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Nanoparticles interconnected by insulating organic molecules exhibit nonlinear
switching behavior at low temperatures. By assembling these switches into a
network and manipulating charge transport dynamics through surrounding
electrodes, the network can be reconfigurably functionalized to act as any
Boolean logic gate. This work introduces a kinetic Monte Carlo-based
simulation tool, applying established principles of single electronics to model
charge transport dynamics in nanoparticle networks. We functionalize
nanoparticle networks as Boolean logic gates and assess their quality using a
fitness function. Based on the definition of fitness, we derive new metrics to
quantify essential nonlinear properties of the network, including negative
differential resistance and nonlinear separability. These nonlinear properties
are crucial not only for functionalizing the network as Boolean logic gates but
also when our networks are functionalized for brain-inspired computing
applications in the future. We address fundamental questions about the
dependence of fitness and nonlinear properties on system size, number of
surrounding electrodes, and electrode positioning. We assert the overall
benefit of having more electrodes, with proximity to the network’s output
being pivotal for functionality and nonlinearity. Additionally, we demonstrate
an optimal system size and argue for breaking symmetry in electrode positioning
to favor nonlinear properties.

KEYWORDS

kinetic Monte Carlo, brain-inspired computing, neuromorphic computing, simulation,
nanoparticle networks, negative differential resistance, nonlinear system, single
electronics

1 Introduction

Brain-inspired computing represents an approach to advancing computation in
machine learning applications by emulating the information processing of biological
neural networks (Schuman et al., 2017). Compared to von-Neumann computing, it
leverages massively parallel operation without separating memory and processing
(Schuman et al., 2022). The implementation of these brain-like infrastructures aim
to overcome limitations of traditional hardware and ultimately reduce energy
consumption of current machine learning applications (Markov, 2014;
Nakajima, 2020).

Nanoparticle (NP) networks as one example of physical systems (Dale et al., 2021;
Milano et al., 2023) offer a promising avenue in this field. One current approach uses
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percolating scale-free NP networks with small-world properties
(Fostner and Brown, 2015; Bose et al., 2017; 2019; Daniels et al.,
2023; Mallinson et al., 2023). The intrinsic architecture of these
networks includes conductivity dynamics which are crucial for
computational tasks (Deng and Zhang, 2007; Kawai et al., 2019).
Tunnel gaps forming between adjacent areas or clusters of
nanoparticles act as nonlinear units or memristors, with their
resistance exhibiting nonlinear responses to alterations in
conductance. While the origin of the nonlinearity here arises
from the connections of large clusters of NPs and not the
particles themselves (Daniels et al., 2023), our approach is different.

Our research in this domain centers on single electronicswithin gold
NP networks (Likharev, 1999; Durrani, 2003). Each NP serves as a
conductive island, tunnel-coupled with its neighboring NP by an
insulating organic molecule. When a NP is charged, its excess
charges can tunnel to an adjacent NP only when the potential
difference between them surpasses the repelling force exerted by the
Coulomb energy. This Coulomb blockade effect imbues the charge
tunneling dynamics in between NPs with a nonlinear activation
function (van der Wiel et al., 2002).

The network is surrounded by electrodes, which serve as network
inputs, outputs or controls (see Figure 1). The latter manipulate the
network’s potential landscape and its charge tunneling dynamics,
enabling the mapping of various functionalities to the input and
output electrodes. Previous research has demonstrated the network’s
input to output dependence to reconfigurably function as any type of
Boolean logic gatewhen applying suitable control electrode voltages (Bose
et al., 2015; Greff et al., 2016). Figure 1 shows a circuit diagram of a small
NP network and electrode setup.

The integration of theoretical frameworks and simulation
methods is of key importance in order to enable a closer
understanding and subsequent optimization of these systems. In
this paper, we use a kinetic Monte Carlo (KMC) approach to
simulate electronic charge tunneling dynamics within the NP
network. Prior research has already demonstrated the
effectiveness of the KMC approach for studying single electronics
devices (Kirihara et al., 1994; Wasshuber et al., 1997; Lee et al., 2008;
Elabd et al., 2012). In particular, Van Damme et al. (van Damme
et al., 2016) configured small networks of 16 nanoparticles to act as
any Boolean logic gate. Although also smaller networks of just single
NPs combined with electrostatic gates already show complex
behavior such as XOR dependence for single realizations of
voltages Yutaka Majima et al. (2017), our work extend these
previous analyses by a comprehensive statistical investigation in
several directions. First, it addresses the influence of system size
(number of NPs) as well as the number and location of electrodes to
optimize the chance to observe Boolean logic functionality. This
information is relevant for the future design of such NP networks.
Second, from a methodological perspective we introduce
quantitative indicators for negative differential resistance and
nonlinear separability. These nonlinear properties are imperative
for a broad spectrum of brain-inspired computing (Yi et al., 2018)
and machine learning applications (Elizondo, 2006). Here, we
explicitly show that these indicators are quantitatively related to
the ability of the network to display Boolean logic functionality.
Third, due to the availability of fast array-based computations we
highlight the efficiency of the implementation of the KMC approach.

