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Introduction: In the study of neurodegenerative diseases, the possibility to follow
the fate of specific cells or molecules within the whole body would be a milestone
to better understand the complex evolution of disease mechanisms and to
monitor the effects of therapies. The techniques available today do not allow
the visualization of disease-relevant cells within the whole tridimensional
biological context at high spatial resolution.

Methods: Here we show the results from the first validation steps of a novel
approach: by combining the conjugate nanobodies anti-glial fibrillary acidic
protein (GFAP) and metal-nanoparticles (i.e. 2 nm gold NP) with X-ray phase
contrast tomography (XPCT) we would be able to obtain a tridimensional
visualization and identification of cells of interest together with the
surrounding tissue and the vascular and neuronal networks.

Results: By exploiting the X-ray attenuation properties of metal nanoparticles and
the specific targeting capabilities of nanobodies, we could give XPCT the
specificity it presently lacks, making it no longer a pure morphological but a
molecular and targeted imaging technique. In our case, we synthesized and
characterized Gold-NP/GFAP nanobody to target the astrocytes of mouse brain.

Discussion: The results of the first tests presented in this paper have provided us
with information on the feasibility of the approach, encouraging us to carry out
further experiments in order to achieve the ultimate goal of setting up this new
imaging technique.
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1 Introduction

Neurodegenerative diseases are disorders affecting millions of
people around the word. They are characterized by the progressive
loss of function and structure of the cells of the central nervous system
and present symptoms related to memory, movement, language
(Wilson et al., 2023). Currently there is no cure for most of the
neurodegenerative diseases and the available therapies are focused
on the management of the symptoms and on the improvement of
the quality of life for the patients (Arya et al., 2023).

In this context, it is clear that the research and study of the pre-
symptomatic states of the disease are crucial to understand its causes
and intervene at an early stage. The main imaging methods used for
diagnosis of neurodegenerative diseases, including Alzheimer and
Parkinson diseases, are MRI and PET, and more rarely CT
(Aramadaka et al., 2023).

The visualization and the monitoring (Pavese and Brooks, 2009;
Mitchell et al., 2021; Khan et al., 2020; Janeiro et al., 2021) of the cells
involved in the disorder is a fundamental request for this kind of studies,
and both molecular and targeted imaging represent powerful tools for
this aim. Antibody nanoconjugates are a valid targeted imaging probe
recently used as novel approach in several diseases (Colombé et al.,
2019; Zhao et al., 2022; Samykutty et al., 2023).

Antibodies are often conjugated with nanoparticles (NP) due to
their unique features, such as size, high surface/volume ratio and
surface chemistry, which can be conveniently manipulated to bind
selected biomolecules. Colloidal NPs based on heavy elements, such
as gold and gadolinium, are characterized by high X-ray-attenuation
properties and have been proposed and tested as biocompatible
(Sancey et al., 2015; Broekgaarden et al., 2020) and effective long-
circulating contrast agents for X-ray imaging and conventional
computed tomography (Schultke et al., 2014; Detappe et al.,
2017; Cruje et al., 2021), K-Edge imaging (Riederer and
Mistretta, 1977) and in other imaging techniques such as spectral
photon counting CT (Kumar et al., 2023a; Moghiseh et al., 2023) and
dual photon counting CT (Cademartiri et al., 2023), but also in
radiation therapy (Deng et al., 2018) especially for cancer treatment
(Kumar et al., 2023b) and for radiation shielding in the radiation
protection field (Asadpour et al., 2023).

Whilemonoclonal antibodies (Ab) that target such specificmarkers
have generally been immune reagents of choice, their usefulness for
imaging is limited by their large size (atomic mass >150 kDa), which
can lead to steric hindrance but also impedes their crossing of the blood-
brain barrier (BBB) when imaging the central nervous system. In
contrast, nanobodies (Nb) which are single-domain antibodies
(sdAbs) are ideally suited for imaging due to their small size
enabling them to target antigenic epitopes at locations not easily
accessible to conventional antibodies (Li et al., 2016; Belanger et al.,
2019). sdAbs are composed of the single heavy chain of antibodies that
are expressed uniquely in camelids and lack the light chain. The
capability to bind antigen is retained by a 15 kDa molecule that is
about 10 times smaller than a full Ab. In contrast to conventional Abs,
sdAbs can cross the BBB, not only because of their small size, which
allows extensive diffusion within cerebral tissue, but also because they
can be tailored to increase their BBB-crossing propensity (adjusted

surface charge) (Gao et al., 2021). Such features, together with their
stability and rapid clearance from blood, make sdAbs optimal
candidates for molecular imaging in brain. Additionally, such small
compounds can be administered intranasally for fast and efficient brain
targeting, limiting the injected dose but at the same time directing it
more effectively to the targeted brain tissue (Pérez-Osorio et al., 2021).

