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X-ray lithography has been first proposed almost 50 years ago, and the related LIGA
process around 25 years ago. It is therefore a good time to make an analysis of the
technique, with its pros and cons. In this perspective article, we describe X-ray
lithography’s latest advancements. First, we report the improvement in the fabrication
of the high aspect ratio and high-resolution micro/nanostructures. Then, we present the
radiation-assisted synthesis and processing of novel materials for the next generation of
functional devices. We finally draw our conclusion on the future prospects of the technique.
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INTRODUCTION

In the X-ray lithography (XRL) process, some materials, called resists, which are sensitive to X-rays
and change their dissolution rate in a specific solvent after irradiation, are exposed to an X-ray source
through a mask and can be patterned. The mask is composed of heavy Z-elements (Au, W, etc.)
acting as absorbing region, while the carrier substrate is composed of low-attenuation elements (Si,
Be, diamond, SiC, SiNx, etc.) (Tormen et al., 2011). The idea of the XRL was first proposed by H.
Smith and Spears in 1972 (Spears and Smith, 1972; Smith et al., 1973) and attained the attention of
the micro/nanofabrication community due to its shorter wavelength and larger penetration depth
than conventional UV lithography, offering new possibilities to build micro-devices with high aspect
ratio, thick resists, and almost vertical sidewalls (Maldonado et al., 1975; Maydan et al., 1975). XRL is
the basic step of the LIGA process [German acronym of Lithographie Galvanoformung Abformung
meaning lithography electrodeposition, molding (Becker et al., 1986)] that includes the
electrodeposition of metal in the developed resist structure in order to obtain a mould or an
electrode for a subsequent replication process like molding or electro discharge machining. X-rays
can be distinguished as soft, with an energy range from 150 eV to ~2 keV, and hard (or deep) with
energy >5 keV. Soft XRL is suitable for high-resolution structures (<50 nm) with limited resist
thickness. Deep XRL (DXRL) is commonly used for the LIGA process and to irradiate thick resists
(hundreds of microns). At present, the XRL technique is available at synchrotron radiation facilities.

The semiconductor industry interest in XRL is related to the definition of technological nodes.
The term refers to a specific semiconductor manufacturing process and to its design rules: initially,
the node number defined the gate length or half-pitch (HP), whereas at present (below 22 nm) it
relates to a specific generation of chips fabricated with a particular technology. Due to the shorter
wavelength with respect to UV, XRL potentially ensures a “resolution reserve” for all the
technological nodes. Moreover, it does not require a different facility at each technological node
like UV lithography. However, the potentiality of the technique was not fully exploited, as efforts
focused first on UV then on EUV lithography (Tormen et al., 2011). More recently, XRL has attracted
new attention for the Next 2 node (beyond the 10-nm technological node) onward, mainly due to the
potentiality of soft X-ray interference lithography (Wu et al., 2020, Mojarad et al., 2015c).
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Maldonado et al. have recently given an overview of XRL and
its potentiality (Maldonado and Peckerar, 2016), which is an
essential read to understand the technology. With this
background, in our communication we will present the limits
of the technique and its recent advances both in the micro/
nanofabrication of devices and in the radiation-assisted synthesis
and processing of materials, showing why we believe that there
can still be a future for such a unique technology.

FABRICATION OF MICRO/
NANOSTRUCTURES

Upgrades of the standard XRL technique
After the appearance of the first generation of commercially
available X-ray scanners in the late 90s, several upgrade
projects were independently developed in the synchrotron
radiation facilities. Improvements mainly concerned three axis
stages to move the sample holder, two rotational axes to allow
tilted exposures, moving mask stages (Goldenberg et al., 2016),
and alignment systems for multiple exposures with different
masks. These technical advances opened new routes as
described in the following.

Dynamic XRL
It is a method where the mask and the sample holder can be driven
independently, allowing to perform a gray-scale dose distribution
exposure (Pindyurin et al., 2008). With the beam scan method,
shown in Figure 1A, the sample stage is moved alternately in

vertical and horizontal directions, and large areas can be exposed
even if the beam size is small (Takeuchi et al., 2019).

Multiple mask lithography
The system, schematized in Figure 1B, is based on the use of
several superimposed masks whose position can be controlled
over time during the exposure phase, creating a gray-scale dose
distribution over a specific area (Moser et al., 2012).

