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Colorectal cancer (CRC) is the third most frequently occurring tumor in the human
population. CRCs are usually adenocarcinomatous and originate as a polyp on the
inner wall of the colon or rectum which may become malignant in the due course of
time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may
play an important role in preventive and therapeutic interventions to decrease the mortality
rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as
the novel strategy to develop newer approaches for the treatment of the disease.
Nanotechnology consists of a wide array of innovative and astonishing nanomaterials
with both diagnostics and therapeutic potential. Several nanomaterials and nano
formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles,
Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations,
Nano-emulsion System, etc can be used to targeted anticancer drug delivery and
diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and
silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the
targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent
advancement of nanotechnology in the diagnosis and treatment of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is a severe health problem and has the third-highest occurrence within the
cancer-causing conditions that influence the populations of developing and developed countries (da
Paz et al., 2012). Among populations of western countries, a major cause of death and morbidity is
CRC (Arvelo et al., 2015). Various routine factors and the growing age are the common reason of
CRC with only a few cases being the outcome of genetic disorders (Bours et al., 2015; Gulbake et al.,
2016). It generally starts in the bowel lining and can extend into the wall of the bowel and beneath
muscle layers if not treated properly at the earliest (Datta et al., 2016). In addition to these, there are
genetic and environmental factors that can interact in various ways to enhance carcinogenesis (Bours
et al., 2015). Regarding the CRC pathogenesis four central theories have been established. In the first
theory, epigenetic and genetic variation generate the formation of colon cancer promotes CRC.
Second, cancer emerges due to a multistep process at both molecular and morphological levels. The
third and crucial molecular step is the loss of genetic stability in cancer formation. Fourth, hereditary
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cancer diseases usually belong to germline forms of an important
genetic disorder, for which somatic occurrences force the
manifestation of sporadic colon cancers (Kheirelseid et al.,
2013). However, various factors that contribute to and affect
the start and establishment of disease, continue to increase the
number of potential targets (Hutchinson et al., 2015). Ultimately,
this targeting potential will show the way for the success of an
effective technique for disease management and will provide
better treatments to the patients. Several decades of research
have been concentrating on the establishment of novel methods
and techniques in cancer research, especially in the areas of
detection, giving rise to earlier cancer therapy to decrease
mortality.

CRC is the most devastating disease identified among the most
common malignancies and can be recorded as the second leading
reason for cancer-associated deaths in women and the third-
highest common disease in men worldwide (Huyghe et al., 2020).
Current situations have been shown that up to 2030, the chances
and mortality rate of CRC will enhance by 60% worldwide (Brand
et al., 2017; Huyghe et al., 2020). With the existing diagnostic
techniques and treatments, patients suffer long invasive
techniques with unwanted side effects to remove CRC. Hence,
a new detection method requires further research to improve
their specificity and affectivity (Bray et al., 2019).

Nanotechnology has opened up a new way to the development
of novel and efficiently organized nanomaterials with the
capability of enhanced performance in screening, detection,
and treatment of CRC cancer along with other types of
tumors (Gulbake et al., 2016; Bray et al., 2019). The role of
nanotechnology interventions to CRC includes the nanomaterial-
based screening of tumors, customization of targeted drug
delivery systems, and advanced treatment modalities (Upendra
et al., 2016; Minakshi et al., 2017; Minakshi et al., 2018; Minakshi
et al., 2020). Currently, nanotechnologies have found worldwide
consideration due to their capability to improve existing
standards and methods for the screening, diagnosis, and
treatment of CRC. The present review has the main emphasis
on the discussion of nanotechnology-based precision methods for
screening, detection, and treatment of colorectal cancer.

During the preparation of this review, recent and appropriate
information was collected using several scientific search engines
including PubMed, Medline, Google Scholar. Several research
and review articles were collected, thoroughly studied and a
comprehensive manuscript is prepared. Under this review
article several aspects of colorectal cancer (CRC) including
their different clinical stages, recent diagnostic and therapeutic
approaches using several nano-formulations such as Quantum
dots, Iron oxide, Carbon nanotubes, Liposomes, Silica
Nanoparticles, Nanoemulsion, Gold nanoparticles, etc. have
been discussed. Apart from the use of individual medicines,
the efficacy of combinatorial nanomedicine against CRC has
also been explored.

Colorectal Cancer Stages
The survival rate in CRCmainly depends upon the stages of CRC
disease and it usually ranges from 90% in the case of localized
stage to 10% in the case of patients diagnosed with metastatic

cancer. If the stage of diagnosis is earlier, the higher the chance of
survival rate (Haggar and Boushey, 2009). The exact stage of the
tumor, which explains the level of cancer in a patient’s body, is
one of the very significant factors in deciding which therapy is
useful and how successful therapy might be (Schroy et al., 2016).
Figure 1 describes the various stages of colorectal cancer.
Abnormal cells arise from colonic wall mucosa, may become
tumors, and divides in stage 0. During stage I, cancer has formed
in the colon wall mucosa and emerges into submucosa as well as
muscularis propria. Stage II cancer further progresses from
muscularis propria into pericolorectal tissues (IIA), and then
emerges to the visceral peritoneum (IIB), then directly penetrates
into the attached organs (IIC). Stage III cancer emerges into
muscularis propria metastases in nearby tissues or 1–3 regional
lymph nodes and spreads in submucosa with metastases in 4–6
lymph nodes in IIIB and 7 or more regional lymph nodes (IIIC).
Metastasis confines to one organ such as liver ovary, lung,
regional node, etc. in stage IV, and again stage IV cancer is
further divided into IV A and IV B stages (Xynos et al., 2013; Lai
et al., 2016). Five years survival rate percent researches showed
90% survival in the case of stage 1 CRC and 10% survival in the
case of stage IV CRC (Pesta et al., 2016). Physical inactivity, eating
more processed meat, long-term smoking, obesity, alcohol
addiction, and a diet with fewer vegetables and fruits are the
most common lifestyle-related threats and major causes of CRC.
Family history is also connected with CRC, a person with chronic
inflammatory bowel disease, type 2 diabetes, or genetic disease
likelynch syndrome has been linked with augmented risk (Young
et al., 2014). Stages 0, I, II, and III may be curable but stage IV
CRC is not often curable but it may be managed based on growth
and spreading disease (Young et al., 2014; Sun et al., 2016).

Existing Screening Methods for Colorectal
Cancer
Various screening methods have been established to screen CRC
before symptoms start, when it may be easily treatable. Few of the
screening methods that identify polyps and adenomas at an early
stage may assist in the detection and early removal of tumor
growth which might otherwise lead to further progression of
cancers. Hence early detection of colorectal cancer may be
another method of cancer prevention. Different tests are
prevalent for suitable screening of colorectal cancer (Table 1).
Stool tests detect minute quantities of blood that cannot be
possibly seen visually from both adenomas and polyp cancers
(Imperiale et al., 2004; Burch et al., 2007; Ansa et al., 2018;
Qaseem et al., 2019).

In the colonoscopy entire colon and rectum are screened for
cancer using a colonoscope, having a flexible tube light with a lens
for seeing and a tool for excising the abnormal tissue (Kahi et al.,
2016). A complex analysis of six studies showed that screening
using colonoscopy reduces the chances of establishment and
dying of people from CRC (Brenner et al., 2014). Conversely,
the test is costly and unpleasant. Virtual colonoscopy or
computed tomographic (CT) colonography and double-
contrast barium enema are the optional choices for patients,
who cannot go through a routine colonography due to the
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anesthesia risk, which prevents a complete examination. In both
the methods, x-rays are used to observe the colon from outside
the body (Pickhardt, 2013; Kuipers and Spaander, 2015). The
occurrence of colorectal neoplasm was detected using double-
contrast barium enema (DBEM) screening in people of Thailand
and reported a diagnostic outcome of 0.4% for CRC and 0.7% for
advanced adenoma (Lohsiriwat et al., 2013). Insigmoidoscopy
test for checking cancer, polyps, and other abnormalities using a
flexible tube having light at the end is inserted into the lower
colon and rectum (Guo et al., 2015). Many of the clinical trials
reported that sigmoidoscopy reduces the chances of
establishment and prevents persons from dying from CRC
(Atkin et al., 2010; Segnanet al., 2011; Elmunzer et al., 2012;
Schoen et al., 2012; Holme Kalager, 2014). All these screening
tests for CRC have differed in respect to their preparation
requirements, patient expediency, amount of colon and rectum
evaluated along with their limitations.