Different techniques such as positron emission tomography
(PET), single photon emission computed tomography (SPECT),
magnetic resonance imaging (MRI) or computed tomography (CT)
have been combined to the use of nanoconjugates, but all of them
show limits regarding the spatial resolution and the sensitivity
(Loftus et al., 2023). X-ray phase contrast tomography overcomes
these limits, enabling a 3D visualization of the entire organ with a
spatial resolution ranging from microns to nanometres, permitting
the detection of the cells of interest in the physiological and
pathological contest (Bukreeva et al., 2017; Cedola et al., 2017).
XPCT is able to simultaneously visualize cells, vascular and neuronal
systems, together with the surrounding tissue, giving complete
information about the morphology and the three-dimensionality
of the sample without destroying or compromising it (Topperwien
et al., 2018).

However, an important limitation of this technique lies in the
impossibility of uniquely identifying the cells visualised, except on a
morphological/anatomical basis (Palermo et al., 2020). Combining
the Nb-nanoconjugates with the XPCT could represent an
incredible boost in the molecular and targeted imaging of
neurodegenerative diseases.

In this work, we present the validation of the first steps of our idea:
we synthesized and functionalized gold nanoparticles of 2 nm in
diameter and conjugated them to a glial fibrillary acidic protein
(GFAP) sdAb, creating a new complex we refer to as Nano2.
Binding affinity and targeting validation tests were performed, and
the efficacy of two administrationmethods (intravenous and intranasal)
was verified in an animal model to choose the one that would lead to
greater targeting in the brain. All the experiments were performed on
experimental autoimmune encephalomyelitis (EAE) affected mice, to
ensure the permeability of the BBB. In this work, images of L-edge
subtraction (LES) radiography and K-edge subtraction (KES)
tomography are presented, confirming the potential use of this
approach for the targeted imaging of brain cells and tissues.

2 Materials and methods

2.1 Synthesis and functionalization of Au
nanoparticles

2-nm sized Au nanoparticles were prepared following the
procedure reported by Porret et al. (2017). Larger gold
nanoparticles were prepared and conjugated to the nanobody, and
thanks to the plasmon resonance effect they were used to assay the
binding affinity between the conjugated nanoparticle and the antigen.
To this aim, citrate coated Au nanoparticles (size: 5.5 nm) were
prepared according to the Turkevich approach with slight
modifications (Turkevich et al., 1951; Arocikia Jency et al., 2018).
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In detail, 1.8 mL of 0.010 M HAuCl4 3H2O and 500 µL of 0.010 M
sodium citrate were added to 40 mL of ultrapure H2O and stirred for
few minutes. Then, 120 µL of freshly prepared 0.10M NaBH4 were
added dropwise to the solution and left under stirring for 2 h.
Hereafter, the freshly prepared solution was incubated with an
aqueous solution of ɑ-Mercapto-ω-carboxy PEG (5 mM) to
exchange citrate with PEG molecules and stirred for additional 2 h.
Then, the nanoparticles were thoroughly washed with centrifuge
filters to remove excess ligands at 2,000 rcf for at least five times.

From this point on, the two types of Au nanoparticles were
derivatized with the same surface chemistry. First, the nanoparticles
were coated with a PEG mixture (ɑ-Amino-PEG/ɑ-Amino-ω-carboxy-
PEG, molar ratio 10/1) through EDC: an aqueous solution of the PEG
mixture (1 mL, 1 mM)wasmixed to 1 mL 10 µMnanoparticles prior to
add EDC (50 mM). The mixture was left under stirring for 3 h at room
temperature. Subsequently, the nanoparticles were washed at 2,000 rcf
at least five times by using centrifugal filters. Similarly, Nα,Nα-
Bis(carboxymethyl)-L-lysine molecules were anchored to the surface,
followed by incubation with NiCl2 100 mM overnight (O.N.).