2 Theory and methods

2.1 Nanoparticle networks

In this section, we first describe some fundamentals of the NP
network design of (Bose et al., 2015) which served as a starting point
for our work on this simulation tool. We then go through the
electrostatic properties of the network and describe the dynamics of
single-electron tunneling.

2.1.1 Electrostatics
The system of (Bose et al., 2015) consists of about 100 single Au

NPs (20 nm diameter) which are interconnected by 1-octanethiols
as an insulating organic molecule. The network is placed on a highly
doped Si substrate with an insulting SiO2 top-layer and is
surrounded by 8 Ti/Au electrodes.

From an electrostatic point of view, we just speak of a network of
conductive islands interconnected by resistors and capacitors in
parallel. Electrodes are understood as voltage sources UE. Figure 1
shows a circuit diagram of a 9-NP network in a regular grid-like
connection topology.

We derive the capacitance values of the network using the image
charge method (see Supplementary Section S1). The capacitance Cij

between island i and j depends on the NP radii ri, rj, the distance
between both NPs dij and the permittivity of the insulating material
ϵm. The self capacitance Ci,self for the isolated island i close to the
SiO2 layer depends on its radius ri and the permittivity of the
insulating environment ϵSiO2. Even though the simulation tool

FIGURE 1
Circuit diagram of a gold nanoparticle network. Single
nanoparticles (golden dots) are tunnel-coupled with each other by
organic insulators. The network represents a regular-grid like
connection topology. A NP-NP connection is represented by a
capacitor and resistor in parallel. The network is placed on a highly
doped Si substrate with an insulating SiO2 top-layer (not shown). The
nanoparticles are surrounded by 8 Ti/Au electrodes applying voltages
U1, . . .U8.
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allows to setup variable radii or distances, for this work values are set
constant with r = 10 nm and d = 1 nm, respectively, following (Bose
et al., 2015).

For a given connection topology, we define the capacitance
matrix C where diagonal components (C)ii represent the sum of all
capacitance values attached to NP i and its self capacitance, while
off-diagonal components (C)ij represent the cross capacitance in
between NP i and j. In this work, we will not cover the impact of
having variable connection topologies. Therefore, for all results we
align NP in a regular grid like two-dimensional topology, such as in
Figure 1, to isolate the upcoming results from additional disorder
effects. Although we measure deviations in our system from the
experiment due to the absence of disorder, still the overall statistical
trends remain consistent (see Supplementary Section S4).
Furthermore, the general statistical concepts to characterize non-
linear behavior in the present type of systems are sufficiently general
to be applied to the disordered case as well. Finally, it should be
stressed that due to the generally different choice of control voltages,
the overall system is not fully symmetric even for a
symmetric network.

2.1.2 Single-electron tunneling
The network consists of conductive NPs interconnected by

insulating molecules. The insulating molecules serve as tunnel
barriers and functionalize the network. Excess charges residing
on NP i tunnel to an adjacent NP j if their associated potential
ϕi exceeds the repelling force resulting from the Coulomb energy
EC,j � e2

(C)jj of NP j. For a NP with four next neighbors at maximum
we find a charging energy of about E ≈ 16 meV. This behavior leads
to a switch-like nonlinear activation function for the charge
tunneling dynamics where charges may or may not tunnel to
their nearest neighbors corresponding to the current network’s
potential landscape.

We define the network state �q(t) as the number of excess charges
residing on each NP at a given time step. Then, the network’s
potential landscape is calculated as

�ϕ t( ) � C−1 · �q t( ), (1)
with C−1 as the inverse of the capacitance matrix. The internal
electrostatic energy is described as

E � 1
2
�q t( ) · �ϕ t( ). (2)

When voltages are applied to the surrounding electrodes, charges
either enter the network or getting drained from it. The Helmholtz
free energy determines the tunneling process and consists of the
difference of total energy stored inside the network E and work W
done by external electrodes

F � E −W. (3)
In its current state, the network will enter its next state associated to
a change in free energy, either by a charge tunneling event fromNP i
to j