Along with these general tests, the CellSerch® assay (Janssen
Diagnostics, LLC, South Raritan, NJ, United States) which is based
on circulating tumor cell (CTC) diagnostic technology is used for the
diagnosis of meta-static colorectal cancer along with other cancers
such as breast and prostate cancers. US FDA cleared circulating
tumor cell (CTC) diagnostic technology for metastatic CRC along
with other cancers such as prostate and breast cancers (Allen et al.,
2014). It gives prediction-related information in metastatic CRC,
regardless of the metastatic site. Currently, various new systems such

as MagSweeper, Cynvenio, IsoFlux, VerIFASt, AdnaGen, and
magnetic sifters have been established to further enhance the
identification speed and efficiency (Mostert et al., 2015). Most of
the current screeningmethods are very expensive and not easy at the
point of care. Hence, the development of more sensitive, fast, low
cost, and specific screening of CRC is very essential.

Recent Advancements of Nanotechnology
in Cancer Theranostics
Recent development in nano-sciences has allowed fabrication of
several nanoparticles (NPs)-based systems for therapeutics and
diagnostics. Although the clinical applications of nano-based
theranostics are still limited probably due to their complex
pharmacokinetics, NPs can improve the knowledge of
biochemical and physiological principles of several diseases
and their treatments (Siddique and Chow, 2020). NPs have
been used in the enhancement of capability of several imaging
techniques such as positron emission tomography (PET) by use
of radioisotope chelator-free NPs, and iron oxide-based NPs in
magnetic resonance imaging (MRI) (Rosado-de-Castro et al.,
2018). Similarly, in the optical imaging system, persistent
luminescence nanoparticles (PLNPs) have been used as a
novel optical nanoprobe to utilize the characteristic long-
lasting near-infrared (NIR) luminescence (Lecuyer et al., 2016)
which allows the functioning of optical imaging without constant

FIGURE 1 | Schematic representation of different stages of CRC.
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excitation and autofluorescence (Liu et al., 2019). The NPs act as
excellent contrast agents because of their small size, high
sensitivity, and specific chemical composition. Similarly, NPs
are also widely used for the therapeutic purpose of cancer. In
therapeutic use, it improves the accumulation and release of
pharmacologically active compounds at the pathological site
leading to enhanced therapeutic efficacy and reduced toxic
side effects. Moreover, recently developed NPs have the
capability for integrating therapeutic and diagnostic agents
into a single NP that can be easily used for theranostic
purposes (Siddique and Chow, 2020). Studies have also
revealed that theranostic NPs may have the capability for
future use as personalized nanomedicine-based therapies
(Baetke et al., 2015). In the coming future, multifunctional
NPs can be designed by using various functional materials
leading to the development of simultaneous diagnosis and
therapeutics known as theranostics (Kim et al., 2017).

Existing Treatment Methods for Colorectal
Cancer
At present, various treatment methods with their merits and
demerits are available (Table 2). The most general method for
the treatment of CRC is surgery and most commonly known as
surgical resection. Surgery is the most common treatment for CRC
and is often called surgical resection. It is a significant first line of the

protective system against any particularly well-defined tumor or any
cancer (Lee, 2009; Chu, 2012). During surgical treatment in CRC, a
portion of the healthy rectum or colon will also be excised. In
addition to the surgical resection, other surgical options for CRC
comprise colostomy for rectal cancer, radiofrequency ablation,
laparoscopic surgery, etc. Radiation therapy is most widely used
for the treatment of rectal cancer for the reason that this cancer tends
to continue to the site where it grows initially. Radiation therapy is
given to the patient in a scheduled manner comprising a defined
number of treatments at defined time intervals (Joye and
Haustermans, 2014). Stomach upset, mild skin infections, fatigue,
etc. are the main side effects of radiation therapy. In the
chemotherapy treatment method, drugs are used to deactivate
cancer cells, generally by stopping the activity of tumor cells to
grow and multiply. At present various approved drugs are used for
the treatment of CRC (Jayakumar et al., 2015). Vomiting, nausea,
neuropathy, mouth sores, and diarrhea are the main causes of
chemotherapy. Treatment that targets the defined genes of tumor
cells or defined tissue environment is known as targeted therapy.
Such type of treatment inhibits the growth and division of the
cancerous cells although limiting the harm to normal cells. To find
out an efficient and reliable treatment of CRC, new methods should
be established for effective detection of proteins, genes, and
additional factors in a patient’s cancer. For CRC
treatment epidermal growth factor receptor (EGFR) inhibitor
therapy, anti-angiogenesis therapy is an option. The most

TABLE 1 | Different methods for CRC screening.

Method Explanation Advantages Disadvantages References

Stool tests Stool tests are kits that can
detect abnormal blood or DNA
markers. In gFOBT stool tests a
chemical is used to detect heme
from blood protein. The FIT test
method uses antibodies for the
detection of specifically
hemoglobin protein. The FIT-
DNA test identifies hemoglobin
with certain DNA biomarkers for
the detection of CRC.

Colon cleansing is not essential
before the sample is taken. No
dietary requirements are needed in
FIT. Samples can be collected at
home. The Stool test is a low-cost
method as compared with other
bowl tumor-screening methods

Stool test cannot detect nonbleeding
cancers

Ansa et al. (2018),
Bibbins-Domingo and Grossman
(2016), Shapiro et al. (2017),
Collins et al. (2005)

Colonoscopy It allows visualization of the entire
inner lining of the colon and
rectum of a person for the
detection of the tumor

This method detects all minute
polyps along with large polyps and
cancers, subsequently reducing
the risk of development and death
due to CRC.

It requires sedation Brenner et al. (2014), Kahi et al.
(2016)It may lead to serious bleeding or a

tearoftheintestinalwall

CT colonography CT scanner is used in this
technique for capturing two- and
three-dimensional images of the
entire colon. These images allow
a radiologist to screen if cancers
or polyps are present

Sedation is not required in this
method. It does not require
sedation. CT colonography is
noninvasive and the entire colon
can be examined for CRC.

Colon cleansing is not essential before
the test. It may screen other
abnormalities along with colon cancer
and polyp

Ouyang et al. (2005), Kuipers and
Spaander (2015), Pickhardt
(2013)

Sigmoidoscopy It allows the physician to directly
examine the lining of the rectum
and the lower section of the colon

It detects the cancers and polyps
in the descending rectum and
colon with a high degree of
accuracy

It cannot screen the cancers or polyps
present on the right side

Holme and Kalager (2014),
Elmunzer et al. (2012)

Double-contrast
barium enema

In this method, barium sulphate is
introduced into the rectum with
air via a flexible tube and x-ray
images are then captured

This test mainly allows the
examination of the whole colon
and the rectum. Sedation is not
required and complications are
rare

Colon cleansing is very necessary for
this method; otherwise, it will give false-
positive results

Lohsiriwat et al. (2013)
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common side effects of the targeted therapy include rashes on upper
body parts and the face.

During the treatment of CRC, poor drug response to
chemotherapy is frequently reported which might be primarily
due to the appearance of the multidrugresistance (MDR) in
tumor cells (Wu et al., 2018). Several studies have shown the
mechanism of drug resistance in colorectal cancer cells. Some of
the studies revealed that the effect of cetuximab and panitumumab
can be inactivated by themutations in PIK3CAor BRAF gene, or due
to gene amplification of MET, KRAS, and ERBB2 resulting in the
prevention of EGFR signaling (Dienstmann et al., 2015). The
overexpression of dihydropyrimidine dehydrogenase (DPD) gene
may lead to resistance against 5-FU, becauseDPDmay convert the 5-
FU into the inactive metabolite (DeNardo and DeNardo, 2012). In
addition, decreased expression of RFC-1 (reduced folate transporter
1) and PCFT (proton-coupled folate transporter) may block the LV
(Odin et al., 2015). Similarly, altered levels of metallothioneins and
glutathione reductase (GR) may affect the response of oxaliplatin
(OXA). Moreover, the increased activity of UDP-
glucuronosyltransferases (UGT) or induced DNA damage repair
mechanism such as TDP1 (tyrosyl-DNA phosphodiesterase 1) may
limit the effect of IRI (Jensen et al., 2015). To overcome themultidrug
resistance, nanomedicine appears as a recent strategy to enhance the
prognosis in CRC patients.

Applications of Nanotechnology in
Screening, Detection, and Treatment of
Colorectal Cancer
More than four decades ago application of nanotechnology
foundations is laid down for their diagnostic and therapeutic

uses in a very précised manner (Fortina et al., 2007).
Nanotechnology is a most important branch of research which
plays a very important role in screening, detection, and treatment
of day-by-day increasing diseases (Upendra et al., 2016). It plays a
major role in the discovery and delivery of drugs with specific
action at a specific target site with an enhanced success rate. The
development of these nano-formulations includes liposomes,
quantum dots, silica NPs, gold NPs, liposomes, dendrimers,
nano-emulsions as a coating material in imaging at
pathological sites, and nano-drug delivery (Bose et al., 2015;
Yallapu et al., 2015).

