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With the popularity of nanotechnology, the use of nanoparticles in pest

management has become widespread. Nanoformulated pesticides have

several advantages over conventional pesticide formulations, including

improved environmental stability, controlled release of active ingredients,

increased permeability, targeted delivery, etc. Despite these advantages,

recent research shows that several nanoparticles used in conventional

nanopesticide formulations can be toxic to crops and beneficial

organisms due to bioaccumulation and trophic transfer. Therefore,

traditional nanopesticides are thought to be non-advantageous for “green

agriculture”. In assessing the current situation, developing “all-organic”

nanopesticides could be the next-generation weapon for reducing the

adverse impact of traditional nanopesticides. However, their formulation

and application knowledge is remarkably limited. The green synthesis of “all-

organic” nanoparticles makes them more environmentally friendly than

conventional nanopesticides due to their minimal residual and hazardous

effects. This review focuses on the current development scenario of “all-

organic” nanopesticides, their advantages, and potential effects on target

organisms compared to traditional nanopesticides.
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Introduction

Agricultural insect pest management has been a challenging

job for a long time. At the same time, as it is necessary to kill

harmful insects, it is also essential to take care of the

environment. Various synthetic chemicals have been used to

eradicate the notorious pests at various times, but none have been

effective. Over time, the misuse, uncontrolled use, and insensitive

use of pesticides have always been controversial. Environmental

health protection has always been neglected on the pretext of

food security. The use of broad-spectrum conventional

insecticides, like organochlorines, organophosphates,

carbamates, and pyrethroids, has been widespread in

agricultural croplands over the past five decades for their

immediate effects (Sparks, 2013). However, the indiscriminate

and excessive use of these chemicals resulted in a wide range of

negative consequences, including eco-framework irregularity

(Schäfer et al., 2019; Vašíčková et al., 2019), toxicity to non-

target organisms (Singh and Leppanen, 2020; Teng et al., 2020),

and the development of insecticide-resistant pests (Kariyanna

et al., 2020; Sparks et al., 2020). In addition to synthetic-chemical

pesticides, some organic insecticides have also been

recommended to combat insect pests (Lengai et al., 2020;

Stankovic et al., 2020). However, such organic’s efficacy for

environmental sustainability remains questionable (Pavela,

2014). Under these circumstances, “precision agricultural crop

protection” approaches are essential for crop management and

environmental health protection (Stankovic et al., 2020).

In the last two decades, the expansion of nanotechnology has

resulted in the development of nanopesticides as a new and

promising armament to encounter pests in agriculture. These

nanopesticides can diminish the undiscriminating use of chemical

pesticides and are assumed to be an environmentally safer option

(Djiwanti and Kaushik, 2019). In nanopesticides, the nanoparticles

(NPs) can be used directly as an active ingredient (AI) (the principal

component present in pesticides), or they can be used as a delivery

agent for AI (as a carrier molecule). The carrier molecule facilitates

the uniform spread of AI over the foliar surfaces of the targeted crop

plants. As a result, they are quickly taken up by chewing insects (Rai

and Ingle, 2012). Several unique properties of nanoparticles, such as

small size (1–100 nm), high surface-to-volume ratio, a strong affinity

for the target organism, permeability, crystallinity, and thermal

stability, enable nanopesticides to be used for increased pesticidal

effect, targeted delivery, environmental stability, and controlled

release (Perlatti et al., 2013; Kah, 2015). In general, nanopesticides

are divided into two categories. Firstly, the pesticides with nanoscale

active components, which are often a nano dispersant emulsion of

active pesticides. Secondly, a formulationwhere the regular pesticides

are, encapsulated, doped, or coated with nanomaterials (Shekhar

et al., 2021). Most of the typical commercial nanoinsecticides are

composed of an appropriate combination of chemical and organic

nanoparticles. Among these, organophosphorus (chlorpyrifos,

malathion, parathion), carbamates (carbofuran), pyrethrin and

pyrethroid derivatives (bifenthrin, deltamethrin, cypermethrin,

gamma/delta/lambda-cyhalothrin, pyrethrin) are predominately

used during commercial formulation. However, in recent times,

the production of organic-pesticide derived nanoinsecticides instead

of synthetic chemicals has gained momentum. Among these, the

development of abamectin, avermectin, azadirachtin, and rotenone-

based nanoinsecticide formulations is prominent (Hwang et al.,

2011; Cui et al., 2015; Kilani-Morakchi et al., 2021).

Several reviews have summarised the classification and

prospect of nanopesticides in agriculture (Kah et al., 2018;

2013; Kah and Hofmann, 2014). Even if there are some

promising applications of nanopesticides in agriculture, the

possible adverse effects of nanomaterials on the environment,

living organisms, and humans are unknown comprehensively.

Several studies reveal that nanomaterials can generate
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toxicological effects on lettuce, tomatoes, wheat, and cucumbers

when used in high concentrations (Wang C et al., 2019; Paramo

et al., 2020; Pelegrino et al., 2020). Therefore, environmental and

non-target toxicity due to existing nanopesticides is also under

screening (Grillo et al., 2021). Furthermore, concerns are being

raised about using existing nanoparticles for their safety,

reliability, and health insecurity (Sarkar et al., 2012; Kah et al.,

2021). Deka et al. (2021) mentioned that these nanoparticles can

enter human or animal body via dermal contact or inhalation

and the chronic exposure can cause sub-acute toxicity and

sometimes can lead to severe health risk (Deka et al., 2021).

After considering the facts and realities, the concept of “all-

green” nanopesticides has been proposed to overcome the

shortcomings that could arise from the use of conventional

chemical based nanopesticides. The concept of “all-green”

nanopesticides is a view where both components of

nanopesticides come from biological sources (Ball, 2018; Liang

et al., 2018; Wang et al., 2018). In last two decades multiple

independent research area has been developed and strengthened

such as nanotechnology, green synthesis of biogenic

nanoparticles, natural products research, material biology,

biopolymer synthesis and characterization, which can

converge together to develop a new class of nanopesticide

where both the A and the carrier molecule are biological in

origin, which we mentioned in this literature as “all-green”

nanopesticide. As the concept and idea of “all-green”

nanopesticides are novel, much information is not available

on their sustainable formulation and future development.

However, few literatures have been published in last decade

and we have attempted to explore the available information of

recent advancements in “all-green” nanopesticides and

summarize the idea in this comprehensive review. More

specifically, in this present review we have concentrated our

focus on nanoinsecticides, present advancement of

nanoinsecticides in insect pest management and the future

prospects of nanoinsecticide as “all-green” nanoinsecticide.

Nanoinsecticides: An overview

An ideal insecticide should fulfil specific toxicity criteria,

including the ability to remain active without physical

degradation in the face of environmental calamities. It should

be taken up by the target organism effectively; it should have the

ability to invade the pest’s defensive barriers and remain benign

to plants, humans, and other mammals. An ideal insecticide

should provide economic security to agrarians through its

unparalleled mode of action. Nanoinsecticides almost cover all

of the criteria fulfilled, and henceforth, they are regarded as the

epitome of emerging scientific development. Furthermore, in

addition to insecticidal applications, nanoinsecticides may

provide a variety of additional benefits such as increased

target efficacy (Kah et al., 2018; Kaziem et al., 2018; Ahmed,

2019; Gao et al., 2019; Sun et al., 2020), durability and

environmental half-life (Liu et al., 2008; Shakil et al., 2010;

Kaziem et al., 2018; Gao et al., 2019), and a required

minimum amount of active ingredient (AI) (Vašíčková et al.,

2019; Wang Y et al., 2019). For these reasons, conventional

FIGURE 1
Illustration on different ways of nanopesticide formulations (active ingredients with carrier molecule and/or matrix).
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chemical insecticides are being reformulated as nanoinsecticides

to become more efficient and effective (Kah et al., 2018; Pires-

Oliveira et al., 2020). Physically, nanoinsecticides are small-sized

particles at the nanoscale of AIs or other engineered

nanoparticles with potential insecticidal properties (Bergeson,

2010). Several commercial nanoinsecticides have been developed

to date, including Banner MAXX, Subdue MAXX, Bifender FC,

AZeroid, and Fenstro (Kah et al., 2013; Walker et al., 2018), but

none can be considered truly environmentally friendly. These

nanoinsecticides are formulated as nanocarriers combined with

registered AIs having insecticidal properties (Walker et al., 2018).

Nevertheless, the most frequently used AIs are chemical or

inorganic compounds. However, there is some evidence that

plant-derived botanicals are also used as AIs.

Compared to regularly applied pesticides, nanopesticides

display valuable characteristics such as stiffness, permeability,

crystallinity, thermal stability, and biodegradability (Lade, 2017).

In particular, these nanoformulations allow a slower release of AI

into the environment, resulting in the retention of pest control

efficacy over a more extended period than conventional

insecticides (Liu et al., 2008; Ishaque et al., 2013). In addition,

nano-formulated insecticides provide enhanced apparent

solubility and enhanced uptake efficacy of AI, which

ultimately leads to a lower requirement of insecticides for pest

control (Anjali et al., 2010; Kookana et al., 2014; Cui et al., 2020).

Reports also suggest that nanoinsecticides are less toxic than

conventional chemical pesticides (Wan-Jun et al., 2010).

Advantages of nanoinsecticides

Using various techniques, reforming conventional

insecticides into different nanoforms (Figure 1) brings an

array of favourable advantages for agricultural pest

management programs (Kookana et al., 2014; Camara et al.,

2019; Kumar et al., 2019). In general, these nanoinsecticides are

formulated either through manipulations of nanocapsules,

nanospheres, nanomicelles, nanoemulsion, nanosuspension,

liposomes, or solid or lipid nanoparticles (Nuruzzaman et al.,

2016). Nanoencapsulation is possibly the most popular

nanoinsecticide formulation technique. In this technique,

active ingredients or the insecticides are enclosed within a

FIGURE 2
An outline depicting superiority of nanopesticides over traditionally used chemical pesticides.
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polymer or matrix of nanoscale range. The encapsulation

protects the AI from environmental degradation, rapid

environmental loss and allows accurate targeting.

Nanoemulsion is the kinetically stable colloidal dispersion of

nano sized AIs (1–100 nm), which have enhanced functional

property and enhanced bioavailability in compared to

conventional AIs. Nanosuspensions can be defined as a

colloidal, biphasic dispersions of AIs of submicron size that

are stabilized by surfactants. Nanosphere is a nanoscale

homogenous sphere that either carry AIs on their surface or

entrap the AI within the polymeric matrix. Solid lipid

nanoparticles are nothing but nanosized sold lipid suspensions

which are attracting wide attentions from researchers nowadays

as an alternative carrier for lipophilic AIs.

Each of these types of nanoformulation has its unique

advantages regarding pest control efficacy and sustained

release. It is claimed that nanocapsules deliver the best pest

control efficiency due to their nanoguard property in their

external shells. Nanoparticle loading of active substances

permits the controlled release of AIs into the environment,

leading to extended pest control efficacy compared to

commercially available formulations (Liu et al., 2008; Ishaque

et al., 2013). Nanoemulsions are another good form of

nanoinsecticide formulation that enables enhanced apparent

solubility, bioavailability, and AI uptake efficacy of AIs (Anjali

et al., 2010; Kookana et al., 2014). In addition, nanoemulsions are

considered a prospecting insecticide delivery system with better

kinetic stability, smaller size, low viscosity, and optical

transparency (Mustafa and Hussein, 2020; Sabry et al., 2021).