ΔFij � e ϕj − ϕi( ) + e2

2
C−1( )ii + C−1( )jj − 2 C−1( )ij[ ], (4)

or by a charge tunneling event from NP i to electrode E

ΔFiE � e UE − ϕi( ) + e2

2
C−1( )ii, (5)

with elementary charge e. The change in free energy caused by a
tunnel event serves as a measure of probability for this specific event
with tunnel rate

Γij � −ΔFij

e2Rij
· 1 − exp

−ΔFij

kBT
( )[ ]−1

, (6)

where Rij denotes the resistance for jump path i → j and T the
network’s temperature. If we apply constant voltages to all electrodes
and execute around 10,000 charge tunneling events, the network will
eventually settle in an equilibrium with constant electric currents
entering or exiting the system via the electrodes. In this work we will
not distinguish between charge tunneling events in between
nanoparticles or in between nanoparticles and electrodes except
for the above difference in free energy. We argue that this is a fair
approximation, as also in the experimental situation the tunnel
barrier with the electrodes is formed by an insulating layer
of molecules.

We revisit Eq. 6 and see that increasing the network’s
temperature T leads to drastically larger rates. Then, differences
in the potential landscape are negligible and thermal excitation will
be the dominant factor for the charge tunneling through the
network. Overall, the device looses its functionality due to the
linearization of the charge tunneling dynamics, i.e., its nonlinear
activation functions (see Supplementary Section S2; Supplementary
Figure S2). Therefore, we have to choose the temperature, so that
condition EC > kBT is true. In this work we will stick to a temperature
value of T = 0.28 K as in (Bose et al., 2015) which easily satisfies the
latter condition with kBT ≈ 2.5 · 10–2 meV much smaller than the
maximum charging energy of E ≈ 16 meV.

Additionally we also want to neglect coherent quantum
processes, i.e., co-tunneling. For this we have to choose the
tunneling resistance Rij in between NPs to be much higher than
the quantum resistance of Rt � h

e2 ≈ 25.8 kΩ. In our simulations we
set the tunneling resistance for all tunneling processes to a constant
value of R = 25 MΩ, which is sufficient to assume charges to be
confined on our NP islands.

2.2 Modelling and simulation

Based on the findings in the previous section, we explain how
to build a KMC simulation tool to model the charge tunneling
dynamics in NP networks. We also explain how to configure the
network to mimic Boolean logic gates. In the main part of this
project we focus on the six fundamental Boolean logic gates
AND, OR, XOR, NAND, NOR, and XNOR. However we also
show in Supplementary Figure S4 and argue in Supplementary
Section S4 that our networks are able to function as any of the
16 two-input Boolean logic functions. In the last part we define
the fitness value as a way to evaluate the quality of the network
behaving as a particular Boolean logic gate. Based on this quality
factor we derive QNDR and QNLS as new quantities to measure the
properties of negative differential resistance (NDR) and
nonlinear separability (NLS).
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2.2.1 Kinetic Monte Carlo method
For a given network topology of NNP nanoparticles, initialized

capacitance matrix C and set of electrode voltages UE, we firstly
initialize the network’s state �q � �0 and potential landscape �ϕ � �0.
Then for all possible tunneling events we calculate the change in free
energy by Eqs 4, 5 and tunnel rates by Eq. 6.

In the next step we compute the cumulative distribution
function (CDF) of all tunnel rates CDFΓ(n). The CDF consists of
NT steps, one for each charge tunneling event n with its last step
CDFΓ(n = NT) as the total rate constant ktot. Now, for the KMC
procedure we first need to sample two random numbers x1 and x2
and find n where

CDFΓ n − 1( )<x1 · ktot ≤CDFΓ n( ). (7)
As nwas selected, we execute its corresponding charge tunneling

event from NP i to NP j. This will leave the current state �q(t1)
towards �q(t2). Afterwards we update the time scale

t2 � t1 − ln
x2

ktot
( ). (8)

Since only two elements of the state vector have been updated,
for the next potential landscape we can just evaluate

ϕt2
� ϕt1

+ C−1 · �j, (9)

where �j is a vector including zeros and elementary charge −e at
position i and +e at position j. Figure 2 shows an overview of the
KMC procedure. We implemented the simulation tool in Python
using NumPy (Harris et al., 2020) and Numba (Lam et al., 2015) for
fast array-based computations (for NanoNets GitHub see (Mensing,
2023)). The process of updating potentials and selecting the next
event from the sorted CDF is achieved in aboutO (log(N)). However,
since the whole system is coupled via the potential landscape, we
have to calculate all tunnel rates after each tunneling event, thus
changed potential also landscape. This leads to a time complexity of
about O(N). Figure 2 shows the process time for the major parts in
the KMC procedure.

