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We introduce a hybrid algorithm for the self-semantic location and autonomous

navigation of robots using entropy-based vision and visual topological maps. In visual

topological maps the visual landmarks are considered as leave points for guiding the

robot to reach a target point (robot homing) in indoor environments. These visual

landmarks are defined from images of relevant objects or characteristic scenes in the

environment. The entropy of an image is directly related to the presence of a unique

object or the presence of several different objects inside it: the lower the entropy the

higher the probability of containing a single object inside it and, conversely, the higher the

entropy the higher the probability of containing several objects inside it. Consequently,

we propose the use of the entropy of images captured by the robot not only for the

landmark searching and detection but also for obstacle avoidance. If the detected

object corresponds to a landmark, the robot uses the suggestions stored in the visual

topological map to reach the next landmark or to finish the mission. Otherwise, the robot

considers the object as an obstacle and starts a collision avoidance maneuver. In order

to validate the proposal we have defined an experimental framework in which the visual

bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation

tasks.

Keywords: visual bug algorithm, entropy search, visual topological maps, internal models, unmanned aerial

vehicles

INTRODUCTION

Some of the most challenging behaviors of autonomous robots are related to navigation tasks.
According to a policy of safe navigation, the basic level of behaviors are devoted by strategies that
allow the obstacle detection and the collision avoidance. Once these tasks have been conveniently
solved, the next level is route planning, i.e., the generation of routes or paths that allow the
robot to reach specific places in the environment. Some information about the environment is
needed for such kind of planning. This information is managed by the robot control system and
concerns the fundamental issue of environment mapping. The robot can store a sort of metric data
related to the environment, topological information, including relationships between elements of
the environment and features, maybe visual, associated to them, or any combination of both.
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The aim of our work is to introduce an efficient method for
autonomous robot navigation supported by visual topological
maps (Maravall et al., 2013a), in which the coordinates of both
the robot and the goal are not needed. More specifically, this
novel method is meant to drive the robot toward a target
landmark using self-semantic location, while simultaneously
avoiding any existing obstacle using exclusively vision capacity.
By self-semantic location we refer to the concept used generally
in topological models that differs frommetric navigation models.
Therefore, self-semantic location means that the robot control
system is able to determine an approximate, semantic self-
location when a landmark already presented in the model is
detected and recognized. In summary, self-semantic location
refers to the cognitive information associated to a particular place
of the environment (e.g., “I am at the restaurant,” so that the robot
has a specific cognitive framework at this particular place of the
environment).

The proposed algorithm is based on a conventional bug
algorithm, although in our version we use only visual
information as opposite to the classic versions that employ
metric information. As it is well-known the bug algorithms are
a family of techniques for obstacle avoidance in robot navigation
with metric maps in real-time (Lumelsky and Stepanov, 1987;
Lumelsky, 2005). These techniques make the robot head toward
the goal and, if an obstacle is encountered, it circumnavigates it
and remember how close it gets to the goal. Once the obstacle
is avoided, the robot returns to the closest point and continues
toward the goal. The main drawback of the conventional metric
bug algorithms is that they need the knowledge of the robot
localization (the hardest constraint) besides the coordinates of
the goal in a common reference framework. To update the robot’s
position coordinates is necessary the use of external positioning
systems.

Our method focuses on the search of the target visual
landmark based on the entropy maximization of the images
captured by the robot (Fuentes et al., 2014), which is used
when the robot is in an unknown localization. Our hypothesis
is that there is a direct and positive correlation between
the entropy of an image and the probability of this image
containing one or several objects: the higher the entropy,
the higher its probability of containing several objects inside
it; and conversely, the lower the entropy, the higher its
probability of containing a single object inside it. Afterwards,
when the robot has detected a potential landmark, i.e., it is
in a known location, a dual architecture is executed with
inspiration on cerebellar system of living beings combined
with a brain activity. This dual architecture provides the
reactive and anticipatory behaviors for the robot autonomous
control.