Nanodispersion and nanosuspension are kinds of

nanoformulations that may enhance the toxicity of AIs to the

target organism, even at a suboptimal lower dose (Frederiksen

et al., 2003; Chen et al., 2018; Wang C et al., 2019; Wang Y et al.,

2019). For example, aqueous nanodispersions of triclosan (an

antibacterial and antifungal agent) display greater efficacy than

organic or aqueous solutions of triclosan (Zhang et al., 2008). In

addition, nanometals or metal-oxide nanoparticles are also

reported to be used in pest management directly as AIs or as

delivery vehicles or adjuvants indirectly. Thus, the active

constituents of nanoinsecticide provide advantages for pest

management in different ways (Figure 2), and these are as

follows:

Active ingredient

Some investigations reveal that metal nanoparticles can

directly act as AIs for nanoinsecticides. For example, ZnO is

used as a fungicide against multiple pathogenic fungi (Alternaria

mali, Botryosphaeria dothidea, Diplodia seriata) in fruit orchards to

defend against fruit blotches, plant cankers, and bot cankers (I.

Ahmad I et al., 2020; Jameel et al., 2020). ZnOnanoparticles enhance

thiamethoxam’s (a systemic insecticide) insecticidal activity against

the tobacco cutworm, Spodoptera litura larvae (Jameel et al., 2020).

Likewise, SiO2 also has a broad spectrum of insecticidal properties

against a bunch of notorious insect pests like cotton leafworm

(Spodoptera littoralis), rice weevil (Sitophilus oryzae), wheat

weevil (Rhizopertha dominica), red flour beetle (Tribolium

castaneum), and grain beetle (Orizaephilus surinamenisis)

(Debnath et al., 2011; Ayoub et al., 2017; El-Naggar et al., 2020).

Similarly, the effect of nanostructured alumina on the leaf-cutting

ant Acromyrmex lobicornis, which is a major pest of agricultural and

forest plants, has been studied. According to the report, adult

mortality increases with increasing exposure time and dosage.

Furthermore, it was discovered that nano-formulated alumina

has increased cuticular attachment, which increases the

probability of cytotoxicity (Buteler et al., 2018). Some other

metallic nanoparticles such as MnO, TiO2, Ag, and Fe3O4 have

also shown a variety of antifungal activities on a diverse group of

fungal pathogens from crops (Chen J et al., 2020; Panova et al., 2019;

Paramo et al., 2020; Wang et al., 2017). Besides metallic AIs, some

non-metallic AIs like graphene oxide (C140H42O20) (Wang et al.,

2017; Wang C et al., 2019) and silicon (Rastogi et al., 2019) are also

reported to have an insecticidal response to several pathogens.

Enhanced toxicity

Nanoformulations of conventional insecticides can

potentially improve the toxicity levels of their target insect

pests by up to 10-fold (Kah et al., 2018). Triclosan

nanopesticides, formulated as aqueous nanodispersions, show

more significant activity than organic or aqueous solutions of

Triclosan (Zhang et al., 2008). The larvicidal effects of nano-

permethrins (C21H20Cl2O3) (an atopic antidermatitis for

mosquitoes, scabies, and lice) on Culex quinquefasciatus were

recorded almost six times higher than bulk permethrin (Anjali

et al., 2010). Similarly, nano-formulated chlorantraniliprole and

thiocyclam were 3.86-fold and 2.06-fold more effective on black

cutworms (Agrotis ipsilon) than their conventional forms. These

insecticide’s nanoformulations can successfully reduce egg-

hatching rates and alter larval growth periods (Awad et al.,

2022). Similarly, the insecticidal activity of pyridalyl

(C18H14Cl4F3NO3) nanosuspension (a selectively cytotoxic

compound for Lepidoptera and thrips) is more effective

(LC50: 40 μg/L) than its bulk use for the treatment (LC50:

90 μg/L) of cotton bollworm, Helicoverpa armigera (Saini

et al., 2014). Sabry et al. (2021) demonstrated that

nanoparticles from oxadiazine larvicide, indoxacarb

(C22H17CIF3N3O7) (a neurotoxic insecticide for lepidopteran

larvae), and the neonicotinoid insecticide, imidacloprid

(C9H10ClN5O2) (a neurotoxic substance that arrests insect

CNS) are respectively 12 to 4 times more effective than their

conventional formulations against the cotton leafworm, S.

littoralis. Rahwanudin et al., 2022 found that Spinetoram

nano-suspension (a neurotoxic constituent from
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Saccharopolyspora spinosa) had a greater efficiency (33%) in

controlling diamondback moth, Plutella xylostella than the

commercial form. Metallic oxides, such as CuO and ZnO,

when used as nanocarriers, can facilitate the uptake of

bifenthrin (C23H22ClF3O2) (a pyrethroid neurotoxic) in the

earthworm, Eisenia fetida. ZnO nanoparticles could augment

the insecticidal action of thiamethoxam (C8H10ClN5O3S) against

S. litura larvae (Jameel et al., 2020; Sabry et al., 2021).

Enhanced solubility and uptake efficiency

Enhanced apparent solubility is the phenomenon where the

solubility of conventional pesticides is drastically increased,

which are in general less soluble in water or organic solvents.

In addition to increased solubility, nano-formulated pesticides

allow increased transfer of AI from the treated surface to the

target pest. The toxicity of insecticides can be enhanced on target

organisms even at suboptimal lower doses by reformulating the

bulk molecule into nanoinsecticides (Kookana et al., 2014). For

example, aqueous nano-dispersions of antibacterial/fungal

Triclosan (C12H7Cl3O2) showed more significant activity than

organic or aqueous solutions of an equivalent amount of

Triclosan (Zhang et al., 2013). Similarly, nanoencapsulation of

nicotine-mimicking commercial systemic insecticide

imidacloprid (C9H10ClN5O2) is equally effective as bulk

imidacloprid, even at a lower dose (Memarizadeh et al., 2014).

Therefore, it is assumed that the exceptional properties of

nanoinsecticides permit a uniform spread of AI over the foliar

and soil surfaces, and thus, they are easily taken up by chewing

insects. Additionally, nanocarrier-based AIs are absorbed by the

cuticular wax (lipid) layers of insects and break down the water

protection barrier (Nuruzzaman et al., 2016; Rastogi et al., 2019).

Therefore, in short, the large surface area of nano insecticides

favours increased affinity for the target pest and, therefore,

reduces the amount of insecticide required for controlling the

enemy (Boehm et al., 2003).

Targeted delivery and controlled release

In the 21st century, several nanoinsecticide formulations

have been conceptualized and designed to efficiently deliver

optimum amounts of AIs. Porous materials have shown great

potential for targeted delivery and controlled release of AIs in

practical applications. Materials like mesoporous silica

nanoparticles have become a great choice of interest as they

showed multiple benefits such as improved efficacy, efficient

delivery and reduced requirement of AI than conventional dose

(Sharma et al., 2021a). For example, abamectin loaded in

mesoporous silica nanoparticles showed release rate of 30 μg/h

for 25 h which eventually dropped to 10 μg/h for next 200 h

(Wang et al., 2014). In last decade, with advancement of

nanotechnology, a smart insecticide delivery system has been

developed to minimize the usages of AIs, which is known as

“stimuli-responsive-nanoinsecticides”. In such nanoinsecticide

formulation, the AI releases from the formulation only after the

onset of pest infestation. Alternation of pH, temperature, redox

system, light irradiation and even some specific enzymes could

serve as stimulus (Kumar et al., 2015; Kaziem et al., 2018; Wang

et al., 2018; Xiang et al., 2018; Gao et al., 2019; Zhang et al., 2019).

A number of pH responsive nanoinsecticide formulations have

been developed experimentally to control insect pests that are

optimized to release AI in presence of a wide range of

pH conditions (acidic or alkaline) present in the insect intestine

(Kaziem et al., 2018; Wang et al., 2018). One such example is the

nanoformulation of cypermethrin with alginate nanocarrier. The

pH of the nanoformulation system ismaintained towards acidic side

where alginate forms crosslinking polymer mesh and make the

interior of the nanoparticle hydrophobic, resulting into reduced

release of AIs from the system. After triggering with alkaline pH, the

crosslinking polymer starts to disintegrate owing to the loss of

electrostatic interactions and resulting into release of insecticide

(Patel et al., 2018). The pH of the system not always interferes with

the electrostatic interaction or polymer crosslinking. Wang et al.

(2018) reported that enhanced release of avermectin from poly-

(succinate) nanocarrier system at higher pH was due to collapse of

nanoparticles in presence of alkaline condition. Some other

nanoinsecticide formulations also exhibit the same kind of pH-

dependent active ingredient’s release prototype. Abamectin-silica,

coated with polystyrene and trimethoxysilyl-propyl methacrylate

nanoinsecticide formulation released around 15% of insecticide at

pH 5 after 15 days of application but at pH 10 the loss of abamectin

reached up to 87% (Gao et al., 2019). Few other nanoformulations,

for example, cyclodextrin-SiO2 NP containing avermectin (Kaziem

et al., 2018), alginate-chitosan nanocarrier system containing

acetamiprid (Kumar et al., 2015) have been developed which are

activated in presence of alkaline pH. Photo-responsive

nanoinsecticide formulations are another example of

nanotechnological advancement. Formulation of fipronil—a

broad spectrum phenylpyrazole insecticide, and coumarin—a

phytochemical belonging to flavonoid group, is one of the well-

recognized evidence of photo-responsive insecticide (Gao et al.,

2019). It was found that in dark, the insecticide exhibits low

insecticidal activity in Aedes mosquitoes, but in presence of

sunlight their insecticidal activity significantly amplified. A

similar observation was later found by Xu et al. (2018) in case of

spirotetramat enol-coumarin insecticide formulation.

As an example of further technological advancement Sharma

et al. (2017) have developed graphene oxide (modified with

copper and selenium NP) nanocomposite to deliver

chlorpyrifos to cabbage white butterfly, Pieris rapae. The

nanoformulation showed both pH sensitive and photo-

sensitive release of AI. The composite showed 25%–30%

release of AI in presence of extreme PH, which is typical of

insect digestive tract, in compare to ‘release’ (17%) at neutral pH.
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Furthermore, the release rate of AI from the formulation was

calculated to be four times higher in presence of light irradiation

in compared to control. These specific release pattern of AI could

be appropriate specifically for the diurnal insects and could

reduce the usage of AIs.

Enzyme responsive nanoinsecticide formulations have also

been thoroughly investigated. Enzymes found in herbivorous

insect’s salivary glands or in mid-gut, such as alkaline

phosphatases, alpha-amylase, carboxylases, and others,

promote specific reactions during feeding and therefter trigger

the process of AI-release from nano-based insecticides (Kaziem

et al., 2018; Camara et al., 2019). Guo et al. (2015) have developed

epichlorohydrin-modified carboxymethylcellulose microcapsule

containing emmamectin benzoate insecticide, crosslinked with

silica nanoparticles. In absence of insect feeding the carboxy-

methylcellulose capsule remains intact, hence restrict the release

of emmamectin benzoate (20% loss in 30 h). However, in

presence of cellulase in insect saliva, the cellulose wall of the

capsule cleaved into smaller fragments causing the release of AIs

from the formulation (80% loss in 30 h) (Guo et al., 2015).

Similarly, α-amylase-responsive α-cyclodextrin anchored

insecticide formulation has been developed containing silica

loaded avermectin. In absence and presence of larval feeding,

around 95% and 60% of AIs retained within the formulation after

17 days of application, indicating the stimulus responsive

insecticide release pattern of the nanoformulation (Kaziem

et al., 2018).

Furthermore, change in ambient temperature acts as a

stimulus for temperature responsive nanoinsecticides. In most

cases high temperature causes enhanced release rate of AIs from

the formulations, which is due to the enhanced thermodynamic

movement of the active molecules that facilitate the diffusion of

the insecticides through the carrier material (Liang et al., 2018).