After being thoroughly washed with ultrapure water through
centrifugal filters to remove excess nickel salt, the nanoparticle
solution was incubated with the nanobody (molar ratio NP:NB
equal to 1:2) O.N. at 4°C. Then, the nanobody-conjugated
nanoparticles were washed prior to be used for characterization
and biological studies. The nanoparticles were stored at 4°C. The
final nanoconjugate was henceforth referred to as Nano2.

2.2 Characterization of Au nanoparticles

TEM images were recorded on a Jem1011 microscope (JEOL
Ltd., Tokio, Japan) operating at an accelerating voltage of
100 kVp. A drop of nanoparticle solution was casted onto the
carbon-coated grid and let dry before imaging. The size of the
nanoparticles as measured by the TEM was estimated by ImageJ
Software (Schneider et al., 2012). Electrophoretic characterization
was carried out by running the nanoparticles through 1% agarose gel
immersed in TBE buffer (pH 8.0) for 1 h at 100 V.

The hydrodynamic diameter (DLS measurements) and the
surface charge (Zeta potential measurements) of the nanoparticles
were measured by means of a Zetasizer Nano ZS90 (Malvern
Instruments, United States) equipped with a 4.0 mW He–Ne laser
operating at 633 nm and with an avalanche photodiode detector.

The concentration of AuNPs was estimated via elemental analysis
using an Inductively Coupled Plasma Atomic Emission Spectrometer
(ICP-AES) Varian 720-ES. A calibration curve of Au was prepared, and
the relative amount of metal per sample was estimated upon acidic
digestion in HNO3. The Bicinchoninic Acid (BCA) Protein Assay was
used to estimate quantitatively the nanobody linked to the
nanoparticles. A calibration curve of the nanobody was prepared.
UV-vis absorption spectra of the nanoparticles were recorded with a
Varian Cary 300 UV-VIS spectrophotometer. Fourier transform
infrared (FTIR) spectra were taken with a Perkin Elmer Spectrum
One Fourier Transform spectrophotometer (Waltham, MA,
United States); each spectrum was ac-quired with 64 scans and a
resolution of 4 cm−1. To acquire the spectra, all the samples were
dissolved in water and drop casting films were prepared directly on
the ATR prism; spectra were collected after water evaporation.

2.3 Nano2/Antigen binding test

To estimate the binding affinity between theNano2 and theGFAP
antigen, glass substrates were cut from glass microscope cover slides
into 15 mm × 15mm slides that were cleaned in an ultrasonic bath
with acetone and isopropanol, followed by plasma oxygen treatment
to activate OH groups. Soon after, the slides were immersed in a
slightly acidic solution of tiopronin 50 mMand shakenO.N. Then, the
solution was removed, the slides washed with ultrapure water prior to
being incubated with the GFAP antigen (20 nM in PBS) at 4°C O.N.
At the end of the incubation time, the slides were rinsed with PBS and
then incubated with BSA (1 mg/mL in PBS for 1 h). Finally, they were
washed several times. Control slides coated with BSA and without the
antigen were prepared as well.

In the binding test two types of nanoparticles, both Nb-
conjugated nanoparticles and AuNPs (without the nanobody,
simply coated by PEG) were assayed on the glass slides to assess
the affinity between the conjugated nanobody and the antigen as
compared to the unconjugated AuNP.

The nanoparticles solutions (either Au-Nb or Au-PEG, 10 nM in
PBS) were added to the slices and left under stirring for 1 h, at 4°C.
Then, the solution was removed and the slides were analyzed
accordingly.

Transmission spectra of the glass slides at normal incidence were
measured in air with a spectrometer (Ava SpecHSTEC) before and after
the functionalization. Spectra were registered in the range 400–800 nm,
integration 100ms, 10 averages, using glass as the reference.

Optical setup: the light coming from the Tungsten lamp (100 W)
was collected to the optical fiber (727-733-2447, Ocean Optics)
through a monochromator, then hits the sample and was sent to the
spectrometer input port by another optical fiber (M38 L02 Thorlabs)
with a 200-μm core diameter.

2.4 Astrocyte labelling and confocal
microscopy

Astrocyte staining was performed on 4-8 µm brain sections
using anti-Glast antibody coupled to PE (anti-GLAST Polyclonal
antibody (Invitrogen #PA5-72895, 1:250, 1 h, RT) and anti-Rabbit
IgG (H + L)-AF555 (Invitrogen, #P-2771MP, 5 µg/mL, 1 h, RT), to
label the astrocytes. Fluorescence microscopy was performed on a
Carl Zeiss LSM710 laser confocal microscope, using a plan-
Apochromat 60x NA 1.4 oil-immersion objective and an APD
detector (λexc.=405 nm, λem. = 736 nm long pass filter for Au
detection, and λexc.=543 nm, λem. = 550–600 nm for PE detection).