2.2.2 Computing functionalities
In this paper we want to investigate computing functionalities in

the form of Boolean logic gates as a systematic property of the NP
network. For Boolean logic we need two inputs and one output.
Inputs, either set on/1 or off/0, produce an output signal depending
on the underlying logic operation.

In our case, two electrodes will always serve as input electrodes.
These electrodes are set to UI ∈ {0.0, 10.0} mV. Accordingly, there is
an output electrode, which is always grounded, thus UO = 0.0 V. At
the output we will measure the electric current

IO � e · NNet→O −NO→Net( )
t

(10)

It enters the time t passed in the KMC procedure and the number of
elementary charge jumps from network to output NNet→O and from
output to network NO→Net. All other electrodes are called control
electrodes with voltages set inside a range of UC ∈ [−50.0, 50.0] mV.
The system’s phase space is spanned by NC electrodes with each
point in phase representing a set of four different electric currents
(I00, I10, I01, I11) corresponding to the four possible input electrode
voltage combinations.

When increasing the network size, the electrode voltages drop
across an increasing amount of NPs. To ensure comparable results, we
scale the voltages of control and input electrodes to prevent the electric
current at the output electrode from simply converging to zero as the
network expands. To achieve this, we conducted simulations to assess
the dependencies between input electrode voltage and output electrode
electric current (I-V curves) across multiple systems. Through this
analysis, we derived a scaling factor thatmaintains the electric current at
a consistent level when multiplied by the initial voltage value, see
Supplementary Section S3; Supplementary Figure S3.

Summarizing the simulation procedure, we first initialize a
network of regular grid-like topology, electrode positions and
electrostatics. Then we apply constant voltages to all electrodes
and evolve the system into its equilibrium state. Afterwards, we start
to track the times and the number of charge jumps exiting and
entering the system via the grounded output electrode. This allows

FIGURE 2
Using the different KMC steps shown in the flow shart, the process time is shown for steps 4-5 (tunneling events, blue curve) and steps 6-8
(advancing to the next step by selecting an event, red curve).
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us to compute the electric current I and its relative uncertainty uI.
The simulation ends when the KMC procedure reaches uI = 5%
uncertainty or when ten million charge tunneling events have
been executed.

2.2.3 Analysis methods
For a single simulation run, we sample 20,000 different control

combinations, resulting in a set of four electric currents (I00, I10, I01,
I11) for each combination, totaling 80,000 currents. To characterize
nonlinear properties we introduce the three parameters

Ml � 1
4

I11 − I01 + I10 − I00( )
Mr � 1

4
I11 + I01 − I10 − I00( )

X � 1
4

I11 − I01 − I10 + I00( ).
(11)

Ml/Mr signify the increase in output current upon altering the
first/second input voltage, whereas X quantifies the cross-correlation
between the two input voltages. In qualitative terms, Ml and Mr can
be interpreted as an effective mobility of the output current
concerning one of the two input voltages, while X denotes a
measure of nonlinear coupling between both inputs.

Our objective is to evaluate the network’s ability to be configured
into each Boolean logic gate using the fitness function

F � m�����
MSE

√ + δ · |c| (12)

as a quality metric for the accuracy with which a given set of currents
(I00, I10, I01, I11) represents a specific gate (Bose et al., 2015). The fitness
comprises the slope or signalm, the mean squared error or noiseMSE,
and the absolute offset |c|. The signal is defined as m � Ion − Ioff �∑i∈ON

Ii
|ON| − ∑j∈OFF

Ij

|OFF| where ON/OFF represents the set of electric currents

corresponding to the gate’s on/off currents, and |ON|/|OFF| is the
cardinality. For example, for an AND gate, ON = {I11} and OFF = {I00,

I10, I01}. The noise is defined as MSE � 1
4 [∑i∈ON(Ii − Ion)2 +∑j∈OFF(Ij − Ioff)2] and the offset as c = Ioff. In total, the fitness

consists of a signal-to-noise ratio where logic gates with small offsets are
more favourable from the experimental perspective as expressed by δ >
0. Theoretically it is easier to choose δ = 0. In Supplementary Section
S6; Supplementary Figure S6 we cover the influence of δ > 0. Specific
realisations of the four electric current values for a range of different
fitness values are shown in Supplementary Figure S4.