Various important nanotechnological applications have been
verified in cancer biology, comprising early screening and
detection of cancers and establishment of new treatment
approaches that cannot be gained using the existing
conventional methods (Laroui et al., 2013). In de facto, in
certain tumors, nano-sized particles of different shapes and
compositions have emerged out as important and promising
novel tools for colorectal cancer staging, diagnosis, and
therapeutics (Figure 2) (Dong et al., 2016). Early screening
and detection of CRC is the main solution for impediments
and it can impact the long-lasting survival of CRC patients. Early
detection of CRC is the key, and it can impact the long-term
survival of patients with CRC. In this review, we discuss the
current achievements of NPs that provide a new way for early
screening and flourishing treatment of CRC.

Quantum Dots
Quantum dots (QDs) are semiconductor nanocrystals which
fluoresce with light excitation and have special optical features,
comprising high brightness, the ability to emit fluorescence at

TABLE 2 | Various existing methods with merits and demerits for the treatment of CRC.

Method Description Advantages Disadvantages References

Surgery It is a very common method for the
treatment of CRC and generally known
surgical resection. It includes colostomy for
renal cancer, laparoscopic surgery, and
radiofrequency ablation

Surgical excision of the cancer is one of
the important first lines of treatment
against CRC, specifically when cancer
is well defined

Surgery has been identified to enhance the
risk of death due to metastasis in confined
cancer patients by mechanical disruption
of cancer integrity. Tenderness and pain in
the part of operation are other
disadvantages

Chu (2012), Lee
(2009)

Radiation
therapy

It uses high-energy X-rays to destroy tumor
cells

For CRC, it is used before surgery and
known as neo adjuvant therapy, to
shrink cancer so that it can be easily
removed. It may also be used after
surgery for the death of remaining tumor
cells. Both the methods have worked
for the treatment of disease. It may also
be used after surgery to destroy any
remaining cancer cells

It may also damage the healthy cells and
also cause DNA damage, which is very
harmful. It may cause damage to the
healthy cells

Joye and
Haustermans
(2014)

Chemotherapy It uses drugs to destroy the tumor cells,
which usually block the capability of CRC
cells to grow and multiply

It is a well-established treatment
modality

It may cause nausea, vomiting, mouth
sores, or neuropathy

Jayakumar et al.
(2015)

Targeted
therapy

It is a treatment that targets the tumor-
specific gene or tissue environment that
contributes cancer growth and survival

It stops the growth and dividing of
cancer cells while limiting damage to
uninfected cells

Targeted treatments have side reflects
such as rash on the upper body and face

Xie et al. (2020)

Immunotherapy Immunotherapies used for the treatment of
CRC include monoclonal antibodies,
cancer vaccines, immune modulators,
adjuvants, and cytokines

This system uses body’s self-immune
system and fewer side effects and can
provide ling-term survival by 30%

Some of the immunotherapy drugs have
high cost, severe side effects, and
possible short-term efficacy

Johdi and Sukor
(2020)
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varying wavelengths, and resistance to photo-bleaching. Owing to
QDs chemical and optical advantages, QD-based nanotechnology
is acting as a promising platform for studying various tumors
including the CRC (Fang et al., 2012; Pericleou et al., 2012; Zeng
et al., 2015). QD-based immune histochemistry (QD-IHC) has
been used for qualitatively analyzing the expression of large
external antigens from CRC tissue samples and compared with
conventional-IHC (Wang et al., 2016), QD-IHC offered various
detectable advantages for quantification of protein marker. These
showed simpler operation, higher sensitivity, less human
interference, and better capability for concurrent multifactor
analysis; would produce more accurate clinical detections.
Therefore, QD-IHC is a better option for conventional IHC in
therapeutic applications. QD-based immune cytochemistry using
QD-probes studies mainly focuses on marker identification in
tissue sections, IHC combined with imaging quantitative analysis
for screening of large external antigen in living cells showed
results that were the same as obtained using flow cytometry and
expending the applications of QD-probes for clinical applications
(Wang et al., 2016). In another study, a sensitive method was
developed to identify Aldo-keto reductase family 1 member B10
(AKR1B10) in the serum that acts as a therapeutic target and
prognostic predictor for CRC using QDs. The QDs possess
stability against photo bleaching along with size-controlled

luminescence activity that makes QDs a suitable agent for
photoelectrochemical-based tumor marker detection from
biological samples. However, QDs are still not used for the
detection of AKR1B10 from serum samples (Wang et al.,
2015; Liu et al., 2021). This technique played a great role in
the early detection of CRC with high specificity and sensitivity.

A highly sensitive and specific technology was developed,
which enables concurrent detection of biochemical
fluorescence and morphological changes during CRC
progression and development using optical coherence
tomography or laser-induced tomography that allows
nondestructive internal visualization of CRC (Carbary-Ganz
et al., 2015). A probe QDot655 specific to vascular endothelial
growth factor receptor 2 (QD655-GEGFR2) restricted to the
colon used in carcinogen-treated mice and provides
significantly high contrast between infected and healthy tissues
with specificity and sensitivity ex-vivo (Carbary-Ganz et al.,
2015). These probes act for in vivo magnetic resonance
imaging (MRI) and further biopsy of CRC, an exceptional
cell-specific, paramagnetic double-signal fluorescent molecular
multipurpose nanoprobe (GdDTPA-BSA@QDs-PCAb) was
designed using surface engineering of QDs with DTPA-BSA-
Gd3+ large molecular complex by ultrasonic conditions. These
nanoprobes act as promising tools for use in contrast-enhanced

FIGURE 2 | Schematic explanation role of nanotechnology in CRC. (A) NPs routes for administration, (B) various kinds of polymer NPs and metallic along with
necessary parameters for use in CRC therapy cancer therapy (C) screening and detecting the tumor respectability using multimodal imaging and involvement of
increased permeability and retention effect on antitumor drug synthesis for CRC targeting therapy.
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MRI diagnosis of CRC and have no cytotoxic effects inMTT assay
(Xing et al., 2015). QDs-bevacizumab nanoprobes have been
successfully used for targeted CRC detection in both in-vitro
and in-vivo systems. During detection, they enhanced the tumor-
specific signal after subsequent injection of the QDs and act as a
significant achievement in VEGF-directed noninvasive imaging
systems during clinical practices (Gazouli et al., 2014).

Under defined conditions subtractive Cell-SELEX technology
is used for the production of a panel of seven aptamers (Apts) that
precisely attach metastatic CRC cells (LoVo) along with other
metastatic tumor cells with great affinity, and hence provides a
broad spectrum specific detection of metastatic tumor cells (Li
et al., 2014b). This research showed that Apts selected from a
single Cell-SELEX can alone act as functionalized for several
purposes based on target biochemical properties, thereby
increasing the applications of the Cell-SEARCH approach.
This receptor-specific Apt W14 was used as the targeted
carrier for doxorubicin-specific delivery to defined cells to
reduce the toxicity of this drug (Li et al., 2014b).

QDs conjugated with non-membrane receptor binding Apt
W3 were used as a molecular probe for specified imaging of
metastatic tumor-bearing sections, metastatic tumor cell lines,
and formalin-fixed paraffin-embedded tissues from the CRC
persons (Li et al., 2014). Hence QDs are great technological
modalities in progress that can reform the CRC treatment and
diagnosis.

IRON OXIDENANO-FORMULATIONS

Iron oxide NPs have the two-fold capability to work as both
photo-thermal and magnetic agents for human applications as
MRI agents. They also have brilliant biodegradability in vivo and
after dissolution, iron ions can be adjusted by the body by a highly
regulated physiological phenomenon (Espinosa et al., 2016). A
smart multi functional magnetic nano vehicles encapsulating an
antibody targeting peptide AP1 (MPVA AP1), which are
consistent in size and also water soluble, anti-cancerous drug
has been developed (Kuo and Liu, 2016). These nano-vehicles are
easily dispersed in aqueous solutions and exhibit no cytotoxic
effects in L929 fibroblasts, and showed their capability for
therapeutic applications (Kuo and Liu, 2016). A CRC cell
(CT26-IL4R) trial discovered that the MPVA-AP1 showed
outstanding selectivity and targeting. A steady storage test
revealed no leakage of encapsulated drugs without the
stimulus of the magnetic field. In disparity, nano-vehicles
loaded with doxorubicin burst upon treatment of high
frequency of magnetic field, which is fast, accurate, and
controlled release. Furthermore, in vivo investigations
recognized that magnetic nano-vehicles exhibited obvious
chemotherapeutic and thermotherapeutic effects. Hence, smart
magnetic nano-vehicles e.g. MPVA-AP1 have the noteworthy
capability for specified doses and precise controlled release in
antitumor applications (Kuo and Liu, 2016).