2.5 Experimental Autoimmune
encephalomyelitis (EAE) induction in mice
and sample preparation

To enhance the BBB crossing by the Nano2, the mice used in
this study were induced to develop experimental autoimmune
encephalomyelitis, a murine model of multiple sclerosis
presenting an altered BBB. This alteration, in turn, increases
the permeability of the barrier and allows the crossing. Female
C57BL/6 J mice (n = 14), 6–8 weeks old, weighing 18.5 g ± 0.8 g
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purchased from Harlan Italy, were immunized by subcutaneous
injection (200 mL total) at two sites in the flank with an emulsion
of 200 mg myelin oligodendrocyte glycoprotein peptide 35–55
(Espikem) in incomplete Freund adjuvant (Difco) containing
600 mg Mycobacterium tuberculosis (strain H37Ra; Difco). The
mice were injected (100 mL total) in the tail vein with 400 ng
pertussis toxin (Sigma-Aldrich) immediately and 48 h after
immunization.

Either unconjugated AuNPs or Nano2 were administered
in-vivo either by i) intranasal (n = 6) or by ii) intravenous routes
(n = 6) or ex-vivo locally in the cerebellum for the positive control.
The mice were sacrificed by CO2 inhalation and brains were
extracted at 1 (n = 2 per condition, with better accumulations)
and 24 h (n = 1) after administration. Samples designated to the
XPCT measurements were dehydrated through a graded ethanol
series (70/95/100%, 30 min for each step), put in propylene oxide,
and included in paraffin. Samples designated to the confocal
microscopy and X-ray LES/KES experiments were fixed in 4%
paraformaldehyde for 24 h, then stored in 70% ethanol. Samples
designated to the confocal microscopy were cut in the axial plan at
different levels to obtain 3 to 5 sections per hemisphere. All
animals were housed in pathogen-free conditions and treated
according to the Italian and European guidelines (Decreto
Legislativo 4 marzo 2014, n. 26, legislative transposition of
Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals
used for scientific purposes), with food and water ad libitum.
The research protocol was approved by the Ethical Committee for
Animal Experimentation of the University of Genoa (Prot. 319).

2.6 X-ray imaging procedures

The L-edge subtraction radiography experiment was performed
at SYRMEP beamline at ELETTRA synchrotron in Trieste, Italy.
The experiment was carried out with a monochromatic incident
beam at two energies, above and below the L-edge of the gold
(11.9 keV), respectively. The effective pixel size of the detector was
1.98 µm.

The K-edge subtraction tomography experiment was performed
at the medical beamline ID17 of ESRF (European Synchrotron
Radiation Facility, Grenoble, France).

A monochromatic incident X-ray beam with two different
energies bracketing the K-edge of the gold (80.7 keV) was used.
The effective pixel size of the detector was 3.05 µm. The total
number of projections was 3500 over 180°.

2.7 Confocal microscopy

The images from the X-ray experiments were co-registered/
compared to confocal microscopy images acquired on the same
samples. In details, confocal Z-stack microscopy (Olympus
FV1000), in reflection mode, by using a 405 nm-excitation laser
line, a dichroic mirror DM405/488 and with a Z-resolution up to
200 nm was used. The individuation of Nano2 clusters was obtained
by performing spatially resolved photoluminescence (SR-PL)
spectra during the confocal scanning.

2.8 Materials and software

Tetrachloroauric (III) acid trihydrate 99.5% (HAuCl4, 3 H2O),
sodium borohydride 98% (NaBH4), Nα,Nα-Bis(carboxymethyl)-L-
lysine hydrate, sodium citrate, reduced glutathione (GSH), 1-Ethyl-
3-(3ʹ-dimethylaminopropyl)carbodiimide Hydrochloride (EDC)
and Nickel Chloride (NiCl2) were purchased from Sigma-Aldrich.
GFAP human was purchased from US Biological. ɑ-Mercapto-ω-
carboxy PEG (MW. 3,000 Da) and ɑ-Amino-ω-carboxy PEG
hydrochloride (MW. 3,000 Da) were purchased from Rapp
Polymere. Anti-GFAP nanobody was kindly provided by Dr.
Pierre Lafaye from Institut Pasteur, Paris.

