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The rapid development of artificial intelligence (AI), big data analytics, cloud computing,

and Internet of Things applications expect the emerging memristor devices and their

hardware systems to solve massive data calculation with low power consumption and

small chip area. This paper provides an overview of memristor device characteristics,

models, synapse circuits, and neural network applications, especially for artificial

neural networks and spiking neural networks. It also provides research summaries,

comparisons, limitations, challenges, and future work opportunities.
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INTRODUCTION

Resistance, capacitance and inductance are the three basic circuit components in passive circuit
theory. In 1971, Professor Leon O. Chua of the University of California at Berkeley first described
a basic circuit that relates flux to charge, called the missing fourth memristor element, and was
successfully found by a team led by Stanley Williams at HP Labs in 2008 (Chua, 1971; Strukov
et al., 2008). As a non-linear two-terminal passive electrical component, studies have shown that
the conductance of a memristor is tunable by adjusting the amplitude, direction, or duration
of its terminal voltages. Memristors have shown various outstanding properties, such as good
compatibility with CMOS technology, small device area for high-density on-chip integration,
non-volatility, fast speed, low power dissipation, and high scalability (Lee et al., 2008; Waser
et al., 2009; Akinaga and Shima, 2010; Wong et al., 2012; Yang et al., 2013; Choi et al., 2014; Sun
et al., 2020; Wang et al., 2020; Zhang et al., 2020). Thus, although memristors took many years to
transform from a purely theoretical derivation into a feasible implementation, these devices have
been widely used in applications such as machine learning and neuromorphic computing, as well
as non-volatile random-access memory (Alibart et al., 2013; Liu et al., 2013; Sarwar et al., 2013;
Fackenthal et al., 2014; Prezioso et al., 2015; Midya et al., 2017; Yan et al., 2017, 2019b,d; Ambrogio
et al., 2018; Krestinskaya et al., 2018; Li C. et al., 2018, Li et al., 2019; Wang et al., 2018a, 2019a,b;
Upadhyay et al., 2020). Furthermore, thanks to its powerful computing and storage capability, a
memristor is a promising device for processing tremendous data and increasing the data processing
efficiency in neural networks for artificial intelligence (AI) applications (Jeong and Shi, 2018).

This article intends to analyze the memristor theory, models, circuits, and important
applications in neural networks. The contents of this paper are organized as follows. Section
Memristor Characteristics and Models introduces the memristor theory and models. Section
Memristor-Based Neural Networks presents its applications in the second-generation neural
networks, namely artificial neural networks (ANNs) and the third-generation neural networks,
namely spiking neural networks (SNNs). Section Summary is the conclusions and future
research direction.
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MEMRISTOR CHARACTERISTICS AND
MODELS

The relationship between the physical quantities (namely charge
q, voltage v, flux ϕ, and current i) and basic circuit elements
(namely resistor R, capacitor C, inductor L, and memristor M)
is shown in Figure 1A (Chua, 1971). Specifically, C defined as
a linear relationship between voltage v and electric charge q (C
= dq/dv), L is defined as a relationship between magnetic flux ϕ

and current i (L = dϕ/di), R is defined as a relationship between
voltage v and current i (R = dv/di). The missing link between
the electric charge and flux is defined as the memristor M and
its differential equation is M = dϕ/dq or G = dq/dϕ. Figure 1B
shows the current-voltage characteristics of the memristor, where
the pinched hysteresis loop is its fundamental identifier (Yan
et al., 2018c). As a basic element, the memristor I–V curve cannot
be obtained using R, C, and L. According to the shape of the
pinched curve, it can be roughly classified into a digital type
memristor or an analog type memristor. The resistance of a
digital memristor exhibits an abrupt change at higher resistance
ratios. The high-resistance and low-resistance states in a digital
memristor have a long retention period, making it ideal for
memory and logic operations. An analog memristor exhibits a
gradual change in resistance. Therefore, it is more suitable for
analog circuits and hardware-based multi-state neuromorphic
system applications.

Memristor device technology and modeling research are the
cornerstones of system applications. As shown in Figure 2,
top-level system applications (brain-machine interface, face or
picture recognition, autonomous driving, IoT edge computing,
big data analytics, and cloud computing) are built on the device

FIGURE 1 | (A) Basic theoretical circuit elements, and (B) pinched hysteresis I–V loop of memristor.

technology and modeling. Memristor-based analog, digital, and
memory circuits play a key role in the link between device
materials and system applications. The main usage for bi-
stable memristors is binary switches, binary memory, and
digital logic circuits, while multi-state memristors are used
as multi-bit memories, reconfigurable analog circuits, and
neuromorphic circuits.

Since the HP labs verified the nanoscale physical
implementation, the physical behavior models of memristors
have received a lot of attention. Accuracy, convergence, and

FIGURE 2 | Memristor research and applications.
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TABLE 1 | Classic memristor models.