SiO2 nanoparticle-coated temperature-responsive chitosan

containing avermectin (Liang et al., 2018), and mixed micelle

nanomycetes loaded with pyrethrin (Zhang et al., 2019) are some

examples of smart thermal responsive nanoformulation that have

been developed for experimental purposes.

Environmental stability

Most of the AI commonly used in insect pest management is

vulnerable to environmental degradation due to oxidation, UV

exposure, leaching, etc. At the same time, it is also suggested that

AIs can be sustained in the environment for a longer duration in

presence of nanocarriers without losing their insecticidal ability

(Kumar et al., 2019). Researchers showed that the neurotoxic

nano-bifenthrin slowly degrades the environment following a

first-order model (Kah et al., 2016). Similarly, compared to bulk

counterparts, the organophosphate pesticide, chlorpyrifos

(C9H11Cl3NO3PS) with lipid nanocarrier and the fungicide,

tebuconazole (C16H22ClN3O) with polymeric nanocarrier had

longer soil half-lives (Fojtová et al., 2019). Clay and LDHs

(layered double hydroxides) containing nanoformulations

prevent volatilization and photodegradation of pesticides

(Chaud et al., 2021). Using the co-solvent approach,

nanoliposomes were synthesized by encapsulating emamectin

benzoate with 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[amino(polyethylene glycol)-2000].

The resulting nanoformulation not only has considerable

larvicidal activity against the fall armyworm, Spodoptera

frugiperda (LC50: 0.046 mg/L) but also has improved leaf

adherence and outstanding sustained release properties (Chen

et al., 2022). Sharma et al. (2021b) have developed

nanoformulations using copper and selenium modified

graphene oxide nanocomposite containing captan. The 2D

morphology of graphene oxide enhanced the charge-assisted-

binding of nanoformulation with the foliar surface and it was

found that leaching of AI is significantly less (26%–35%) from the

nanoformulation in compared to bulk captan emulsion (70%).

Patil and Bendre (2022) used in situ polymerization to synthesize

a phenol-urea-formaldehyde (PUF) terpolymer, which was then

used to encapsulate a ‘neem’ oil-based bioinsecticide. Because of

their stability, the resulting microcapsules (30 um) worked

remarkably well even at higher ambient temperatures (up to

45°C). The microcapsules demonstrated first-order release

kinetics, indicating a slow environmental release feature (Patil

and Bendre, 2022).

Reduced toxicity

One such experiment is being carried out in a human model.

Powered nanostructured alumina, which is being studied as an

alternative to chemical insecticides, is less harmful in humans

than commercially available chemical pesticides. Experimental

evidence suggests that nanostructured alumina causes

considerably less DNA damage, chromosomal breakage, and

cell viability in human peripheral blood lymphocytes than

routinely used organophosphates (Vineela et al., 2017).

Disadvantages of nanoinsecticides

As stated before, the application of nano-formulated

insecticides increases the effectiveness of typical insecticides,

though commercially available nanoparticles are not always

safe (Kah, 2015). Hence, there is a need to assess the possible

undesired outcomes of applying nanoparticles in agriculture.

While, on the one hand, these nanomaterials can provide

nutrients to plants and protection against pests, on the other

hand, they can induce stress on other non-pest species of the

ecosystem, causing ecological risks (Bourguet and Guillemaud,

2016). Thus, during the last few years, a new genre of toxicology

has been developed called “nanotoxicology,” where the toxic
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effects of nanomaterials are under the scanner. Nanomaterials

seem to exhibit toxic effects that are uncommon and not seen

with larger particles, and these smaller particles can pose more of

a threat to living organisms due to their ability to move with a

much higher level of freedom (Sukhanova et al., 2018). There

remains much evidence of the harmful impacts of nanoparticles

becoming an obstacle to existing nanoinsecticides in recent times

(Côa et al., 2020; Paramo et al., 2020). Therefore, along with their

good merits, the nanoinsecticides also have some shortcomings

in functionality, as follows:

Cellular stress

Oxidative stress is a phenomenon caused by an unevenness

between the production and accumulation of reactive oxygen

species (ROS) in cells and tissues and the capacity of a biological

system to detoxify ROS (Betteridge, 2000). Upon treatment, the

interactions between cells and nanomaterials are evident due to

fabricated and engineered nanomaterials designed with unique

features to attain specific targets (Kovacic and Somanathan,

2013). However, the scientific basis for the cytotoxicity and

genotoxicity of most manufactured nanomaterials is not well

understood. Excessive synthesis of ROS can induce oxidative

stress, resulting in cell’s failing to maintain normal physiological

redox-regulated functions, which results in DNA damage,

unregulated cell signalling, changes in cell motility, and

cytotoxicity (Rajeshwari et al., 2016; Samhadaneh et al., 2019).

Copper [Cu(OH)2] nanopesticides, for example, have been

shown to harm spinach by lowering antioxidant molecules

such as ascorbic acid, alpha-tocopherol, threonic acid, 4-

hydroxybutyric acid, ferulic acid, and total phenolic

compounds by 29%–85% (Zhao et al., 2017). Another study

found that Cu(OH)2 based nanopesticides cause significant

oxidative stress in lettuce by lowering antioxidant levels (cis-

caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, and

dehydroascorbic acid) in comparison to the control (Zhao et al.,

2016). In the onion, Allium cepa, gold nanoparticle-dependent

generation of reactive oxygen species (ROS) was observed along

with enhanced lipid-peroxidation and chromosome aberrations

in root hair cells (Rajeshwari et al., 2016).

Reduction of plant growth and seed
germination

Nanoinsecticides are known to hinder plant growth and

thereby reduce agricultural yield. Literature suggests that

nanoparticles present in nanoformulation interfere with plant

growth by disturbing water homeostasis and disrupting

concentrations of other small molecules in plants (Qian et al.,

2013). Moreover, nanoinsecticides can manipulate plasma

membrane K+ efflux and Ca2+ influx, which eventually cause

membrane breakdown (Sosan et al., 2016). For example, ZnO

and CuO nanoparticles affect crop yield by interfering with root

and shoot growth (Wang C et al., 2019; Paramo et al., 2020;

Pelegrino et al., 2020). Nanoparticles may further interfere with

plant growth by disrupting the thylakoid membrane, which

eventually decreases chlorophyll content and the

photosynthetic rate of the plants (Qian et al., 2013; Fayez et

al., 2017). Other metallic nanoparticles like TiO2 and Ag are

known to reduce host plant’s early growth and chlorophyll

content (Qian et al., 2013; Gao et al., 2019; Wang Y et al.,

2019; Paramo et al., 2020). Lee et al., 2008 demonstrated that Cu-

nanoparticles have the potential to reduce the growth rate of

mung bean (Phaseolus radiates) and wheat (Triticum aestivum).

Seed germination is also affected by exposure to nanoparticles

(Lee et al., 2008). For example, Ag-based nanoparticles can

reduce carrot seed germination by 20% (Park and Ahn, 2016).

Inhibition in lettuce seed germination and radicle growth is

reported on exposure of CuO-nanoparticles due to ROS or

RNS (reactive oxygen or nitrogen species) accumulations in

the seed (Pelegrino et al., 2020).

Ecological impact

Apart from toxic costs, there is evidence that nanopesticides

can be accumulated and transferred through the food chain,

causing long-term effects on the ecosystem (Dang et al., 2019;

Xiao et al., 2019; Côa et al., 2020). However, only a few reports

have focused on the toxicity and bioaccumulation of

nanomaterials in agricultural lands. The majority of research

has been conducted on planktons (algae and daphnids), where

metal oxides are primarily tested as nanoparticles (Tangaa et al.,

2016). Trophic transfer of bio-accumulated silver nanoparticles is

demonstrated in different algae-daphnids (McTeer et al., 2014;

Chen et al., 2015), algae-fish (Skjolding et al., 2014), algae-bivalve

(Renault et al., 2008), algae-amphipod (Jackson et al., 2012), and

algae-daphnids-fish (Chae and An, 2016). Kalman et al (2015)

show the bioaccumulation and trophic transfer of silver

nanoparticles in the green alga, Chlorella vulgaris, and in the

crustacean, Daphnia magna, resulting from the Ag-nanoparticle

assimilations (Kalman et al., 2015).

Nanoparticles can suffer environmental physical and

chemical modifications such as changes in aggregation and

oxidation state, colloidal behaviour, dissolution, sulfidation,

and sorption of inorganic and organic species that result in a

transient pattern of dissolution or stability of nanoparticles

(Santaella and Plancot, 2020). All of these can alter the

toxicological profiles of nanopesticides (Côa et al., 2020). In

addition, the physiochemical transformation of nanoparticles

favours the sedimentation rate, which eventually extends their

persistence in the environment and thus prolongs the toxicity

period (Deng et al., 2017; Côa et al., 2020). Deng et al. (2017)

suggest that nanoparticles can change the bioavailability of
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TABLE 1 List of experimentally successful nanoinsecticide formulations (active ingredients and carriers) and their functional superiority to conventional
chemical insecticides (Abbreviations; HNM, Hybrid nano metal; NE, Nano encapsulation; NG, Nano gel; NM, Nano micelle; NN, Nano emulsion; NS, Nano
suspension; SLN, Solid lipid nanoparticle; M-NP, Metal nanoparticle).

Bioactive
component/Active
ingredient

Carrier/Matrix Formulation
type

Effect Target insect References

Synthetic nano-insecticide (Synthetic AI + Synthetic nanocarrier)

Acephate Poly-ethylene glycol NE Increased cytotoxicity,
controlled release (AI)

Spodoptera litura,
Oligonychus coffeae

Pradhan et al. (2013)

Bifenthrin Poly (acrylic acid)-b-poly (butyl
acrylate), Polyvinylpyrrolidone
(PVP), Polyvinyl alcohol

NS/NN Controlled release (AI) (not specified) Liu et al. (2008)

Bifenthrin Triethylene Glycol Monododecyl
Ether

NS/NN Increased cytotoxicity,
controlled release (AI)

Drosophila
melanogaster

Flores-Castañeda
et al. (2019)

Bifenthrin CuO HNM Increased penetrance Eisenia fetida Li et al. (2020)

Bifenthrin ZnO HNM Increased penetrance Eisenia fetida Li et al. (2020)

Carbofuran Poly-ethylene glycol NM Controlled release (AI) (not specified) Shakil et al. (2010)

Carbofuran Poly-ethylene glycol NM Controlled release (AI) Meloidogyne incognita Pankaj et al. (2012)

Deltamethrin Ag-NP HNM Increased cytotoxicity Aedes aegypti Sooresh et al. (2011)

Emamectin benzoate Polyacrylate (PAL) — Increased cytotoxicity,
environmental stability

Helicorvapa armigera Shang et al. (2013)

Gamma-cyhalothrin Polystyrene SLN Increased cytotoxicity Dysdercus cingulatus
and Spodoptera littoralis

Frederiksen et al.
(2003)

Gamma-cyhalothrin Compritol 888 SLN Decrease relative
damage index (non-
target species) caused
by AI

(not specified) Frederiksen et al.
(2003)

Imidacloprid Chitosan-poly (lactide) copolymer NE Increased cytotoxicity (not specified) Li et al. (2011)

Imidacloprid Poly-ethylene glycol NM Increased cytotoxicity,
controlled release (AI)

Melanagromyza
sojae, Bemisia tabaci

Adak et al. (2012a),
Adak et al. (2012b)

Imidacloprid PCA–PEG–PCA NE Increased cytotoxicity,
improved
bioavailability

(not specified) Memarizadeh et al.
(2014)