Pencil-beam mode exposure
Is based on a pre-collimator which limits the irradiation field, while
themotion of the sample holder during the exposure allows to “draw”
on the resist layer. Furthermore, using a mask, the beam is divided
into several microbeams reducing the exposure time for array
structures (Goldenberg et al., 2016).

With such systems, it is possible to go beyond the typical 2.5D
extruded structures and obtain 3D ones as demonstrated by
several recently published research works. Just to name few,
Moser et al. (Moser et al., 2012) used multiple-mask
lithography to fabricate a 3D micromirror. Wang et al. (Wang
et al., 2021) fabricated a 3D array of obelisk-shaped microneedles
by three aligned exposures of which two were conducted moving
the resist in front of the mask during irradiation. The final
structure is shown in Figure 1c1. Kim et al. (Kim et al., 2021)
controlled the oblique angle of submicron-scale structures over
centimeter-scale areas using an inclined X-ray exposure through
a mask with slanted structures. They produced high-aspect-ratio
patterns angled at 20° and 10°, respectively, shown in Figure 1c2.
Nazmov et al. (Nazmov et al., 2020) obtained combined elements

FIGURE 1 | (A) Scheme of the beam scan method. The exposure stage (assembly of mask and sample) is moved with respect to the beam during exposure. (B)
Scheme of the multiple mask lithography, where superimposed masks are moved while irradiating. The idea comes from Moser et al. (2012). (C) Examples of 3D
structures obtained with XRL. (c1) 3D Microneedle fabricated using three aligned exposures of which two are dynamic by moving an obelisk-shaped absorber mask
(shown in the inset) first in one direction, and then at 90° on the same plane. In this way, the pyramid needle is obtained. A third static exposure is performed to
obtain the needle hole. Adapted fromWang et al. (2021) (c2) Oblique submicron structures of a 10-μm period at 20° obtained with a slanted mask and exposure (shown
in the inset). Adapted from Kim et al. (2021). (c3) Step-like microstructures with height 250 and 150 µm obtained by changing the absorber thickness of the mask.
Adapted from Nazmov et al. (2020) with permission of AIP Publishing.
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by using a stepped attenuator of the X-ray beam and by changing
the absorber thickness of the mask. They fabricated refractive
X-ray lenses with a parabolic cylinder profile and different height,
shown in Figure 1c3. Zhang et al. (Zhang et al., 2021) proposed a
method based on the exposure of the resist on a flexible substrate,
fabricating spherically curved microstructures as micro-slot
optics for astronomical telescopes.

Maskless XRL
Leontowich et al. (Leontowich et al., 2013) used an SR scanning
transmission X-ray microscope (STXM) equipped with a double-
Fresnel zone plate lens to direct write 15-nm-wide features in
PMMA resist. Späth et al. (Späth et al., 2016; Späth et al., 2019)
employed STXM to obtain metallic nanostructures from metal
organic precursor gases.

X-ray Interference Lithography
Numerous factors limit the resolution in XRL. Among the others,
we cite beam divergence, Fresnel diffraction, generation of
photoelectrons in the resist, and thermal deformation of the
mask (Tormen et al., 2011). Some of them have been
addressed. For example, both diffraction and penumbral blur
depend on the gap between the mask and the resist, and its
minimization by making hard contact was investigated by
Saegusa et al. (Saegusa, et al., 2021).

The diffraction issue, which was considered a major drawback,
is now being exploited in the X-ray interference lithography (XIL)
(Mojarad et al., 2015a). In XIL, the incident beam is transmitted
and diffracted by mask gratings at certain angles, θd, given as:

sinθd � nλ/Pg

where n is the order of diffraction and Pg is the grating
periodicity. For instance, if two gratings are exposed to the
same beam intensity, the diffracted beam would interfere with
the periodicity P of the aerial image as the following:

P � λ/2sin(θ/2)

θ is the angle between two beams = 2θd, thus P = Pg/2n. In case of
the first-order diffraction-based XIL, a half-pitch HP = Pg/4 could
be achieved, showing how promising is XIL for nanopatterning.