Models Linear ion drift Non-linear ion

drift

Simmons tunnel barrier TEAM
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Interval 0 ≤ w ≤ D 0 ≤ w ≤ 1 aoff ≤ w ≤ aon aon ≤ w ≤ aoff

Control Current Voltage-controlled Current-controlled Current-controlled

mechanism controlled

Accuracy Lowest accuracy Low accuracy Highest accuracy Sufficient accuracy

Thershold

exists

No No Pracitcally exists Yes

Linearity linear No-linear No-linear No-linear

computational efficiency are the most important factors in
memristor models. These behavior models are expected to be
simple, intuitive, better understood, and closed form. Up to
date, various models have been developed, each with its unique
advantages and shortcomings. The models listed in Table 1 are
the most popular models, including a linear ion drift memristor
model, a non-linear ion drift memristor model, a Simmons
tunnel barrier memristor model, a threshold adaptive memristor
model (TEAM) (Simmons, 1963; Strukov et al., 2008; Biolek
et al., 2009; Pickett et al., 2009; Kvatinsky et al., 2012). In the
linear ion drift memristor model, D and uv represent the full
length and device mobility of a memristor film, respectively. ω(t)
is a dynamic state variable whose value is limited between 0 and
D, taking into account the size of the physical device. The low
turn-on resistance Ron is the full doped resistance when dynamic
variable ω(t) is equal to D. The high turn-off resistance Roff
is a fully undoped resistance when ω(t) is equal to 0. Besides,
a window function multiplied by a state variable is needed to
nullify the derivative and provide a non-linear transition for the
physical boundary simulation. Several window functions have
been presented for modeling memristors such as Biolek, Strukov,
Joglekar, and Prodromakis window functions (Strukov et al.,
2008; Biolek et al., 2009; Joglekar and Wolf, 2009; Strukov and
Williams, 2009; Prodromakis et al., 2011). As the first memristor
model, the linear ion drift model shows the features of simple,
intuitive, and better understood. However, the state variable
ω modulation in nano-scale devices is not a linear process,
and the memristor experimental results show non-linear I–V
characteristics. The non-linear ion drift model provides a better
description of non-linear ionic transport and higher accuracy
by experimentally fitting the parameters n, β, α, and χ (Biolek
et al., 2009). But more physical reaction kinetics still need to
be considered. The Simmons tunnel barrier model consists of a
resistor in series with an electron tunnel barrier, which provides
a more detailed representation of non-linear and asymmetrical
features (Simmons, 1963; Pickett et al., 2009). There are nine
fitting parameters in this segmentation model, which makes

the mathematical model very complicated and computationally
inefficient. The TEAM model can be thought of as a simplified
version of the Simmons tunnel barrier model (Kvatinsky et al.,
2012). However, all of the above models suffer from smoothing
problems or mathematical ill-posedness issues, and they cannot
provide robust and predictable simulation results in DC, AC,
transient analysis, not to mention complicated circuit analysis
such as noise analysis and periodic steady-state analysis (Wang
and Roychowdhury, 2016). Therefore, in the face of transistor-
level circuit design simulation, circuit designers usually have to
replace the actual memristor with an emulator (Yang et al., 2019).
The emulator is a complex CMOS circuit used to simulate some
performance aspect of a special memristor. An emulator is not a
true model, and it is very different from the real memristor model
(Yang et al., 2014). Thus, it is urgent to establish a complete
memristor model. Correct bias definition and right physical
characteristics in SPICE or Verilog-a model are important for
complex memristor circuit design. Otherwise, non-physical
predictions will confuse circuit engineers in physical chip design.

MEMRISTOR-BASED NEURAL NETWORKS

Neuron Biological Mechanisms and
Memristive Synapse
The human brain can solve complex tasks, such as image
recognition and data classification, more efficiently than
traditional computers. The reason why a brain excels in
complicated functions is the large number of neurons and
synapses that process information in parallel. As shown in
Figure 3, when an electrical signal is transmitted between
two neurons via axon and synapse, the joint strength or
weight is adjusted by the synapse. There are approximately
100 billion neurons in an entire human brain, each with
about 10,000 synapses. Pre-synaptic and post-synaptic neurons
transfer and receive the signal of excitatory and inhibitory
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FIGURE 3 | Schematic of two interconnected neurons by synapses.

post-synaptic potentials by updating synaptic weights. Long-
term potentiation (LTP) and long-term depression (LTD) are
important mechanisms in a biological nervous system, which
indicates a deep-rooted transformation in the connection
strengths between neurons. According to the interval between
pre-synaptic and post-synaptic action potentials or spikes, the
phenomenon of synaptic weight modification is known as spike-
timing-dependent plasticity (STDP) (Yan et al., 2018a, 2019c).
Due to scalability, low power operation, non-volatile features,
and small on-chip area, memristors are good candidates for
artificial synaptic devices to mimicking the LTP, LTD, and STDP
behaviors (Jo et al., 2010; Ohno et al., 2011; Kim et al., 2015;Wang
et al., 2017; Yan et al., 2017).