Figures 1, 4 were made using Biorender.com and kindly provided
byDr Jean-Luc Coll from Institute for Advanced Biosciences, Grenoble.

3 Results

3.1 Preparation of the immuno-XPCT
nanoconjugates

The surface of the ultrasmall AuNPswas first passivatedwith a PEG
shell and then coated with Nα, Nα-Bis(carboxymethyl)-L-lysine
(Figure 1). The nickel coordination chemistry was used to bind the
anti-GFAP nanobodies, bearing a histidine tag (Perruchini et al., 2009).
The average number of nanobodies linked per nanoparticle was kept
close to 1 in order to associate each nanoparticle to a single bio-targeting
unit. The final nanoconjugate was henceforth referred to as Nano2.

Table 1 reports the size (as determined by TEM and DLS
measurements), the surface charge of the nanoparticles before and
after conjugation of the nanobody, and the number of nanobodies
linked per nanoparticle (estimated by BCA assay). Furthermore,
Figure 2 shows the TEM image of the PEG-coated NPs, the size
distribution curves and the gel electrophoretic migration of the
nanoparticles with and without the nanobody attached. The DLS
curve and the migration pattern confirm that the conjugation of the
anti-GFAP nanobody led to a slight increase of the overall size of the
nanoparticles (from 11.28 ± 0.56 to 13.97 ± 0.79 nm).

FTIR measures were performed to confirm the attachment of the
nanobody to the nanoparticles. Thus, the starting PEG-coated and the
nanobody-conjugated nanoparticles were analyzed and compared. The
spectra reported in Figure 2E show the typical peaks of the lipoic acid-
PEG carboxy acid (Jin-Hwa et al., 2008) that coats the AuNP. Indeed,
the signals at 1,046 and 1,100 cm−1 are due to the C-O stretching of the
PEG chain, while at 1,405 the bending frequency of the O-H group of
carboxylic acid can be observed. The vibrations at 1,565 and 1,640 cm−1

can be assigned to C-N stretching and N-H bending, respectively, of the
amide group of the lipoic acid anchored to the gold surface. The FTIR
spectrum of Nano2 shows more peaks due to the vibrations of the side
groups of the aminoacids of the nanobody (Barth, 2000). The
aminoacids sequence and the CDR domains of the nanobody are
reported in Perruchini et al. (2009). The strong peak at 1,106 cm−1

is likely due to the C-H bending and the C-N stretching of Histidine,
respectively. The signal at 1,245 cm−1 is typical of C-N stretching of
Glutamine and Arginine, while the peaks at 1,352 and 1,362 cm−1

belong to the C-N stretching and C-H bending vibration (CH) of
the benzene ring of Trypthophan. The signal at 1,460 cm−1 can be
assigned to the C-H bending of Phenylalanine, while the sharp peak at
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1,512 cm−1 can be related to the C-C stretching and C-H bending CH of
the aromatic ring of Tyrosine respectively.

Furthermore, the luminescence spectra of the nanoparticles
before and after the nanobody binding were recorded. As shown
in Figure 2D, the luminescence peak shifts from 738 nm to

778 nm and the whole curve looks broadened upon nanobody
conjugation. The photoluminescence (PL) intensity is also
reduced, likely due to energy transfer processes between the
Au surface and the nanobody, as already described (Huang
et al., 2018).

FIGURE 1
Pictorial representation of the Nano2 building blocks. Created with Biorender.com.

TABLE 1 Characteristics of the gold nanoparticles prior and after conjugation of the nanobody.

TEM size (nm) Hydrodynamic size (nm) Surface charge (mV) Number of Nb/NP

Au-NP (Core ø 2 nm) 1.67 ± 0.22 7.30 ± 0.61 −0.14 ± 0.01 —

Nano2 (Core ø 2 nm) 1.67 ± 0.22 9.80 ± 0.57 −27.57 ± 0.55 1.2

FIGURE 2
(A) Hydrodynamic diameter and (B) electrophoretic mobility of Au NP and Nano2. (C) TEM image of the 2 nm-sized Au NP; (D) Luminescence
spectra of AuNP andNano2, respectively. The Hydrodynamicmeasures were acquired using a Zetasizer Nano ZS90Malvern, while a Jeol JEM 1400 and a
Cary Eclipse were used for TEM and fluorescence analysis; (E) FTIR spectra of AuNP and Nano2, respectively.
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3.2 Nano2-GFAP binding