Although the technique can be applied to any type of
autonomous robot, we employ an Unmanned Aerial Vehicle
(UAV). The application of our algorithm to these flying robots
is justified due to occasionally the UAVs only have available
an onboard camera as main input sensor for obstacle detection
and landmark and location recognition as well as other specific
sensors for flying related matters. This is mainly the case with
Micro Aerial Vehicles (MAVs).

The rest of the paper is organized as follows. The next section
summarizes some related work with the main findings in this
work, namely navigation based on topological maps and obstacle
detection and avoidance. After the theoretical foundations of
the entropy-based search combined with the bug algorithm,
we present the experimental work performed for its validation
using an UAV. The paper ends with some suggestions for future
research work based on the use of the vehicle onboard cameras
for vision-based quality inspection and defects detection in
different operating environments.

RELATED WORK

Our proposal involves the use of visual graphs, in which
each node stores images associated to landmarks, and the arcs
represent the paths that the UAV must follow to reach the
next node. Therefore, these graphs can be used to generate
the best path for an UAV to reach a specific destination, as it
has been suggested in other works. Practically each traditional
method used in ground robots for trajectory planning has been
considered for aerial ones (Goerzen et al., 2010). Some of those
methods use graph-like models and generally they use algorithms
such as improved versions of the classic A∗ (MacAllister et al.,
2013; Zhan et al., 2014) and Rapidly-exploring Random Tree
Star (RRT) (Noreen et al., 2016) or reinforcement learning (RL)
(Sharma and Taylor, 2012) for planning. RL is even used by
methods that consider the path-planning task in cooperative
multi-vehicle systems (Wang and Phillips, 2014), in which
coordinated maneuvers are required (Lopez-Guede and Graña,
2015).

On the other hand, the obstacle avoidance task is also
addressed here, which is particularly important in the UAV
domain because of a collision in flight surely implies a danger
and the partial or total destruction of the vehicle. Thus, the
Collision Avoidance System (CAS) (Albaker and Rahim, 2009;
Pham et al., 2015) is a fundamental part of control systems.
Its goal is to allow UAVs to operate safely within the non-
segregated civil and military airspace on a routinely basis.
Basically, the CAS must detect and predict traffic conflicts in
order to perform an avoidance maneuver to avoid a possible
collision. Specific approaches are usually defined for outdoor
or indoor vehicles. Predefined collision avoidance based on sets
of rules and protocols are mainly used outdoors (Bilimoria
et al., 1996) although classic methods such as artificial potential
fields are also employed (Gudmundsson, 2016). These and other
conventional well-known techniques in wheeled and legged
robots are also considered for being used in UAVs (Bhavesh,
2015).

Since most of the current UAVs have monocular onboard
cameras as main source of information several computer vision
techniques are used. A combination of the Canny edge detector
and the Hough transform is used to identify corridors and
staircases for trajectory planning (Bills et al., 2011). Also, feature
points detectors such as SURF (Aguilar et al., 2017) and SIFT (Al-
Kaff et al., 2017) are used to analyze the images and to determine
free collision trajectories. However, the most usual technique is
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optic flow (Zufferey and Floreano , 2006; Zufferey et al., 2006;
Beyeler et al., 2007; Green and Oh, 2008; Sagar and Visser,
2014; Bhavesh, 2015; Simpson and Sabo, 2016). Sometimes optic
flow is combined with artificial neural networks (Oh et al.,
2004) or other computer vision techniques (Soundararaj et al.,
2009). Some of those techniques (de Croon, 2012) are based on
the analysis of the image textures for estimating the possible
number of objects that are captured. Finally, as in other scopes of
research, deep learning techniques are also been used to explore
alternatives to the traditional approaches (Yang et al., 2017).

THE VISUAL BUG ALGORITHM

In words the visual bug algorithm can be summarized as follows:
“search the target landmark and once it is visible then move
always toward the target landmark and circumnavigate any
existing obstacle when necessary.”