There are some key requirements for memristive devices
in neural network applications. For example, a wide range of
resistance is required to enable sufficient resistance states; devices
are required to have low resistance fluctuations and low device-
to-device variability; a higher absolute resistance is required
for low power dissipation; and high durability is required for
reprogramming and training (Choi et al., 2018; Yan et al., 2018b,
2019a; Xia and Yang, 2019). A concern with device stability is
resistance drift, which occurs over time or with the environment.
Resistance drift causes undesirable changes in synapse weight
and blurs different resistance states, ultimately affecting the
accuracy of neural network computation (Xia and Yang, 2019).
To deal with this drift challenge, improvements can be made
in three aspects: (1) material device engineering, (2) circuit
design, and (3) system design (Alibart et al., 2012; Choi et al.,
2018; Jiang et al., 2018; Lastras-Montaño and Cheng, 2018;
Yan et al., 2018b, 2019a; Zhao et al., 2020). For example, as
for the domain of material engineering, threading dislocations
can be used to control programming variation and enhance
switching uniformity (Choi et al., 2018). In terms of circuit-level
design, a module of two series memristors and a transistor with

the smallest size can be used, thus, the resistance ratio of the
memristor can be encoded to compensate for the resistance drift
(Lastras-Montaño and Cheng, 2018). For the system-design level,
device deviation can be reduced by protocols, such as closed
loop peripheral circuit with a write-verify function (Alibart
et al., 2012). In order to obtain linear and symmetric weight
update in LTP and LTD for efficient neural network training,
optimized programming pulses can be used to excite memristors
with either fixed-amplitude or fixed-width voltage pulses (Jiang
et al., 2018; Zhao et al., 2020). Note it is inevitable to increase
energy consumption if the memristor resistance value is changed
through complex programmable pulses.

The comparison of different memristive synapse circuit
structures is shown in Table 2 (Kim et al., 2011a; Wang et al.,
2014; Prezioso et al., 2015; Hong et al., 2019; Krestinskaya et al.,
2019). Single memristor synapse (1M) crossbar arrays in neural
networks have the lowest complexity and low power dissipation.
However, it suffers from sneak path problems and complex
peripheral switch circuits. Synapses with two memristors (2M)
have a more flexible weight range and better symmetric LTP
and LTD, but the corresponding chip area will be doubled. A
synapse with one memristor and one transistor (1M-1T) has the
advantage of solving the sneak path problem, but it also occupies
a large area in the large-scale integration of neural networks. A
bridge synapse architecture with four memristors (4M) provides
a bidirectional programming mechanism with a voltage input
voltage output. Due to the significant on-chip area overhead, the
1M-1T and 4M synapses may not be applicable for large-scale
neural networks.

Memristor-Based ANNs
The basic operations of classical hardware ANNs include
multiplication, addition, and activation, which are accomplished
by CMOS circuits such as GPUs. The weights are typically saved
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in SRAM or DRAM. Despite the scalability of CMOS circuits,
they are still not enough for ANN applications. Furthermore,
the SRAM cell size are too big to be integrated at high density.
DRAM needs to be refreshed periodically to prevent data decay.
Whether it is SRAM or DRAM, it often needs to interact with

TABLE 2 | Comparison of different structure memristive synapse circuit.

Synapses Structure Area(F2) Weight Weight

range

Other features

1M ≈4 G + Lower power

consumption;

least complex;

sneak path

problem in

neural network

array

2M ≈8 G+-G− +,0, – Better symmetric

between LTP

and LTD;

complex

post-synaptic

neurons

1M-1T ≈24 G + Solution for

sneak path

problem with

transistor switch;

biggest size;

transistor

non-ideal effect

4M ≈16
M2

M1 +M2
−

M4

M3 +M4

+,0, – Voltage input

voltage output;