For δ = 0 we can exactly rewrite Eq. 12 for the individual gates in
form of the quantities introduced in Eq. 11

FAND � −FNAND �
��
8
3

√
Ml +Mr +X��������������������������������

M2
l +M2

r +X2 −MlMr −MlX −MrX
√

FOR � −FNOR �
��
8
3

√
Ml +Mr −X��������������������������������

M2
l +M2

r +X2 −MlMr +MlX +MrX
√

FXOR � −FXNOR � −2X��������
M2

l +M2
r

√ (13)

Our goal is to estimate the first and second moment of the
fitness distribution for each gate in terms of the statistical properties
of Ml, Mr, and X. For this purpose we use two approximations:

Firstly, we approximate <F(x)> by F (< x >) and, secondly, we
neglect cov (Ml, X) and cov (Mr, X). Both terms are negligible
relative to cov (Ml,Mr), as demonstrated in Supplementary Section
S7; Supplementary Figure S7. Furthermore, since we only consider
regular grid-like networks with a symmetric electrode connection,
we naturally have 〈X〉 = 0 as well as identical distributions for Ml

andMr when averaging over a sufficiently larger number of control
voltages. Therefore, we may abbreviate <Ml > � <Mr > � <M>
and <M2

l > � <M2
r > � <M2 > .

Using these approximations, for the AND, OR, NAND, and
NOR gates we can write

<FAND/OR >∝
<M>�����������������������������������������

<X2 > + <M2 > + Var M( ) · 1 − corr Ml,Mr( )( )√ ∝ − <FNAND/NOR >

<F2
AND/OR >∝

<X2 > + <M2 > + Var M( ) · 1 + corr Ml,Mr( )( )
<X2 > + <M2 > + Var M( ) · 1 − corr Ml,Mr( )( )∝ <F2

NAND/NOR >

Var FAND/OR( )∝ <X2 > + Var M( ) · 2 + corr Ml,Mr( )( )
<X2 > + <M2 > + Var M( ) · 1 − corr Ml,Mr( )( )∝Var FNAND/NOR( )

(14)
and for the XOR and XNOR gates

<FXOR/XNOR > � 0

<F2
XOR/XNOR > ∝

<X2 >
<M2 > .

(15)

Nonlinear behavior is in particular relevant for the NAND,
NOR, XOR, and XNOR gates. For these gates we want to define
measures which reflect the likelihood to find gates with sufficiently
high fitness. For the NAND/NOR gates we consider the ratio
<FNAND/NOR > /

��������������
Var(FNAND/NOR)

√
. Both, if <FNAND/NOR > is not

too negative and/or the standard deviation
��������������
Var(FNAND/NOR)

√
is

sufficiently large, there is a higher probability that positive fitness
values occur, i.e., the system starts to display the respective
functionality. On this basis we define

QNDR � 1
2
· 1 − tanh

<FAND/NAND >����������������
Var FAND/NAND( )/2√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

� 1
2
· 1 − tanh

<M>������������������������������������
<X2 > /2 + Var M( ) · 1 + corr Ml,Mr( )/2( )√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦

≈
Var(M)≫ <X2> /2 1

2
· 1 − tanh

<M>
σ M( )( )[ ].

(16)

In the last step we have neglected the Pearson correlation
between Ml and Mr.

The properties of the tanh-function mathematically restrict
QNDR to values between 0 and 1. Since 〈M〉 is always positive,
the actual upper bound is 0.5. For values of QNDR close to zero,
the possibility of NAND and NOR gates is very small.
Qualitatively, this measure allows us to assess the nonlinear
feature of NDR required to achieve NAND/NOR gates.

A second statistical access to Eq. 16 is based on the fact that
exactly for negative M NDR becomes visible in the input-output
dependence. Therefore, when sampling many M values with
corresponding probability density p(M), the integral∫0

−∞ dMp(M) denotes the probability to find a realization with
NDR. As in general p(M) may be complicated, we aimed to find a
function QNDR, which should recover essential properties of this
integral and thus can also serve as a measure for the ability of the
system to show NDR. The following conditions should be fulfilled:
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(1) QNDR only depends on the first moment 〈M〉 and the standard
deviation σ(M), (2) for 〈M〉 ≠ 0 and σ(M) → 0 the function QNDR

approaches one or 0, depending on the sign of 〈M〉, (3) for
σ(M) → ∞ the function QNDR approaches 0.5, (4) for fixed σ(M)
the function QNDR decreases for increasing 〈M〉 and vice versa.
Beyond these limiting cases, one may additionally require that for a
Gaussian distribution with |〈M〉|≪ σ(M) one reproduces the exact
result ∫0

−∞ dMp(M) ≈ 0.5 · [1 − c〈M〉/σ(M)] with c � ���
2/π

√
. In

order to avoid the use of transcendent numbers in our definition of
QNDR we approximate this result by choosing c = 1. Naturally, there
is not a unique choice of QNDR, fulfilling all conditions, but our
choice in Eq 16 is probably one of the most simplest ones.