Besides the implementation of the visual search procedure
(which is obviously less critical when the robot controller is
provided with the orientation ⊖ to the target landmark), the
critical element is the robot odometry (Lumelsky and Stepanov,
1986) and more specifically the robot’s dead reckoning or path
integration, for this reason the robot planner is then based in the
control of the orientation ⊖ toward the target landmark using
topological maps.

Figure 1 shows the pseudocode of the visual bug algorithm
(Maravall et al., 2015a):

Besides the basic procedure visual search, this algorithm
consists of three additional complex vision-based robot
behaviors:

• B1: “go forward to the goal”

• B2: “circumnavigate an obstacle”
• B3: “turns the orientation⊖ ”

There are defined three basic environment’s states or situations:

• S1: “the goal is visible”
• S2: “there is an obstacle in front of the robot”
• S3: “a landmark from the topological map is visible”

The visual bug algorithm sets out also hard computer vision
problems for both the perception of the environment’s states S1,
S2, and S3 and for the implementation of the three basic robot’s
behaviors B1, B2, and B3, so that it is devoted the bulk of the
remaining sections of the paper to describe our proposals aimed
at solving these specific computer vision problems.

VISUAL LANDMARKS SEARCH AND
RECOGNITION FOR ROBOT
SELF-SEMANTIC LOCATION USING
VISUAL TOPOLOGICAL MAPS

As it was already pointed out in the pseudocode of the visual
bug algorithm, and as it is shown in Figure 2, the visual
topological map is a connected graph where each node stores
images corresponding to the next nodes/landmarks to which it is
connected, and toward which the robot must navigate. Besides,
the arcs connecting two nodes stores information about the
relative orientation, 2, of one node/landmark with respect to
the other. Hence, this hybrid visual and “odometric information”
(just orientations and landmarks) can be used by the robot’s
navigation module for its self-semantic location, allowing

FIGURE 1 | Visual Bug Algorithm.
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FIGURE 2 | A Visual Topological Map is a graph defined as a set of nodes

(visual landmarks) with relations based on arcs (orientations).

the search and detection of the sequential nodes/landmarks
belonging to a specific route.

Notice to the existence of unknown states (high error ε) in
which the robot uses entropic vision; known states (low error ε)
are used when the robot is able to determinate its position with
respect to the Ln landmark.

In the sequel a novel method for this self-semantic location
task is proposed (i.e., the task of landmark search and
recognition; Maravall et al., 2013b) based on the combination
of image entropy for landmark search (Search Mode), and a
dual feedforward/feedback vision-based control loop (Homing
Mode) for the final landmark homing. Figure 3 shows the finite
state automaton that models the robot’s controller between
the Search Mode [S] and the Homing Mode [H] depending
on the magnitude of the error ε or the difference images
(respect to the landmarks defined in the topological map)
and according to the simple heuristic rule: If {error is big}
Then {S} Else {H}. As previously mentioned, once the image
containing the candidates for the target landmark has been
obtained by the entropy maximization process in the Search

FIGURE 3 | Finite state automaton for Search or Homing Mode selection.

Mode, the robot’s controller switches to the Homing Mode to
guide the UAV toward the target landmark (Maravall et al.,
2015a).

Search Mode: Entropy-Based Landmark
Search
The main idea behind the entropy-based search is the direct
and positive correlation between the entropy of an image and
the probability of the image of containing several objects inside
(in the case of high entropy) or conversely the probability of
the image of containing just a single object (in the case of low
entropy) (Fuentes et al., 2014). Figure 4 shows an example of this
idea.

As visual landmarks in topological maps are usually selected as
outstanding single objects, normally surrounded by other objects
that produce together complex images with a high entropy, the
task of visual landmarks search and detection can be formalized
as a sequential process of image entropy maximization aimed at
converging to an image of high entropy, hopefully containing
several candidates of the single target object landmark, followed
by a homing process aimed at guiding the robot toward the target
landmark by means of a vision-based loop control, as explained
below.