Bidirectional

programming;

bigger size

CMOS cores. No matter SRAM or DRAM, the data needs
to be fetched by to the cache and register files of the digital
processors before processing and returned through the same
databus, leading to significant speed limit and large energy
consumption, which is the main challenge for deep learning and
big data applications (Xia and Yang, 2019). Nowadays, ANNs
feature for large number of computational parameters stored
in memory compared to classical computation. For example, a
two-layer 784-800-10 fully-connected deep neural network in the
MNIST dataset has 635,200 interconnections. A state of the art
keep neural network like Visual Geometry Group (VGG) has a
few millions of parameters. These factors pose a huge challenge
to the implementation of ANN hardware. The memristor’s non-
volatility, lower power consumption, lower parasitic capacitance,
and reconfigureable resistance states, high speed, and adaptability
lead to a key role in ANN applications (Xia and Yang, 2019).
An ANN is an information processing model which are derived
from mathematical optimization. A typical ANN architecture
and its memristor crossbar are shown in Figure 4. The system
usually consists of three layers: an input layer, a middle layer or a
hidden layer, and an output layer. The connected units or nodes
are neurons which are usually series by weighted-sum module
and activation function module. Neurons also perform tasks of
decoding, control, and signal routing. Due to its powerful signal
processing capability, CMOS analog and digital logic circuits are
the best candidates for neurons hardware implementation. In
Figure 4, arrow or connecting lines represent synapses, and their
weights represent the connection strengths between two neurons.
Assume the weight modulation matrix Wij in a memristor
synapse crossbar is a M × N dimensinal matrix, where i(i = 1,
2, . . . , N) and j(i = 1, 2, . . . , M) are the index numbers of the
output and input ports of the memristor crossbar. Wij between
pre-neuron input vector Xj and post-neuron output vector Yi is

FIGURE 4 | Typical ANN architecture and its memristor crossbar.
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TABLE 3 | Typical architectures of Memristive ANNs.

TYPES Architecture Layers properties Applications Challenges

SLP/MLP Input layer+hidden

layer+output layer

Sigmoid, tanh, etc.,

activation; Full-

connections

Simple pattern classification;

Hand-written letter recognition

Power dissipation in deep ANN;

Overfitting; non-ideal memristor;

Scalability

CNN Input layer+

Convolution layer+

ReLu layer+Pooling

+Fully-connected and output layer

Convolution;

Pooling

Image classification;

Face recognition; Video analysis

CeNN Cell array with

templates; 1-D, 2-D, or 3-D

Dissipative non-linear cells;

Lyapunov function;

Neighborhood

communication

Image filtering;

Signal processing; moving object

detection

Convergence and

mulitistability in non-symmetric

networks; non-ideal

memristor

RNN Fully recurrent;

Elman; Jordan; gated recurrent unit;

long short-term memory

Temporal dynamic

behavior; directed graph along a

temporal sequence; LSTM

Speech recognition; Machine

translation;

Video processing

Hard to train for long term

dependencies; non-ideal

memristor

TABLE 4 | ANNs learning accuracy improvement by mitigating memristor

non-ideal effects.

Level Strategies Tradeoffs

Device

materials

Optimizing redox reaction at the

metal/oxide interface (Lee et al., 2015),

Threading dislocations technology

(Tanikawa et al., 2018),

Heating element, selectively enhanced

filament expansion stage (Jeong et al.,

2015)

Manufacturing cost;

Power consumption;

On-chip area;

Peripheral circuit

complexity;

Algorithm efficiency

Circuits Hybrid CMOS-memristor Neuromorphic

Synapse, 1R+1M1R for better device

symmetry (Woo and Yu, 2018),

Non-identical pulse excitation (Park et al.,

2013; Chang et al., 2017),

Bipolar-pulse-training (Li et al., 2016),

Spike edge shape design (Li S. J. et al.,

2018)

Architectures Multiple memristors cell for high

redundancy (Chen et al., 2015),

Pseudo-crossbar array, peripheral circuit

compensation (Chen et al., 2015)

Algorithms co-optimization between memristors and

ANN algorithms (Li et al., 2016)

a matrix-vector multiplication operation, expressed as Equation
(1) (Jeong and Shi, 2018).

Yi = ΣWij · Xj (1)

∆wij = r







∂

(

y− y
∗
)2

∂wij






(2)

The matrix W can be continuously adjusted until the difference
between the output value y and the target value y∗ is minimized.
The Equation (2) shows the synaptic weight tunning process with
the gradient of output error (y–y∗)2 under a training rate (Huang
et al., 2018). Therefore, a memristor crossbar is equal to a CMOS
adder plus a CMOS multiplier and an SRAM (Jeong and Shi,

2018), because data are computed, stored, and regenerated on
the same local device (i.e., a memristor itself). Besides, a crossbar
can be vertically integrated into three dimensions (Seok et al.,
2014; Lin et al., 2020; Luo et al., 2020). In this way, it saves much
chip area and power consumption. Due to the memristor synapse
update and save weight data on itself, the memory wall problem
with von Neumann bottleneck is solved.