The usefulness of polylactide-co-glycolic acid (PLGA)
nanoparticle as a5-fluorouracil (5-FU) vehicles with or without
an iron oxide and hyperthermia at DNA damage point in an HT-

29 colon tumor cell line spheroid culture model by alkaline comet
assay (Esmaelbeygi et al., 2015) and found that less DNA damage
in case 5-Fu loaded nanoparticles as compared with
hyperthermia. Hence hyperthermia is a damaging agent and
NPs are an efficient drug delivery system to CRC. The iron
oxide NPs enhanced the effect of hyperthermia and could be
extremely beneficial in the diagnosis of CRC (Esmaelbeygi et al.,
2015).

The paclitaxel (PTX), as well as super-paramagnetic iron oxide
(SPIO), is encapsulated inside the core of PEAL Ca micelles and
studied for significant tumor therapy (Feng et al., 2014). The drug
release in this research showed that PTX in the micelles was
released with a lower rate at neutral pH and a faster rate at pH 5.0.
Cell culture studies also showed that PTX-SPIO-PEALCa was
successfully absorbed by the CRCLoVo cells and PTX was likely
internalized by lysosomal cells. Additionally, successful inhibition
of CRC LoVo cell growth was verified. Hence, micelles play a
great role in MRI visible drug release methods for CRC treatment
(Feng et al., 2014).

The lectin-Fe2O3 @AuNPs are synthesized by joining lectins
on the Fe2O3@AuNPs via bifunctional polyethylene glycol (PEG)
NHS ester disulfide (NHS-PEG-S-S-PEG-NHS) linkers. Both
in vitro and in vivo studies are done for checking the activity
of lectins- Fe2O3@AuNPs and found that it could be useful for
dual-mode MRI and X-ray CT imaging of CRC. Hence results
obtained proposed that lectins could be applicable as cancer-
targeting ligands in nano-formulations based on contrast agents
(He et al., 2014).

Poly Lactic-co-Glycolic Acid Nanoparticles
Eco-friendly Poly lactic-co-glycolic acid (PLGA) NPs have been
used as carriers for proteins, peptides, vaccines, drugs, and
nucleotides. These can help in shielding drug moieties from
breakdown and subsequently ensure the effective release of
drugs (Sah et al., 2013) and are extensively studied for their
potential use in tumor therapy, specifically for CRC. Using the
emulsion-solvent evaporation method curcumin-loaded PGLA
NPs (C-PNPs) are successfully synthesized for colon delivery
(Akl et al., 2016). C-PNPs exhibit significantly higher cellular
uptake in HT-29 cells in comparison with pure curcumin solution
due to their sustained release, greater colloidal stability in
gastrointestinal fluids, and smaller size. Therefore, C-PNPs
have great potential as an early platform for the further
establishment of a sufficient oral targeted drug system to the
colon, mainly if it is additionally functionalized with a specific
targeting ligand (Akl et al., 2016).

Scientists also prepared chitosan polymeric NPS using the
solvent extraction emulsification technique, with different ratios
of polymer, and showed potential application in the successful
delivery of active pharmaceutical components to the CRCs
(Tummala et al., 2015). Total health center complex N-38 is
an effective treatment against many cancers but the delivery
system is not easy due to its low solubility. SN-
38encapsulatedin poly(D,L-lactide-co-glycolide)NPs were
prepared by the spontaneous emulsification solvent diffusion
method to improve its solubility, stability, and cellular uptake
(Essa et al., 2015). To study cellular uptake and cytotoxicity of
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SN-38 encapsulated NPs, the colorectal adenocarcinoma cell line-
205 (COLO-205) was used and found considerably reduced cell
proliferation and death. Hence, SN-38 loaded NPs are potentially
essential drug delivery systems for the treatment of CRC (Essa
et al., 2015).

Carbon Nanotubes
Carbon nanotubes (CNTs), allotropes of carbon cylindrical
in shape, have rolled graphene sheets with a diameter of
fewer than 1 μm and a few nanometers in length (Rastogi
et al., 2014). Owing to CNT chemical and physical
properties such as high surface area, needle-like
structure, heat conductivity, and chemical stability enable
its potential uses in several fields such as immunotherapy,
diagnosis, gene therapy, and a carrier in the drug delivery
system (Hampel et al., 2008).

Various researches showed that several strategies have been
developed in which CNTs have been used for carrying
antitumor drugs. For the delivery of paclitaxel in Caco-2
cells single-walled carbon nanotubes conjugated with a
synthetic polyampholyte were used. Paclitaxel-SWCNT-
treated Caco-2 and HT-29 cells showed greater anticancer
effects when compared with alone paclitaxel (Lee and
Geckeler, 2012; Wu et al., 2015). The same types of results
have been found in Eudragit®-irinotecan loaded CNTs (Zhou
et al., 2014). Oxaliplatin and mitomycin C-coated CNTs,
induced by infrared light rays in colon cell lines, found
considerably higher drug delivery and localization in cancer
using thermal treatment of cell membrane (Levi-Polyachenko
et al., 2009). One study revealed that SWCNTs modified with
TRAIL (a ligand that binds to specific receptors and causes
apoptosis process in cancer) increased the cell death 10 times
in comparison with alone delivery of TRAIL in carcinoma cell
lines (Zakaria et al., 2015).

Dendrimer
They are three-dimensional macromolecular structures. They
possess central core molecules surrounded by consecutive
layers. The dendrimer exhibit a high degree of molecular
consistency along with shaping characteristics, fine molecular
weight distribution, and multivalency. The specific
physicochemical properties along with biodegradable
backbones facilitate several applications of dendrimer in
nanopharmaceuticals development (Abbasi et al., 2014; Huang
et al., 2015a; Wu et al., 2015). Some of the studies revealed that
dual antibody conjugates can provide advantages of capturing
circulating tumor cells (CTCs) in contrast to single-antibody
counterparts (Xie et al., 2015). The study also revealed that the
surface-active dendrimers can be successively shielded with two
antibodies against the human colorectal CTCs surface biomarkers
Slex and EpCAM. Dual antibody-coated dendrimers exhibit
improved specificity in the detection of CTCs in both patient
blood and nudemicein comparison to single antibody-coated
dendrimers. Moreover, dual antibody-coated conjugates may
downregulate the captured CTCs. Thus, theoretically, it can be
assumed that biocompatible two antibodies conjugated to a
nanomaterial may have the capability to capture and

downregulate the CTCs that can be used as a new strategy for
the prevention of metastasis (Xie et al., 2015).

Similarly in another study, HT29 cells (colon cancer cells)
were successfully captured by employing Sialyl Lewis X
antibodies (aSlex)-conjugated Poly(amidoamine)
dendrimers (Xie et al., 2015b). The colon cancer cells were
characterized using aSlex-coated dendrimer conjugate and
examined by flow cytometry and microscopy. The study
revealed that conjugate possessed an enhanced capacity to
capture HT29 cells in a concentration-dependent manner. The
aSlex-coated dendrimer conjugate showed optimum potential
in capturing and detaining CTCs in the blood (Xie et al.,
2015b). The maximum capture competence was obtained
within 1 h of exposure.

Apart from the diagnostic value, dendrimer may also be used
for therapeutic purposes. In one of the studies, telodendrimers
were suspended with linear PEG-blocking dendritic oligomer of
vitamin E and cholic acid, designed for the delivery of gambogic
acid (GA) and other natural anticancer compounds were used
(Huang et al., 2015a). The study revealed that high GA-loading
ability and subsequent drug release were obtained with these
optimized telodendrimers. Moreover, these novel nano-
formulations of GA were found to exhibit similar in vitro
cytotoxic activity as the free drug against the colon cancer
cells (Huang et al., 2015a).

Later, a new platform for drug delivery was developed with the
reengineering of nano-scale dendrimers for the capture of CTCs
in the blood (Xie et al., 2014). These nano-scale dendrimers were
lodged with dual antibodies to aim the two surface biomarkers
specific to colorectal CTCs with the capacity to particularly
recognize and bind CTCs and downregulate the activity of
CTCs by arresting cell division in the S phase. Moreover,
dual-antibody conjugates revealed enhanced specificity and
competence in controlling the CTCs in vitro as well as in vivo
in comparison with their single-antibody counterparts. Thus,
these studies revealed an innovative way of effective
prevention of metastatic initiation by binding and restraining
CTCs that were usually achieved by the traditional cytotoxic
killing of cancer cells (Xie et al., 2014).

