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Globally, between one quarter and one-third of total grains produced each year are lost
during storage mainly through infestation of insect pests. Among the available control
options such as chemical and physical techniques, fumigation with aluminum phosphide
(AlP) is so far considered the best control strategy against storage insect pests. However,
these insect pests are now developing resistance against AIP due to its indiscriminate use
due to non-availability of any effective alternative control option. Resistance to AIP among
storage insect pests is increasing, and its inhalation has shown adverse effects on animals
and human beings. Nanotechnology has opened up a wide range of opportunities in
various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and
electronics. One of the applications of nanotechnology is the usage of nanomaterial-
based insecticide formulations for mitigating field and storage insect pests. Several
formulations, namely, nanoemulsions, nanosuspensions, controlled release
formulations, and solid-based nanopesticides, have been developed with different
modes of action and application. The major advantage is their small size which helps
in proper spreading on the pest surface, and thus, better action than conventional
pesticides is achieved. Besides their minute size, these have no or reduced harmful
effects on non-target species. Nanopesticides can therefore provide green and efficient
alternatives for the management of insect pests of field and storage. However, an outcry
against the utilization of nano-based pesticides is also revealed. It is considered by some
that nano-insecticides may also have hazardous effects on humans as well as on the
environment. Due to limited available data, nanopesticides have become a double-edged
weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale
adoption. In this article, we reviewed the nanoformulations that are developed and have
proved effective against the insect pests under postharvest storage of grains.
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1 INTRODUCTION

Grain crops that are most widely grown worldwide include cereals (maize, wheat, millets, rice, etc.)
(Awika, 2011; Ye & Fan, 2021); pulses (mung, beans, chickpea, cowpea, black gram, green gram, etc.)
(Sharma et al., 2010; Liu et al., 2020); and oilseeds (soybean, sunflower, linseed, groundnut, etc.)
(Attia et al., 2021). These crops form a crucial component of our diet as they are rich in proteins,

Edited by:
Kamel A. Abd-Elsalam,

Agricultural Research Center, Egypt

Reviewed by:
Vijayakumar Sekar,

Shandong University, China
Montcharles da Silva Pontes,

State University of Mato Grosso do
Sul, Brazil

*Correspondence:
Poonam Jasrotia

poonamjasrotia@gmail.com

Specialty section:
This article was submitted to

Environmental Nanotechnology,
a section of the journal

Frontiers in Nanotechnology

Received: 08 November 2021
Accepted: 13 December 2021
Published: 03 February 2022

Citation:
Jasrotia P, Nagpal M, Mishra CN,
Sharma AK, Kumar S, Kamble U,

Bhardwaj AK, Kashyap PL, Kumar S
and Singh GP (2022) Nanomaterials for

Postharvest Management of Insect
Pests: Current State and

Future Perspectives.
Front. Nanotechnol. 3:811056.

doi: 10.3389/fnano.2021.811056

Frontiers in Nanotechnology | www.frontiersin.org February 2022 | Volume 3 | Article 8110561

REVIEW
published: 03 February 2022

doi: 10.3389/fnano.2021.811056

http://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2021.811056&domain=pdf&date_stamp=2022-02-03
https://www.frontiersin.org/articles/10.3389/fnano.2021.811056/full
https://www.frontiersin.org/articles/10.3389/fnano.2021.811056/full
https://www.frontiersin.org/articles/10.3389/fnano.2021.811056/full
http://creativecommons.org/licenses/by/4.0/
mailto:poonamjasrotia@gmail.com
https://doi.org/10.3389/fnano.2021.811056
https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2021.811056


carbohydrates, fats, vitamins, minerals, and oils (Sarwar et al.,
2013; Oso & Ashafa, 2021). Due to the presence of these nutrient
elements, the grains of these crops are prone to infestation by
insect pests during storage. The marketability of the food grains is
hampered when insect pests feed on grains and make them unfit
for human consumption, leading to huge monetary losses
(Sharon et al., 2014; Sharma et al., 2016; Wang et al., 2021).
Losses due to insect infestation under storage can go up to 50 to
60% under extreme situations (Kumar et al., 2017; Luo et al.,
2020). Sometimes, the postharvest losses can surpass the losses
that crops suffer in the field (Mesterházy et al., 2020). Direct
losses occur in the form of direct consumption of kernels, while
indirect losses include formation of webbing, exuviae, frass, and
insect cadavers that significantly hamper seed quality and leave
grains unfit for human consumption (Kumar and Kalita., 2017;
Mesterházy et al., 2020). Changes in the grain storage
environment due to insect infestation result in the formation
of warm and moist “hotspots” which further lead to the
development of storage fungi. The presence of fungi in stored
grain can further increase the level of crop losses (Shankar and
Abrol, 2012; Fones et al., 2020).

Storage insect pest species inflicting quantitative and
qualitative losses during postharvest storage of grains mainly
belong to two insect orders: Coleoptera (around 600 species),
Lepidoptera (70 species), and mites (about 355 species)
(Rajendran, 2002; Rajendran and Sriranjini, 2008). Insect pests
of stored grains are of two types, namely, primary and secondary
pests (Banga et al., 2020). Primary pests are those that damage
sound or whole grains, while secondary pests damage broken or
already damaged grains. Primary pests are further categorized
into internal and external feeders based on the place of their
attack (Deshwal et al., 2020) (Supplementary Table S1, S2).
Several insect control options are available such as physical,
mechanical, chemical, and biological practices, but fumigation
is considered the most common method of pest control due to its
wider application under various storage conditions such as bags,
silos, warehouses, and mills (Nguyen et al., 2015; Nayak et al.,
2020). However, synthetic pesticides are there in the market for
the control of storage pests but these pesticides are costly,
ineffective, and are harmful to the environment as well as to
human health (Jallow et al., 2017; Poudel et al., 2020).

Aluminum phosphide (AlP) is the key fumigant among all the
fumigants available for stored grain pest management as it gives
higher grain and stored products protection (Daglish et al., 2002;
Collins et al., 2005; Shin et al., 2021). Commodities in bulk
quantity can be effectively protected against insect infestation
by the usage of AIP. The phosphine gas released by AIP
penetrates the grain bulks readily and eliminates rapidly from
the grain via aeration leaving no residues. Moreover, there are
very limited alternative fumigants available, for instance, methyl
bromide and sulfuryl fluoride (Gu, 2020). But, routine fumigation
of grains has been discouraged in developed countries since 2005
owing to the concerns of potential fluoride residues (Scheffrahn
et al., 1989; Bell, 2000; Oguntade, 2021). Therefore, only
dependence on phosphine for fumigation due to non-
availability of other effective alternatives has inevitably resulted
in insect resistance problems in many storage insect pests

(Bengston et al., 1996; Chaudhry, 2000; Mills, 2001; Collins
et al., 2002; Daglish et al., 2002; Hasan and Reichmuth, 2004;
Pimentel et al., 2007; Wakil et al., 2021). The resistance to
phosphine and other fumigants is observed in majority of
stored grain pests such as red flour beetle Tribolium
castaneum, rice weevil Sitophilus oryzae, and lesser grain borer
Rhyzopertha dominica which poses a very serious threat to
postharvest grain produce around the globe (Dyte and
Halliday, 1985; Badmin, 1990; Bell, 2000; Chaudhry, 2000;
Valmas et al., 2008; Newman, 2010; Ali et al., 2013; Holloway
et al., 2016; Collins and Schlipalius, 2018; Attia et al., 2020; Nayak
et al., 2020; Collins et al., 2017). Thereby, insecticide resistance
has become an issue of international importance (Champ and
Dyte, 1977; Benhalima et al., 2004; Collins et al., 2005;Wang et al.,
2006; Sparks et al., 2021). Conventional techniques for pest
management in storage are now inadequate and new
innovative management techniques are to be developed.