The binding specificity of Nano2 to its biological target, the
cytoplasmic protein GFAP, was extensively evaluated. To this aim, a
simple optical device based on plasmonic localized surface plasmon
resonance (LSPR) detection was setup (Tokel et al., 2014). Themeasure is
based on the local change of the dielectric environment on the metal
nanostructure surface (Miller and Lazarides, 2005). Since the 2 nm-sized
gold nanoparticles used throughout this study do not display a plasmon
peak due to their small size, larger Au nanoparticles (5.5 nm sized, Abs
peak at 525 nm) functionalized with the same chemistry and conjugated
to the anti-GFAP nanobody were prepared and characterized.

Supplementary Table S1; Supplementary Figure S1 report the
main physicochemical characterization of the NPs. In detail, glass slides
functionalized with the GFAP antigen were incubated with Nano2
(10 nM) for 1 h (sample 1). To evaluate the specific binding between
the antigen and Nano2, three other interfaces were analyzed in parallel:
glass slide functionalized with GFAP antigen and incubated with 5.5 nm
AuNPs (sample 2), and glass slides coated with BSA and incubated with
either Nano2 (sample 3) or AuNPs (sample 4), respectively. The
extinction curves of the glass slides upon incubation were collected
and analyzed. Figure 3 reports the plasmon peaks of the samples
showing that a red-shift (around 10 nm) is detected only in sample 1,
likely due to the establishment of specific interactions betweenNano2 and
the immobilized antigen. Finally, the signal to noise ratio was estimated to
be 12 times higher in sample 1 than in sample 3.

3.3 Method of administration of Nano2

We tested two different administration routes of Nano2 in order
to find the one leading to the best diffusion and highest retention in
the brain.We also compared the NPs and the Nano2 distributions. To
facilitate the crossing of Nano2 through the brain, we tested Nano2 in
a mouse model of multiple sclerosis, experimental autoimmune
encephalomyelitis, characterized by BBB disruption resulting from
neuroinflammation. Experimentally, either unconjugated AuNPs or
Nano2 were administered in-vivo either by 1) intranasal (IN) or by 2)
intravenous (IV) routes or ex-vivo locally in the cerebellum for the
positive control (CTRL+). For the positive control, naïve mice with
intact BBB were used. Figure 4 summarizes the analyzed samples.
Names of the mice groups are reported in Figure 4B.

After the administration of the compounds, brains isolated from the
euthanized mice were dissected into two parts: one hemisphere was
imaged with LES and KES experiments, the other was analyzed by
confocal microscopy. The fluorescence of the AuNPs was mapped in
red on sections in which cell nuclei were marked in blue. In control
conditions, only 3 sections were observed, while in presence of AuNCs
(alone or coupled to the nanobody) more than 5 sections were observed.
The AuNCs were mainly localized in a restricted area close to the
cerebellum, the hypothalamus andfirst third of the lower part of the brain.

Intranasal administration of Nano2 displayed higher retention
in the brain than intravenous injection of Nano2, as shown in
Figures 5A, B. After intravenous administration, we managed to find
AuNCs on only 1 or 2 sections at 1 specific part, while they were
always presented and diffused after IN administration.

Furthermore, the comparison between intranasal administration of
Nano2 and unconjugated NPs (Figures 6A, B respectively) indicated a

greatest retention of Nano2 in the brain sections versus unconjugated
NPs. NPs alone were very rarely observed in the different sections,
regardless of the intranasal or intravenous administration route
(Figure 6 and data not shown).

3.4 Validation of the targeting

The correct targeting of the astrocytes by Nano2 was validated
on brain sections by confocal fluorescence microscopy. The specific
AuNPs used in this study are ultra-small NP that naturally emit a
tunable fluorescent signal, allowing their detection by confocal
fluorescence (Porret et al., 2017). Therefore, by detecting the Au,
the anti-astrocyte monoclonal antibody was detected, and thus, the
astrocytes could be identified.