Researchers have developed various topologies and learning
algorithms for software-based or hardware-based ANNs. Table 3
provides a comparison of typical memristive ANNs, including
single-layer perceptron (SLP) or multi-layer perceptron (MLP),
CNN, cellular neural network (CeNN), and recurrent neural
network (RNN). SLP and MLP are classic neural networks
with well-known learning rules such as Hebbian learning,
backpropagation. Although a lot of ANN studies have been
verified by simulations or small-scale implementation, a single-
layer neural network with 128 × 64 1M-1T Ta/HfO2 memristor
array has been experimentally demonstrated with an image
recognition accuracy of 89.9% for the MNIST dataset (Hu
et al., 2018). CNNs (referred to as space-invariant or shift-
invariant ANNs) are regularized versions of MLP. Their hidden
layers usually contain multiple complex activation functions, and
perform convolution or regional maximum value operations.
Researchers have demonstrated an over 70% of accuracy in
human behavior video recognition with a memristor-based 3D
CNN (Liu et al., 2020). It should be emphasized that this
verification is only a software simulation result, while the on-chip
hardware demonstration is still very challenging, especially for
deep CNNs (Wang et al., 2019a; Luo et al., 2020; Yao et al., 2020).
CeNN is a massively parallel computing neural network, whose
communication features are limited to between adjacent cell
neurons. The cells are dissipative non-linear continuous-time or
discrete-time processing units. Due to their dynamic processing
capability and flexibility, CeNNs are promising candidates for
real-time high frame rate processing or multi-target motion
detection. For example, a CeNN with 4M memristive bridge
circuit synapse has been proposed for image processing (Duan
et al., 2014). Unlike classic feed forward ANNs, RNNs have a
feedback connection that enables temporal dynamic behavior.
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Therefore, it is suitable for speech recognition applications. Long
short-term memory (LSTM) is a kind of useful RNN structure
for deep learning. Hardware implementation of LSTM networks
based on memristors have been reported (Smagulova et al., 2018;
Li et al., 2019; Tsai et al., 2019; Wang et al., 2019a).

Due to atomic-level random defects and variability in
the conductance modulation process, non-ideal memristor
characteristics are the main causes of learning accuracy loss in
ANNs. This phenomenon is manifested in the following aspects
of memristor: asymmetric non-linear weight change between
potentiation and depression, limited ON/OFF weight ratio and
device variation. Table 4 shows the main strategies for how to
deal with these issues. One can mitigate the effects of non-
ideal memristor characteristics on ANN accuracy from four
levels: device materials, circuits, architectures, and algorithms.
At device materials level, switching uniformity and analog
on/off ratio can be enhanced by optimizing redox reaction
at the metal/oxide interface, adopting threading dislocations
technology or heating element (Jeong et al., 2015; Lee et al., 2015;
Tanikawa et al., 2018). At circuits level, one can use customized
excitation pulse or hybrid CMOS-memristor synapses to mitigate
memristor non-ideal effects (Park et al., 2013; Li et al., 2016;
Chang et al., 2017; Li S. J. et al., 2018; Woo and Yu,
2018). At architectures level, common techniques are multiple
memristors cell for high redundancy, pseudo-crossbar array,
and peripheral circuit compensation (Chen et al., 2015). Co-
optimization between memristors and ANN algorithms is also
reported (Li et al., 2016). However, it should be noted that
implementation of these strategies inevitably brings side effects,
such as high manufacturing cost, large power consumption, large
chip area, complex peripheral circuits, or inefficient algorithm.
For example, the non-identical pulse excitation or bipolar-
pulse-training methods improve the linearity and symmetry of
memristor synapses, but it increases the complexity of peripheral
circuits, system power consumption, and chip area. Therefore,
trade-offs and co-optimization need to be made at each design
level to improve the learning accuracy of ANNs (Gi et al., 2018;
Fu et al., 2019). Figure 5 is a collaborative design example from

bottom-level memristor devices to top-level training algorithms
(Fu et al., 2019). The conductance response (CR) curve of
memristors is first measured to obtain its non-linearity factor.
Then, the CR curve is divided into piecewise linear segments to

obtain their slope, and the pulse width of the excitation pulse
is inversely proportional to the slope. These data are stored in
memory for comparison and correction by memristor crossbars
during the update. Through this method, the ANN recognition
accuracy is finally improved.

The memristor-based ANN applications can be software,
hardware or hybrid (Kozhevnikov and Krasilich, 2016). Software
networks tend to be more accurate than their hardware
counterparts because they do not have the analog element non-
uniformity issues. However, hardware networks feature better
speed and less power consumption due to non-von Neumann
architectures (Kozhevnikov and Krasilich, 2016). In Figure 6,
a deep neuromorphic accelerator ANN chip with 2.4 million
Al2O3/TiO2-xmemristors was designed and fabricated (Kataeva
et al., 2019). This memristor chip consists of a 24 × 43 array
with a 48 × 48 memristor crossbar at each intersection, which
means its complexity is about 1,000 times higher than previous
designs in the literature. This work is a good starting point
for the operation of medium-scale memristor ANNs. Similar
accelerators have appeared in the last 2 years (Cai et al., 2019;
Chen W.-H. et al., 2019; Xue et al., 2020).