Under the present scenario wherein agriculture today is facing
major challenges of environmental contamination, pest
resistance, bioaccumulation, and health hazards,
nanotechnology is emanating as a highly attractive tool to
achieve the target of lowering the quantity of pesticide used by
offering new methods for the formulation and delivery of
pesticide active ingredients, as well as novel active ingredients,
collectively referred to as nanopesticides (Hayles et al., 2017;
Shukla et al., 2019). The main advantage of nanopesticides usage
is the reduction in the quantity of pesticide applied for a crop and
or stored product protection. Nanotechnology deals with
materials at the nanometer scale and is demonstrated to have
a great potential in providing novel solutions to pest problems
(Sasson et al., 2007; Kashyap et al., 2016; Unsworth et al., 2016;
Kashyap et al., 2020). The use of nanotechnology will overcome
the limitations associated with conventional pesticides by
enhancing pesticide efficacy, improving stability of active
ingredients, reducing the required pesticide dose, and
conservation of agri inputs (Jasrotia et al., 2018; Rikta and
Rajiv, 2021). However, new advanced nano-based formulations
are expected to be target-specific, cost-effective, stable, and should
have the ability to remain active under different application
environments with a novel mode of action (Smith et al., 2008;
SinghH et al., 2021). The concept of application of nanopesticides
for storage pest management is new, and information related to
their mode of action and application is lacking, which is
hindering their usage under storage environment (Hischier
and Walser, 2012; Kah et al., 2013; Kumar et al., 2018; Singh
et al., 2020). However, many laboratory studies determining the
efficacy of the nanomaterials have been conducted, but their
large-scale application for postharvest management of insect
pests is lacking (Hamel et al., 2020). Therefore, investigation
of their behavior and ultimate fate in the environment is required
that will aid in establishing a regulatory framework for their
commercialization as well as will contribute to a sustainable grain
protection (Nuruzzaman et al., 2016; Chhipa, 2017a; Bartolucci
et al., 2020). This review documents the nanoformulations that
have been evaluated for the management of storage insect pests
until now and presents the research findings of laboratory studies
and safety issues related to nanopesticides use. The article also
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describes their advantages and limitations followed by
conclusions and future perspectives.

2 ADVANTAGES OF NANOPESTICIDES

Pioneering nanotechnology has opened a new way for the
development of nano-sized formulations that are highly
effective for pest control with lesser residual toxicity and are
environment-friendly (Yadav et al., 2021). These are chemically
alterable particles consisting of a large surface-to-volume ratio,
and their physical properties make them capable enough to target
organisms (Madhuri et al., 2010; Mustafa & Hussein, 2020; Sahoo
et al., 2021). Nanoparticles can be engineered in different forms,
for example, a capsule acts as a physical shell and can better
withstand degradation in the environment. Therefore,
nanoparticles offer better long-lasting protection as compared
to conventional pesticides (Sushil et al., 2021). Unlike
conventional pesticide formulations, nanoformulations are
specially designed to increase the solubility of insoluble or
poorly soluble active ingredients and to release the biocide in
a controlled and targeted manner (Margulis-Goshen &Magdassi,
2013; Ragaei & Sabry, 2014; Garg & Payasi, 2020). Therefore, a
smaller amount of active ingredient per area is sufficient for
application, and it can provide sustained delivery of active
ingredients which may remain effective for extended periods
(Singh et al., 2020). Thus, due to the reduced dose
requirement, the cost of application is also reduced. Also, it is
important for the controlled release formulations that they must
remain inactive until the active ingredient is released (Shekhar
et al., 2021).

The nanoscale application of agrochemicals in agriculture in
the form of nanofertilizers, nanopesticides, nanosensors, and
nanoformulations has changed the traditional agro-practices
(Aouada and De Moura, 2015; Panpatte et al., 2016; Scott
et al., 2018; Pirzadah et al., 2019; Singh R. P et al., 2021). In
crop protection, different types of nanoformulations, such as
nanoemulsion, nanosuspension, and nanoparticulate, are
suggested to tackle the insect pests of field and storage (Islam,
2020; Kashyap et al., 2020; Yadav et al., 2021)). The amalgamation
of botanicals with nanopesticides is one of the most powerful
tools that provide eco-friendly control routes for insect pest
control. Biological pesticides are already being used as an
alternative to chemical pesticides (Qazi and Dar, 2020). On
top of it, the synthesis of nanoparticles using botanicals has
served many potential benefits to agriculture. Several
surfactants, polymers, and metal nanoparticles in the
nanometer size range are used in their production (Kah et al.,
2013; Ragaei and Sabry, 2014; Shaban et al., 2020). These
nanomaterials at the nanoscale exhibit some properties which
are different from bulk materials, supporting their unique
applications for different conditions (Elizabath et al., 2019;
Mujtaba et al., 2020). Expansion of nanopesticides through
plants, microbes, and their derivatives bring forth dominance
of sustainable approach and environment-friendly control.
Though nanopesticides have infinite potential, it is still a
dream at the moment (Ditta, 2012; Aithal and Aithal, 2015)

because of their environmental and ecological impacts (Scrinis
and Lyons, 2007; Karn et al., 2009) (Figure 1).

3 MODE OF ACTION OF NANOPESTICIDES

Nanoparticles developed through various synthesis routes as
novel pesticides have recently attracted high research
attention. Various studies have been conducted to test their
toxic potential against a wide number of insect pests; however,
precise information on their mode of action against insects is
lacking (Rai et al., 2014; Athanassiou et al., 2018). Only a few
studies have been carried to study the toxicokinetics or
toxicodynamics of nanopesticides against storage grain insect
pests as these are relatively new materials and have not been
studied in great detail. Toxicokinetics basically refers to the
movement and changes an insecticide undergoes inside an
organism: absorption, distribution, metabolism, and excretion,
while toxicodynamics refers to the physiological, biochemical,
and molecular effects of the compounds and the mechanisms in
which they are involved (Alzogaray & Zerba, 2017). The mode of
action of silica-, alumina-, silver-, and graphene oxide
nanoparticle–based nanopesticides against insects has been
studied in a few studies (Benelli, 2018). Silver nanopesticides
decrease acetylcholinesterase activity leading to oxidative stress
and cell death by affecting antioxidants and detoxifying enzymes.
These are also reported to reduce protein synthesis and
gonadotropin release, leading to developmental damages and
reproductive failure by either up- or downregulating key insect
genes (Nair and Choi, 2011). Metal nanoparticles reduce
membrane permeability by binding to S and P in proteins and
nucleic acids, respectively, leading to organelle and enzyme
denaturation, followed by cell death. Gold nanoparticles can
effect development and reproduction and also act as trypsin
inhibitors (Patil et al., 2016; Small et al., 2016). Aluminum
oxide and silicon dioxide nanopesticides act by binding to the
insect cuticle, followed by physico-sorption of waxes and lipids,
leading to insect dehydration (Debnath et al., 2011; Arumugam
et al., 2016). Nanozeolite formulation acted by attaching itself to
the body of T. confusum and then caused scratching and splitting
of the cuticle that ultimately led to the dehydration and mortality
of the insect (Ibrahim and Salem, 2019). Stadler et al. (2017)
reported the toxicity of nanostructured alumina and its mode of
action against S. oryzae. The studies indicated that charged
nanostructured alumina got attached to the beetle cuticle due
to triboelectric forces, leading to insect dehydration through
sorbing its wax layer by surface area phenomena (Figure 2).