Soft X-rays are used (140–500 eV) as they provide a good
trade-off between the diffraction-limited resolution and
photoelectron-blur/penumbral limited resolution (Reznikova
et al., 2008). Deng et al. (Deng et al., 2021) fabricated a
nanoscale reference grating having a nonlinear deviation below
±0.5 nm and a maximum variation in calibrated mean pitch
0.01 nm using a combination of laser-focused atomic
deposition and XIL. Mojarad et al. (Mojarad et al., 2021)
obtained nanopillars with a high aspect ratio and variable
opening diameter (40–100 nm) as a function of exposure dose,
using 4-beam XIL and electroplating, as shown in Figure 2A.
They also achieved pillars and beam structures at oblique angles
of 30° and 20° using 4-beam and achromatic-Talbot geometry, as
shown in Figure 2B. The shape, periodicity, and relative
arrangement of the structure could be tailored using different
geometrical arranged gratings. Zhao et al. (Zhao et al., 2020)
demonstrated the possibility to obtain large areas of high-
resolution and aspect ratio periodic nanostructures.

XIL is a promising tool for future nanofabrication; however, it
still requires intense research both in photoresists and in
instrumentation. The performance of the XIL in terms of RLS
(resolution, linewidth roughness, and sensitivity) has been
examined on different photoresists (CAR-organic chemically
amplified resist, hydrogen silsesquioxan (HSQ)-inorganic
hydrogen silsesquioxane, Inpria XE15IB (IB)-hafnium-based
inorganic photoresist). It was observed that the patterning
down to HP = 22 nm is possible for all resists, whereas in the
case of Inpria HP it can reach 18 nm (Mojarad et al., 2015b, 2013).
Shot-noise effect, due to the statistical fluctuation of the
illumination intensity at the pattern edge, influences the
solubility of the resist (Kruit and Steenbrink, 2005). It is the
limiting factor that hinders the resolution, and it could be
overcome by the proper choice of a photoresist. In this regard,
organic photoresists do not satisfy the RLS requirements, while
inorganic resists, having high absorption in XRL, would be

FIGURE 2 | (A) Scheme of the XIL technique (a1) basic principle 1) soft X-ray irradiation of HSQ resist on a silicon substrate with base plating. Only two of the four
interfering beams are shown, 2) nanostructures in HSQ resist after development, 3) Cr etching and Au electroplating using HSQ as a template and, 4) final structures in Au
after removing the resist (a2) four-grating configuration for coherent (P1 = P2) and incoherent (P1≈P2) interference. (a3) Scanning-electron micrographs (45° tilt) of Au
nanopillars with an aspect ratio of ~6. (B) Exposure scheme (b1, b1_1, b2, b2_1) and resulting oblique structures (b1_2) at 30° and (b2_2) 20°. Adapted from
Mojarad et al. (2021) with permission of AIP Publishing.
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promising candidates to surpass the existing barriers and reach
the future technological nodes (Mojarad et al., 2015b).

INDUSTRIAL APPLICATIONS

The high costs inherent to the construction and operation of
synchrotron radiation facilities and the XRL process low
throughput have limited its industrial applications. However,
there are some specific applications for which XRL is the most
suitable and effective technique.

Spectrometers
Currently, XRL’s most important industrial exploitation concerns
the fabrication of diffractive and refractive optics used in X-ray
microscopy, interferometry, and tomography. A historically
successful application is the spectrometer, used for sensing in
the UV-VIS range, for biological and clinical systems,
calorimeters, food inspection, and fluorescence measuring
devices (Müller and Mohr, 1993; Crocombe, 2008). The
presently commercially available spectrometers use Echellette
diffraction gratings in the Rowland configuration fabricated by
the LIGA process. Their optical surfaces present sub-micrometric
features while the optics overall dimensions are of the
centimeters order.

Gratings
A further application is the X-ray grating interferometry used for
medical imaging, tomography, biology, and material inspection.
The latest developments in the field are the X-ray dark-field
imaging system, which uses three different gratings (Pfeiffer et al.,
2009; Notohamiprodjo et al., 2020), and the phase-contrast
imaging with a far-field interferometer. In the latter
instrument, 200-nm period multilayer gratings are used,
manufactured by LIGA (Wen et al., 2013).