We mention in passing that the variance in Eq. 14 becomes larger
for stronger correlations between Ml and Mr. This increases the
probability to find gates (AND, OR, NAND, NOR) with higher
fitness values.

From Eq. 15 we may conclude that XOR and XNOR gates have
the same statistical properties. Since in this case the likelihood to find
well-performing exclusive gates with high fitness values is directly
related to the size of the variance of the fitness distribution, we
can introduce

QNLS � <X2 >
<M2 > (17)

as a general measure for nonlinear separability (NLS), strongly
reflecting the size of the nonlinear coupling X between both inputs.

In Supplementary Section S5, we generalize the approach
described in this section towards systems of arbitrary numbers of
inputs. However, for the sake of simplicity and as this work only
covers two-input devices we will stick to the quantities of Eqs
11, 16, 17.

3 Results

In our study of nanoparticle networks manipulated by
surrounding electrodes, key design features include the number
of nanoparticles (NNP) and the location and quantity of control
electrodes (NC). Although we find any possible two-input Boolean
logic function in the sampled phase space (see Supplementary
Section S4), here we just focus on the six major Boolean logic
gates AND, OR, XOR, NAND, NOR, and XNOR. In this section, we
first analyze the dependence of logic gate fitness (F) on the location
and number of control electrodes. Given the significant impact of
electrode positioning, the subsequent section addresses an increase
in system size while considering two distinct electrode positioning
setups. All results are contextualized within the framework of
nonlinear properties. Additional insights into parameter
dependence on NNP and NC can be found in Supplementary
Section S7; Supplementary Figure S8.

3.1 Number and positioning of control
electrodes

In this section, we explore the impact of the number of control
electrodes and their positioning on network functionality, focusing
on regular grid-like networks as discussed in Section 2.1.1. We use a

7 × 7 grid of NPs (NNP = 49) with one output and two input
electrodes. To ensure that the majority of the system resides between
input and output, we connect the output to a corner NP, and both
inputs to the opposite edges.

We start by adding control electrodes near both inputs as we move
closer to the output. These simulations are denoted ANC, where NC

represents the number of controls. Subsequently, controls are removed
from the system, starting with those near both inputs. These simulations
are denotedBNC. The upper sketches in Figure 3 illustrate these simulated
systems. This procedure allows us to study the effect on network
functionality for varying control numbers and control positioning.

For each network, we sample 20,000 control voltage
combinations, producing 20,000 sets of electric currents (I00, I10,
I01, I11) using KMC. Utilizing Eq. 12, we calculate the fitness of each
control voltage combination for each Boolean logic gate at δ = 0. The
fitness distributions for each gate across different networks are
depicted as box plots in Figure 3A, providing insights into the
relationship between functionality and number of control
electrodes.

First, in agreement with theoretical expectation, see Eqs 14, 15,
we observe similar distributions for the respective AND/OR,
NAND/NOR, and XOR/XNOR pairs. Furthermore, the
distributions of the first two pairs are just mirror images of each
other. Any remaining variations in <F> and Var(F) within a pair
can be attributed to covariance values between Mi and X, which we
did not consider in Eqs 14, 15.

The impact on fitness when altering the number or position of
control electrodes is significantly pronounced. We observe the most
dramatic effect for controls in close proximity to the output
electrode. The measures of nonlinear behavior, i.e., QNDR and
QNLS, exhibit much larger values, see Figure 3B. Theoretically,
one expects a strong correlation between QNDR and the
availability of high-fitness NAND/NOR gates as well as between
QNLS and the number of exclusive gates XOR/XNOR. Indeed, as
seen from the box plots, a significant correlation is indeed observed.

As a secondary effect, it turns out to be helpful to use the
maximum number of control electrodes NC = 9. Only in the case of
AND/OR gates, a reduction in the number of controls generally
leads to an increase in average fitness, while retaining electrodes near
the output results in the most significant second moment.

Moreover, we observe a strong impact on the correlation
coefficient between Ml and Mr. The presence of control
electrodes adjacent to the output electrode as well as an increase
in the number of control electrodes significantly reduces this
correlation, going along with a stronger independence of I01 and I10.