4 CATEGORIES OF NANOMATERIALS

The word “nano” emerged from the Greek word “dwarf”
(Bhattacharyya et al., 2010; Anandhi et al., 2020).
Nanoparticles refer to materials having nanoscale external
dimensions or internal structures. The nanoscale size generally
has an upper limit of about 100 nm. Based on the particle size,
nanoparticles were classified into three categories: 1) ultrafine
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particles having a size less than 100 nm in diameter, 2)
accumulation-mode particles having a size between 100 nm

and 2.5 µm in diameter, and 3) coarse-mode particles having
size greater than 2.5 µm in diameter (Sioutas et al., 2005; Kah
et al., 2013; Kashyap et al., 2017; Kashyap et al., 2018; Yadav et al.,
2021)). A nanosystem unit consists of two basic components: an
active ingredient and a carrier. Based on their chemical
composition, nanoformulations can also be classified into three
basic categories including 1) inorganic-based, solid, and non-
biodegradable nanoparticles (gold-, silver-, copper-, iron-, and
silica-based nanoparticles), 2) organic-based biodegradable
nanoparticles (liposomes, solid lipid, and polymeric
nanoparticles), and 3) hybrid (combination of both inorganic
and organic components) nanoparticles (Figure 3). For storage
insect pest management, inorganic-based nanopesticides have
been tested in more cases as compared to other categories. Also,
plant-based nanoparticles have attracted more attention for
stored grain pest control because these are environmentally
safe and are easy to develop as compared to chemical-based
nanopesticides (Goodsell 2004; Chen et al., 2019). Nanomaterials
can also be developed using microbes or their bioactive
compounds (Kashyap et al., 2018; Bazana et al., 2019). For
stored insect pest control, various types of formulations have
been suggested such as nanoemulsions, polymer-based
nanopesticide formulations, and products containing
engineered nanoparticles, for example metals and metal oxides
(Mondal, 2020; Singh H et al., 2021). In this review, only metal-
based nanoparticles, nanoemulsion, and polymer-based
nanoformulations will be covered as these have been tested
predominantly against storage insect pests. Moreover, a
summary of nanopesticides evaluated against storage insect
pests is given in Supplementary Table S3.

FIGURE 1 | Economic, social, and environmental aspects of sustainability of pesticide use in agriculture.

FIGURE 2 | Some modes of action of nanoparticles against storage
insect pests.
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FIGURE 3 | Types of potential nanomaterials and nanoformulations suggested for insect pest management under storage.

FIGURE 4 | Types of polymer-nanoparticles formulations for delivery of pesticides via (A) adsorption on nanoparticle, (B) encapsulation within polymeric spheres
(nanocapsule), (C) entrapment within polymeric nanoparticles (nanosphere), (D) attachment on nanoparticle by different linkers, (E) entrapment within polymeric
micelles, and (F) branched and ordered polymeric molecules (dendrimers).
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4.1 Metal-Based Nanomaterials
4.1.1 Silver nanoparticles
Silver nanoparticles (AgNPs) are so far one of the most tested and
effective nanomaterials found for insect pest management. These
nanoparticles are used carriers for delivering agrochemicals to the
targeted site (Gupta et al., 2018; Gour et al., 2019). These exhibit
well-built insecticidal, bactericidal, antifungal, and antiviral
properties (Chen and Schluesener, 2008; Rai et al., 2014;
Saratale et al., 2017) and are found to be very promising
against insect pests. Additionally, they have catalytic
properties, antimicrobial activity, higher chemical stability, and
electrical conductivity that attracted more scientists for their use
in pest management studies. The silver-based pesticide
formulations deposit more dosage of active ingredients to the
target species as compared to conventional pesticides (Ragaei and
Sabry, 2014; Athanassiou et al., 2018). These nanoformulations
have shown no toxicity to non-target organisms and therefore are
considered safe to the environment (Jo et al., 2009; Oliveira et al.,
2019).

Silver nanoparticles are reported to effectively control S.
oryzae (Goswami et al., 2010; Zahir et al., 2012; Pathipati
et al., 2021). The plant-mediated green silver nanoparticles
using plant Euphorbia prostrata (Zahir et al., 2012) and
Avicennia marina (Vijaya Sankar and Abideen, 2015) resulted
in higher mortality of S. oryzae followed by T. castaneum and R.
dominica. Silver nanoparticles application at the rate of
1.00 g kg−1 of seed gave 83% mortality of adults and larvae of
Callosobruchus maculatus (Rouhani et al., 2013). Vadlapudi and
Amanchy (2017) developed silver nanoparticles (AgNPs)
utilizing the leaf extracts of Myriostachya wightiana that
showed toxic effects against S. oryzae at concentration of
50 µg, and mortality of 29% ± 0.45 was obtained after 24 hrs.
Nerium oleander plant extract–mediated AgNPs were found
highly effective against larvae of T. castaneum and C.
maculatus (Jafer and Annon, 2018). Rashwan and Abu-Zaid
(2018) showed that AgNPs synthesized using rosemary
executed 100% mortality for adults of S. granarius after 120 h,
and the same efficacy of Laura and Cardamom was recorded after
144 h at 1 μg/ml concentration of AgNPs. High insecticidal
efficacy was shown by the combination of silver nanoparticles
and Malathion against T. castaneum (AS and Thangapandiyan,
2019). Silver nanoparticles fabricated using Annona reticulata
leaf extract showed potent insecticidal properties against S. oryzae
(Malathi et al., 2019). Clove, Syzygium aromaticum, essential oil-
based AgNPs showed 71% repellency at 1% methanol extract
concentration and 100% larvicidal mortality at 4% acetone
concentration against T. castaneum (Selvaraj et al., 2019).
Biogenic silver and gold nanoparticles synthesized from
Daphne Mucronata (leaves, bark, and roots) and Monotheca
buxifolia (leaves, seeds, and fruits) crude methanolic extracts
are 100% effective against T. castaneum, R. dominica, and
Callosobruchus analis (Shah, 2019). Silver nanoparticles
prepared from silver nitrate using Moringa oleifera
(Moringaceae) leaf extract gave the highest mortality (100%)
against S. oryzae after 15 days of exposure (Rani et al., 2019).
Silver nanoparticles extracted from leaf extracts of Azadirachta
indica effectively reduced egg production of T. castaneum and C.