Lambda—cyhalothrin PEG-PDLLA NS Increased cytotoxicity Aphis craccivora Chen et al. (2018)

Lambda—cyhalothrin Polyethylene glycol NE Increased cytotoxicity Culex pipeins Bhan et al. (2014)

Lambda—cyhalothrin Ag-NP HNM Increased cytotoxicity Culex pipeins El Borady (2016)

Lambda—cyhalothrin Polyethylene glycol NE Increased cytotoxicity Culex pipiens Desheesh et al. (2019)

Lambda—cyhalothrin Ag-NP HNM Increased cytotoxicity Sodoptera littoralis Ahmed, (2019)

Lambda-cyhalothrin Poly (ethylene glycol) methyl ether-
block-poly (D,L lactide)

NE/NS Increased cytotoxicity (not specified) Chen et al. (2018),
Chen K et al. (2020)

Novaluron Oil phase, surfactants and water NN Increased cytotoxicity,
improved
bioavailability

Spodoptera littoralis Elek et al. (2010)

Permethrin N-butyl acetate, ammonium
glycyrrhizinate, sec-butyl alcohol,
Soybean lecithin with 92% soybean
phosphatidylcholine, Sucrose

NN Increased cytotoxicity Culex quinquefasciatus Anjali et al. (2010)

Piracetam, Pentoxifylline,
and Pyridoxine

Silica NS Increased penetrance (not specified) Jampilek et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) List of experimentally successful nanoinsecticide formulations (active ingredients and carriers) and their functional superiority to
conventional chemical insecticides (Abbreviations; HNM, Hybrid nano metal; NE, Nano encapsulation; NG, Nano gel; NM, Nano micelle; NN, Nano emulsion;
NS, Nano suspension; SLN, Solid lipid nanoparticle; M-NP, Metal nanoparticle).

Bioactive
component/Active
ingredient

Carrier/Matrix Formulation
type

Effect Target insect References

Thiamethoxam ZnO HNM Increased cytotoxicity,
increased penetrance

Spodoptera litura Jameel et al. (2020)

Thiamethoxam Poly-ethylene glycol NM Controlled release (AI) (not specified) Sarkar et al. (2012)

β-cyfluthrin Poly-ethylene glycol NM Controlled release (AI) Callosobruchus
maculatus

Loha et al. (2012)

Metal nano particles (M-MP)

SiO2 NP — M-NP Increased cytotoxicity Spodoptera littoralis,
Sitophilus oryzae,
Rhizopertha dominica,
Tribolium castaneum,
Orizaephilus
surinamenisis

Ayoub et al. (2017),
Debnath et al. (2011),
El-Naggar et al. (2020)

Ag-NP — M-NP Increased cytotoxicity Sitophilus granarius Rashwan and
Abu-Zaid (2018)

Ag-NP — M-NP Increased cytotoxicity Sitophilus oryzae Malathi et al. (2019)

Ag-NP — M-NP Increased cytotoxicity Tribolium castaneum Selvaraj et al. (2019)

Ag-NP — M-NP Increased cytotoxicity Callosobruchus
maculatus

Carbone et al. (2020)

Ag-NP — M-NP Increased cytotoxicity Tribolium castaneum Shahzadi et al. (2019)

Al2O3-NP — M-NP Increased cytotoxicity Sitophilus oryzae,
Sitophilus zeamais

Abo-Arab et al. (2014)

Al2O3-NP — M-NP Increased cytotoxicity Sitophilus oryzae López-García et al.
(2018)

ZnO-NP — M-NP Increased cytotoxicity Rhyzopertha dominica Siddique et al. (2022)

Au-NP — M-NP Increased cytotoxicity Aedes aegypti L Sundararajan and
Ranjitha Kumari
(2017)

Au-NP — M-NP Increased cytotoxicity Aedes aegypti L Suganya et al. (2017)

Synthetic nano-insecticide (Synthetic AI + bio nanocarrier)

Acetamiprid Alginate and chitosan NE Stimuli responsive
release, controlled
release (AI)

(not specified) Kumar et al. (2015)

Azoxystrobin and
abamectin

Tannic acid — Increased foliar
adhesion

(not specified) Yu et al. (2019)

Cationic nano-chitin
whiskers, Omethoate,
Imidacloprid, Acetamiprid

Cationic nanochitin whiskers NE Increased cytotoxicity (not specified) Li et al. (2021)

Chlorpyrifos Polydopamine, calcium alginate and
attapulgite

NG Increased cytotoxicity,
stimuli responsive
release, controlled
release (AI)

(not specified) Xiang et al. (2018)

Chlorpyrifos Graphene oxide modified with
Cu2-xSe

NE Environmental stability,
controlled release,
stimuli dependent
release (pH,
photothermal)

Pieris rapae Sharma et al. (2017)

(Continued on following page)
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TABLE 1 (Continued) List of experimentally successful nanoinsecticide formulations (active ingredients and carriers) and their functional superiority to
conventional chemical insecticides (Abbreviations; HNM, Hybrid nano metal; NE, Nano encapsulation; NG, Nano gel; NM, Nano micelle; NN, Nano emulsion;
NS, Nano suspension; SLN, Solid lipid nanoparticle; M-NP, Metal nanoparticle).

Bioactive
component/Active
ingredient

Carrier/Matrix Formulation
type

Effect Target insect References

Deltamethrin Chitosan coated bee wax SLN Environmental stability (not specified) Nguyen et al. (2012b)

Deltamethrin Corn oil (liquid lipid) and bee wax
(solid lipid)

— Controlled release (AI),
environmental stability

(not specified) Nguyen et al. (2012a)

Entofenprox Chitosan coated liposome NE Increased cytotoxicity,
controlled release (AI)

Spodoptera litura Hwang et al. (2011)

Imazapic and Imazapyr Chitosan NE Increased cytotoxicity (not specified) Maruyama et al.
(2016)

Imidacloprid Alginate NE Increased cytotoxicity Leaf hoppers Guan et al. (2008)

Imidacloprid Chitosan NE Increased cytotoxicity Sodoptera littoralis Sabry et al. (2021)

Imidacloprid Chitosan -co-(D, L-lactide) NM Controlled release (AI) (not specified) Zhang et al. (2013)

Imidacloprid Sodium alginate NE Increased cytotoxicity Martianus dermestoides Guan et al. (2008)

Imidacloprid (SDS/Ag/
TiO2-IMI)

Chitosan (CHI) and
sodium alginate (ALG)

HNM Controlled release (AI),
photodegradable

Martianus dermestoides Guan et al. (2008)

Indoxacarb Chitosan NE Increased cytotoxicity Spodoptera littoralis Sabry et al. (2021)

Lambda-cyhalothrin Sucrose ND Increased cytotoxicity (not specified) Cui et al. (2015)

Lambda-cyhalothrin Sodium Lactose ND Improved
bioavailability

(not specified) Wang C et al. (2019)

Methomyl Carboxymethyl chitosan NE Controlled release (AI) (not specified) Shakiba et al. (2020),
Sun et al. (2014)

Methomyl Bio copolymers of Az and CMC-
chitosan

NE Increased cytotoxicity Spodoptera litura Yin et al. (2010)

permethrin Oil phase, surfactants and water NN Increased cytotoxicity Aedes aegypti Suresh Kumar et al.
(2013)

Triazophos Water/non-
ylphenol polyoxyethylene ether

NN Environmental stability (not specified) Song et al. (2009)

β-cypermethrin water/poly (oxyethylene) non-ionic
surfactant/methyl decanoate

NN Increased cytotoxicity,
controlled release (AI)

(not specified) Wang et al. (2007)

Semi-bionano-insecticide (Biogenic AI + Synthetic nanocarrier)

Abamectin Polylactic acid NE Increased cytotoxicity Acyrthosiphon pisum Sun et al. (2020)

Abamectin Silica NE Increased cytotoxicity,
increased foliar
adhesion, stimuli
responsive release,
controlled release (AI)

Cnaphalocrocis
medinalis

Gao et al. (2019)

Abamectin Silica NE Increased cytotoxicity,
stimuli responsive
release, controlled
release (AI)

Plutella xylostella Kaziem et al. (2018)

Aloin AgNO3 HNM Improved
bioavailability,
controlled release (AI)

(not specified) Tippayawat et al.
(2016)

Artemisia arborescens L
essential oil

Compritol 888 SLN Environmental stability,
controlled release (AI)

(not specified) Lai et al. (2006)

(Continued on following page)
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TABLE 1 (Continued) List of experimentally successful nanoinsecticide formulations (active ingredients and carriers) and their functional superiority to
conventional chemical insecticides (Abbreviations; HNM, Hybrid nano metal; NE, Nano encapsulation; NG, Nano gel; NM, Nano micelle; NN, Nano emulsion;
NS, Nano suspension; SLN, Solid lipid nanoparticle; M-NP, Metal nanoparticle).

Bioactive
component/Active
ingredient

Carrier/Matrix Formulation
type

Effect Target insect References

Azadirachtin Poly-ethylene glycol NM Increased cytotoxicity,
controlled release (AI)

(not specified) Kumar et al. (2010)

Bacillus thuringiensis ZnO HNM Igi, increased
cytotoxicity

Callosobruchus
maculatus

Malaikozhundan et al.
(2017)

Bacillus thuringiensis (Bt)
var. Kurstaki-NP

— — Increased cytotoxicity Sodoptera litura Vineela et al. (2017)

Bacillus thuringiensis (Bt)
var. Kurstaki-NP

Graphene oxide, Olive oil NS/NN Increased cytotoxicity,
environmental stability

Ephestia kuehniella Maghsoudi and Jalali
(2017)

Bacillus thuringiensis
NT0423-NP

— — Increased cytotoxicity,
increased penetrance

Plutella xylostella Kim and Je, (2012)

Chitosan NP G-poly (acrylic acid) (PAA) NS/NN Increased cytotoxicity,
increased growth
inhibition

Aphis gossypii,
Callosobruchus
maculatus and
Callosobruchus
maculatus

Sahab et al. (2015)

Citrus pill essential oil Polyethylene glycol (PEG) NE Increased cytotoxicity Tuta absoluta Campolo et al. (2017)

dsDNA (RNAi) PGPMA NE Species specific targeted
delivery

Spodoptera frugiperda Parsons et al. (2018)

Eucalyptus oil Tween 80 and water NN Increased cytotoxicity Culex quinquefasciatus Sugumar et al. (2014)

Ficus religiosa, Ficus
benghalensis extract

Ag NP HNM Increased cytotoxicity Helicoverpa armigera Kantrao et al. (2017)

Garlic and Geranium
essential oils

Polyethylene glycol (PEG) NE Increased cytotoxicity,
controlled release (AI)

Stored grain insects Werdin González
et al. (2014), Yang
et al. (2009)

Garlic essential oil Polyethylene glycol NN Controlled release (AI) Tribolium castaneum Yang et al. (2009)

Mentha longifolia L.
essential oils

— NN Increased cytotoxicity Ephestia kuehniella Louni et al. (2018)

Neem oil Silica NE Increased cytotoxicity Tuta absoluta El-Samahy et al.
(2014)

Neem oil Polysorbate NN Increased cytotoxicity,
environmental stability

Ephestia kuehniella,
Sitophilus granarius and
Tribolium confusum

Choupanian et al.
(2017)

Pyrifluquinazon-NP — — Increased cytotoxicity Myzus persicae Kang et al. (2012)

Rosmarinus officinalis
essential oils

Polycaprolactone NE Increased cytotoxicity Tribolium castaneum Khoobdel et al. (2017)

Entirely green nano-insecticide (Biogenic AI + Biogenic nanocarrier)

Avermectin Polydopamine — Increased foliar
adhesion

(not specified) Ball (2018), Jia et al.
(2014), Liang et al.
(2018)

Avermectin N, O-carboxymethyl chitosan
(NOCC)

NE Increased cytotoxicity Aphis fabae,
Nilaparvata lugens

Li et al. (2016)

Avermectin Poly (succinate) and glycine NE Increased cytotoxicity,
increased foliar
adhesion, stimuli
responsive release,
controlled release (AI)

Plutella xylostella Wang et al. (2018)

(Continued on following page)
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TABLE 1 (Continued) List of experimentally successful nanoinsecticide formulations (active ingredients and carriers) and their functional superiority to
conventional chemical insecticides (Abbreviations; HNM, Hybrid nano metal; NE, Nano encapsulation; NG, Nano gel; NM, Nano micelle; NN, Nano emulsion;
NS, Nano suspension; SLN, Solid lipid nanoparticle; M-NP, Metal nanoparticle).