Memristive neural networks can be used to understand
human emotion and simulate human operational abilities
(Bishop, 1995). The well-known PavlTov associative memory
experiment has been implemented in memristive ANNs with
a novel weighted-input-feedback learning method (Ma et al.,
2018). As more input signals, neurons, and memristor synapses,
complex emotional processing will be achieved in further AI
chips. Due to the material challenge and the lack of effective
models, most of the demonstrations are limited to small-scale
simulations for simple tasks. The shortcomings of memristors
are mainly the non-linearity, asymmetry, and variability, which
seriously affect the accuracy of ANNs. Moreover, the peripheral
circuits and interface must provide superior energy efficiency and
data throughput.

Memristor-Based SNN
Inspired by cognitive and computational methods of animal
brains, the third-generation neural network, SNN, makes
desirable properties of compact biological neurons mimic and
remarkable cognitive performance. The most prominent feature
of SNN is that it incorporates the concept of time into operations

FIGURE 5 | Co-design from memristor non-ideal characteristics to the ANN algorithm (Fu et al., 2019).
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FIGURE 6 | A deep neuromorphic ANN chip with 2.4 million memristor

devices (Kataeva et al., 2019).

with discrete values, while the input and output values of
the second-generation ANNs are continuous. SNN can better
leverage the strength of biological paradigm of information
processing, thanks to the hardware emulation of synapses and
neurons. ANN is calculated layer by layer, which is relatively
simple. However, spike trains in SNN are relatively difficult to
understand and efficient coding methods for these spike trains
are not easy. These dynamic events driven spikes in SNN enhance
the ability to process spatio-temporal or real-world sensory
data, with fast adaptation and exponential memorization. The
combination of spatio-temporal data allows SNN to process
signals naturally and efficiently.

Neuron models, learning rules, and external stimulus coding
are key research areas of SNN. The Hodgkin & Huxley (HH)
model, leaky Integrate-and-Fire (LIF) model, spike response
model (SRM), and Izhikevich model are the most common
models of neurons (Hodgkin and Huxley, 1952; Chua, 2013;
Ahmed et al., 2014; Pfeiffer and Pfeil, 2018; Wang and Yan,
2019; Zhao et al., 2019; Ojiugwo et al., 2020). The HH model is
a continuous-time mathematical model based on conductance.
Although this model is based on the study of squid, it is
widely used in lower or higher organisms (even humans being).
However, since complex non-linear differential equations are
set with four variables, this model is difficult to achieve high
accuracy. Chua established the memristor model of Hodgkin-
Huxley neurons and proved that memristors can be applied
to the imitation of complex neurobiology (Chua, 2013). The
Izhikevich model integrates the bio-plasticity of HH model
with simplicity and higher computational efficiency. The HH
and Izhikevich models are calculated by differential equations,
while the LIF and SRM models are computed by an integral
method. SRM is an extended version of LIF, and the Izhikevich
model can be considered as a simplified version of the Hodgkin-
Huxley model. These mathematical models are the results of

TABLE 5 | Comparison of several memristor-based SNNs.

References Neuron Synapse Learning

rules

Size Applications

Zheng and

Mazumder

(2018)

LIF 1M1R

fixed-polarity

memristor

STDP;

Supervised

learning

784-300-

10

Handwritten

digits

recognition

Chen B.

et al.

(2019)

LIF Lithium

silicate

memristor

STDP,

Unsupervised

learning,

WTA

128-128-

12

Motion-style

recognition

Shukla and

Ganguly

(2018)

LIF HfO2

memristor

STDP;

Supervised

Hebbian

16-3 Classification

problems,

Fisher Iris

dataset, etc.

Wu and

Saxena

(2018)

LIF Stochastic

binary

memristor

STDP,

Dendritic-

inspired

processing

1-4 Pattern

Recognition

Chu et al.

(2014)

LIF Pr0.7
Ca0.3MnO3-

memristor

STDP,

Unsupervised

learning

30-10 Visual Pattern

Recognition

Volos et al.

(2015)

H-R,

FHN

Flux-

controlled

memristor

STDP 2 Chaotic

oscillators;

Neurodynamic

behavior

Al-

Shedivat

et al.

(2015)

SRM Stochastic

biolek’s

memristor

model

STDP, WTA 1568-32 Handwritten

digits

recognition

different degrees of customization, trade-offs and biological
neural network optimization. Table 5 shows a comparison of
several memristor-based SNNs. It can be seen that these SNN
studies are based on STDP learning rules and LIF neurons. Most
of them are still in simple pattern recognition applications, only
a few of which have hardware implementations.