maculatus to 85 eggs/female and 18 eggs/female, respectively, at a
concentration of 2,000 ppm (Annon et al., 2020). Bio-prepared
silver nanoparticles by Beauveria bassiana fungus showed 87.27%
repellency and 97.56% mortality against C. maculatus at a
concentration of 100% in 20 min soaking period (Al Jubury
et al., 2021). Datura stramonium EO–coated silver
nanoparticle gave highest mortality of 41.40% against
Trogoderma granarium at 300 ppm, and the highest range was
67.89% at 15% concentration of D. stramonium (Gulzar et al.,
2020). Silver nanoparticles achieved 100% killing at a
concentration of 5,000 ppm within 72 h of application against
O. surinamensis (Salman and Hameed, 2020). Silver
nanoparticles prepared using ethanolic and hot aqueous
extract of leaves of the Damas, Conocarpus lancifolius, showed
the maximum sterility index among the stored date moth,
Ephestia cautella, and was most effective at 1,500 ppm
concentration (Abbood and Ali, 2020). Silver nanoparticles of
Camelina sativa extract gave mortality of 60.1% against O.
surinamensis and 46.2% against S. granarius at a concentration
of 500 ppm after an exposure period of 72 h (ur Rehman et al.,
2021). Silver nanoparticles synthesized using extract of Spirogyra
hyalina as a capping and reducing agent showed 30% mortality
against T. castaneum at 500 ppm (Al Radadi et al., 2021). Curry
leaves–mediated silver nanoparticles provided minimum seed
damage (38.67%), minimum seed weight loss (0.78%), and
absolute mortality (100%) of Callosobruchus chinensis at
70 ppm concentration on seventh day after treatment
(Yerragopu et al., 2019). Plant-based silver nanoparticles from
Ricinus communis and Citrus paradise gave highest repellency
against T. castaneum in the range of 67.89% at 15% concentration
of R. communis, and lowest was 28.31% at same concentration of
the C. paradise oils (Shahzadi et al., 2019). Green silver
nanoparticles prepared with peel extract of sweet orange,
Citrus sinensis (L.), caused 83–77% mortality of T. confusum
(Sedighi et al., 2019). Silver nanoparticles (AgNPs) at a
concentration of 20% using an aqueous extract of
hyperpigmented tomato skins resulted in 52% mortality of
adults cowpea weevil (C. maculatus) (Carbone et al., 2020).
Leaves extract taken from peach tree treated with AgNPs and
ZnNPs showed 100% mortality of rice weevil (S.oryzea) and the
lesser grain borer (R.dominica) by the fumigation method (Mosa
et al., 2021).

4.1.2 Aluminum Oxide Nanoparticles (Al2O3NPs)
Nanostructured alumina (NSA) dust or aluminum
nanoparticles are found to protect the grains from stored
insect pest infestation (Stadler et al., 2017). Stadler et al.
(2012) showed that pesticidal activity of nanoalumina is more
effective than diatomaceous earth (DE) formulation against
S. oryzae. Sabbour (2012) synthesized two entomotoxins
made from nanoparticles of Al2O3 and TiO2 against S.
oryzae. Among these, aluminum-based toxin was found
more effective against S. oryzae as compared to nano
TiO2. Nanoalumina dust of different size and morphology
was tested against S. oryzae and R. dominica, and the higher
mortality was recorded. But at the same time, it was
concluded that reducing the size of the particle and
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increasing the surface area were not the only dominant
factors that influence the effectiveness of insecticides.

Nanoalumina can be a good alternative to harmful dust
formulations based on diatomaceous earth. Abo-Arab et al.
(2014) reported that aluminum oxide nanoparticles caused
95.33% mortality of S. oryzae and 91.66% moratlity of S.
zeamais at a concentration of 1 g kg−1 within 21 days of
treatment. Similarly, Nasr (2015) proved the efficacy of Al2O3
nanoparticles against S. oryzae. Nanoaluminium oxide showed
mortality of 100.0% when applied at the rate of 2 g kg−1 of rice,
after 14 days against rice weevil (El-Bendary et al., 2016). López-
García et al. (2018) tested nanostructured alumina dust (NSA) in
400 ml galvanized steel jars on S. oryzae, and it gave effective
mortality rates. Comparably, Das et al. (2019) confirmed that
treating S. oryzae with tested nanoparticles such as aluminum
oxide at a dosage level of 1 g kg−1 killed 90% S. oryzae within
4 days. The insecticidal activity of NSA as seed protectant was
evaluated against three insect pests; Oryzaephilus surinamensis,
Stegobium paniceum, and Tribolium confusum. The insect
mortality was found to be 100.00% when applied at the rate of
400 mg kg−1 for S. paniceum followed by 80.64% in O.
surinamensis and 79.41% in T. confusum (Belhamel et al.,
2020). Aluminum oxide nanoparticles showed 100% mortality
at 8,000 mg/kg of wheat after 7 days of exposure; in addition, after
60 days of exposure, all tested Al2O3-NPs concentrations (1,000,
2000, 4,000, and 8,000 mg/kg grain) significantly decreased the
number of S. oryzae offspring in a dose-dependent manner
(Ismail et al., 2021).

4.1.3 Titanium Dioxide Nanoparticles (TiO2NPs)
These nanoparticles have low toxicity and minimal non-target
biological effects (Ziental et al., 2020). The effectiveness is
dependent on the chemical and physical characteristics
including size, crystal structure, and photo-activation (Skocaj
et al., 2011). The main advantage of using titanium dioxide
formulations in storage is lesser ecological harm to non-target
species (Norman and Chen, 2011). Abo-Arab et al. (2014) showed
that titanium dioxide nanopartciles killed 61.66% of S. oryzae and
60.66% of S. zeamais at a dosage of 1 g kg−1 within 21 days Das
et al. (2019) confirmed that treating S. oryzae with tested
nanoparticles of titanium dioxide at a dosage level of 2 g kg−1

killed 90% S. oryzae within 14 days Sabbour (2012) demonstrated
the toxicity of two NPs, TiO2 and Al2O3, against S. oryzae, both
under lab and storage conditions in Egypt. Nano Al2O3 was found
more effective than nano TiO2. A high concentration of TiO2

nanoparticles recorded high cumulative mortality of T.
castaneum after exposure time 1, 3, and 5 days from
treatments (15.30, 23.57, and 29.85%, respectively) (Hilal et al.,
2021).

4.1.4 Zinc Oxide Nanoparticles (ZnONPs)
Zinc oxide nanoparticles have been used for developing pesticides
because of their remarkable antimicrobial, physical, and optical
properties (Akbar et al., 2020; Akintelu and Folorunso, 2020).
Different methods can be utilized for their synthesis such as vapor
transport and precipitation hydrothermal (Raoufi, 2013). The
utilization of plant extracts for the purpose of developing