Bioactive
component/Active
ingredient

Carrier/Matrix Formulation
type

Effect Target insect References

Azadirachtin Alginate, Sodium alginate NE Controlled release (AI) (not specified) Riyajan (2011),
Riyajan and
Sakdapipanich (2009)

Azadirachtin carboxymethyl chitosan NE/NM Increased cytotoxicity,
environmental stability,
controlled release (AI)

(not specified) Feng and Peng (2012)

Azadirachtin emulsion in
Na-Alg

Starch, Polyethylene glycol NE Controlled release (AI) (not specified) Jerobin et al. (2012)

Bacillus cereus C1L Maltodextrin and Gum Arabic NE Environmental stability,
controlled release (AI)

(not specified) Chen et al. (2013)

Bacillus subtilis Carboxymethylcellulose and xanthan NE Environmental stability,
controlled release (AI)

Meloidogyne incognita Pacheco-Aguirre et al.
(2016)

Capsaicin Sodium alginate and chitosan NN Improved
bioavailability,
environmental stability

(not specified) Choi et al. (2011)

Carum copticum oil Myristic acid and chitosan NG Increased cytotoxicity Sitophilus granarius and
Tribolium confusum

Ziaee et al. (2014)

Cinnamate LDH — Controlled release (AI) Phytophthora capsici Park et al. (2010)

Cumin essential oil Chitosan NE/NG Controlled release (AI) Sitophilus granarius and
Tribolium confusum

Ziaee et al. (2014)

dsDNA (RNAi) Liposome NE Species specific targeted
delivery

Euschistus heros Castellanos et al.
(2019)

Lippia sidoides oil Chitosan and cashew gum NG Increased cytotoxicity,
controlled release (AI)

Stegomyia aegypti Abreu et al. (2012)

Methyl eugenol Gelator NG Environmental stability,
controlled release (AI)

Bactrocera dorsalis Bhagat et al. (2013)

Neem oil Zein NP NN DRDI (not specified) Pascoli et al. (2019)

Plantago major seed (PMS)
extract

Liposome NE Increased cytotoxicity Tribolium castaneum Khoshraftar et al.
(2020)

Rotenone N-(octadecanol-1-glycidyl ether)-O-
sulfate chitosan

NE Environmental stability,
controlled release (AI)

(not specified) Kango et al. (2013)

Rotenone N-(octadecanol-1-glycidyl ether)-O
sulphate chitosan (NOSCS)

NE Improved
bioavailability,
controlled release (AI)

(not specified) Lao et al. (2010)

Rotenone Zein NP NE Increased cytotoxicity (not specified) Bidyarani and Kumar
(2019)

Rotenone N-(octadecanol-1-glycidyl ether)-O-
sulfate chitosan (NOSCS)

NE/NM Increased cytotoxicity,
improved
bioavailability

(not specified) Lao et al. (2010)

Spinosad and permethrin Chitosan NP NE Increased cytotoxicity,
controlled release (AI)

(not specified) Sharma et al. (2019)

Trichoderma sp sodium alginate NE Environmental stability,
controlled release (AI)

(not specified) Locatelli et al. (2018)
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existing environmental contaminants and heavy metal ions,

enhancing their accumulation and, thereby, distribution

within biota. Bio-accumulation of contaminants depends

primarily on the organism’s ability to accrue the sorptive

nano-contaminant complexes. The readily accumulated

nanoparticles can act as carriers for the transport and

bioaccumulation of co-contaminants (Deng et al., 2017).

Global scenario of bio-
nanoinsecticides

Scientific laboratories and leading agrochemical

manufacturing companies (Novartis AG, Bayers, Monsanto,

Indigo, DOW agro-sciences, BASF, Symrise, and Syngenta)

have repeatedly attempted to develop nanoinsecticides, and

FIGURE 3
(A) Schematic representation of different approaches (conventional and green synthesis) of nanoparticle synthesis and advantages of green
synthesis of nanoparticles. (B) Schematic representation of green biogenic nanoparticle synthesis, separation and purification process.
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many of these formulations have been patented. More than

3,600 nano-encapsulated insecticides have been patented

during the last 20 years (Pires-Oliveira et al., 2020). However,

most of these nanoinsecticides have been developed through

nanoparticles from commercially available chemical insecticides

like carbamate, organophosphate, chlorinated cyclodiene, etc.

(Table 1). Therefore, considering the adverse effects of chemicals,

the utilization of biological molecules is now being considered to

formulate nanoinsecticides termed “bio-nanoinsecticides”

(Jampílek and Kráľová, 2019; Medina-Pérez et al., 2019). In

formulating such bio-nanoinsecticides, biological molecules

are often obtained from microbial, botanical, or animal

origins and are usually used as carriers or/and AI (Choi et al.,

2011; Riyajan, 2011; Feng and Peng, 2012; Chen et al., 2013; Jia

et al., 2014; Pacheco-Aguirre et al., 2016; Ball, 2018; Liang et al.,

2018). Upon considering several advantages of bio-

nanoinsecticides, they are now becoming popular worldwide

to boost organic farming. The growing demand for organic

nanoencapsulated bioinsecticides increases from agricultural

croplands to fruit orchards and vegetable grounds to tea

plantations (Rastogi et al., 2019). In the formulation and

development of bio-nanoinsecticides, the organics that are

being utilized are as follows:

Botanicals as active ingredients

Azadirachtin (C35H44O16), the neem (source: Azadirachta

indica, Meliaceae) alkaloid, is the biological AI typically used to

develop nanoinsecticides. The biological AI can be loaded with

nanoparticles from organic and inorganic sources (Feng and

Peng, 2012). Rotenone (C23H22O6) is another organic AI (source:

Derris elliptica, Fabaceae) widely used in the formulation of

nanoinsecticides and has a strong paralysis effect (knockdown) on

poikilotherms (Othman et al., 2016). Likewise, allicin (C6H10OS2)—

an organosulfur compound obtained from garlic (Allium sativum,

Alliaceae) and garlicin—the product of garlic (Yang et al., 2009; Ali

et al., 2014), and aloin (C21H22O9)—the dried latex from the leaves of

several Aloe sp (Asphodelaceae) have also been explored for the

development of various nanoinsecticides (Lade, 2017). In addition to

these, capsaicin (C18H27NO3) from capsicum (Capsicum sp;

Solanaceae), abamectin [C48H72O14 (B1a); C47H70O14 (B1b)] from

the soil-dwelling actinomycete, Streptomyces avermitilis, act as highly

efficient AI against insect pests (Table 1).

Microbes as the active ingredient

The concept of nanoencapsulation of living organisms like

bacteria and fungi is a recent trend in research. In this process,

such biological microorganisms that are commonly used for the

biological control of pests are encapsulated in a specialized

matrix to provide a suitable microenvironment (Chen et al.,

2013; Pacheco-Aguirre et al., 2016; Locatelli et al., 2018; Pires-

Oliveira et al., 2020). This concept of nanoinsecticide

formulation is novel for agricultural pest management and

could be very promising for the upcoming years (Pires-

Oliveira et al., 2020). Additionally, co-encapsulating

microorganisms with botanicals or chemical AIs can increase

the effectiveness of the formulation constituents even at a

reduced dose (Shang et al., 2019). Besides using whole

organisms, some nanoinsecticides have been developed by

milling microbial toxins into the nanoscale. The best example

of this method is the Bt-based nanoinsecticides. Nanoscale

derivatives of Bt (2–5 um), made by top-down processes, are

now being investigated for insect pest management efficiency

(Murthy et al., 2014; Vineela et al., 2017).

“Biologicals” as carrier or matrix

Besides the role of biological molecules (“biologicals”) as AIs in

nanoinsecticide formulations, the use of “biologicals” as a carrier of

AI for nanoinsecticides has also been observed. It has been

demonstrated that tannic acid (as a carrier)-based

nanoinsecticides have a far better foliar adhesive property and,

thus, can be retained on the leaf surface for a more extended

period (Yu et al., 2019). Chitosan, the linear N-acetyl derivative

of chitin (C8H13O5N)n obtained from the arthropod exoskeleton,

serves best in this category. Chitosan nanoparticles have been tested

as an efficient carrier for several commercial insecticides (Maruyama

et al., 2016; Sharma et al., 2019) and have been found to have no

adverse effects on living organisms. As a result, it has been approved

as a non-toxic biogenic nanomaterial (Wang et al., 2011). Besides

chitosan, alginates (C6H8O6)n—a multifunctional anionic

biopolymer that occurs naturally in the brown algae cell wall

(Phaeophyceae), and its derivatives, have gradually drawn

attention as attractive carrier compounds for AIs (Szekalska

et al., 2016). Polydopamine (PDA) is another bio-adhesive

nanoparticle derived from mussels (Lynge et al., 2011) that

exhibits exceptional adhesive performance on crop foliage and

thus enhances the retention time of insecticides (Jia et al., 2014;

Ball, 2018; Liang et al., 2018). PDA is the final oxidation product of

dopamine or other catecholamines that coat the “biological element”

at an adjustable thickness ranging from a few to about 100 nm.

These PDA layers can be modified with molecules carrying

nucleophilic groups or metallic nanoparticles from solutions

containing metallic cations. However, during deposition of PDA

on the surface, reaction products obtained from the oxidation of

catecholamines precipitate on the foliage (Ball, 2018).

Scope and limitation

Though nanoinsecticides are the promising future of modern

agronomy, some scientists have already raised questions
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regarding the biosafety of nanoinsecticides. Therefore, the short-

to long-term toxicological effects on the environment have

become alarming (Chaud et al., 2021). Moreover, conventional

chemical or metallic-nanoparticle production techniques

mentioned in Figure 3A involve volatile organic solvents and

hazardous chemicals, which sometimes become noxious for

human and environmental health (Küünal et al., 2018). In

addition, these techniques sometimes are very complex and

require more financial aid. Therefore, to overcome the adverse

health effects and complexity associated with conventional

nanoparticle synthesis process, the development and

formulation of biogenic nanomaterials have been

conceptualized (Figure 3A) (Ahmad I et al., 2020; Jadoun

et al., 2021). Though the exploration of biogenic nanoparticles

is quite old (Lippert and Zachos, 2007), the development of

microscopic and sub-microscopic nanomaterials using living

organisms has gained pace in recent times towards its

commercialization for agricultural pest management (Gour

and Jain, 2019). It is substantially acknowledged that applying

biologically derived nanomaterials, otherwise called “green

pesticides,” would be environmentally friendly and, therefore,

sustainable (Gour and Jain, 2019).