RADIATION-ASSISTED SYNTHESIS AND
PROCESSING OF NOVEL MATERIALS

Since the beginning of XRL, attention has been drawn on the effect
of irradiation on different materials, beyond the ones designed and
employed as standard resists. Both soft and hard X-rays can be
employed, depending on the X-ray absorption coefficient and
sensitivity of the materials. Recently, with the progress of
material science and the production of novel functional
materials with tailored properties, the possibility of their
patterning and positioning has given a new boost to XRL. In
fact, a new generation of microdevices like (bio) lab-on-chip, (bio)
sensors, energy harvesting, and solar cells, can be envisioned.

X-ray exposure can induce simultaneous synthesis and
processing of materials. The following areas have been
investigated.

Sol-gels
Liu et al. (Liu et al., 2003) patterned sol–gel thick spin-on-glass
films via XRL. Some years later, Brusatin et al. developed hybrid

sol–gel films and hybrid organic inorganic materials as resists
with tunable properties (i.e., refractive index or light absorption)
(Brusatin et al., 2008; Brigo et al., 2011; Zanchetta et al., 2013;
Brigo et al., 2014; Garoli et al., 2016). Falcaro et al. were the first to
pattern mesoporous films from sol–gels, obtaining micropatterns
of mesopores (Falcaro et al., 2008; Falcaro et al., 2009a; Falcaro
et al., 2009b). Faustini et al. exposed more complex mesoporous
structures (Faustini et al., 2010). The effect of irradiation on
sol–gel films is well described by Innocenzi et al. (Innocenzi et al.,
2011, Innocenzi et al., 2014). Research on mesoporous materials
is moving forward to practical applications. The mechanical
properties of irradiated mesoporous silica films were
investigated (Steinberg et al., 2021) together with their
application as sensors (Doherty et al., 2012) or as active
sample holders able to deliver fluids (Marmiroli et al., 2021).
Recently, silica–titania thin films were exposed using X-ray
laboratory sources (Royon et al., 2020), opening their use to a
wider community not strictly related to synchrotron radiation.

Nanoparticle Formation
Zanoni et al. (Zanoni et al., 1989) employed SR to dissociate
Mo(CO)6 and produce a metallic overlayer. Eichelbaumm et al.
(Eichelbaum et al., 2008b; Eichelbaum et al., 2008a) irradiated
gold and silver-doped soda lime silicate glasses obtaining gold
dimer particles embedded in the glassy matrix. Bertino et al.
(Bertino et al., 2007) used X-rays to photodissociate a
chalcogenide precursor inserted in a silica hydrogel and got
metal nanoparticles as semiconductor quantum dots. Malfatti
et al. added a metal precursor to the sol–gel and exposed both to
X-rays, obtaining gold (Malfatti et al., 2010) and silver
nanoparticles (Malfatti et al., 2011, 2016) in a patterned
mesoporous matrix. Pinna et al. synthesized cerium oxide
inside mesoporous films (Pinna et al., 2013).

Metal Organic Frameworks (MOFs)
A low X-ray irradiation dose does not affect the structure of ZIF
(zeolitic imidazolate framework)-based MOFs, as evidenced by
the research of Dimitrakakis et al. (Dimitrakakis et al., 2012).
More recently, the effect of X-rays on ZIFs was explored by
Widmer et al. (Widmer et al., 2019), where high doses led to the
structure amorphization. DXRL was used to directly pattern ZIFs
by Tu et al. (Tu et al., 2020), opening the possibility to fabricate
microdevices and sensors composed of tailored MOFs.

Others
Heya et al. (Heya et al., 2020, Heya et al., 2021) irradiated
pentacene to obtain nanographene. Evlyukhin et al. (Evlyukhin
et al., 2018) reported the combination of high-pressure and X-ray
exposure for the synthesis of oxalates. Miszta et al. (Miszta et al.,
2014) performed XRL on colloidal inorganic nanocrystals,
causing the cross-linking of the ligand molecules coating the
crystals, inducing a selective protection to cation exchange.
Palazon et al. (Palazon et al., 2016) used an X-ray
photoelectron spectroscopy source to irradiate films of
colloidal CsPbX3 (where X = I, Br, Cl) inducing the
intramolecular bonding of the ligands coating the surface of
the nanocrystal, leading to a stability of the films with respect
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to moisture and to biological buffers, thus opening the use of
halide perovskite nanocrystals in an aqueous environment.