ZnONPs is gaining popularity these days as these are quite
safe and eco-friendly. Zinc oxide–based nanoformulations have
been found effective in controlling S. oryzae and T. castaneum
with higher mortality rates (Hamza 2012; Salem et al., 2015). Nasr
(2015) performed a screening test to compare the effects of ZnO
nanoparticles with pirmiphos methyl on S. oryzae. The results
proved nano ZnO as an alternative to pirmiphos methyl which
has harmful effects on human beings. Bacillus
thuringiensis–coated zinc oxide nanoparticles (Bt-ZnO NPs)
reduces fecundity, total development period, and causes 100%
mortality of pulse beetle, C. maculatus, at 25 μg/ml
(Malaikozhundan et al., 2017). ZnONPs exhibited a significant
toxic effect against S. oryzae and C. maculatus at the highest
concentration while T. castaneum showed high resistance
(Haroun et al., 2020). Zinc oxide nanoparticles of size 100 nm
at a concentration of 1,000 ppm showed 100% mortality of C.
maculatus (Mohammed and Aswd, 2019), while in a more
updated test, zinc oxide nanoparticles at 200 ppm gave the
highest mortality of 100% and lowest egg production against
the same pest in green gram (Lakshmi et al., 2020). ZnO
nanoparticles in combination with Ricinus communis, Jatropha
curcus, and Citrus paradise leaf powder showed 66.32% mortality
of T. casteneum and 49.51% of T. granarium (Haider et al., 2020).
ZnO prepared using the extract of E. globulus showed 80.5%
mortality of R. dominica at 600 ppm after 15 days exposure
(Siddique et al., 2021). Similarly, Hilal et al. (2021) concluded
that a high concentration of ZnO nanoparticles recorded high
cumulative mortality of T. castaneum after the exposure time 1, 3,
and 5 days from treatments (20.42, 27.08, and 33.96%,
respectively). Chitinase from Lactobacillus coryniformis-
incorporated ZnONPs gave 100% mortality of maize weevil,
Sitophilus zeamais, at a concentration of 6 mg/L, and the
average death rate was 2.4 days (Dikbaş et al., 2021).

However, zinc oxide nanoparticles are found to be less
effective in controlling the storage pest’s population as
compared to other nanoparticles such as silver, aluminum
oxide, and titanium dioxide (Raduw and Mohammed, 2020;
Wazid et al., 2020). In a study, Das et al. (2019) evaluated
aluminum oxide, titanium dioxide, and zinc oxide
nanoparticles against S. oryzae. Nanoaluminium oxide gave
90% mortality at 1 g kg−1 after 4 days, whereas nano zinc oxide
and titanium dioxide achieved this level at 2 g kg−1 after 14 days.
Therefore, it justifies the fact that zinc oxide nanoparticles are less
effective in controlling storage pests. Still, due to its antimicrobial
properties, it is recommended for usage in agricultural pest
control.

4.1.5 Copper Nanoparticles (CuNPs) and Iron Oxide
Nanoparticles (FeNPs)
Biotransformed CuNPs using Pseudomonas fluorescens MAL2,
which is almost similar to Pseudomonas fluorescens DSM 12442T
DSM, act as a great warrior against T. castaneum (El-Saadony
et al., 2020). CuO-NPs fabricated by harnessing metabolites of
Aspergillus niger strain (G3-1) gave a mortality percentage of
55–94.4% and 70–90% against S. granaries and R. dominica,
respectively (Badawy et al., 2021). A combination of iron oxide
nanoparticles and aqueous extract of Anthocephalous cadamba
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exhibits 100% mortality against S. granarius (Sivapriya et al.,
2018).

4.2 Silicon Dioxide Nanoparticles
(SiO2NPs)
These are also known as silica nanoparticles and have higher
thermal stability, low toxicity, and excellent biocompatibility with
a range of molecules and polymers (Rahman and Padavettan,
2012; Huang et al., 2019). These can act as excellent nanocarriers
for different agrochemicals due to their mesoporous property
(Rastogi et al., 2019). Silica has a wider applicability because of its
shape, size, porosity, and crystallinity which can be precisely
manipulated. These can act as excellent nanocarriers for the
delivery of biopesticides, pheromones, fungicides, and growth
promoters (Barik et al., 2008; Cáceres et al., 2019).

Nanotubes reported with aluminosilicate have the capacity to
attach to plant surfaces and hair of insects through which they
enter into the insect body and affect their body functions (Patil
et al., 2009). Silica-based nanoformulation was tested against red
flour beetle T. castaneum and gave effective control of the pest
(Debnath et al., 2011). SiO2 gave 100% mortality of cowpea
weevil, C. maculatus, when applied at the rate of 2.06 g kg−1

(Rouhani et al., 2013). Chlorpyrifos-loaded silica nanoparticles
(Ch-SNPs) effectively control R. dominica and T. confusum, and
it was found that mortality increased with increased
concentration (Babamir-Satehi et al., 2017). Similarly, Kallur
and Patil (2019) reported that nano-SiO2–based nanoparticles
extracted from Alstonia scholaris showed higher toxicity with a
LC50 of 0.8 mg/ml and LC95 of 1.95 mg/ml against R. dominica.
Silver nanoparticles in combination with plant oil Ricinus
communis showed 67.89% repellency at 15% concentration
and 28.31% repellency at the same concentration in
combination with Citrus paradise oil against T. castaneum
(Shahzadi et al., 2019). SiO2 nanoparticles showed a strong
defensive response against Caryedon serratus in groundnut at
0.67 mg/kg and 1.7 mg/kg, and it was observed that mortality
increased with time of exposure (Diagne et al., 2019). Inorganic
nanosilica killed 50% of adults T. castaneum at 0.90%
concentration after 10 days of treatment (Khalil, 2019). SiO2
nanoparticles act as a strong defensive tool against Caryedon
serratus in groundnut at 0.67 mg/kg and 1.7 mg/kg, and mortality
increased with time of exposure (Diagne et al., 2019). Rouhani
et al. (2019) proved that silica nanoparticles (SNPs) are highly
effective against S. granarius causing 100% mortality after
2 weeks. Fumed silica (aerosil 200) nanoparticles at a
concentration of 1.5 and 2 gm/kg caused 100% mortality of T.
granarium and Stegobium paniceum after 5 and 2 days of
treatment (Abdelfattah and Zein, 2019).

Silica nanoparticles prepared with the help of sol-gel technique
effectively controlled R. dominica, T. castaneum, and O.
surinamensis (El-Naggar et al., 2020). Fumigation of maize
grains with SiO2-NPs proved very effective against four
common stored grain pests, namely, S. oryzae, R. dominica, T.
castaneum, and Orizaephilus surinamenisis (El-Naggar et al.,
2020). Silica nanoparticles along with neem leaf extracts
effectively reduced egg production of T. castaneum and C.

maculatus to 58 eggs/female and nine eggs/female,
respectively, at a concentration of 2,000 ppm (Annon et al.,
2020). Ziaee and Babamir-Satehi (2020) loaded nanosilica with
three ingredients deltamethrin, pyriproxyfen, and chlorpyrifos
and tested it against the larvae of T. granarium feeding on stored
wheat using mosaic and galvanized steel surfaces. Deltamethrin,
followed by chlorpyrifos, was found to be the most effective
against larvae of T. granarium, and the mortality was significantly
higher in galvanized steel than the mosaic ones. Green silica
nanoparticles (1,500 ppm) synthesized using spinach leaves, tulsi
leaves, and paddy husk proved to be an alternative to Malathion
against storage pests (Wazid et al., 2020). Three silica forms, that
is, Aerosil 200, chemical, and bio-silica in the form of
nanoparticles were tested against C. maculatus, R. dominica,
and T. confusum. All the tested materials caused mortality of
adult and offspring of the three tested insects, and mortality
increased with the increase of concentration and exposure period.
The adults C. maculatus were more susceptible followed by R.
dominica and T. confusum with the three tested materials at all
concentrations used (Salem, 2020).