As the results in Figure 3 suggest a substantial impact of the
positioning of controls relative to the output or inputs, we
performed two additional simulations for a network of size 7 × 7
as skechted in Figure 4A. First, we randomly adjusted the voltages of
all seven electrodes and determined the resulting correlation
between individual voltages and the output current. The Pearson
correlations are illustrated in Figure 4B. In alignment with previous
observations, electrodes in close proximity to the output electrode
(specifically E5/E6) exhibit a strong impact via notable correlations
between electrode voltages and output electric current I. This
observation is further supported by the current-voltage
dependencies, which are strongest when altering electrode
voltages near the output (see Supplementary Figure S2).
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In Supplementary Section S8; Supplementary Figure S9 we
further study the charge tunneling behavior in a 1D system of
NPs in two control electrode configurations. The first attaches the
control electrode in the middle of the 1D string while the second
attaches the control electrode in close proximity to the output. In the
second setup we detect much stronger variation in the input
electrode voltage regime associated to the Coulomb Blockade.
Here we argue, that electrodes in close proximity to the output
contribute most to the overall tunability of the network’s
functionality as those electrodes primarily contribute to the
manipulation of the potential landscape at the output region.

Second, we selected inputs at all possible electrode combinations
(Ei, Ej) and sampled multiple control voltage combinations for any
possible input electrode voltage combination {(Ei, Ej), (Ei + Δ, Ej), (Ei,
Ej + Δ), (Ei + Δ, Ej + Δ)} with Δ = 10 mV. Figures 4C, D depict the
nonlinear features of NDR and NLS, respectively, for each input

position combination. If a single input is positioned adjacent to the
output at E5 or E6, NLS is lost entirely due to the strong correlation
with the electric current. For either NDR or NLS, optimal results are
achieved by breaking symmetry and attaching one electrode at the
corner opposite to the output electrode at position E0, with the second
input placed elsewhere. In fact, there is not a significant difference in
attaching the second input at E1, E2, E3, or E4. The advantage of having
an asymmetric electrode connection may indicate a potential
functionality gain for disordered networks in general.

3.2 System size

In this section, we investigate the influence of system size on the
network functionality of regular grid-like NP networks. Following
the experimental device proposed in (Bose et al., 2015), each

FIGURE 3
(A) Box plots of fitness values for all logic gates for networks with varying numbers of control electrodes. The length of a bar is equal to two standard
deviations. Each box corresponds to one of the network diagrams shown above. The networks are projected along the x-axis in first ascending and then
descending order of control electrode numbers. (B) Measure of negative differential resistance (QNDR), nonlinear separability (QNLS), and Pearson
correlation corr (Ml, Mr) across variable numbers of control electrodes.

FIGURE 4
Influenceof input electrodepositions. (A)Thegraphdepicts the simulatednetwork. For every electrodecombination (Ei,Ej),weexamine four scenarios (Ei,Ej),
(Ei+Δ, Ej), (Ei, Ej+Δ), (Ei+Δ, Ej+Δ). (B) The figures show current-voltage correlation, (C) negative differential resistance (NDR), and (D) nonlinear separability (NLS).
To display the matrix values as integers in (C,D), each cell is scaled by a factor of 100.
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network is surrounded by a configuration of eight electrodes. We
connect the output to one corner of the network, and both inputs to
the opposite edges to ensure that most NPs are between the input
and output. This leaves five control electrodes to be attached at the
remaining corners or edges.

Considering the strong relation to electrode positioning
indicated in the previous section, we distinguish between two
setups, as displayed in Figure 5A. In Setup A, we maintain
consistent relative distances between all electrodes, connecting
them either to a network corner or to the center of a network
edge. In Setup B, the two electrodes, adjacent to the output, keep this
minimum distance independent of system size.

Each simulation covers a specific system size, ranging from a 3 × 3
grid of NPs (NNP = 9) to a 16 × 16 grid of NPs (NNP = 256).We conduct
20,000 simulations for each system size, sampling control voltage
combinations and producing sets of electric currents (I00, I10, I01, I11).

In Figure 5B, we break down the fitness into its key nonlinear
components: QNDR, QNLS, and corr (Ml, Mr). There is a noticeable
difference between both setups. In Setup B, a saturation behavior is
observed for each nonlinear component. For NNP > 100, maximum
NDR and NLS are achieved, and both inputs start to become fully
independent. In fact, QNDR even reaches its theoretical upper bound
QNDR = 0.5 as described in Section 2.2.3. In contrast, Setup A shows
a less pronounced dependence. For systems seeking nonlinear
separability, those with more than 50 NPs are not preferred.
There is a decline in performance for increasing numbers of NPs,
suggesting that smaller systems tend to perform better in terms of
nonlinear features, provided there is a minimum of about 16 NPs.
Regarding the correlation between both mobility values Ml and Mr,
we observe that independence between input electrodes is never
achieved, with corr (Ml, Mr) ≈ 0.5 for all networks. As shown in
Supplementary Section S6; Supplementary Figure S5 the fitness
distributions for AND, NAND, and XOR follow the same trend.