The salient features of SNNs are as follows. First, biological
neuron models (e.g., HH, LIF) are closer to biological neurons
than neurons of ANN. Second, the transmitted information
is time or frequency encoded discrete-time spikes, which can
contain more information than traditional networks. Third,
each neuron can work alone and enter a low power standby
mode when there is no input signal. Since SNNs have been
proven to be more powerful than ANNs in theory, it is
natural to widely use SNNs. Since the spike training cannot
be differentiated, the gradient descent method cannot be used
to train SNNs without losing accurate temporal information.
Another problem is that it takes a lot of computation to simulate
SNNs on normal hardware, because it requires analog differential
equations (Ojiugwo et al., 2020). Due to the complexity of SNNs,
efficient learning rules that meet the characteristics of biological
neural networks have not been discovered. This rule is required
to model not only synaptic connectivity but also its growth and
attenuation. Another challenge is the discontinuous nature of
spike sequence, which makes many classic ANN learning rules
unsuitable for SNNs, or can only be approximated, because the
convergence problem is very serious. Meanwhile, many SNNs
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FIGURE 7 | CMOS neuron and memristor synapse weight update circuit (Sun, 2015).

FIGURE 8 | CMOS-Memristor SNN (Wu and Saxena, 2018).

studies are limited to theoretical analysis and simulation of
simple tasks rather than complex and intelligent tasks (e.g.,
multiple regression analysis, deductive and inductive reasoning,
and their chip implementation) (Wang and Yan, 2019). Although
the future of SNNs is still unclear, many researchers believe that
SNNs will replace deep ANNs. The reason is that AI is essentially
a biological brain mimicking process, and SNNs can provide a
perfect mechanism for unsupervised learning.

As shown in Figure 7, a neural network is implemented
with CMOS neurons, CMOS control circuits, and memristor
synapses (Sun, 2015). The aggregation module, leaky integrate
and fire module are equivalent to the role of dendrites and
axon hillocks, respectively. Input neurons signals are temporally
and spatially summed through a common-drain aggregation
amplifier circuit. A memristor synapse gives the action potential
signal a weight and its output signal, that is, a post-synaptic
potential signal is transmitted to post-neurons. Using the action
potential signal and feedback signals from post-neurons, the
control circuit and synaptic update phase provide potentiation or
depression signals tomemristor synapses. According to the STDP

learning rules, the transistor-level weight adjustment circuit
is composed of a memristor device and CMOS transmission
gates. The transmission gates are controlled by potentiation
or depression signals. The system is very similar to the main
features of biological neurons, which is useful for neuromorphic
SNN hardware implementation. A more complete description
of SNN circuits and system applications is shown in Figure 8

(Wu and Saxena, 2018). The system consists of event-driven
CMOS neurons, a competitive neural coding algorithm [i.e.,
winner take all (WTA) learning rule], and multi-bit memristor
synapse array. A stochastic non-linear STDP learning rule with
an exponential shaped window learning function is adopted
to update memristor synapse weights in situ. The amplitude
and additional temporal delay of the half rectangular half-
triangular spike waveform can be adjusted for dendritic-inspired
processing. This work demonstrates the feasibility and excellence
of emerging memristor devices in neuromorphic applications,
with low power consumption and compact on-chip area.

Despite the large on-chip area and power dissipation in CMOS
implementation of synaptic circuits (Chicca et al., 2003; Seo et al.,
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FIGURE 9 | A memristor synapse array micrograph for SNN Application (Chu

et al., 2014).

2011), Myonglae Chu adopted Pr0.7Ca0.3MnO3-based memristor
synaptic array and CMOS leaky IAF neurons in SNN. As shown
in Figure 9, the SNN chip has been successfully developed for
visual pattern recognition with modified STDP learning rules.
The SNN hardware system includes 30 × 10 neurons and
300 memristor synapses. Although this hardware system only
recognizes numbers 0–9, it is a good attempt, as most SNN
studies have lingered around the software simulation phase (Kim
et al., 2011b; Adhikari et al., 2012; Cantley et al., 2012). One can
refer to literatures (Wang et al., 2018b; Ishii et al., 2019; Midya
et al., 2019b) for more experimental memristor-SNN demos.

Comparison Between ANNs and SNNs
A comparison between ANNs and SNNs is shown in Table 6

(Nenadic and Ghosh, 2001; Chaturvedi and Khurshid, 2011;
Zhang et al., 2020). Traditional ANNs require layer-by-layer
computation. Therefore, it is computationally intensive and has
a relatively large power consumption. An SNN changes from a
standby mode to a working mode, when a large nerve spike is
coming with its spike threshold exceeding the membrane voltage.
As a result, its system power consumption is relatively low.