In order to verify the targeting capacity of the Nano2, we
analyzed the brains of IN_N2 mice, i.e., mice administered with
Nano2 intranasally, by confocal microscopy using anti-Glast Nb to
mark the astrocytes, as reported in Figure 7. Nano2 were detected in
the brain sections due to the presence of the AuNPs which are
fluorescent in the near infrared optical region after blue light
excitation. Colocalizations between Nano2 and Glast-expressing
cells were observed after intranasal administration of Nano2, thus
indicating the possibility of specifically targeting the astrocytes In
the Figure 7 fluorescence of the AuNPs is shown in red, astrocytes in
green and the arrows indicate the colocalization between Nano2 and
Glast-expressing cells.

3.5 X-ray imaging

The final goal of our research is to combine the use of Nano2 and
XPCT to obtain a tomographic volume in which, thanks to the
detection of the metal nanoparticles, we could be able to identify
cells of interest together with the surrounding tissue and the

FIGURE 3
Au plasmon peak of Nano2 at glass-GFAP (sample 1), Au-NPs at
glass-GFAP (sample 2), Nano2 at glass-BSA (sample 3), AuNPs at glass-
BSA (sample 4) after 1 h incubation.
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neuronal and vascular networks. In this work we show the results
from a previous step of the X-ray imaging: L-edge subtraction
radiography and K-edge subtraction tomography.

The two experiments were performed on IN_N2 samples
(intranasal administration on Nano2).

LES radiography experiment was carried out above and below
the gold (Au) L-absorption-edge (11.9 keV) to highlight the AuNPs
with respect to the surrounding tissues.

By subtracting from the image acquired below the one acquired
above the edge, we obtain a third image in which the signal from Au

FIGURE 4
The different groups of analyzed mice: (A) The different routes of administration; (B) Details of the groups. Created with Biorender.com.

FIGURE 5
Confocal imaging of brain sections from EAE mice. Comparison between intranasal (A) and intravenous (B) administration of Nano2 in the brain.
Fluorescence of the AuNPs in red, cells nuclei in blue.
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is highlighted with respect to all the other details. Figure 8A shows
the result obtained after the subtraction; the yellow arrows indicate
white spots of signal from Au that therefore likely represent clusters
of Nano2. Figure 8B reports the result of confocal microscopy of the
same area as in Figure 8A. The arrows indicate the points where the
PL emission of Au is significant. The co-registration of the X-ray

imaging and the Au emission, shown in Figure 8C, demonstrates the
specific accumulation of Nano2 clusters, as indicated by the arrows
in Figure 8C.

KES tomography experiment was performed above and below the
gold K-edge (80.7 keV). Images in Figure 9A show the presence of
elements compatible with Nano2 (white spots) close to the vessels
(black); the comparison with the Z-stack confocal microscopy images
(B) from the other hemisphere of the same sample supports this
interpretation; in fact, in Figure 9B, the Au emission signal is clearly
visible near the vessels. In Figure 10, a 3D rendering of a volume from a
IN_N2 mouse shows the spatial distribution of the Nano2 clusters
(yellow) along the blood vessels (red).

4 Discussion

X-ray phase contrast tomography enables non-destructive multi-
scale 3D biomedical imaging of neuronal and vascular networks. It can
be applied on fields of view ranging from the single cell to the full brain,
without the need for slicing or intense pre-processing the tissues; this so-
called 3D “virtual histology” of low-absorbing biological samples is a
major achievement of XPCT and it is a fundamental characteristic for
the study of neurodegenerative diseases. However, a crucial challenge
for this technique is the ability to univocally identify and label the
specific cells of interest. The idea underlying this work, based on XPCT
imaging of cells labelled with metal nanoparticles and a single-domain
antibody, addresses this specific issue to enrich the otherwise merely
morphological 3D tomography phase contrast imaging with
tissue-specificity. In particular, what we would obtain from this
innovative approach is a high-resolution imaged volume in which
we are able to visualize the vascular and neuronal systems, the
surrounding tissue and cells, thus being able to identify the latter
with certainty thanks to the presence of the nanobody and without
compromising the integrity of the sample or its physiological state.

FIGURE 6
Confocal imaging of brain sections from EAE mice. Comparison between intranasal administration of (A) unconjugated NPs and (B) Nano2.
Fluorescence of the AuNPs in red, cells nuclei in blue.