Therefore if it is represented by u the robot’s control variables
(angles of movement as pitch, roll and yaw) this process of
entropy maximization can be expressed as follows:

u̇ = +
∂H[Hist(Ik)]

∂u
(1)

where H is the image entropy, as given by the standard definition
(Shannon, 1948) of the entropy of the normalized histogram
Hist(Ik):

H[Hist(Ik)] = −
∑

[

Hist(Ik) · log2Hist(Ik)
]

(2)

These control signals are obtained along the k trials, during the
operation of the robot in the flight environment.
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FIGURE 4 | Example of the empirical fact that the higher the number of objects (landmarks) inside an image, the higher its entropy.

Homing Mode: The Feedforward/Feedback
Controller for Landmark Homing
This homing mode has been implemented as a dual
feedforward/feedback control architecture which is constituted
by the combination of a feedback module (either based on a
conventional PD control or on error gradient control), and a
feedforward module (based on either a neurocontroller or a
memory-based controller).

This dual control architecture is shown in Figure 5, which
shows the block-diagram of the dual feedforward/feedback
controller (Kawato, 1990). Notice that the feedback or reactive
controller receives as input the ε error; this vision-based error
signal ε is obtained as the difference between the histogram of the
recognized landmark or histogram of the goal image Hist(Ig) and
the histogram of the current image Hist(Ik) during the k iteration
of the controller.

Nevertheless, the feedforward or anticipatory controller
receives as input the histogram of the current image Hist(Ik). The
feedback controller is implemented as a conventional PD control
algorithm (Maravall et al., 2013a) whose control parameters are
set experimentally. On the other hand, the feedforward controller
is based on an inversemodel (Kawato, 1999) using a conventional
neural network based on multilayer perceptron (Maravall et al.,
2015b), which is trained (using the output of the feedback
controller) when error signal ε has been reduced in the last
iterations. Both output control signals ufb and uff are combined
as follows:

ut = wfb · ufb + wff · uff (3)

The weight parameters wfb and wff are set experimentally along
the trials with the UAV. The ut is the vector control signals (pitch,
roll, and yaw) which is sent to the robot.

Summarizing, when the error ε is high, the robot is around
an unknown state and it executes the entropy-based controller

as it has been detailed in the previous section. When the
robot recognizes the current location and it is able to detect
any landmark already stored in the topological map, it follows
the commands generated by the dual feedforward/feedback
controller.

EXPERIMENTAL WORK: UAV NAVIGATION
BASED ON THE VISUAL BUG ALGORITHM
PLUS LANDMARKS SEARCH THROUGH
IMAGE ENTROPY

AR.Drone
For the experimental work concerning the testing and validation
of the proposed method for visual landmarks search and
detection, it has been used the quadrotor Parrot AR.Drone 2.0
(Figure 6) as UAV well-established and widely available robotics
research platform (Krajnik et al., 2011).

The Parrot company launched the project named AR.Drone
with the final objective of producing a micro UAV aimed at both
the mass market of videos games and the home entertainment.
AR.Drone 2.0 has been finally released on the market and it
is widely available at a low price that make it possible to be
used as a unique robotic platform for experimental work on
UAVs.

All commands and images can be exchanged with a central
controller via an ad-hoc Wifi connection. The AR.Drone has an
on-board HD camera and it has four motors to fly through the
environment. This UAV supports four different control signals
or degrees of freedom along the usual axes (roll, pitch, gaz, and
yaw). The different maneuvers can be executed by the axes grades
(roll, pitch, gaz, and yaw). The gaz variable regulates the altitude
control.

This UAV has been extensively used for autonomous
navigation at indoor environments (Maravall et al., 2013a).
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FIGURE 5 | The feedforward/feedback controller.

FIGURE 6 | AR.Drone 2.0 with axes: roll, pitch, and yaw.