SNNs with higher bio-similarity are expected to achieve
higher energy efficiency than ANNs. But SNN hardware is
harder to implement than ANN hardware. Thus, combining the
advantages of ANN and SNN and using ANN-SNN converters
to improve SNN performance is a valuable method, which has
been experimentally demonstrated (Midya et al., 2019a). The first
and second layers of a converter are ordinary ANN structures.
The output signals of the second layer are converted to a spike
sequence for a 32 × 1 1M-1T drift memristor synapse array

TABLE 6 | Comparison between ANNs and SNNs.

ANNs SNNs

Generation Second-generation NN Third-generation NN

Biological brain

mimicking

General Better

Signal processing Continuous multi-level

value

Sparse and

asynchronous binary

time-domain coded

spike signals.

Event-driven discrete

information processing

Energy efficiency General Better

Neurons and Synapses Activation functions; Hodgkin and Huxley,

LIF, etc.

Digital or analog

memristor synapses

Analog memristor

synapses

Classical algorithms Error-backpropagation SpikeProp, STDP

Chip design In progress with some

achievement.

Preliminary stage

Near-term application

goals

Long-term application

goals

at the third layer. This ANN-SNN converter may be a good
way for SNN hardware implementation. Despite the enormous
potential of SNNs, there is currently no fully satisfactory general
learning rules and its computational capability has not been
demonstrated. Most of these methods lack comparability and
generality. Compared to ANNs, the study of dynamic devices
and efficient algorithms in SNNs is very challenging. SNNs
only need to compute the activated connections, rather than all
connections at every time step in ANNs. However, the encoding
and decoding of spikes is one of the challenges in SNN research.
In fact, it needs further research in neuroscience. ANN is the
recent target of memristors, and SNN is the long-term goal in
the future.

For neural networks applications, ANN and SNN memristor
grids have some common challenges, such as sneak path
problems, IR-drop or ohmic drop, grid latency, and grid power
dissipation, as shown as Figure 10 (Zidan et al., 2013; Hu
et al., 2014, 2018; Zhang et al., 2017). The large the size of
the memristor array, the greater the effect of these parasitic
capacitances and resistances. In Figure, the desired weight-
update path is the dot-and-dash line, and the sneak path
is the dotted line, which is an undesired parallel memristor
path due to its relative resistance and non-gated memristor
elements. This phenomenon leads to undesired weight changes
and a reduction in the accuracy of neural networks. The basic
solution for the sneak path is to add a series of connected
gate-controlled MOS transistors to memristors as mentioned in
Table 2. However, this method will lead to large on-chip synapse
array and destroy the advantages of high-density integration
of memristors. Grounding an unselected memristor array is
another solution without the need to add synaptic area. But this
approach leads to more power consumption. There are other
techniques such as grounding line, floating line, additional bias,
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FIGURE 10 | Sneak path, IR-drop, latency, and energy in massive memristor grids of neural networks.

a non-unity aspect ratio of memristor arrays, three-electrode
memristor devices. They may be welcome in memristor memory
applications, but not necessarily in memristor-based neural
network applications (Zidan et al., 2013). In neural network
applications, the main concern for memristor arrays is whether
the association between input and output signals is correct
(Hu et al., 2014). This is one important difference compared
to memristor memory applications. IR-drop, memristor grid
latency, and power consumption are signal integrity effects
caused by grid parasitic resistance Rpar and parasitic capacitance
Cpar. These non-ideal factors affect the potential distribution,
signal transmission, and ultimately affect the scale of memristor
arrays. Similar to CMOS layout and routing techniques, large-
scale memristors mesh can be divided into medium-sized
modules with high-speed main signal paths for lower parasitic
resistance, grid power consumption, and latency. It is worth
noting that memristor process variations, gird IR-drop and noise
can worsen the sneak path problem.

SUMMARY

The advantage of memristors in neural network applications
is their fast processing time and energy efficiency in the
computational process. At the device level, memristors have
very low power dissipation and high on-chip density. At the
architecture level, parallel computing is performed at the same
location where data is stored, thereby avoiding frequent data
movement and memory wall issues. Due to the quantum
effect and non-ideal characteristics in the manufacturing of
nanometer memristors, the robust performance of memristor

neural networks still needs to be improved. Meanwhile, the
adaptation range of various memristor models is limited and
has not been fully explored in chip design. To date, there
are no complete unified memristor models for chip designer.
Furthermore, wire resistance, sneak path current, and half-select
problems are also challenges for high-density integration of
memristor crossbar arrays. Memristor neural network research
involves engineering, biology, physics, algorithms, architecture,
systems, circuits, equipment, and materials. There is still a long
way to go for memristive neural networks, as most research
remains in single devices or small-scale prototypes. However,
with the marketing promotion of the IoT big data and AI, the
breakthrough research of memristor-based ANN will be realized
by the joint efforts of academia and industry.
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