse EEG/EMG during
convolution while in image form. This was done to act as a
preliminary analysis of these methods, to see which CNN-based
EEG–EMG fusion techniques show the most promise to justify
their further development. This will ultimately benefit the field of
rehabilitation and assistive robotics by providing a new method
of EEG–EMG fusion that can be used by the control system of
such devices to detect user tasks to adapt accordingly, resulting
in devices that are safer and more comfortable to control.

Looking at the model accuracy for each method, it can be seen
that all models performed above the chance level (33.33%), and
that the precision/recall scores were relatively balanced between
the two metrics (albeit less so for the signal-based models than
the spectrogram models). This shows that the CNN classifiers
were successfully able to decode task weight information from
the EEG/EMG signals, indicating that this classification method
is feasible for this task. When comparing EEG–EMG fusion to
using EEG or EMG alone, a clear trend is seen where using
EEG–EMG fusion improves the performance of the models.
For all model types, EEG–EMG fusion resulted in some level
of accuracy improvement, as well generally higher precision
and recall scores (and for the classes where the precision/recall
scores were not higher, they were almost the same). Even though
no statistically significant difference was found between EEG–
EMG fusion and using EMG alone, this does not completely
invalidate the use of this new method. Despite the current
iteration of these models showing that the improvements gained
from using EEG–EMG fusion compared EMG are small, the
fact that improvements are consistently observed when using
fusion demonstrates that the method shows potential as a tool
to improve task weight classification and should be investigated
further. By focusing future work on developing improvements
to model performance, the accuracy gains of using EEG–EMG
fusion may be increased, providing a stronger justification for its
use over EMG alone. Based on the trend, it is highly likely that
increasing study power through the recruitment of more subjects
may result in the difference in accuracy becoming statistically
significant. Also, improving the quality of the EEG signals may
improve the EEG–EMG fusion models further. Looking at the
EEG models, a clear drop in accuracy and classifier performance
can be seen when compared to EMG and EEG–EMG fusion,
which is likely due to the noisy nature of EEG signals. Due to
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FIGURE 8 | The mean accuracy for all CNN models, separated by the two speed levels (fast and slow). Models of the same type are grouped together, with the order

of the groups from left to right as follows: single-channel spectrogram models, multi-channel spectrogram models, split convolution signal models, and 1D convolution

signal models. Error bars represent ± one standard deviation.

their significantly smaller signal amplitude, EEG is more prone
to signal contamination from motion artifacts and magnetic
interference when compared to EMG, which can make it harder
to use for classification. The use of more advanced noise rejection
techniques and better measurement hardware may improve
EEG task weight classification, which should in turn improve
the EEG–EMG fusion models. Increasing the amount of EEG
channels being used may also help improve the EEG models, as
well as EEG–EMG fusion, since it will allow the classifier to draw
from more sources from different areas in the brain. However,
this trade-off needs to be balanced when using this application
for wearable robotics, as these devices are very limited in the
hardware resources available. Even though EEG showed worse
performance compared to EMG, it was still clearly able to be
of some benefit to the EEG–EMG fusion models, since their
mean accuracy always tended to be higher than the models based
on EMG alone. As a preliminary analysis of EEG–EMG fusion,
this work was able to demonstrate that there is a clear benefit
to using CNN-based EEG–EMG fusion over just using EEG or
EMG alone. It showed a trend of CNN-based EEG–EMG fusion
resulting in an increase in mean accuracy, demonstrating the
feasibility of these methods and providing a justification for their
continued development. Future work should focus on improving
these models further to increase the improvements that these
techniques provide.

Another objective of this work was to see which methods
of combining EEG/EMG would result in the best performance
when using CNN models. Looking at the accuracy results of