Liposomes
Chemically, liposomes are lipid-based vesicles that act as
artificial carriers with a small and spherical aqueous core
that are nontoxic (Silva et al., 2011). Owing to their smaller
size, ability to incorporate various substances, and
phospholipid bilayer in nature, they are considered the
most effective drug delivery systems into cells with
decreased side effects (Suntres, 2011; Patil and Jadhav,
2014). In 1961, liposome was described as the first
nanoparticle platform for drug delivery in clinical medicine
(Bangham et al., 1965). It is one of the most used for drug
delivery systems especially for peptides, nucleic acids, and
proteins as nano-liposomes (Abreu et al., 2011).

Liposomes can be divided into three categories viz., long-
circulating liposomes, active targeting liposomes, and liposomes
with special properties that include thermo-sensitive, pH-
sensitive, magnetic, and positive (Akbarzadeh et al., 2013; Nag
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and Awasthi, 2013; Noble et al., 2014). For clinical practice,
liposome formulation carrying the drug such as daunorubicin
(DaunoXome®) and Doxorubicin (Doxil®) has been approved by
FDA in the mid-1990s (Barenholz, 2012). The study revealed that
Doxil is approximately 100 nm in size and has much less
gastrointestinal and cardiac toxicity (Rivera, 2003). Later, FDA
has approved Marqibo® as a liposomal drug that is a cell cycle-
dependent anticancer drug (Lammers et al., 2008; Lam and Ho,
2009; Allen and Cullis, 2013).

Drug resistance is a common problem in anticancer
therapy. Several efforts have been made to fight drug
resistance obtained when administrating liposome-based
drugs such as Doxorubicin. In one of the studies during the
administration of high dosages of an antitumor drug such as
Doxorubicin (DOX) an aptamer-based drug delivery system
assists in delivering high dosages of the active drug toward the
target cancer cells (Li et al., 2014). Similarly, Thermodox®
(thermo-sensitive liposome Doxorubicin) is used for
colorectal liver metastases treatment in combination with
radiofrequency ablation (Figure 3). In this treatment
procedure, liposomal Doxorubicin formulation releases the
active drug in response to the mild hyperthermic signal (Stang
et al., 2012). The study revealed that Thermodox can
effectively deliver twenty-five-fold more Doxorubicin to
tumor cells than ordinary intravenous. Doxorubicin dose is

five fold more effective than to standard liposomal
formulations in animal models.

Silica Nanoparticles
Silica materials are broadly categorized as xerogels and
mesoporous silica nanoparticles (MSN). Silica nanoparticles
possess numerous advantages such as a highly porous
framework, biocompatibility, and easy functionalization
(Amato, 2010; Wei et al., 2010). MSNs consist of a bee’s-hive-
like porous structure that assists in packing large amounts of
bioactive molecules. Moreover, MSN also possesses important
features such as adjustable size of cavities in the range of 50–300
and 2–6 nm respectively (Stang et al., 2012), very low level of
toxicity, easy endocytosis, the ability of large quantity of medicine
loading along with resistance to heat and pH (Bharti et al., 2015).
For more precise drug delivery and action to cancer cells,
amesoporous silica nanoparticle-protamine hybrid system
(MSN-PRM) was also used which can selectively release the
drugs in the proximity of cancer cells and get activated with
specific enzymes to trigger the anticancer activity (Radhakrishnan
et al., 2013). In another study conjugated the hyaluronic acid to
MSNs was done as HA-MSN and it was proved that the amount
of DOX loading into HA-MSNs increases significantly than bare
MSNs (Yu et al., 2013). Moreover, the cellular uptake of DOX-
HA-MSNs conjugate was also increased which was reflected by

FIGURE 3 | Schematic representation of Doxorubicin mechanism for colorectal cancer treatment, Doxorubicin accumulation in colon tumor, Doxorubicin molecular
mechanism in the nucleus increase of topoisomerase II and induced by Doxorubicin, causes more DNA breaking which consequently gives rise to apoptosis but in
mitochondria molecular mechanism of Doxorubicin, Fe2+-conjugated Doxorubicin causes Reactive oxygen species production that induces apoptosis and Doxil inhibits
the mitochondrial kinases, consequential in apoptosis induction.
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the enhanced cytotoxicity to the human colon carcinoma cell line
(HCT-116 cell line) (Gidding et al., 1999). Similarly, in another
study, MSNs were functionalized with polyethyleneimine-
polyethylene glycol (PEI-PEG) and polyethylene glycol (PEG)
which was resulted in an increased amount of loading of
Epirubicin hydrochloride (EPI) and exhibited improved
antitumor activity (Hanafi-Bojd et al., 2015). Silica
nanoparticles can also be used along with photosensitizer
chemicals to kill the CRC cells. Researchers at the University
of Buffalo and Roswell Park Cancer Institute have developed a
silica-based nano shell that encases photosensitizer molecules.
The nano shells are designed in such a way that they are easily
taken up by the tumor cells and, upon exposure of cells to light the
photosensitizers are activated and release the reactive oxygen
molecules to kill the cancer cells (Advances in Colorectal Cancer
Research, 2016). Currently, this technique is under clinical trials.
Moreover, the second-generation photosensitizer-loaded nano
shell is also in the developing phase where tumor-targeting
and imaging agents will be incorporated to deliver at the
tumor-specific sites that will assist in image-guided therapy for
cancer (Advances in Colorectal Cancer Research, 2016). Thus,
nanoparticles may also be allowed for molecular imaging of
cancer cells followed by earlier diagnosis and targeted drug
delivery.

Nano-Emulsion System
It is a transparent solution consisting of oil, water, and
surfactant. It possessed thermodynamically uniform and
stable physical properties. Nano-emulsions possess specific
features such as facilitation of transferring drugs and drug
combinations protection against external factors such as heat
and pH (Bilensoy et al., 2009), lower toxicity, higher stability,
and better efficiency along with the dissolution of nonpolar
compounds (Patil and Jadhav, 2014). In one of the studies,
the synergistic effect of gold nanoparticles (AuNPs) and
lycopene (LP) on the HT-29 colon cancer cell line was
studied. The experiment was designed in such a way that
the first case consisted of a system of nano-emulsion having
Tween 80 as emulsifiers along with LP and AuNPs and the
second system consisted of a mixture of AuNPs and LP
without any emulsion. The results revealed that the nano-
emulsion system consists of dosages of LP and AuNPs as 250
and 125 times respectively lesser in comparison with their
mixture mode, but the apoptosis induced by nano-emulsion
was found three times higher than the mixture model (Chen
et al., 2015; Huang et al., 2015b). Similarly, in another study,
an ion-pairing complex of Oxaliplatin (OXA) with a
deoxycholic acid derivative (Nα-deoxycholyl-l-lysyl-
methylester, DCK) (OXA/DCK) was prepared for oral
delivery of OXA and 5-fluorouracil (5-FU) to the
colorectal cancer patient. The study revealed that in
CT26 tumor-bearing mice, the tumor was inhibited by
73.9, 48.5, and 38.1% in comparison with tumor volumes
in the control group and the oral OXA and 5-FU groups,
respectively, which indicated the application of OXA/DCK
and 5-FU as an oral combination therapy for CRC (Pangeni
et al., 2016).