Insect proof nets coated with silica nanoparticles showed
absolute mortality against S. oryzae (Agrafioti et al., 2020).
Nanosilica of 30 nm size at a concentration of 0.5 g per kg of
rice showed mortality rate of 80 and 97.4% against S. oryzae after
7 and 14 days, respectively (Kar et al., 2021). Nanosilica prepared
from sugarcane bagasse ash (SCBA) and used as an additive to the
diatomaceous earth (DE) enhanced the insecticidal activity of
Mamaghan DE, and after 14 days of exposure, the adult mortality
was more than 86 and 95% for T. confusum and R. dominica,
respectively (Saed et al., 2021).

4.3 Nanoemulsions
Numerous nanoemulsions have been tested for controlling stored
grain pests. These nanoemulsion formulations can improve the
effectiveness of botanical insecticide for commercial use and are
target-specific (Frederiksen et al., 2003; Anjali et al., 2012). The
effectiveness of these formulations can be increased by using
adjuvants and surfactants. These are relatively cheaper because
their water solubility is high and can solubilize hydrophilic and
lipophilic compounds easily, thus requiring less amount of active
ingredients and inert material. Moreover, storage stability is quite
high under a broad range of temperatures (−10–55°C) (Pavoni
et al., 2019). Essential oil nanoformulations have been tested as an
alternative for synthetic pesticides. Using such formulations can
help in overcoming the problems such as poor water solubility,
degradation, and volatility (Martín et al., 2010). These types of
formulations are anticipated to be more productive than bulk
substances (Anjali et al., 2010, 2012). In the past 10 years,
essential oil–based nanoemulsions have proved their strong
potency in the management of storage pests (Pavoni et al.,
2019). For instance, eucalyptus oil nanoemulsion comprising
of Karanja’s and Jatropha’s aqueous filtrate at concentrations
of 300 and 1,500 ppm resulted in 88–100% mortality of T.
castaneum adults within 24 h duration (Pant et al., 2014);
Pimpinella anisum L. (Apiaceae) essential oil–based
nanoemulsion consisting of 81.2% of (E)-anethole showed the
toxicity of (LC50 � 9.3% v/v) and significantly decreased progeny
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of rust-red flour beetle (Hashem et al., 2018; Mohammed and
Nasr, 2020). Tested essential oil nanoemulsion of eucalyptus oil of
a particle size of 8.57 nm was found to have higher insecticidal
activity against T. castaneum. Similarly, eucalyptus oil
nanoemulsions were passed across centrifugation,
thermodynamic stability, heating and cooling, and freezing
and thawing experiments and tested at lethal concentrations
(LC50) of 1:2 and 1:2.5 against T. castaneum, that is, 0.56 and
0.45 μL/cm2 and were proved to be highly toxic (Adak et al.,
2020). Nenaah (2014) showed that nanoemulsions of Achillea
biebersteinii, A. santolina, and A. mellifolium essential oils are
effective against both larvae and adults of T. castaneum.
Furthermore, A. biebersteinii EO nanoemulsion exhibits some
additional efficacy against the adults of red flour beetle. Some
more essential oil nanoformulations that proved effective against
stored insect pests are Jojobe (Simmondasia chinensis)
nanoemulsion (Sh et al., 2015); Purslane oil nanoemulsion
(Sabbour et al., 2016); and oregano and thyme essential
oil–based nanoemulsion (Hossain et al., 2019).

Nanoemulsion developed from sweet orange (Citrus sinensis)
EO formulation was reported to be acutely toxic to confused flour
beetle and flat grain beetle (Giunti et al., 2019). Dhivya et al.
(2019) studied the potential of sweet flag oil (Acorus calamus)
nanoemulsion (spontaneous emulsification) against S. oryzae.
Mentha spicata L. and Mentha pulegium L. essential oils
nanoformulations showed mortality of 95.47 and 86.03%,
respectively, against T. castaneum (Heydarzade et al., 2019).
Nanoemulsion made from neem oil (Azadirachta indica A.
Juss) was 85–100% effective against S. oryzae and 74–100%
effective against T. castaneum (Choupanian et al., 2017).
Hazomalania voyronii essential oil–based nanoemulsion
(HvNE) resulted in 92.1, 97.4, and 100.0% mortality against T.
confusum, T. castaneum larvae, and T. molitor adults,
respectively, at 1,000 ppm concentration in 7 days
(Kavallieratos et al., 2021a). Similarly, Kavallieratos et al.
(2021b) developed isofuranodiene-based NE 3% (w/w) derived
from Smyrnium olusatrum essential oil (EO) that exhibited high
adulticidal effects against T. molitor and larvicidal activity against
T. castaneum and T. confusum, reaching 98.6, 97.4, and 93.5% at
1,000 ppm after 7 days of exposure, respectively. Cumin essential
oil (Cuminum cyminum L.) nanoemulsion was found to be highly
toxic to T. castaneum (Hashem and Ramadan, 2021). Larvae of E.
kuehniella were killed with nanoformulation in the form of
emulsion using a botanical extract of M. longifolia having a
particle range of 14–36 ppm (Louni et al., 2018). Similarly, the
same formulation of M. longifolia had higher fumigant toxicity
against C. maculatus and was successful in killing 50% egg
population at a concentration of 9 μL/L in 4.7 days (Louni
et al., 2019). Nanoencapsulated Janesville oil was found more
effective against T. confusum and T. castaneum than coriander or
black seed oil. (Sabbour et al., 2020a). Nanoformulations of the
Tasmanian blue gum (TBG) EO effectively controlled the
population of C. maculatus (Ya-Ali et al., 2020).
Nanoemulsions prepared by extracting essential oils of Anise
(Pimpinella anisum), Artemisia (Artemisia vulgaris), fennel
(Foenicum vulgare), garlic (Allium sativum), lavender
(Lavandula angustifolia), mint (Mentha piperita), rosemary

(Rosmarinus officinalis), and sage (Salvia officinalis) showed
considerable toxicity against T. confusum. However, the
highest toxicity was observed by the application of garlic oil
nanoemulsion, and the best repellent was found to be P. anisum
(Palermo et al., 2021).

Very recently, a new study indicated that continuous use of
essential oil nanoformulations against storage pests could give
rise to habituation. A test conducted against R. dominica by using
nanoemulsions of fennel (Foeniculum vulgare), mint (Mentha x
piperita), and sweet orange (Citrus sinensis) essential oils showed
that habituation occurred in the case ofM. piperita and C. sinensis
application (Giunti et al., 2021). Cold aerosol and gel
nanoemulsion formed using Allium sativum’s oil showed the
highest toxicity, and the best repellent was nanoemulsion of
Pimpinella anisum against T confusum (Palermo et al., 2021).
Nanoemulsion prepared with Achillea biebersteinii essential oil at
10 μL/L air caused 100% mortality of the second larvae of T.
castaneum after 4 days of exposure (Almadiy, 2021).