On some materials, irradiation opens the access to functional
phases that would not be reachable in other ways. Therefore,
using XRL, functionality can be engineered at the nanoscale.

Surface Tension Change
Dressick et al. (Dressick et al., 1999) and Yang et al. (Yang et al.,
2001) were the first to expose thin films to obtain regions of different
surface wetting and chemical reactivity at a length scale below
100 nm and over areas >1 cm2. Later, Costacurta et al.
(Costacurta et al., 2011) used X-rays to increase hydrophilicity of
surfaces to create micro/nanofluidic circuits, while Dumée et al.
(Dumée et al., 2013) employed them to functionalize carbon
nanotubes.

Oxide Electronic Properties
Kiryukhan et al. (Kiryukhin et al., 1997) induced in a
magnetoresistive manganite a transition from insulating
antiferromagnetic behavior to a metal ferromagnetic one at low
temperature. Chang et al. (Chang et al., 2014) evaluated the effect of
X-rays on the resistance change of TiO2 thin films. Poccia et al.
(Poccia et al., 2011) obtained high-quality superconducting regions
in super oxygenated layered cuprate. Truccato et al. (Pagliero et al.,
2014; Truccato et al., 2016; Rabbani et al., 2021) irradiated Bi2212
microcrystals to fabricate a Josephson device.

Other Properties
Larciprete et al. (Larciprete et al., 2002) irradiated lithium fluoride
to get color centers that emit a luminescence, tunable with the
exposure dose. Coates et al. (Coates et al., 2021) determined the
effect of X-rays on the expansion coefficient of cadmium cyanide.

DISCUSSION

XRL presents many critical disadvantages that partly led to the
dismantling of XRL beamlines mainly dedicated to industry in
synchrotrons in Europe (synchrotrons in other parts of the world
anyway still have solely industry-related XRL beamlines). Among
them are the following points:

• It is not convenient for companies to invest in a technique
that is related to a synchrotron source and to its functioning.

• It is not possible for companies to use XRL for big batches of
devices.

• X-ray mask preparation is long and expensive impeding fast
prototyping; therefore, the time to reach the optimal design
of a device is longer.

However, we believe that there are some present and future
applications for which this technique is the unique or most
suitable one.

Here are the XRL advantages according to our opinion:

• Large areas (cm2) of radiation-sensitive nanomaterials can
be synthesized and/or patterned.

• The high aspect ratio obtainable with XRL, i.e., for gratings
or microfluidic channels, cannot be easily produced with
other techniques.

• X-rays can change properties of advanced materials in a
unique way, which is not possible with other techniques.

In particular, the radiation-assisted synthesis and processing of
advanced functional materials is partly still in the screening phase,
trying to understand what mechanisms are involved and how the
resulting effect can be employed. However, for some kind of
materials like specific microcrystals and mesoporous materials,
the times are mature to fabricate working devices and test their
performance. In this case, the properties arising fromX-ray exposure
are unique.

Thus, standard XRL is particularly convenient to fabricate

• Small batches of high aspect ratio micro/nanodevices for
specific applications;

• Devices and structures for research in (bio)chemistry or
medicine, where a new sample environment in terms of
sample manipulation and accessible time scale (specially in
case of microfluidics) would be advantageous;

• Micro/nanodevices like (bio)sensors, energy systems, and
lab on chip, taking advantage of radiation-assisted synthesis
and patterning of novel functional materials.

Moreover, the development and improvement of XIL could
result in its renovated employment in the semiconductor industry
for the next technological nodes.

CONCLUSION

In the present communication, we have reported and discussed the
last developments of XRL and XIL techniques, and the current
research on the two fields for which they can be applied: the
fabrication of high aspect ratio micro/nanostructures, and the
radiation-assisted synthesis, processing, and modification of novel
functional materials for their application in the future generation
devices.We have explained why we believe that there is still plenty of
room for XRL in the future on nanofabrication, due to its unique
features. The article was written in order to raise again the subject of
XRL, in the hope that someone will be encouraged to use its special
features for their future nanodevices.
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