Biogenic nanoparticles can be assorted according to different

functional groups with specific functionalities. They may be

classified as either intracellular or extracellular performances

or organic or inorganic arrangements (Stanley, 2014; Kaushal,

2018). For example, the membranous intracellular organelles like

the magnetosome (present in magnetotactic bacteria) and the

extracellular assemblies such as lipoproteins (droplets of fat

surrounded by a single layer of phospholipid molecules) are

significant (Stanley, 2014; Kaushal, 2018). Though the natural

sources of such biogenic nanomaterials are plants, bacteria, fungi,

or insects, they can be transformed into “green pesticides” to

minimize environmental risks (Jadoun et al., 2021). However,

one of the significant barriers to developing such

nanoinsecticides is the availability of functional ingredients for

nanoinsecticide formulation. Most common nanoinsecticides are

synthetic products derived from chemicals, though some are

hybrids. Hybrid nanoinsecticides are developed with

combinations of biological and synthetic chemical

nanoparticles. It is seemingly due to the limited choice of

biologically active substances or biologically compatible AI-

conveyance materials employed during formulation. Exact

bio-originated nanoinsecticides where both the AI and

nanocarrier come from biological sources are extremely rare.

However, research has gained momentum recently, considering

its immense prospects for environmental safety and insecticidal

efficacy. It could help overcome the hazardous effects of chemical

insecticides and inorganic nanoparticles. Some attempts have

already been made to develop fully bio-origin nanoinsecticides

(Table 1), though there remain many opportunities to explore

more. While agreeing with the advantages of bio-

nanoinsecticides, it is essential to discover diverse “biologicals”

with insecticidal properties to enrich the available biological

inventory. At the same time, it is equally important to explore

biological sources to screen out “biologicals” that can be

manufactured as nanoparticles with AI conveyance properties.

In the last few years, many biopolymers like alendronate

functionalized gelatin, dipalmitoylphosphatidylcholine,

fucoidan, carrageenan, and porphyrin have been used in

nanoformulations, and their potential as bio-nanocarriers has

been investigated (Mekhail et al., 2016; Manivasagan et al., 2017;

Etman et al., 2020). Nevertheless, the application of these

potential bio nanocarriers has been restricted to

pharmaceutical, drug delivery, and gene therapy purposes.

Green synthesis of biogenic nanoparticles

Since nanoparticles used in agriculture are primarily

synthesized through chemical routes, they often cause toxicity

(Nath and Banerjee, 2013). However, green synthesis of

nanoparticles using living organisms is more helpful in

producing highly stable, well-characterized, and safer

nanoparticles than chemical methods, which are usually not

environmentally friendly, less stable, and not easy to scale up

(Pacheco-Aguirre et al., 2016). As biocompatible green synthesis

involves living organisms, the use of bio-nanoinsecticides ensures

the excellent potential for sustainable practice for pest

management (Clark and Macquarrie, 2008). The three leading

conditions for the green development of nanoparticles are the

choice of a green or environmentally less harmful solvent, an

efficient reducing agent, and an eco-friendly stabilization

material (Jadoun et al., 2021). All living organism-mediated

nanoparticle biosynthesis follows the principle of bottom-up

biosynthesis, in which atoms of a specific metal assemble in

the presence of reducing agents and ultimately develop nanoscale

compounds (Gour and Jain, 2019). It involves using diverse living

organisms like bacteria, fungi, actinomycetes, yeast, algae, and

plant materials, which have metal-tolerant abilities and flourishes

under the utmost environmental conditions (Figure 3A)

(Kuppusamy et al., 2016; Phanjom and Ahmed, 2017; Patil

and Chandrasekaran, 2020; Jadoun et al., 2021).

Green synthesis using botanicals

Plants are regarded as the chemical factories of nature.

Phytochemicals in plant extracts such as polyols, terpenoids,

and polyphenols are responsible for metallic ion bioreduction

(Kuppusamy et al., 2016; Ovais et al., 2018). Plant-derived

metabolites such as phenolics (Moulton et al., 2010), proteins

(Sanghi and Verma, 2009), polysaccharides (Wei and Qian,

2008), flavonoids, and tannins (Nam et al., 2008) are

synthesized into nanoparticles through eco-friendly methods.

Polyphenolic compounds such as rutin, curcumin, ellagic acid
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and gallic acid have been used to synthesize Ag-NPs (Swilam and

Nematallah 2020). Like polyphenols, another secondary

metabolite of plants, i.e., flavonoids, a group polyhydroxylated

secondary metabolites, are also successfully investigated for the

purpose of green synthesis of nanoparticles. Hesperidin, naringin

and diosmin like flavonoids that are found in citrus plants have

been reported in bio-reduction of silver salts to Ag-NPs of

varying sizes (5–80 nm). It is claimed that the hydroxyl

groups present in the molecule play the pivotal role in the

conversion process (Sahu et al., 2016). In another trial Jain

and Mehata (2017) used another flavonoid, quercetin (found

in Ocimum sanctum) to develop silver nanoparticles of

11–14 nm size (Jain and Mehata 2017). Tannic acid, which is

a representative of tannins, has been well explored for their

potential to convert metallic salts into Ag-NPs and Au-NPs

(Ahmad, 2014). Polysaccharides are also documented to

produce nano metallic compounds from respective salts.

Transparent nanoporous gels produced from cellulose, a

major component of plant cell wall, is reported to synthesize

Ag-NPs and Au-NPs from AgNO3 and HAuCl4.3H2O

respectively (Cai et al., 2009). Similarly, another abundant

plant polysaccharide, like starch, which is a fusion of

a-amylose and amylopectin, can synthesize Ag-NPs of 5.3 nm

size from silver salt in presence of glucose (Raveendran et al.,

2003).

The reduction of metallic salts to nanoparticles using

phytochemicals or plant extracts is considered as an eco-

friendly and cost-effective method. In addition, the use of

universal solvent, water, as a reducing medium enhances its

biocompatibility and reduces the usage or toxic organic solvents.

For the synthesis process, specific plant parts that have high

phytochemical contents such as dried barks, leaves or roots are

also used for extraction, which are then purified by filtration

steps. In the succeeding step, various quantities of plant extracts

are mixed with the solution of metal salts in water and the

mixture is incubated to convert the metal salts into metallic

nanoparticles (Figure 3B). The conversion is usually monitored

either by visual colour change or by using UV-Vis

spectrophotometry.

Plants responsible for accumulating, detoxifying, and

phytoremediating toxic metals are mostly used as reducing

agents during bottom-up synthesis (Carolin et al., 2017).

Medicinal plants are also extensively used in the process

because of the high phytochemical contents. There are plenty

of evidences that extracts from different plant parts can be used

for the biological synthesis of nanoparticles (Kuppusamy et al.,

2016). Botanicals are sometimes more advantageous than

microorganism-mediated green synthesis, as microbes can

only be propagated through complex actions of preserving

culture (Hulkoti and Taranath, 2014). Thus, plant-based

nanoparticle synthesis has proven to be a better method due

to its slower kinetics and better manipulative control over crystal

growth and stabilization (Prasad, 2014). Using green technology,

Prosopis juliflora (Fabaceae) leaf extract was utilised to synthesize

Cu/Zn-bimetallic nanoparticles ranging in size from 74.33 nm to

59.46 nm. Using Cu/Zn solution (100 ppm) and aqueous P.

juliflora extracts as controls, this bimetallic nanoparticle was

applied to the cotton mealy bug, Phenacoccus solenopsis, and

found near about 30% mortality for the pest (Mendez-Trujillo

et al., 2019).

Metallic nanomaterials such as gold, copper, silver, zinc

oxide, etc., are commonly used as nano insecticidal

ingredients through green synthesis (H. Ahmad H et al., 2020;

Jadoun et al., 2021; Santhosh et al., 2020; Sharma et al., 2019;

Solgi and Taghizadeh, 2020). The insecticidal ability of a phyto-

nanoparticle made from zinc oxide and Zingiber officinale

rhizome extract was tested on tobacco cutworm, Spodoptera

litura and potato aphids, Macrosiphum euphorbiae. This green

nanoparticle offers more potential in terms of insecticidal action

and environment-friendly nature. At 500 ppm concentration,

particular stages of relevant pests revealed nearly 100% death

after being exposed for 144 h (Thakur et al., 2022).

Green synthesis using microbes

During the microbe-based synthesis method, microbial

culture filtrates (extracellular and intracellular) are used as

reducing agents for the green synthesis of nanoparticles

(Bahrulolum et al., 2021). The ability of microbes to tolerate,

accumulate, and convert metallic mass into individual

nanoparticles is studied first in the Gram-positive catalase

bacterium Bacillus subtilis (Southam and Beveridge, 1994).

Metals are reduced into metallic nanoparticles by bacterial

intracellular or extracellular redox reactions.

Bacterial cells contain specific polysaccharide on their cell

wall surface known as exopolymeric substances (EPS) which

play some crucial role in the formation of nanoparticles. The

bacterial EPS is a polyanionic structural component with high

abundance of negatively charged hydroxyl and carboxyl

group that can reduce metallic salts into respective

nanoparticles in a metabolism-independent manner

(Sathiyanarayanan et al., 2017; Saha et al., 2022). The EPS

of certain species of electroactive bacteria like Shewanella

oneidensis, Aeromonas hydrophila, and Pseudomonas putida

have been used to synthesize nano silver. Further

investigation revealed that the Cytochrome-C present in

the EPS is the key contributing component behind the

reduction of silver salt to silver nanoparticle (Li et al.,

2016). Besides, multiple lactic acid bacteria like

Lactobacillus sp., Pediococcus pentosaceus and Enterococcus

faecium also have the potential to reduce silver ions to Ag-

NPs. Researchers demonstrated that the EPS aids in the

process by promoting redox reaction (Saravanan et al.,

2017). Additionally, enzymatic conversion of metal salts to

metal nanoparticles is also a common bacterial physiology.
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Plenty of extracellular microbial enzymes that rely on NADP

or NADPH can effectively reduce metal ions by transferring

electrons (Bose and Chatterjee, 2016). For example,

Rhodopseudomonas capsulate secrets extracellular NADH

dependent enzymes that catalyses electron transfer to Au3+,

which in turn eventually become Au-NP (He et al., 2007). In

addition to enzymes, other components of electron transport

chain like anthraquinone, hydroquinone and

naphthoquinones are also reported to transfer electron to

metal salts (Patra et al., 2014). Nanoparticles can also be

synthesized intracellularly with the help of multiple reducing

enzymes and accumulated in the periplasmic space, cell

membrane and wall (Ovais et al., 2018). Extremophiles are

the mostly investigated bacterial group that has been studied

for nanoparticle biosynthesis. The potential of extremophiles

like Rhodococcus sp. (Ahmad et al., 2003a) and

Thermomonospora sp. (Ahmad et al., 2003b) have been

investigated and it was found that these organisms can

promote intracellular gold nanoparticle synthesis of

8–12 nm and 8–40 nm respectively. Few species of Gram-

negative bacteria, such as Pseudomonas stutzeri (Klaus et al.,

1999) and Shewanella algae (Konishi et al., 2007) can bio-

reduce salts to Ag-NP (200 nm) and Au-NP (10–20 nm)

respectively and accumulate at periplasmic place.

Using microorganisms, nanoparticles can be synthesized in

two ways like, extracellular and intracellular approaches. Firstly,

the desired microorganisms are cultured under optimum

temperature, media ingredients and pH. In the subsequent

steps, the culture is centrifuged to obtain the supernatant

which is required to synthesize nanoparticles from sterilized

metal salt solution. The supernatant and metal salt solution is

incubated together for the bio-reduction of metal salts and the

synthesis of nanoparticles is monitored by the appearance of

specific coloration of the culturing media like deep brown for Ag-

NPs or red to deep purple for Au-NPs. Finally, the media-content

is centrifuged with density-gradient to obtain the nanoparticles

from the bottom pellet. In intracellular approach, the microbial

biomass is collected instead of supernatant in the first step, which

is then dissolved in filter sterilized solution of desired metallic

salts. After sufficient incubation, the microbial biomass is

collected by centrifugation and subject to repeated steps of

ultrasonication which eventually breaks the cell wall of the

organism. The cell wall rupture causes the release of

nanoparticles from the biomass, which is then collected

following centrifugation (Figure 3B).