4.4 Polymer-Based Nanopesticide
Formulations
The development of controlled release formulations of
insecticides, herbicides, and fungicides using polymers for pest
management programs is presently being given major attention
keeping in mind the protection of the photo-liable active
ingredients (Neri-Badang and Chakraborty, 2019). Polymer-
based delivery systems increase the dispersion of active
ingredients in aqueous media and act as a protective reservoir
covering that leads to a controlled release of active ingredients
(Kalia et al., 2020) (Figure 4). Slow release of active ingredients
depends on nanocarrier’s degradation properties, bonding
between active ingredients and the carrier, and the weather
factors (Kumar et al., 2019). A number of polymer
nanoformulations such as nanocapsules, nanospheres,
nanogels, micelles, nanofibers, and chitosan-based
nanoformulations have recently been developed. Polymeric
nanomaterials are most commonly used for encapsulation of
active ingredients mainly due to their eco-friendly and
biodegradable nature (Kumar et al., 2017; Ramasamy et al.,
2017). The benefit of using polymers is their protection and
stability against active ingredients such as essential oils and plant
secondary metabolites that have stability issues. These
compounds get degraded and evaporated when they come in
contact with light, water, air, and high temperatures. According to
the current scenario, biodegradability is the most important
property that a polymer must have.

Polymer-based nanoformulations can provide improved
efficiency of active ingredients with minimized lethal effects on
the ecosystem due to reduced use of organic solvents and
surfactants in the formulations (Li et al., 2018). Due to
polymer-based controlled formulations spatial and temporal
doses are reduced and stability and effectiveness are improved
(Chen and Yada, 2011). They are also attractive to researchers due
to their complex delivery systems by incorporating multiple
active ingredients with different modes of action,
biocompatibility, and biodegradability (Tong et al., 2017). The
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polymers deployed for nanopesticide formulations consist mainly
of polysaccharides (e.g., chitosan, alginates, and starch) and
polyesters (e.g., poly-ε-caprolactone and polyethylene glycol)
(Kashyap et al., 2015; Rani et al., 2017; Kumar et al., 2018).
Nowadays, there has been an increased trend of using eco-
friendly and biodegradable natural materials such as lecithin
and corn oil (Nguyen et al., 2012; Kashyap et al., 2015) and
cashew gum (Abreu et al., 2012).

Polyethylene glycol–based amphiphilic copolymers exhibit
biodegradability, easy processing, and other well-explored
properties (Torchilin, 2006). Therefore, they are considered
the most attractive polymers. In addition, PEG-based
formulations are considered superior in comparison with other
commercial products for the purpose of insect pest as well as
nematode control (Loha et al., 2012; Pankaj et al., 2012).
Polyethylene glycol (PEG)–coated nanoparticles loaded with
garlic essential oil effectively control red flour beetle, T.
castaneum (Herbst) (Yang et al., 2009). A comparative toxicity
study between nanostructured alumina (NSA)- and Protect-It
diatomaceous earth (DE)–based products showed that NSA is
much more effective in killing R. dominica than Protect-It®
(Stadler et al., 2012). Therefore, NSA is an alternative to
diatomaceous earth (DE)–based products as it decreases
significant percentage of progeny production and can be used
for future formulations of pesticides. Vadlapudi and Amanchy
(2017) developed a moderate control of R. dominica by the
formation of silver nanoparticles (AgNPs) and leaf extracts of
Myriostachya wightiana (essential oil). Likewise, nanoemulsion
of Eucalyptus essential oil with a particle size of 8.57 nm and
polydispersity index (PDI) 0.28 effectively controlled R. dominica
as compared to essential oil alone, which shows a great potential
of nanoformulation-based products (Mohammed and Nasr,
2020). Very recently, citronella oil, moringa oil, and goatweed
extracted from (Ageratum conyzoide) were converted into nano-
oils via polymerization technology and were tested at the
concentration of (0.5%) on the third instar larvae of R.
dominica showed a highest accumulative mortality (99.0%, 89,
87%, respectively) (Sabbour et al., 2020b). In many studies,
essential oils that were not much effective in controlling
storage pest attack have been proved as a strong product for
controlling the same when formulated with nanotechnology.
Likewise, Jesser et al. (2020) studied the relationship between
insecticidal activities of EO or essential oil–loaded polymeric
nanoparticles (EOPN) and also kept notice on post-application
temperature in the research. In contact toxicity bioassay,
palmorosa proved to be the most efficacious, while in a
fumigant bioassay, palmorosa along with peppermint oil were
found to be effective. In addition, no effect of environmental
variation was noticed. Delivering dsRNA by the utilization of
polyamidoamine dendrimer–coated carbon nanotubes
(PAMAM-CNT-dsRNA) help in raising the level of RNA
interference in T. castaneum (Edwards et al., 2020). Thereby,
PAMAM-CNT-dsRNA increases the efficacy of gene knockdown
in red flour beetle. Clove essential oil (Syzygium
aromaticum)–loaded polyethylene glycol (PEG) nanoparticles
shows high rate of mortality against T. castaneum (Ikawati
et al., 2021).

4.5 Chitosan-Based Formulations
Chitosan is a bioactive polymer formed by the deacetylation of
chitin, which is one of the most abundant natural polysaccharides
(Badawy et al., 2011). Only a few studies have been carried out on
the efficacy of the chitosan-based formulations against storage
insect pests. Myristic acid–chitosan (MA chitosan)–based
nanogel loaded with Carum copticum (L.) essential oil (EO)
was found effective against S. granarius and T. confusum, and
the studies indicated that toxicity effect increased with the
increasing exposure time (Ziaee et al., 2014). Peppermint oil
(PO)–encapsulated chitosan nanoparticles were found highly
toxic against S. Oryzae (Rajkumar et al., 2020). Melissa
officinalis essential oil nanoencapsulation in the chitosan
matrix improved fumigant activity (LC50 � 0.048 μL/ml air)
and acted as a strong antifeedant (EC50 � 0.043 μL/ml) against
T. castaneum (Upadhyay et al., 2019). Likewise, chitosan- and
polycaprolacton-encapsulated R. officinalis and Zataria
multiflora essential oil nanoparticles effectively controlled
confused flour beetle (Ahsaei et al., 2020).

4.6 Nanocapsules
Nanoencapsule formulation developed using C. cyminum
polymerized oil/water emulsion (using poly(urea-
formaldehyde)) when sprayed on rust-red flour beetle
continuously for 7 days resulted in LC50 value of 16.25 ppm,
which is lower than the value of oil tested alone (Negahban et al.,
2012). Nanocapsule of R. officinalis essential oil–loaded
formulation found effective against T. castaneum (Khoobdel
et al., 2017). Cysteine protease nanocpasule of Albizia procera
(ApCP) resulted in 100% mortality of Sitotroga cerealella at 7.0
and 3.5 mg/g concentrations (Batool et al., 2021). Likewise,
nanoencapsulated Eucalyptus globulus and Z. multiflora
essential oils were found effective for the control of E.
kuehniella (Emamjomeh et al., 2021). Nanoparticles
encapsulated with Artemisia haussknechtii essential oil showed
100% mortality at 166 ppm (Khanahmadi et al., 2017). The
combination of nanocapsulated form of Cuminum cyminum
essential oil with reduced amounts of phosphine controlled
50% population of S. granarius and T. castaneum at a
concentration of 42.51 and 78.99 μL/L, respectively, and
Lavandula angustifolia can also be used as it is on par with
cumin oil (Bayramzadeh et al., 2019).