each fusion method, it is clear to see that the CNNs models
did perform differently depending on the method used. Of all
the fusion methods, split convolution using signal images as
inputs performed the worst (and this difference was found to be
statistically significant when compared to all other model types).
Even though other studies have used this method successfully for
classification when only using EEG signals (Schirrmeister et al.,
2017; Amin et al., 2019; Li et al., 2019; Zhao et al., 2019), it is clear
from this work that it is not suitable when used with EEG/EMG
together for task weight classification. For signal-image-based
models, using a traditional 1D convolution to perform CNN-
based EEG–EMG fusion results in better performance. For the
spectrogram-image-based models, it was less obvious which
fusion type is superior. The grouped method had the highest
mean accuracy, and the increase over the mixed method was
statistically significant, which implies that of the two ways to mix
EEG/EMG spectrograms, using the grouped method is better.
Between grouped and stacked methods though, the difference
in accuracy was not statistically significant, so it is less clear
which method is best. It should be noted that the stacked
spectrogram method is much more computationally efficient
than the grouped method (CNNs can perform convolution on
a smaller image with multiple channels faster than a larger
image with only one channel), which may be a reason to
use the stacked method. Since both methods have similar
accuracy, the faster method is more ideal, as the end goal of
these models is to be used in real time in wearable robotic
exoskeletons. Regardless, both methods should be developed
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FIGURE 9 | Confusion matrices, using the combined classification results for all subjects, for the single-channel spectrogram-based CNN models. (A) Shows the

matrix for the grouped fusion method while (B) shows the matrix for the mixed fusion method. (C,D) Show the matrices for the EEG and EMG only models,

respectively. Each matrix contains a positive/negative precision score summary in the final two rows, and a positive/negative recall score summary in the final two

columns.

further in future work to investigate which method is ultimately
superior. Comparing between spectrogram-image-based models
and signal-image-based models, it can be seen that, in general,
the mean accuracy of spectrogram models was higher. This
is also confirmed when looking at the confusion matrices, as
the precision and recall scores are not as balanced for the
signal models. This even held true for the EEG and EMG only
models, in particular EEG, which showed a significant drop
in accuracy (as well as precision and recall) for the signal
models. This makes sense, since it is well known that much
of the relevant information related to motor tasks is encoded
in the frequency of the EEG signals (Vaid et al., 2015). It is
likely that the time-domain-based representation of the signal
images was not able to capture this information as well as the
time–frequency-based representation used in the spectrogram
images could. This, in turn, would also affect the EEG–EMG
fusion methods, which are drawing information EEG, as well
as EMG. Despite the lower mean accuracy, no statistically
significant difference was found between the 1D convolution,
grouped, and stacked methods. This means that even though the
trend would make it seem like the 1D convolution method is
worse, it should still be considered for future development. One
potential benefit of the 1D convolution method is that it requires
fewer processing steps to generate the images. Performing a
calculation like a STFT can be comparatively time consuming,

and computationally expensive, so the use of signal-image-
based models may be justified when used in a real-time context
for a wearable robotic system. The slight decline in model
performance may be outweighed by the efficiency provided by
the simpler method; however, further testing and development
is needed to confirm this. Since the purpose of this experiment
was to investigate the initial feasibility of the different CNN-
based EEG–EMG fusion methods, an extensive evaluation of the
computational complexity of each algorithm was not performed.
The discussion here is based merely on qualitative observations;
however, next steps should focus on additional quantitative
evaluations of model complexity, which will become essential
for moving the models toward a real-time application when
integrating them into a wearable device. Ultimately, all three
fusion methods (grouped, stacked, and 1D convolution) should
continue to be improved and investigated, since there was not
one method shown to definitely have better performance and all
three methods have clear benefits.

The models can be evaluated further by looking at the speed
separated results, as well as the confusion matrices, to examine
how robust the classifiers are to changes in task weight and
motion speed. Looking at the confusion matrices in Figures 9–
12, it can be seen that task weight affected classification accuracy.
All models were able to recognize the 0 lbs class at a much
higher rate than the 3 lbs and 5 lbs classes. While both of these
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FIGURE 10 | Confusion matrices, using the combined classification results for all subjects, for the multi-channel spectrogram-based CNN models. (A) Shows the

matrix for the stacked fusion method, while (B,C) how the matrices for the EEG and EMG only models, respectively. Each matrix contains a positive/negative precision

score summary in the final two rows, and a positive/negative recall score summary in the final two columns.

classes still had relatively good precision and recall scores, 3 lbs
and 5 lbs were often misclassified as each other, but not 0 lbs,
which implies that the models had a harder time distinguishing
the smaller difference in weight. This still does present some
level of benefit to a wearable robotic exoskeleton, since even
knowing that the user is holding something or not, could be
useful for allowing the control system to adapt; however, future
work should look at improving the model results further to make
them more consistent across different task weights. It is clear
from Figure 8 that speed also has a great effect on performance
for all models, with the fast speed having a significantly lower
accuracy than the slow speed. The EEG–EMG fusionmodels were
still above chance level when moving at the fast speed, which
means that they are still able to recognize relevant patterns in
the EEG/EMG signals, just not as effectively. It also should be
noted that the trend of EEG–EMG fusion having higher accuracy
than using EEG or EMG alone continued, even when separated
by speed; however, the increase was very small during fast speed
(and the 1D convolution model was actually slightly less accurate
than EMG during fast motion). There are multiple things that
may be causing this phenomenon. First, faster movements are
more likely to cause the EEG and EMG signals to be corrupted
by motion artifacts. The more aggressive movements performed
by the subject during the fast motion speed may be causing
more motion artifacts, which in turn makes the signals harder
to use for classification. To alleviate this, more advanced filtering