Core-Shell Polymeric Nano-Formulations
Nowadays there is an increasing interest in the manufacturing of
core/shell nanoparticles with two or more materials (Zhou et al.,
1994; Kumar et al., 2020). Such nanomaterials possess a core-shell
structure where the outer surface atoms differ from those of the
interior core atoms. The surface chemistry of core-shell type
nanomaterials is usually characterized by multiple techniques
such as secondary ion mass spectroscopy and X-rayphotoelectron
spectroscopy (Simonet and Valcárcel, 2009; Zielińska et al., 2020).
In core/shell nanoparticles combinations of different materials
such as organic/organic, organic/inorganic, inorganic/inorganic
can be used (Ghosh and Paria, 2012) with specific purposes
including increasing the stability, functionality, and dispersibility
of the core particles. Moreover, specifically designed core-shell
particles may also provide a controlled release of the core and
therefore, allow the reduced consumption of precious materials
(Kalele et al., 2006). The core/shell particles possess specific
applications in the biomedical field such as bio-imaging for
cell labeling, controlled drug delivery, and tissue engineering
practices (Bai et al., 2006; Sounderya and Zhang, 2008; Stanciu
et al., 2009). Some other types of nanomaterial such as
Lactobacillus reuteri biofilm coated with zinc gallogermanate
(ZGGO) mesoporous silica may also be used as a bacterial
inspired bio-nanoparticle system (ZGGO@SiO2@LRM). This
nano system was found possessed with the unique property of
targeted delivery of 5-FU to the tumor of colorectum area.
Further study revealed that in comparison with 5-FU alone,
the ZGGO@SiO2@LRM nanosystem decreased the tumor
number per mouse to one-half during in-vivo chemotherapy.
Additionally, this system was found capable of tolerating the
digestion of gastric acid and thus may support the targeted drug
delivery of oral medicines into the colorectum region. Moreover,
ZGGO also assists in the hassle-free photo luminescence (PL)
bioimaging where LRM coating accurately targets the tumor of
the colorectum region (Wang et al., 2019). Similarly, other silica-
based core-shell nanoparticles such as mesoporous silica
nanoparticles coated with PEG or hydrochloride dopamine
along with epithelial cell adhesion molecule aptamer (MSN@
PDA-PEGApt) were also used for targeted delivery of maytansine
derivative (DM1) with 94% drug loading efficiency to treat
colorectal cancer in mice (Li et al., 2017).

Metal-Organic Frameworks
Metal-organic frameworks (MOFs) are manufactured using
metal nodes and organic linkers (Jiao et al., 2018). The MOFs-
based biosensors have currently been applied for the detection of
various targets, such as heavy metal ions (Zhang et al., 2017),
hazard molecules (Liu et al., 2017), and living cancer cells (Gu
et al., 2019). Most of the biosensors have been designed either for
the detection of cancer markers (Jayanthi et al., 2017; Huang et al.,
2018) or small biomolecules released from cancer cells for the
early diagnosis such as the PBA(Ni-Fe):MoS2 hollow nanocubes
for hydrogen peroxide detection (Zhang et al., 2019) and 3D
bimetallic Au/Pt nanoflowers for the identification of cellular
ATP secretion (Zhu et al., 2020).

Later on, integrated MOFs with electrochemically active other
components have also become an efficient strategy to exploit the
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MOF-based cytosensors. In one such study bimetallic TbFe-
MOFs have been developed using MOF on MOF strategy and
was used for the anchoring of carbohydrate antigen 125 aptamers
for identification of living Michigan Cancer Foundation-7 (MCF-
7) cells (Li et al., 2020). Similarly, the bimetallic ZrHf-MOF doped
with carbon dots was used in the identification of human
epidermal growth factor receptor-2 (HER2) and HER2
expressed in MCF-7 cells (Gu et al., 2019). In another study,
multicomponent Zr-MOFs were used for the detection of MCF-7
cells with an extremely low limit of detection as 31 cell ml−1 (Li
et al., 2020).

Later, combinations of MOFs with different types of
nanomaterials such as metal oxide, metal nanoparticles, and
carbon-based nanomaterials were used to create newer forms
of multifunctional composites/hybrids (Liang et al., 2018; Al-
Sagur et al., 2019). Several organic compounds such as
metallophthalocyanines (MPcs) (e.g., CuPc, FePc, CoPc, and
NiPc) possess electro catalysis activity for the oxidation of
biological compounds (Liu et al., 2017). The biological tissue
of CRC possessed CT26 cells. Therefore, it is essential to detect
the living CT26 cells for the early diagnosis of CRC (Peng, et al.,
2020). In one of the studies a specific electrochemical cytosensor
was described which was constructed on the Cr-MOF@CoPc
nano hybrids for the detection of living CT26 cells (Duan et al.,
2020). A Chlorin-Based nanoscale metal-organic framework was
used for photodynamic therapy of colon cancers using mouse
models and found that these have a great potential for clinical
translation (Kuangda et al., 2015). In a recent study, zirconium-
based metal-organic framework (MOF), PCN-223, was
synthesized and used as a potential vehicle for 5FU for rectal
delivery in diagnosis for CRC (Nea et al., 2020).

Gold Nanoparticles
Among the noble metal, gold nanoparticles (AuNPs) are
considered the most stable nanomaterial that is used for the
preparation of nanostructure with various structures and shapes
such as nanocubes, nanospheres, nanorods, nanoflowers,
nanobranches, nanowires, nano-bipyramids, nanoshells, and
nanocages (Chen et al., 2008; Ramalingam et al., 2014; Li
et al., 2015; Xiao et al., 2019). The recent advancement in
technology has led to accurate surface coating of Au NPs with
specific particle shape and size. These specificities of gold
nanomaterials make it safer and specific anticancer and drug
delivery agent (Siddique and Chow, 2020). Moreover, Artificial
Intelligence and mathematical modeling-based study revealed
that gold nanoparticle has the capability to adjust its optical
densities, light absorbency, wavelengths. Therefore, adjusting the
ideal wavelength with nanoparticle size may allow the higher
amount of light absorbance within the nanoparticle itself leading
to enhanced efficacy of gold nanoparticle against cancer cells
(Moore and Chow, 2021). In a recent study gold NPs increase
cisplatin delivery and potentiate chemotherapy by decompressing
of CRC vessels (Zhao et al., 2018). Gold NPs along with nucleic
acids used as molecular method for cellular uptake (Graczyk et al.,
2020).

AuNPs have the property of easy to functionalize with
biologically active organic molecules along with high physical

and chemical stability leading to their excellent biocompatibility
that is an essential feature to be used in the medical field
(Pissuwan et al., 2019). Moreover, AuNPs can directly
conjugate with several other molecules including antibodies,
nucleic acids, proteins, enzymes, fluorescent dyes, and drugs
which enhance their applications in medical and biological
activities (Ramalingam, 2019). Gold nanoshells or gold
nanospheres have also been intensively studied over the past
decade because of their specific and localized surface plasmon
resonance. Gold nanospheres can also easily be conjugated with
several imaging reporters and can carry genes, drug payloads, and
other chemotherapeutic agents for theranostic applications. Gold
nanoparticles usually passively accumulate in tumors and exert
specific pharmaceutical effects with active targeting ligands such
as Apts, antibodies, and peptides to the required targets
(Singhana et al., 2015).

In one of the studies, cellular prion protein (PrPC) aptamer
(Apt) conjugated with AuNPs was used for targeted delivery of
doxorubicin (Dox) to CRC as PrPC-Apt-functionalized
doxorubicin-oligomer-AuNPs (PrPC-Apt DOA). The result
revealed that in comparison with free Dox treatment, the
oligomer PrPC-Apt DOA decreased the growth and increased
the apoptosis of CRC cells to a significant extent. This indicated
the possibility of the application of PrPC-Apt DOA as a
therapeutic agent for CRC (Go et al., 2021). The gold
nanoparticles (GNPs) may also be used to enhance the
anticancer efficacy of 5-FU and reduce its side effects. The 5-
FU can be loaded to GNPs using thiol-containing ligands,
thioglycolic acid (TGA), and glutathione (GSH) as 5-FU/GSH-
GNPs. Further study revealed that the release of 5-FU from GNPs
was slow and induced apoptosis in colorectal cancer cells. Overall,
5-FU/GSH-GNPs showed two-fold higher anticancer efficacies
than that with free 5-FU (Safwat et al., 2016). Moreover, the
electroporation-GNPs technique may also provide the
opportunity for colon cancer therapy especially for the highly
immunogenic cancers where otherwise tumors are unresectable
(Arab-Bafrani et al., 2020). The gold nanoparticle can also be used
for the early diagnosis of CRC cells using colonoscopy. The
Center of Cancer Nanotechnology at Stanford University
developed a technique where gold nanoparticles are specifically
allowed to bind the CRC cells. Subsequently, light from a
colonoscope is allowed to shine, the gold nanoparticle
bounded cancer cells stand out from the normal cells that can
be removed easily. This technique is going to begin a clinical trial
for safety evaluation in human patients soon (Advances in
Colorectal Cancer Research, 2016).