Similar to the findings in the previous section, we observe that
control electrodes in close proximity to the output electrode play
a pivotal role in overall network functionalities, particularly in
terms of nonlinearity. As the system size increases in Setup A, the

distance between the output and its closest control electrodes also
increases, leading to a negative impact on performance. Despite
achieving better results in larger systems with Setup B, it is crucial
to note that in practical experiments, the network configuration
may not resemble Setup B. Therefore, we argue that in
experiments, one should be cautious about making the
network too large, even though theoretically, saturation in
nonlinearity should occur. Optimal results are obtained when
aiming for a maximum of about NNP = 100, especially if
electrodes can be densely packed. Otherwise, even a smaller
system may prove to be more beneficial.

It is noteworthy that the saturation observed in Figure 5
occurs only for δ = 0, as QNDR and QNLS have been derived under
this assumption (see Section 2.2.3). For larger values of δ,
indicating a contribution of the logic gates offsets to the
fitness value, we deviate from the saturation behavior, showing
a clear maximum in fitness at about NNP = 100. Considering the
preference for logic gates without an offset in the experimental
setup, this observation further supports the identification of an
optimal system size at or below 100 NPs.

4 Conclusion

We have developed a versatile and efficient kinetic Monte Carlo
simulation tool designed to model charge tunneling dynamics in NP
networks. Building upon established concepts of single electronics,
the model has been specifically tailored for NP networks. The tool
allows for the investigation of larger networks, comprising hundreds
of NPs, within reasonable processing times.

Within our simulation framework, electrodes can be connected
to the network at arbitrary positions and designated as input, output,
or control electrodes. We have successfully mapped Boolean logic
gate functionality to the dependence between input and output
electrodes. Adjusting the control electrode voltages, the charge
tunneling dynamics is manipulated, enabling the same network
to be configured into any desired logic gate.

FIGURE 5
Simulation results for negative differential resistance (QNDR), nonlinear separability (QNLS), and input mobility correlation (corr (Ml, Mr)) in networks
with varying numbers of NPs (NNP). These networks are surrounded by five control electrodes (C), two input electrodes (I1, I2), and one output electrode
(O). Two setups are considered: Setup (A) maintains same relative distances between all electrodes, while Setup (B) keeps the electrodes at
fixed positions.
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We assessed the quality of the network in functioning as a logic
gate through a fitness function. Increasing the number of control
electrodes consistently enhances fitness, with controls in close
proximity to the output electrode proving most pivotal. When
altering the positions of inputs and controls, our results
demonstrated a loss of functionality when inputs are positioned
in close proximity to the output. Additionally, we observed that an
asymmetric connection of inputs could be advantageous.

We further related the fitness of each logic gate to a novel set of
variables, enabling the derivation of measurement tools for key
qualitative nonlinear features such as negative differential resistance
and nonlinear separability. These features, while essential for
Boolean logic, also hold relevance for other classification or
machine learning functionalities.

Upon increasing the network’s size, we unveil optimal nonlinear
properties for a minimum of about 100 nanoparticles. However, this
saturation needs electrodes to remain close to the network’s output. If
an increase in size is accompanied by an enlargement of the area
between the output and its neighboring electrodes, a clear maximum is
achieved below 100 nanoparticles. The same holds true when the logic
gate offset is also considered in the fitness. In this context, we argue that
smaller networks, 100 nanoparticles at maximum, are advantageous in
experimental setup where ensuring the correct electrode connection
distance (i.e., nanoparticles in between) may be challenging.

The results in this work describe the impact of constant voltage
signals on the network response. An important next step involves
time-varying signals, aligning the input time scales with the intrinsic
time scales of the network states. This should allow us to explore
memory effects, interpreting the network as a dynamical system due
to its recurrent connection topology. Subsequently, the potential
application of reservoir computing allow us to utilize NP networks
for temporal signal processing, encompassing tasks such as time
series forecasting and approximating not only functions, as Boolean
logic, but also dynamical systems.

Given the findings of this work on the influence of disorder and
asymmetry, the study of disordered network topologies or variable
NP sizes, resistances or materials may also provide new interesting
facets of brain-inspired applications.
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