techniques should be used during signal processing to remove
this noise. The second reason why the fast motion may be
harder to classify is due the nature of task weight classification
itself. Despite being related to muscle force (a heavy weight
needs more muscle force to move), the task weight itself is not
actually a direct measurement of muscle force. The muscle force
required to perform an elbow flexion–extension repetition will
be a combination of the speed at which the subject was moving
and the weight they are holding. It is possible that this is causing
smaller weights, moving at a faster speed, to have the appearance
of a larger weights at a slower speed, causing themisclassification.
EMG in particular may be prone to showing this pattern, since
EMG is a measurement of muscle activation. This theory is
supported by the authors’ previous work, which classified task
weight using EEG–EMG-fusion based on traditional machine
learning techniques that rely on manual feature extraction. In
this study, it was found that all EEG–EMG fusion models
showed a statistically significant improvement in accuracy when
adding a feature for speed information (in this case a categorical
label for fast and slow), seeing improvements of 1.2% for the
best performing fusion method (Tryon and Trejos, 2021). Basic
knowledge about the speed of the motion given to the classifier
was enough to help improve accuracy, so it stands to reason
this could be possible for the CNN models as well. Future work
should investigate ways to include speed information into the
input of the CNN, and evaluate the effect that this has on classifier
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FIGURE 11 | Confusion matrices, using the combined classification results for all subjects, for the split convolution signal-image-based CNN models. (A) Shows the

matrix for the EEG–EMG fusion model, while (B,C) how the matrices for the EEG and EMG only models, respectively. Each matrix contains a positive/negative

precision score summary in the final two rows, and a positive/negative recall score summary in the final two columns.

performance. Finally, the reduction in accuracy seen during the
fast motion trials could be due to the way the CNN models
fit to the data. The nature of how the EEG/EMG signals were
windowed mean that there are more observations of movement
during the slow speed than the fast speed (since for slow motion
it took longer to complete an elbow flexion–extension repetition,
and there were the same number of repetitions for both speeds).
It is possible that the models became fitted more heavily toward
the slow speed data points, causing poorer performance for
the fast speed. To account for this, future work should look at
collecting more repetitions for the fast motion speed to balance
out the classifier training.

Based on the results of this work, CNN-based EEG–EMG
fusion has shown to be a feasible method for classification of
task weight, and warrants further development to increase the
improvements provided by this technique. One potential area
for improvement is in the dataset used to train the models.
As previously discussed, increasing the number of subjects may
improve study power and allow for more statistically significant
results; however, this can also allow for the development of
generalizedmodels that do not need to be subject specific. Ideally,
to allow for ease of use, a wearable robotic exoskeleton should be
able to function for any user with minimal training/calibration
required. With a large enough sample of the population, general
classification models can be pre-trained so that new users
can skip the time consuming step of classifier training. An

improved dataset can also benefit subject specific models by
collecting more elbow flexion–extension repetitions, as well as
more combinations of speed and weight. One aspect of CNN
models is that their performance can be reduced for smaller
training datasets (Luo et al., 2018), so collecting more data
per subject should improve performance. More speed/weight
combinations will help to provide a more in-depth analysis of the
robustness of the classifiers, and will improve their functionality.
Since this was the first analysis of CNN-based EEG–EMG fusion,
only a small range of weights (0lbs to 5 lbs) and two speeds
(approximately 10◦/s and 150◦/s) were evaluated. It is possible
that the inclusion of more task weights, and a larger range
of allowable dynamic motion speeds, will affect the classifier
performance further, so this effect should be investigated in
future work. The current task weight resolution of the classifiers
(three weight levels) may limit their use for assistance with
daily-living tasks, where the user is unpredictability lifting many
objects of varied weights; however, this resolution could still
be relevant for more controlled tasks, such as rehabilitation.
During rehabilitation exercises, the movement patterns and
weight changes performed by the user will be more predictable
than activities of daily living, making the use of these classifiers
more feasible. The models developed for this work could
be used to help the control system of a wearable robotic
rehabilitation device automatically adapt changing weights as
the user performs different exercises, and will not require the
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FIGURE 12 | Confusion matrices, using the combined classification results for all subjects, for the 1D convolution signal-image-based CNN models. (A) Shows the

matrix for the EEG–EMG fusion model, while (B,C) how the matrices for the EEG and EMG only models, respectively. Each matrix contains a positive/negative

precision score summary in the final two rows, and a positive/negative recall score summary in the final two columns.