5 CONCERNS ABOUT NANOPESTICIDES
USAGE

One of the considerations for favoring nanopesticides over
conventional pesticides is that these lessen environmental
contamination through the reduction in pesticide application
rates and losses (Jasrotia et al., 2018; Luiz de Oliveira et al., 2018).
Conversely, these may pose a new problem of longer persistence
and higher toxicity. A small droplet size may also lead to early
evaporation of the nanodroplets before reaching the target. The
interaction of nanoformulations with microorganisms, plants,
and other animals at different trophic levels is another major area
requiring investigation. Moreover, the environmental fate of

Frontiers in Nanotechnology | www.frontiersin.org February 2022 | Volume 3 | Article 81105610

Jasrotia et al. Nanopesticides for the Management of Stored Grain Insect Pests

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


pesticide nanoformulations on soil, groundwater, and non-target
organisms is unknown. The properties of the nanocarriers and
the dispersion of the active ingredient within the
nanoformulation matrix determine the release of the active
ingredients into the environment. It has been reported that
delayed release of nanoparticles over an extended period of
time may affect non-target organisms (Kah et al., 2013).
Nanocarriers mostly used in nanoformulations are either
natural polymers or polysaccharides or lipids, which degrade
easily but very little concern has been raised toward the use of
non-biodegradable nanocarriers such as metal and metal oxides
(Kah and Hofmann, 2014). Moreover, most of the synthesized
nanocarriers are for controlled release that may cause human
body exposure of nanoformulations in a restricted manner
(Gahukar and Das, 2020). Conventional formulations require
use of harmful organic solvents in developing pesticidal
nanoformulations, and these solvents are highly toxic to the
environment.

Regulations for the registration and introduction of
nanoproducts into the market are lacking. There is an urgent
need to develop standard guidelines for the evaluation of
nanochemicals before registration and commercialization as it
is pertinent to understand their behavior, efficacy, toxicity,
physicochemical properties, and environmental effects. The
research studies regarding comparison of nanopesticides with
their conventional analogues in all aspects are necessary to guide
future research regarding the environmental risks of
nanopesticides using the life-cycle analysis. This analysis
should take into consideration all the steps of
nanoformulations production, application, incorporation levels
into food chain, and possible effects on agrosystem conditions
that may influence hazardous properties and risk characterization
nanomaterials. There is a growing concern in the scientific
community about toxicity and impact of nanopesticide
formulations on the ecosystem due to their widespread
applications, which requires more investigation and research
in these areas. Therefore, more efforts should be made to
search and find out the way for the development of safer and
smarter nanoformulations.

6 REGULATIONS OF NANOPESTICIDES

The increasing trend of usage of nanomaterials in various fields is
on the rise in today’s hi-tech world. However, at the same time,
environmental risk assessment of nanomaterials such as
nanopesticides is very essential before a product can be placed
on the market worldwide. Risk assessment of nanomaterials, their
persistence, behavior, and fate in the environment should be
determined prior to their release. The regulatory and legislative
bodies around the globe are required to ensure to account for
their safe usage and successful risk assessment. Nanoparticles,
because of their characteristic features such as size, surface area,
and catalytic properties, require additional testing beyond
guidelines for setting their toxicity levels (Singh et al., 2020).
Various national and international regulatory bodies are trying to
ensure safety of nanomaterials. In some regions including Asia,

Africa, and Oceania, heterogenous methods are used for the
regulation of nanoproducts and these methods vary country-
wise (Kookana et al., 2014). For instance, recently in India,
guidelines for the evaluation of nano-agri input products and
nano-agriproducts have been framed that defined nanomaterials
either as a nanofertilizer or nanopesticide (Naqvi and Flora,
2020). The Scientific Advisory Panel of the US Federal
Insecticide, Fungicide, and Rodenticide Act (FIFRA) has
contemplated pesticides made of nanometals/or metal oxides
and has recommended that potential health and
environmental risks of such nanomaterials should be taken
into consideration before their market release (Grillo et al.,
2021). Furthermore, in Europe, plant protection products
(PPPs) are mainly regulated by Regulation (EC) No 1107/2009
in which prior authorization is required from the government
(Villaverde et al., 2014; Cao et al., 2020). The official control of
nanomaterials’ residues in the food is regulated under (EC) No
396/2005 (European Food Safety Authority et al., 2019), and labor
safety from these chemicals is covered by the REACH Regulation
(EC) No 1907/2006, which gives information to manufacturers
and importers about the risks associated with their usage (Tranfo
et al., 2020). The Australian Pesticides and Veterinary Medicines
Authority (APVMA) also framed regulations for the release of
nanomaterials (Bowman & Hodge, 2009; Walker et al., 2017).
Priorities in R&D sector of countries around the globe must focus
on reducing ecotoxicity of nanopesticides by standardization of
testing guidelines for nanopesticides; a better understanding of
hazards posed by nanopesticides and their degradation products;
increasing time of exposure of nanopesticides tests against
particular organisms; and identification of nanopesticide that
comes under boundaries for regulatory coverage.

7 CONCLUSION AND FUTURE
DIRECTIONS

Even after countless efforts, food security is still challenging
because of limited resources and rising population. The smart
nanopesticides can have advantages over conventional
agrochemicals such as lower dose requirement, higher
solubility, and targeted delivery of active ingredient leading to
higher eco-protection with lesser environmental ill-effects
(Dubey and Mailapalli, 2016). Despite several advantages,
nanoparticles also pose serious drawbacks such as low selective
toxicity, low biodegradability of inorganic nanoparticles, and
development of pesticide resistance in non-target organisms, if
used in an indiscriminate way. Some nanosystems are at their
beginning stage or are under development. Moreover, the data
concerning the environmental fate of these nanoparticles and
their possible negative impact on non-target organisms is scarce,
and there is lack of knowledge in this regard. Increased attention
must be paid toward the possible impact and reverberations that
nanomaterials can have on the environment, non-target
organisms, and development of ecologically safer
nanopesticides. Scientists need to dwell deeper into research
related to precautions to be taken, mutations in food due to
nanostructured materials (NSMs), and nanoparticles toxicity in
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human cells and their environmental impacts (Chhipa et al.,
2017b; Sahoo et al., 2021). Only the research community can
decide nanotechnology can bring more positive impacts than
potential risks. The concept of “green nanotechnology” that is
being posed as one of the benefits of nanoproducts need to be
assessed by investigating the potential risks involved with their
use. The sustainability of these products in addition to their safety
and risks should be also need to be assessed, including the cost of
production, environmental impact, and renewability of all
material used for synthesis and production (Watson et al.,
2011; Chowdappa and Gowda, 2013).

Future research in nanotechnology should be focused on 1)
development of smart nanopesticide formulations to combat the
limitations of conventional formulations, 2) development of
environmentally sustainable green nanopesticides chemistry, 3)
development of technologies for cheap and commercial
nanopesticides production, 4) activity comparison of
nanoformulations with conventional analogues at the field
level to determine their practical utility, 5) ecotoxicological
assessment of nanopesticides, and 6) establishment of
legislative and regulatory framework for the safe introduction
of nanopesticides in agriculture. Except minuscule limitations,

nanomaterials have immense potential of transforming crop
protection practices from environment harming to an
environment favoring. It makes agriculture cost-effective too.
This kind of development will improve the food life, storability,
and security and in turn both the costumers and producers will
receive more profit.
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