Other Nanoparticles in Colorectal Cancer
Detection and Treatment
Nanodrug delivery system can be used to encapsulate the
chemotherapeutics agent to targeted drug delivery to cancer
cells which can avoid the adverse effect of conventional
treatment. In recent years several nano carriers with diverse
characteristics have already been tested where polypeptide-
based copolymers were found substantial consideration for
their biocompatibility, slow biodegradability, and considerably
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lower toxicity. One such example assessed is poly(trimethylene
carbonate)-block-poly(L-glutamic acid) derived polymersomes,
targeted against the EGFR. It was loaded with plitidepsin and
tested for efficacy and specificity in LS174T and HT29 cell lines
(Goni-de-Cerio et al., 2015). Moreover, a systematic in vitro
cytotoxicity study was also conducted with the unloaded
polymersomes to determine the cell membrane asymmetry,
viability, biocompatibility check, etc. which recognized the fine
biocompatibility of plitidepsin-unloaded polymersomes. Further
study revealed that the cellular uptake and cytotoxic effect
exhibited by the EGFR-targeted plitideps in loaded
polymersomes in CRC cell lines were found much more
sensitive to anti-EGFR drug-loaded in comparison with
targeted drug-loaded polymersomes. Moreover, untargeted
polymersomes reduce the plitideps in cytotoxicity and cellular
uptake which revealed the use of targeted nano-carrier in cell lines
may be a line of treatment for CRC without any adverse effect on
normal cells (Goni-de-Cerio et al., 2015).

Recently, one of the near-infra-red fluorescent proteinoid-
poly(L-lactic acid)(PLLA) NPs preparation was described where a
P(EF-PLLA) random copolymer was prepared using thermal
copolymerization of L-phenylalanine(F), L-glutamicacid(E),
and PLLA (Kolitz-Domb et al., 2014). The study revealed that
under optimal conditions, the proteinoid-PLLA copolymer can
self-assemble into hollow nano-sized particles that can be used to
encapsulate the indocyanine green and NIR dye. Further study
revealed that the encapsulation process enhances the photo
stability of the dye. The anti-CEA antibodies and tumor-
targeting ligands such as peanut agglutinin can be covalently
conjugated to the surface of P (EF-PLLA) NPs and increases the
detectable fluorescent signal from tumors. The efficacy of P (EF-
PLLA) NPs for colon tumor detection has been demonstrated in
the chicken embryo (Kolitz-Domb et al., 2014).

Over the years, several nano-formulations were being used to
improve curcumin delivery to cancer sites (Figure 4). Nano-
formulations are primarily used to enhance curcumin water
solubility and to present a better consistent delivery for
curcumin (Wong et al., 2019). Preferably, nano-formulation of
curcumin for tumors should have improved anticancer activity as
compared when curcumin alone and also nontoxic to normal
cells. For CRC nano-formulation of curcumin has been
documented in several investigations comprising micelles
(Javadi et al., 2018), nano-gels (Madhusudana Rao et al.,
2015), liposomes (Sesarman et al., 2018), polymeric NPs (Xiao
et al., 2015), cyclodextrins (Ndong Ntoutoume et al., 2016),
phytosomes (Marjaneh et al., 2018), solid lipid nanoparticles
(Chirio et al., 2011), and gold NPs (SanojRejinold et al., 2015).
Different nanomaterials for CRC detection and treatment have
been discussed in Table 3. Although several nano formulations
are undergoing clinical trials, the number of nano formulations
used in clinical trials against the CRC is limited. Some of the nano
formulations used for the appropriate clinical trials against the
CRC are summarized in Table 4.

Combinatorial Nanomedicine and
Colorectal Cancer Therapy
Nanomedicine has proved its efficacy in revolutionizing the
therapeutics and diagnostics of cancers with the advancement
in the development of nano devices. NPs have been used for the
delivery of multidrug especially to mediate the drug resistance in
relapsing cancers (Maya et al., 2014; Anitha et al., 2016). Recently,
a study showing an improved efficacy of 5-FU assisted
chemotherapy as a combinatorial strategy for colon cancer
treatment was described (Anitha et al., 2014a; Maya et al.,
2014). In combinatorial nanomedicine efficacy of both the

FIGURE 4 | Different types of curcumin nano-formulations for the treatment of colorectal cancer.
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drugs was enhanced due to nano encapsulation where 5-FU was
used along with a nontoxic polymeric carrier system thiolated
chitosan. In combinatorial use the dosage of 5-FU was decreased
which was reflected with enhanced chemotherapeutic efficacy
and beneficiary effect on CRC patient cases. The nano-sized drug-
encapsulation systems possess specific efficacy in terms of passive
retention of more drug-loaded NPs in the vicinity of cancer cells.
These strategies have assisted in the development of the next
phase of anticancer nanomedicine (Anitha et al., 2014; Malarvizhi
et al., 2014; Maya et al., 2014; Linton et al., 2016).

Nanotechnology and Chemoprevention
Given side effects associated with chemotherapy, implementation
of the nanotechnology-based formulation is very essential for
cancer prevention, diagnosis, and treatment because it allows
drug targeting and possible drug reduction which can

furthermore increase the safety of drugs by minimizing
nontargeted toxicities.

NSAIDs are most extensively used for colon cancer
prevention (Alizadeh et al., 2012; Drew et al., 2016; U.S.
Preventative Service Task Force, 2016; Pan et al., 2018).
The epidemiological investigations demonstrate that out of
all the NSAIDs, the most promising agent reported is aspirin
in reducing adenomatous tumor recurrence due to the
accessibility consistent result with minimum
gastrointestinal toxicity and no cardiovascular risk
(Umezawa et al., 2019). Additionally, Grade B
recommendation has been provided for aspirin by the U.S.
Preventative Service Task Force (2016) for its utilization as
chronic prophylaxis means for CRC (Dehmer et al., 2015).
Although aspirin alone or in combination has been proved for
colon chemo preventive activity, nano encapsulation of aspirin

TABLE 3 | Summary of nano formulations used in the detection and treatment of CRC.

Nano-
formulations

Structure Characteristics Applications References

Iron oxide nano-
crystals

1–100 nm diameter iron oxide particles.
Methotrexate, superparamagnetic iron oxide
nanoparticles (SPIONs), and Wheat germ
agglutinin (WGA)

Diverse application in different fields and
superparamagnetic properties

Cancer detection Yang et al. (2014),
Lima et al. (2017)

Dendrimers Synthetic polymer of hyper branched pattern
with regular repeating monomer unit

Structurally perfect molecules arranged in a
characteristic fashion

Treatment & Detection Xie et al. (2015)

Quantum dots Nanocrystals of semiconductor ranging in
diameter 2–10 nm

Show best optical properties such as photo
bleaching resistant, high brightness, and
tuneable wavelength

Treatment and detection Wang et al. (2016)

Gold nano shells Gold Surface Plasmon resonant made up of
silica nano core shell surrounded by ultra-thin
shell of gold

Plasmonic nanoparticles exhibit diverse
applications as used in cancer therapy,
sensing and used as optical filters

Detection and cancer
treatment

Singhana et al.
(2015)

Nano cells or PLGA
nanoparticles

Different structural variants of PLGA
copolymers that are used as efficient drug
delivery carrier

Easily biodegradable biopolymer on hydrolysis
forms the simple monomers as glycolicacid,
lacticacid, etc.

US FDA approved therapy
and detection technique

Akl et al. (2016)

Liposomes Lipid bilayer self-assembled structure closed
and colloidal in nature

Artificial vesicles of phospholipid bilayer which
can effectively transport hydrophilic
substances inside and outside the cell

Treatment and detection Chibaudel et al.
(2016)

CUR-CS-NP Chitosan nanoparticles covering the curcumin By muco-adhesion process efficient action of
curcumin to cancerous cells. Moreover
enhance the cell cycle arrest at G2/M phase
and apoptosis in HT29 cells

Detection and treatment Chuah et al. (2014)

Oxaliplatin/DCK
and 5-FU

Hydrophilic 5-FU loaded with nano emulsion
and N-deoxycholyl-L-lysl-methylester (DCK)
linked with amphiphilic Ox-aliplatin

Reduction in tumor volume and enhanced
availability of oxaliplatin

Treatment Pangeni et al.
(2016)

NP SQ-
emcitabine/
isoCA-4

Precipitates of squalene, gemcitabine, and
isocombretastatin A-4 (isoCA-4)

Enhanced anti-proliferative and cytotoxic
effect. Moreover regresses the tumor

Treatment Maksimenko et al.
(2014)

PFA@PTX NPs poly(ferulic acid)(PFA) NPs and paclitaxel
(PTX)-loaded PFA NPs

poly(ferulic acid) PFA inhibit tumor growth and
good drug carrier along with nanoparticles

Treatment and detection Zheng et al. (2019)

Nanogel 5-FU acts as a cross linker between beta
cyclodextrin and nanoparticles in aqueous
solution and forms nanogels. Nanogels are the
biocompatible and efficiently released drug

For colorectal cancer cells nanogels loaded
with grapheme oxide, HA-based irinotecan
cure cells