user/therapist to enter the weight change manually, via some
external input method, which may feel cumbersome for the user
(for example a smartphone app). The ultimate goal, however,
is to keep improving the CNN-based EEG–EMG fusion models
to increase their resolution, making them a viable tool for
use in many different applications, such as assistance with
daily tasks.

Onemethod that may improve CNN-based EEG–EMG fusion
is to increase the complexity of the models via the inclusion of
other deep learning architectures into the model configurations.
One popular example of this is the development of models
that combine CNNs with Long Short-Term Memory (LSTM)
classifiers. LSTM models are beneficial for the classification of
information that changes over time, by retaining a memory
of inputs (Greff et al., 2017). Since the behavior of EEG
and EMG signals will change depending on what stage of
elbow flexion–extension motion is currently being evaluated
(for example the biceps muscle should be more dominant
during flexion), LSTMs may benefit the model by being able
to incorporate this information better than using only a CNN.
Other studies have shown that CNNs, combined with LSTMs,
can be used for EEG (Ditthapron et al., 2019; Zhang et al.,
2019; Wilaiprasitporn et al., 2020) and EMG (Xia et al., 2018)
classification, and LSTMs alone have been used during decision-
level EEG–EMG fusion (Tortora et al., 2020), so there is
evidence to suggest that this can be a beneficial technique for

improving EEG/EMG models. Future work should evaluate the
use of combined CNN–LSTMmodels for input-level EEG–EMG
fusion. Another potential way of improving CNN-based EEG–
EMG fusion is to explore other methods of calculating time–
frequency signal images. While the STFT is a popular time–
frequency representation method, it is far from the only one.
Other studies have shown that Wavelet-Transform-based images
can also work for EEG (Chaudhary et al., 2019; Xu et al.,
2019) and EMG (Côté-Allard et al., 2019) CNN models, so
future work should investigate these methods as an alternative
to using STFT spectrograms for CNN-based EEG–EMG fusion.
Improving these models will move them closer to being
practically implemented within a wearable robotic exoskeleton,
where they can improve the usability of these devices during
rehabilitation and assistive tasks.

5. CONCLUSION

This work demonstrated the feasibility of using CNNs as
a method of input level EEG–EMG fusion for task weight
classification during dynamic elbow flexion–extension. It
presents a new EEG–EMG fusion method that can be used
to improve the performance of bioelectrical signal controlled
robotic devices for assistance and rehabilitation. During
the experiment performed, it was shown that a trend exists
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where EEG–EMG fusion resulted in a higher mean accuracy
compared to using EEG and EMG alone. Different methods
of representing the EEG/EMG signals for use in the CNNs
were also evaluated, and it was found that time–frequency-
image-based models (spectrograms) tended to outperform
time domain (signal) models; however, signal models using 1D
convolution may still have the potential to match spectrogram
model performance. Future work should expand upon the
results shown here, and focus on improving performance by
increasing model complexity through the inclusion of other
deep learning architectures (such as Long Short-Term Memory
networks), as well as, investigating other time–frequency image
representation methods (such as Wavelet Transforms). It should
also focus on improving the training dataset used by collecting
EEG/EMG signals during more speed/weight combinations,
collecting more motion repetitions from each subject, and
collecting data from a larger population of subjects, to allow
for a more in-depth analysis of model robustness, as well as
better trained models. Using CNNs to facilitate EEG–EMG
fusion presents a new way to utilize these bioelectrical signals
for the control of wearable robotic devices, and implementing
EEG–EMG fusion for task weight classification will allow
such devices to adapt to changes in system dynamics so
that they can perform assistive and rehabilitation tasks in a
more stable and robust way. This will ultimately improve the
user experience, leading to safer devices that can be more
widely adopted as a new treatment and assistance solution for
musculoskeletal disorders.
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