FIGURE 7
Confocal imaging of brain sections from EAE mice of a IN_
N2—anti-Glast immunolabelling, the arrows indicate colocalization
between Nano2 and Glast-expressing cells. Fluorescence of the
AuNPs in red, astrocytes in green.
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Other imaging techniques exploit the characteristics of metal
nanoparticles, think, for example, of the innovative spectral photon
counting CT able to improve the accuracy and the capabilities of the
conventional CT distinguishing different materials with similar X-ray
attenuation properties. One of the winning weapons of the XPCT,
however, is its resolution, which can be as low as a few nanometers. This
characteristic together with the ability to visualize soft tissues and their
internal features in a non-destructive way, make XPCT a powerful
technique in the biomedical imaging field.

In this work, we have functionalized gold nanoparticles and
conjugated them to sdAbs (nanobodies), the as defined
Nano2 complex. Transmission spectra measured in air with a
spectrometer confirmed the binding affinity between Nano2 and the
GFAP antigen. The conjugation parameters were adjusted in order to
reach the 1:1 binding ratio between each nanoparticle and the

nanobody. In addition, stability tests of the nanoparticles were
performed by dissolving the samples (with and without the
nanobody) in physiological saline solution (0.9% NaCl) and in 10%
FBS cell culture medium. The samples were kept under incubation at
37°C up to 5 days. Then, the average hydrodynamic diameter and the
migration pattern on the agarose gel were evaluated.

The results reported in Supplementary Figure S3 show that the
nanoparticles are extremely stable upon visual analysis of the tubes at
each incubation point (time 0, 1, and 5 days). The gel electrophoresis
pattern after 5 days incubation indicates that both in saline solution and
cell medium there is a slight slowering of the migration bands of the
nanoparticles (both with and without the nanobody). Finally, the DLS
analysis confirms the optimal stability of the samples in the tested
conditions. Indeed, there is a justmodest enlargement of the size of both
types of particles upon incubation in culture media, likely due to the

FIGURE 8
XPCT image and co-registration with confocal microscopy image of a brain from a IN_N2 mouse (A) X-ray phase contrast radiography (XPCR), the
image is obtained by subtracting an image acquired just above and one just below the L-edge of Au (Supplementary Figure S2). The arrows indicate
possible Nano2 accumulations; (B) Confocal microscopy image, in reflection mode of the same slice in Figure (A). The arrows indicate the points with Au
significant emission signal; (C) Co-registration of (A) and (B) where the arrows indicate possible Nano2 accumulations, for the co-registration the
software ImageJ was used, scale bar: 100 µm.

FIGURE 9
Vessels cross sections of a IN_N2 mouse. (A) Tomographic Au-K-edge Subtraction images. (B) Confocal microscopy images. In the color scale the
yellow corresponds to the Au emission signal. Scale bar: 30 µm.
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adsorption of small molecules/proteins. Two administration routes
were examined (intranasal and intravenous), to establish that one
enabling better brain targeting. Confocal measurement showed a
higher retention of the nanoconjugate in the brain upon intranasal
administration. Indeed, after intravenous administration AuNCs were
found on only 1 or 2 sections at 1 specific part, while they were always
presented and diffused after IN administration the test also
displayed a greater retention of Nano2 than unconjugated
nanoparticles. To test the targeting of the astrocytes, confocal
microscopy using anti-Glast Nb was performed and some
colocalizations of Nano2 and Glast-expressing cells were observed
after intranasal administration of Nano2.

We performed two X-ray imaging experiments, by LES
radiography and KES tomography, respectively. The co-registration
and the comparison of the images from these two experiments with
those from the confocal microscopy on the same samples confirmed the
presence of gold in the brain, specifically near the blood vessels, where
astrocytes are known to be present. The distribution of Nano2 is clearly
visible also in the 3D-rendering of the KES tomography volume.

All the information and the results coming from this work gave us
the confirmation that this new imagingmodality could lead to significant
developments in the field of transpathology and preclinical studies,
prompting us to pursue and carry out more experiments. The final
objective will be to implement XPCT measurements to obtain detailed
tissue information in physiological and pathological conditions and
molecular data with a single scan, all at a resolution of the order of
microns, without mechanically altering the sample.

5 Conclusion

In this work, we presented the first results of a new imaging
approach that could be of great interest in the context of

preclinical studies on neurodegenerative diseases, which require
to detect specific neuropathological signatures and to follow the
effects of therapies at the cellular level. The combination of Nb-
nanoconjugates and XPCT would enable to reliably identify the
cells of interest within their morphological context, providing
three-dimensional information and preserving the integrity of the
sample. Using different antibodies, it will then be possible to
follow several cell populations simultaneously.
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