Description of the Experiments
For the validation of the proposed algorithm, it has been selected
a typical indoor environment (see Figure 7). In an emergency
situation, an UAV can help people to find an exit door along a
secure route. For this, a topological map has been defined for
the representing the environment, and to verify how the UAV
is able to search and reach an exit door when an emergency
situation occurs (for example fire in a building, flood in a
home, etc.).

Figure 7 shows the environment used during the experiments
with the UAV, for which it is defined a visual topological
map using a set of landmarks situated along the environment:
(a) the experimental indoor environment schema and (b) its
associated visual topological map. The UAV navigates along the
environment using the entropy-based controller, and when a
landmark (a node) is detected through the dual controller, the
UAV performs the control signals stored (in the arc), to guide it
to the next landmark defined in the map.

For this scenario, the topological map defines three landmarks
Ln: the landmark L3 is an open door, the landmark L2 is a fire
extinguisher and the landmark L1 or landmark goal is an exit
door. Figure 7 also shows the approximate situation of each
landmark along the environment.

Discussion of the Experimental Results
The UAV is located on a given start point (unknown state) in the
experimental indoor environment, at a given distance near with
respect to a specified landmark in the topological map. The UAV
aims reach this first landmark using the entropy-based controller
because the error ε is high.

Through the entropy-based controller, it is executed a
process of image entropy maximization (Search Mode) aimed
at converging to a state of high entropy, hopefully containing
landmarks from the visual topological map. This controller uses
three entropic values: the left zone (HL), the right zone (HR), and
the central zone (HC) of image captured from the UAV.

When the UAV is near of the first landmark L3, the
error ε decreases, and it is switched to the Homing Mode,
through the dual feedforward/feedback controller. Therefore, the
dual controller starts generating control signals ut increasingly
optimal, for send them to the UAV.

The signals ufb have been calculated by the feedback controller
(reactive behavior) from the different images that are captured by
the UAV’s onboard camera, as well as the signals uff provided by
the feedforward controller (anticipatory behavior). Both signals
have been consolidated adaptively through interaction of the
robot with its environment.

Figure 8 shows the first landmark L3 when is detected by
the UAV. The entropic values are shown: the full entropy of
image H(L3), the left entropy HL(L3), the center entropy HC(L3),
and the right entropy HR(L3) of the image captured. HC(L3) is
the higher entropy, therefore the UAV executes a maneuver go
forward to the open door.

The UAV recognizes the L3 landmark at the k=4 iteration.
When the UAV reaches the specified landmark, it will proceed
to execute the specified maneuver in the corresponding arc in
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FIGURE 7 | Schematic information about the experimental environment. (A) Experimental indoor environment schema. (B) Associated visual topological map.

FIGURE 8 | The first landmark L3 when is detected by the UAV.

the topological map. It is considered that the approximation
maneuver has been executed correctly and the UAV has been
able to approximate to this landmark for its identification.
The arc stores the corresponding orientation 2, for which
the UAV performs a forward maneuver (pitch) plus a
right turn (yaw), passing this way the open door that

FIGURE 9 | The next landmark L2 when is detected by the UAV.

has been identified. The attitude control (gaz) remains
constant throughout the experiment (about 150 cm above
the ground).

At this point the UAV is in an unknown state again and the
entropy-based controller is activated. After several iterations, the
robot locates a state with higher entropy in the environment and
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executes an approximation maneuver to the fire extinguisher.
When the error ε decreases, it is switched to the dual controller
and the L2 landmark is detected at the k= 11 iteration. The UAV
performs a left turn (yaw) to the next landmark defined in the
visual topological map.

Then, Figure 9 shows the next landmark L2 when is detected
by the UAV. The entropic values are shown: the full entropy of
image H(L2), the left entropy HL(L2), the center entropy HC(L2),
and the right entropy HR(L2) of the image captured. HC(L2) is
the higher entropy, therefore the UAV executes a maneuver go
forward to the fire extinguisher.

Finally, the UAV reaches the target point or L1 landmark
goal defined at the k = 19 iteration, and executes the specified
maneuver of this arc: go forward to the goal, showing the exit
door to an emergency situation.