Treatment Hosseinifar et al.
(2018)

Carbon nanotubes Single-walled carbon nanotubes (SWCNTs)
conjugated with a synthetic polyampholyte for
delivering paclitaxel in cancerous cells

Exhibit more effective antitumor effects Diagnosis and treatment Lee and Geckeler
(2012)

SN-38 liposome SN38-PA was synthesized by conjugating
palmitic acid to SN38 via ester bond at C10

position and then this prodrug was
encapsulated into liposomal carrier using the
film dispersion method

Act as most potent antitumor analogues Used in treating patients
having metastatic
colorectal cancer CRC

Wu et al. (2019),
Canton et al. (2019)
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can enhance its efficacy with a reduced dose. The chemo
preventive effect of the combination of calcium, folic acid,
and aspirin has been studied on azoxymethane-treated 7-
week-old Sprague-Dawley male rats and found that 1.7 fold
higher effective during chemoprevention as compared with
their un-modified complement regimen (Prabhu et al., 2007;
Chaudhary et al., 2011). Another NSAID is Celecoxib that is
being broadly explored in clinical uses for its chemoprevention
potential; however, it offers pharmacokinetic variability and
cardiotoxicity (Solomon et al., 2005). Celecoxib polymeric

NPs have been prepared using ethyl cellulose with lipid
hybrid NPs, sodium casein ate bile salt and micro
emulsions enhanced its bioavailability allowing a decrease
in dose, crystallization, and related toxicity (Margulis-
Goshen et al., 2011; Tan et al., 2011; Morgen et al., 2012).
Naturally extracted plant-based chemicals are phytochemicals
that are broadly studied as potential chemo preventive sources
for their nontoxicity and pleiotropic effects (Thomasset et al.,
2007; Zubair et al., 2017; Wong et al., 2019). In colon and
intestinal cancer, curcumin has reported competent chemo

TABLE 4 | Nanoparticle-based FDA drugs and drugs in clinical trials on CRC patients.

S.
No

Nanomaterial/nanosystem
used

Drug description Applications Clinical trial
or FDA

approval status

References

1 Liposome Vincristine Colorectal cancer, Acute Lymphoblastic
Leukemia, Sarcoma, Neuroblastoma,
Leukemia, Lymphoma, Brain tumors

FDA approved Gidding et al.
(1999)

2 Liposome Doxorubicin Colon cancer with liver metastasis Phase II trial Celsion (2016)
3 Liposome SN-38 liposome Metastatic colorectal cancer Phase 2 trial

(subsequently
terminated

US National
Institute of Health
(2016)

4 Liposome Liposome-encapsulated IRI
(Irinotecan) hydrochloride PE

Second-line therapy for metastatic
colorectal cancer

Phase 2 trial
(subsequently
terminated)

US National
Institute of Health
(2016)

5 Liposome Liposomal Cisplatin Analog
(Aroplatin)

Colorectal cancer Phase I/II trial Pillai (2014)

6 Liposome SN38 Metastatic colorectal cancer Phase II trial Bala et al. (2013)
7 Liposome Irinotecan, PEGylated

Liposome (Narekt -102)
Breast and colorectal cancer Phase III l trial Pillai (2014)

8 CPX-1 liposome Liposomal IRI (irinotecan)
hydrochloride and floxuridine

Advanced colorectal cancer Phase II trial Cabeza et al. (2020)

9 PEP02 liposome Liposomal IRI hydrochloride +
5-FU and LV (leucovorin)

Metastatic colorectal cancer Phase II trial Cabeza et al. (2020)

10 MM-398 Liposomal IRI Advanced cancer of unresectable nature Phase Ib trial Cabeza et al. (2020)
11 PROMITIL PEGylated liposomal

mitomycin C
Metastatic colorectal cancer Phase I trial Cabeza et al. (2020)

12 Nal-IRI Liposomal IRI Colorectal cancer along with advanced
gastrointestinal cancers

Phase I/II trial Cabeza et al. (2020)

13 Polymer 5-fluorouracil (5-FU) and
DAVANAT (carbohydrate
polymer)

Treatment of colorectal cancer Phase I/II trial
(subsequently
terminated)

Xiao et al. (2015)

14 Regulatory lymphocytes (Tregs):
anti-CTLA-4 ipilimumab and anti-
PD-L1 atezolizumab

Cytotoxic antibodies expressed
on surface of Tregs

colorectal cancer FDA approved Rampado et al.
(2019)

15 NKTR-102/IRI Formulation for prolonged
release of IRI conjugated with
PEG/IRI

Metastatic CRC with KRAS-mutant II clinical trial Cabeza et al. (2020)

16 Cyclodextrin nanoparticle Camptothecin Solid tumors, rectal cancer, renal cell
carcinoma, non-small cell lung cancer

Phase I/II trial Giglio et al. (2015)

17 PEG-PGA polymeric micelle SN-38 Colorectal, lung, and ovarian cancers Phase II trial Hamaguchi et al.
(2018)

18 Carbon NPs Carbon NPs Laparoscopic surgery of colorectal cancer Phase I trial Cabeza et al. (2020)
19 TKM-080301 Lipid NPs with serine/threonine

kinase inhibitor
Colorectal cancer with liver metastases and
ovarian, gastric, esophageal, and breast
cancer

Phase I trial Cabeza et al. (2020)

20 PEG-rhG-CSF PEGylated recombinant human
granulocyte colony stimulating
factor (CSF)

Solid malignant tumors (colorectal, ovarian,
lung, head, and neck cancer)

Phase IV trial Cabeza et al. (2020)

21 Silica NPs Fluorescent cRGDY-PEG-
Cy5.5-C dots

Breast cancer and colorectal malignancies Phase I-II trial Cabeza et al. (2020)

22 Polymeric NPs + cetuximab +
somatostatin analogue

Combination of NPs Cetuximab
and Somatostatin analogue

Metastatic colorectal cancer Phase I trial Cabeza et al. (2020)
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protective activity, but it has poor absorption, minimum water
solubility, and low bioavailability. To conquer the problem,
curcumin whey protein nano capsules were synthesized, which
not only found>70% release within 48 h but also showed improved
bioavailability and cell internalization (Jayaprakasha et al., 2016).
In other research, it was found that curcumin encapsulated in
polymeric nano carrier enhanced the solubility of curcumin and
showed less structural abnormalities, considerable reduction in
tumors and beta-catenin in the treated group with curcumin NPs
as compared with the group treated only with curcumin (Alizadeh
et al., 2012).

CONCLUSION AND FUTURE
PROSPECTIVE

With the advancement in nanotechnologies, there has been
increased research on the development of medical devices,
targeted therapies, and novel drug delivery systems.
Nanotechnology enabled the development of medical products
from a single mode of action to multifunctional platforms such as
nano theranostics to combine diagnostics and therapeutics. The
preclinical study of nanomaterials has proved its efficacy as a
therapeutics purpose of cancer. The detailed study of predictive
immuno toxicity assays, nanoparticle surface characterization,
and quantitative evaluation of encapsulated versus free drug
fractions has highlighted the importance of nanotechnology in
modern medicine. The advancement in drug delivery systems
with the capability to modify the tissue uptake, bio-distribution of
drugs, and pharmacokinetics of therapeutic agents has immense
significance in biomedical research. Some of the nano carriers are
even able to cross the blood-brain barrier (BBB) and may act at
the cellular level. Moreover, several nanoparticle-based studies
have focused on the development of techniques to customize
novel drug conjugates and diagnostics as well as therapeutic
devices. Nano carriers can also be programmed to release the
therapeutic agents, fluorescent molecules, or even magnetic

materials to the colorectal cancer site to increase the
bioavailability, drug solubility, stability, and tumor specificity
of therapeutics agent in comparison with free molecular cargo.
Moreover, nano carriers-based therapeutics agents may decrease
the tumor multidrug resistance resulting in ineffective treatment
by reducing the overall drug requirement and potential side
effects. In recent years, the nanotechnology applied to CRC
has evolved enough to complement the latest advances in
tumor diagnosis and therapy far beyond the traditional
systems. It can be combined with completely newer concepts
of diagnostics and therapeutics synergistically with available
methodology. Thus, in the coming future despite the several
challenges in the application of nanotechnology, nanomedicine is
going to gain the capability to play a critical role in the
management of human CRC. The specific research on new
methods directed at the understanding of nano-bio interface
may reveal some additional relationships between the
nanoparticle structure and its biological activity. Such
information may be used in devising new strategies for further
development of nanotechnology to improve the existing
pharmaceuticals and development of novel therapeutics
products in the future.
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