Examples of microbe-containing green synthesis of

nanoparticles are generous; in most studies, silver

nanoparticles are frequently used. During the last two

decades, researchers have synthesized silver nanoparticles

using several bacterial strains like Bacillus licheniformis,

Bacillus cereus, Pseudomonas proteolytica, Bacillus cecembensis,

Lactobacillus casei, Klebsiella pneumonia, Escherichia coli,

Enterobacter cloacae, and Bacillus indicus (Kalishwaralal et al.,

2008; Shivaji et al., 2011; Korbekandi et al., 2012; Sunkar and

Nachiyar, 2012). However, besides silver-based nanoparticles,

gold (Au) and iron (Fe2O3) nanoparticles have also been

produced from other bacterial strains like Plectonema

boryanum 485, Bacillus subtilis 168, Shewanella alga, Bacillus

megaterium D01, and Magnetospirillum magnetotacticum

(Southam and Beveridge, 1994; Philipse and Maas, 2002;

Lengke et al., 2006; Konishi et al., 2007).

Green synthesis using fungi

Nanoparticle biosynthesis using different fungi has been

documented so far, suggesting a competent fungal role as a

biological agent for producing metallic nanoparticles. Fungi

can produce larger quantities of nanoparticles than bacteria

(Singh et al., 2018), and diverse groups of intracellular fungal

enzymes, proteins, and reducing components facilitate the

reduction of metal salts into metal nanoparticles (Chen et al.,

2009; Singh et al., 2018). According to some authors

mycosynthesis is more straightforward approach than

bacterial synthesis as fungal cells have more bioaccumulation

capacity and higher tolerance to metals (Gade et al., 2008).

Alghuthaymi et al. (2015), mentioned that the reducing

enzymes like α-NADPH-dependent reductases, nitrate-

dependent reductases are the major cellular constituents that

aid in bio-reduction processes. In addition, few extracellular

electron transporters like quinone play equally important role

in the process.

Similar to bacterial extracts, fungal extracts are used in the

mycosynthesis process and the mostly investigated fungal group

is filamentous fungi. Different species of filamentous fungi like

Aureobasidium pullulans and Fusarium oxysporum has been

used to synthesize gold nanoparticles of 29 nm and 128 nm

respectively (Zhang et al., 2011). Silver nanoparticle crystal

has been synthesised extracellularly using the extracts of black

mold (Aspergillus niger), kozi mold (A. oryzae), soil mold

(Fusarium solani, F. oxysporum), fibre mold (Phoma

glomerata), and cotton mold (Pleurotus Sajor Caju) and yeasts

(Ahmad et al., 2003a; Gade et al., 2008; Ingle et al., 2008; Birla

et al., 2009; Binupriya et al., 2010; Thakkar et al., 2010; Singh

et al., 2018). Apart from these, gold and zinc oxide nanoparticles

have also been developed from ascomycete species like

filamentous mitosporic fungus (Trichothecium sp) and soil

fungus (F. oxysporum or A. terreus) (Ahmad et al., 2005;

Senapati et al., 2005; Raliya and Tarafdar, 2014).

Exploration of new “biologicals”

A total of 496 active substances, irrespective of chemical or

organic origin, have been registered in the European

Commission database to date. Almost 450 of them have
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insecticidal properties (https://ec.europa.eu/food/plants/

pesticides/eu-pesticides-database_en). On the other hand,

more than 600 insect pests have developed resistance against

conventionally used chemical insecticides (Hawkins et al., 2019)

(www.pesticidestewardship.org/resistance). According to EPA

United States of America, the use of “biologicals” is the only

way to combat the growing tendency of insecticidal resistance for

agricultural pests (https://www.epa.gov/pesticides/biopesticides),

and hence, in organic farming, the use of bioinsecticides is being

popularized instead of synthetic chemicals (Röös et al., 2018;

Awasthi, 2021). Unfortunately, only a few of the registered active

substances are of biological origin, and therefore, it is imperative

to discover more “biologicals” with insecticidal properties to

enrich the available biological inventory.

Currently, some biological AIs are used for nano-

bioinsecticides. Some of the notable ones are Bt toxins

(source: Bacillus thuringiensis), azadirachtin (source:

Azadirachta indica), pyrethrin (source: Chrysanthemum

cinerariaefolium), rotenone (source: Derris sp, Lonchocarpussp,

Tephrosia sp.), curcumin (source: Curcuma longa), allicin

(source: Allium cepa), garlicin (source: Allium sativa) and

aloin (source: Aloe vera). Nevertheless, numerous microbes,

fungi, and plants remain rich in phytochemicals with

insecticidal properties. Plants from different families, including

Apiaceae, Apocynaceae, Asteraceae, Caesalpinaceae,

Cupressaceae, Lamiaceae, Lauraceae, Liliaceae, Myrtaceae,

Piperaceae, Poaceae, Rutaceae, Sapotaceae, Solanaceae,

Zingiberaceae, have been reported to have bioactive

compounds with biocidal activities against agricultural crop

pests (Okwute, 2012; Baskar et al., 2017; Khan et al., 2017;

Lengai et al., 2020).

Among phytochemicals, the most common bioactive

compounds are primarily secondary metabolites such as

alkaloids, terpenes, phenolics, flavonoids, etc., that possess

multiple biocidal properties, including insecticidal effects

(Oskoueian et al., 2011; Singh et al., 2017). For example,

Ryanodine (C25H35NO9)—a toxic diterpenoid produced by the

South American plant Ryania speciosa (Salicaceae), exhibits

species-specific insecticidal activity. The molecule affects

muscles by binding to the sarcoplasmic reticulum calcium

channels (Feher and Lipford, 1985). This molecule also acts

on mitochondria and peroxisomes and eventually interferes

with the respiratory chain (Hamilton et al., 2018). Nicotine

(C10H14N2) is an anxiolytic chiral alkaloid obtained from the

tobacco plant Nicotiana tabacum (Solanaceae) that causes

continuous uncontrolled nerve firing by binding with

acetylcholine receptors at nerve synapses and executes

insecticidal effects on selected insects (Kimura-Kuroda et al.,

2012). Further, plant-derived essential oils, such as limonene

(C10H16) (a cyclic monoterpene found in citrus fruit peels),

eugenol (C10H12O2) (an allyl chain-substituted guaiacol

obtained from clove, nutmeg, cinnamon, basil, and bay leaf),

eucalyptol (C10H18O) (a bicyclic monoterpenoid ether produced

from blue gum, Eucalyptus globules, Myrtaceae) also have

potential insecticidal activities (Campolo et al., 2017; Ainane

et al., 2019; Ahmed et al., 2021). Annonin (C37H66O7), a complex

acetogenin derived from the sugar apple Annona

sp. (Annonaceae), is neurotoxic to insects and inhibits NADH

cytochrome C-reductase and complex-I of insect mitochondria

(Londershausen et al., 1991; Lümmen, 1998). Besides these

bioactive substances, several plant species with insecticidal

qualities have not yet been explored to identify bioactive

substances (Campolo et al., 2018; Ebadollahi et al., 2020). For

example, crude extracts of the pantropical nicker bean

Caesalpinia bonduc (Caesalpinieae) were tested for their

larvicidal and pupicidal activities against the cotton bollworm

Dicladispa armigera (Baskar et al., 2017). Similarly, crude

essential oil from rock-samphire, Crithmum maritimum

(Apiaceae), has been tested on beet armyworm larva,

Spodoptera exigua, and stored grain pests like Sitophilus

granarius, Sitophilus oryzae, Tribolium castaneum, Tribolium

confusum, Rhyzopertha dominica, and Oryzaephilus

surinamensis (Polatoğlu et al., 2016). Crude secondary

metabolites isolated from Indian birthwort, Aristolochia tagala

(Aristolochiaceae) (Baskar et al., 2011), Patagonian slipperwort,

Calceolaria talcana (Calceolariaceae) (Muñoz et al., 2013), foetid

herb, Cassia tora (Fabaceae) (Baskar and Ignacimuthu, 2012),

lesser round weed, Hyptis brevipes (Lamiaceae) (Hamed Sakr

et al., 2013), orange climber, Toddalia asiatica (Rutaceae)

(Duraipandiyan et al., 2015), African mahogany, Trichilia

americana (Meliaceae) (Wheeler and Isman, 2001) have

antifeedant, larvicidal, pupicidal, or growth-interrupting roles

against different species of lepidopteran pests, including cotton

bollworm and fall armyworm.

Concerning other botanicals tested against different

lepidopteran pests, solvent extracts from Mexican fireweed,

Kochia scoparia (Chenopodiaceae); pokeweed, Phytolacca

Americana (Phytolaccaceae); golden larch, Pseudolarix kaempferi

(Pinaceae) and black false hellebore, Veratrum nigrum

(Melanthiaceae) showed larvicidal activity against P. xyllostella.

Plant extracts, like chaste berry, Vitex agnus-castus (Lamiaceae);

common rue, Ruta graveolens (Rutaceae); pomegranate, Punica

granatum (Lythraceae); olibanum, Boswellia carterii

(Burseraceae); wild rue, Peganum harmala (Rutaceae); common

myrtle, Myrtus communis (Myrtaceae); squaw mint, Mentha

pulegium (Lamiaceae); colocynth, Citrullus colocynthis

(Cucurbitaceae); asafoetida, Ferula asafetida (Apiaceae); common

wormwood, Artemisia absinthium (Asteraceae); bae laurel, Laurus

nobilis (Lauraceae); marjoram, Origanum majorana (Lamiaceae);

basil, Ocimum basilicum (Lamiaceae); and oleander, Nerium

oleander (Apocynaceae) have also documented to have

insecticidal properties (Cheraghi Niroumand et al., 2016; Khan

et al., 2017). Out of various floral resources, solanaceous plants

mainly produce an array of alkaloids that causes gut injury,

metabolic arrest, growth disruption, and reproductive

abnormality to a wide range of lepidopteran pests (Chowański
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et al., 2016); hence, comprehensive explorations of AIs could provide

sustenance for expansion of nanoinsecticides. Apart from these,

some experimental evidence unfolding possibilities of new

botanicals in the formulation of insecticides have been proposed

in recent times (Ahmed et al., 2020; Lengai et al., 2020).

Molecular administrations for
nanoinsecticide development

Double-stranded RNA (dsRNA) is a new approach to

nanoinsecticide development. Biological administration of

dsRNA delays specific gene expression of crop pests and

restricts pests from infestation (Katoch et al., 2013;

Castellanos et al., 2019; Christiaens et al., 2020; Liu et al.,

2020; Yan et al., 2020). RNA interference (RNAi) is a gene

silencing method caused by double-stranded RNA (dsRNA)

that, when ingested by insects, results in the death of the

target pest. The RNAi mechanism in a sequence-dependent

mode has high target specificity, allowing agrarians to target

insects more precisely than conventional agrochemicals and

“biologicals”. Despite having substantial advantages, the RNAi-

mediated pest management strategy has its limitations when

researchers opt for the SIGS (spray-induced gene silencing)

approach to trigger RNAi in targeted pests. Firstly, externally

applied dsRNA is unstable, and secondly, dsRNA has a feeble

penetration ability across the insect cuticle. However, developing

nanoinsecticides by encapsulating the desired dsRNA with

compatible nanocarriers seems to be a superior alternative to

the usually practised nanoinsecticides, as dsDNA’s

nanoencapsulation increases penetration efficiency and

environmental stability (Ghormade et al., 2011; Liu et al.,

2020); however, available literature in this regard is still

inadequate.