Figure 10 shows the target landmark L1 when is detected by
the UAV. The entropic values are shown: the full entropy of

FIGURE 10 | The target landmark L1 when is detected by the UAV.

image H(L1), the left entropy HL(L1), the center entropy HC(L1),
and the right entropy HR(L1) of the image captured. HC(L1) is
the higher entropy, therefore the UAV executes a maneuver go
forward to the exit door.

During the experimentation, the UAV has used the pitch
actuator (forward/back), the gaz actuator (up/down), and yaw
actuator (rotation on its axis z). The values of the control signals
ut {pitch, yaw} that has been generated in each k iteration
executed during the experiments, are shown in Figure 11. The
control signals are generated (pitch and yaw) at each k iteration
during the approximation maneuver of the UAV, from start point
until to reach the target point (exit door). The landmarks L3, L2,
and L1 are detected by the UAV at iteration k = 4, k = 11, and
k= 19 respectively.

The entropy-based controller generates the values of the
control signals through image entropy maximization (entropic
vision), performing a maneuver for guide the robot to the higher
entropy state in each iteration. When the left zone of image has
the higher entropy (HL) the robot performs a turn to the left (yaw
= [–1..0]), else if the right zone of image has the higher entropy
(HR) the robot performs a turn to the right (yaw = [0..1]) in
this case. If the higher entropy is centered on the image (HC),
the robot goes forward (pitch = [–1..0]). The range of values for
yaw and pitch are defined by the AR.Drone SDK (Piskorski et al.,
2012).

The dual controller has generated the values of control signals
adaptively through interaction of the robot with its environment.
Experimentally, for the calculation of the combined signal ut,
it has been established the following weight values: wfb = 0.7
and wff = 0.3, for the feedback and feedforward controllers
respectively (Maravall et al., 2015b).

From the experimental results obtained in our laboratory it
is concluded that the UAV is able to successfully perform in real
time the fundamental skills of the visual bug algorithm, guiding
the robot toward a goal landmark (in this case exit door) using
self-semantic location in each landmark defined in the visual
topological map.

FIGURE 11 | The control signals generated (pitch and yaw) in each k iteration.
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CONCLUSIONS AND FUTURE WORK

A hybrid algorithm for the self-semantic location and
autonomous navigation of a robot based on entropic vision
and the visual bug algorithm has been presented and tested in a
scenario corresponding to a hypothetical emergency situation.
The proposed algorithm uses a visual topological map to
autonomously navigate in the environment. The nodes in the
topological map determine a leave-point or a landmark for the
self-location of the robot, in which the robot musts re-oriented
its navigation in order to reach the goal. Unlike the classic bug
algorithms, our algorithm does not require any knowledge about
the robot’s coordinates in the environment since the robot uses
its own self-location method during the navigation to know its
position in each iteration.

Based on the experimental results, it is concluded that this
hybrid algorithm is highly robust when the robot is around an
unknown location. The robustness is provided by the concept
of entropic vision and the search of zones with high entropy.
It is empirically confirmed the direct and positive correlation
between the entropy of an image and the probability of the
image of containing several objects inside. The performance
when the robot encounters an obstacle during its navigation
is acceptable, using the maximization of visual entropy as
strategy. In addition, both techniques (the visual bug algorithm

and the visual topological maps) together are able to increase
the overall solution performance, reducing the number of
iterations along the time for reach the goal landmark defined
previously.

Future work is planned toward implementation of this
hybrid algorithm on other situations in the real world, which
an engineering process as self-semantic location of robots is
needed: security in building, surveillance of frontiers or critical
infrastructure control. We plan to develop further research
work concerning the use of the UAV’s onboard cameras for
vision-based quality inspection and defects detection, taking
profit of our experience in vision-based quality inspection and
defects detection in the manufacturing industry, where we have
introduced the novel concept of the histogram of connected
elements as a generalization of the conventional gray level images
histogram.
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