This idea emerged after Zhang and others (2010) attempted

to silence the chitin synthase genes AgCHS1 and AgCHS2 in the

African malaria mosquito (Anopheles gambiae) using chitosan/

AgCHS dsRNA-based nanoparticles. A 30%–60% reduction of

FIGURE 4
Schematic representation of synthesizing fully bio-nanoinsecticides employing both bioactive components/active ingredients (plant-based AI,
microorganisms, and siRNA) and carrier/matrix materials (biopolymer) derived from natural sources.
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chitin biosynthesis was observed, and as a consequence,

susceptibility towards diflubenzuron, calcofluor white (CF),

and dithiothreitol had taken place (Zhang et al., 2010). Since

then, many researchers have shown interest in this route and

have tried different approaches to interfere with insect’s genetic

expression. Researchers have optimized the approach of the

SIGS-based strategy using different conveyance materials like

chitosan and chitosan derivatives, nanoliposomes, cationic

dendrimers, quantum dots (QDs), and branch amphiphilic

peptide capsules (BAPC) (Yan et al., 2020). After finding

initial success with chitosan-encapsulated dsDNA delivery,

Zhang et al. (2010) modified the strategy and delivered chitin

synthase in A. gambiae using chitosan with smaller particle sizes.

The mortality of A. gambiae was increased compared to the

previous study due to the smaller-sized chitosan. Later on,

delivery approaches were modified using several cross-linking

agents like sodium tripolyphosphate, folate, polyethylene glycol,

polyethylenimine, and dextran sulfate to increase the transfection

and gene silencing efficiency of dsRNA-nanoformulations.

Another convenient vehicle to deliver dsRNA to target pests is

dendrimers, an artificial polymer with a branched peripheral side

chain and a nanoscale internal core. He et al. (2013) developed a

CHT10 dsRNA containing dendrimer with a cationic core-shell,

which upon application, efficiently diminished the body mass

and interfered with the moulting of Ostrinia furnacalis (He et al.,

2013). Similarly, spraying a 555 bp double-stranded hemocytin

RNA-dendrimer nanoformulation has competently interfered

with the target gene expression of Aphis glycines (95%) and

effectively suppressed population growth (80%) of the species

(Zheng et al., 2019). The use of quantum dots (QDs), which

discharge narrow symmetric bands under a broad excitation

range, is another exciting approach to dsRNA delivery. Carbon

QD-mediated SNF7 and G3PDH gene silencing has been verified

as a practical approach to insect pest management (Neng et al.,

2019). Other nanoformulations like dsDNA encapsulated in

nanoliposomes and branched amphiphilic peptide capsules are

also considered practical and convenient. Nano-pGPMA

(guanidinium-functionalized inter polyelectrolyte

complexes)—an analog of arginine-rich cell-penetrating

peptides, can enable RNAi in resistant insect pests. This

biomimetic pGMPA encapsulated sequence-specific dsRNA,

synthesized by reversible addition-fragmentation chain

transfer (α-RAFT) polymerization, and was found to trigger

target gene knockdown and subsequent larval mortality in

Spodoptera frugiperda (Parsons et al., 2018). Biogenic

nanocarrier-like liposome-encapsulated dsRNA formulation

with essential gene targeting increases oral RNAi-caused

mortality in the neotropical stink bug, Euschistus heros

(Castellanos et al., 2019). Thairu et al. (2017) attempted to

aerosolize siRNA-nano formulations, which can travel through

the spiracular routes of Acyrthosiphon pisum, Aphis glycines, and

Schizaphis graminum and target carotene dehydrogenase (tor)

and branched-chain amino acid transaminase (b-cat) genes. In

this experiment, the efficacy differed based on the target species,

but the outcome was satisfactory (Thairu et al., 2017).

In the execution of RNAi manipulations, most of the carriers

and matrices used in nanoinsecticides are synthetic polymers or

polyester, but there is space for using natural polymers and

biomolecules like chitosan alginate or their derivatives as green

alternatives. It is expected that biopolymers could have better

compatibility with biological AIs, and with this understanding,

many biopolymers are under screening for inventories (Sun

et al., 2020). For example, non-conventional biomolecules, like

tannic acid (polyphenol) (Yu et al., 2019), catecholamines

(polydopamine) (Jia et al., 2014), myristic acid (saturated fatty

acid) (Ziaee et al., 2014), and cashew gum (cellulose) (Kalia

et al., 2011; Abreu et al., 2012), Gelator (Bhagat et al., 2013) are

used for AI delivery. Likewise, solid lipids (beeswax) and essential

natural oils (corn) are also successfully examined as biological

matrixes for formulating nanosuspensions (Nguyen et al., 2012a;

H. M; Nguyen et al., 2012b). Zein is a water-insoluble maize-

derived prolamine protein and has shown the potential to

formulate AI’s nanosuspension (Bidyarani and Kumar, 2019).

Non-etheless, bio-nano-cellulose polymers (Kalia et al., 2011),

citric acid-glycerol nanopolymers, and citric acid-glycerol-

oleic acid nanopolymers (Shiri et al., 2019) have also been

developed on different occasions, but their applications are

restricted to medicinal purposes only. As the concept of

RNAi-mediated dsRNA technology for nanoinsecticide

formulation is utterly novel for plant protection, the choice

of target sequences and sequence-specific dsRNAs is limited,

and further investigation and improvisation are needed to

expand the knowledge of the subject.

Biogenic nanoinsecticides: New directions

Fully biogenic or all-green nanoinsecticide formulations have

been given attention recently to address environmental issues

and combat currently used non-green nanoinsecticides. The

exploration of new biological AIs, biogenic nanoparticles,

green synthesis technology development, compatible

“biologicals”, and bio-nanocarriers has been hypothesized

(Figure 4). Although researchers have attempted to develop

such bio-nanoinsecticides in the last decade, there remains

ample opportunity to go further. For example, Lao et al.

(2010) formulated rotenone with an amphiphilic chitosan

derivative [N-(octadecanol-1-glycidyl ether)-O-sulfate chitosan

(NOSCS)] to increase rotenone’s controlled release ability (Lao

et al., 2010). Similarly, nano-micelle formulations from

azadirachtin and carboxymethyl chitosan have been developed

to increase AI’s bioavailability (Feng and Peng, 2012). Plant
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essential oils infused in cashew gum (Abreu et al., 2012) or

myristic acids (Ziaee et al., 2014) in developing nanogel-based

nanoinsecticides were also experimentally proven.

Entomopathogenic microbes have also been encapsulated to

intensify their efficacy and environmental stability (Chen

et al., 2013; Pacheco-Aguirre et al., 2016; Maghsoudi and

Jalali, 2017). Furthermore, RNA interference technology has

recently been incorporated to develop efficient target-specific

activity (Castellanos et al., 2019). Other pieces of evidence are

listed in Table 1.

Besides environmental benefits, a fully bio-based

nanoinsecticides is efficient for other rewards. They are

environmentally stable, have controlled release properties, and are

equally effective as conventional nanoinsecticides (Riyajan and

Sakdapipanich, 2009; Riyajan, 2011; Choupanian et al., 2017;

Khoobdel et al., 2017). For example, R-CM-chitosan/Aza-

nanomicelles have demonstrated environmental stability,

controlled release properties, and efficacy comparable to many

conventional nanoinsecticides (Feng and Peng, 2012).

Azadirachtin was also reported to be stable for 11 days during an

experimental trial (Riyajan, 2011). In another experiment,

azadirachtin formulated in a sodium alginate matrix cross-linked

by glutaraldehyde and coated with natural rubber reported 50%

remaining AI even after 41 days of experimental trial (Riyajan and

Sakdapipanich, 2009). These experimental results can be compared

with the usual conventional nanoformulations like PEG-Aza, which

have approximately 24 days of environmental sustainability (Kumar

et al., 2010). On the question of efficacy, the fully bio-

nanoinsecticides have shown challenging insecticidal activity

compared with conventional nanoinsecticides. For example,

traditionally used bio-nanoinsecticides have more or less >80%
insecticidal activity on stored grain pests (Yang et al., 2009;

Werdin González et al., 2014; Choupanian et al., 2017; Khoobdel

et al., 2017). Similarly, complete natural bio-nanoinsecticides like

PMS (Plantago major seed extract) loaded nanoliposomes also

showed approximately 70% insecticidal activity on stored grain

pests upon application (Khoshraftar et al., 2020). Natural nanogel

formulations of cumin essential oil (Cuminum cyminum) and

ajwain oil (Carum copticum) have also shown 80%–100%

insecticidal activity against the target stored grain pests (Ziaee

et al., 2014). Exclusive biogenic nanoformulated avermectin

obtained from a soil-dwelling actinomycete, Streptomyces

avermitilis, and semi-bio-nanoformulation have also shown more

than 80% insecticidal effects on the cabbage moth, Plutella xylostella

(Wang et al., 2018).

Another entirely organic nanoinsecticide is tried against

cotton leafworm, Spodoptera littoralis, by encapsulating

citronella essential oil with chitosan nanoparticle-cellulose

nanofiber systems (CSNPs/CNF). By encapsulating the

bioactive ingredient, it is protected from environmental

degradation. However, in absence of encapsulations, the active

compounds were completely lost on or after 6 hours, but in

presence of encapsulation, its functionality lasts for 2 weeks.

Furthermore, both nanoformulations, particularly the CSNPs/

CNF encapsulated formulation, are more effective and delay

larval and pupal development, adult longevity, and fecundity

(Ibrahim et al., 2022)

Therefore, it can be presumed that an entirely natural bio-

nanoinsecticide can be as effective as conventional hybrid bio-

nanoinsecticides in terms of their controlled release ability,

environmental stability, and insecticidal efficacy. Moreover,

the entirely natural bio-nanoinsecticide is more target-specific

and thereby causes the least negligible residual effect and

environmental toxicity. Though there are only a few reports

on fully bio-nanoinsecticides at present, the increase in their

number is just a matter of time.

Conclusion

Analyzing the described publications and considering the facts

and figures, it can be concluded that the fully organic bio-

nanoinsecticides in which the ingredients of nanoinsecticides (AI

and carrier molecule) come from biological sources are the most

effective nanoinsecticides for pest management. It is

environmentally friendly and hence more sustainable than others.

Nevertheless, as of now, our choices of “biologicals” and bio-

nanocarriers are restricted due to the available known resources,

which, in turn, confine the number of compatible combinations of

prolific bio-bio-nanoinsecticide formulations. Therefore, it is

essential to amplify our exploration of “biologicals”, biogenic

nanoparticles, and biopolymers and inventory them. Appropriate

identification and characterization of these compounds are needed

to assess the potential of these compounds to be a future contributor

to bio-nanoinsecticides. Further research and investigation into the

biogenic nanoparticles in agricultural croplands is also relatively new

and thus demands further research and investigation.

Comprehensive exploration is therefore needed in the next

few years and should incorporate:

1. Identification and characterization of “biologicals” and

bioactivity screening,

2. Identification of new biogenic nanoparticles of natural origin

3. Technological advancement for the quantitative generation of

biogenic nanoparticles

4. Fine optimal compatibility screening for active “biologicals”

and greenly synthesized nanoparticles/biogenic

nanoparticles/bio-nanopolymers, and

5. Toxicity evaluation of plants and human health

6. Sustainable environmental risk assessment.
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