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Antibiotics resistance is becoming one of the biggest problems of the 21st century. The prior
detection of antibiotics resistance can help human beings in better treatment of diseases.
Here, we have used L-Cysteine cappedmagnesium sulfide quantum dots (L-Cyst-MgSQDs)
to detect Levofloxacin antibiotic. L-Cyst-MgS QDs were synthesized using the hydrothermal
method. Transmission electronmicroscopy study showedmonodispersed L-Cyst-MgSQDs
of 2–4 nm in size. Energy dispersive x-ray photoemission spectroscopy study confirmed the
elemental composition of the L-Cyst-MgSQDs without any impurity. UV-vis absorption study
showed a peak centered around 340 nm. The photoluminescence study exhibited the
maximum peak at 410 nm for 340 nm of excitation wavelength. L-Cyst-MgS QDs were
studied with thirteen antibiotics, namely Thiamphenicol, Gentamicin, Erythromycin, Ofloxacin,
Ampicillin, Ciprofloxacin, Tetracycline, Chloramphenicol, Florfenicol, Amoxicillin, Moxifloxacin,
Norfloxacin, and Levofloxacin. Among these, Levofloxacin showed the most significant
change in the peaks’ intensity and was further used for the interaction study. In the
interaction study, the peak corresponding to MgS showed a continuous decrease, while
the peak corresponding to Levofloxacin showed an increase with the increased
concentrations (0–100 μg/ml) of Levofloxacin. Linear behavior was obtained in the range
of 1–90 μg/ml. FT-IR study confirmed the interaction of the Levofloxacin with L-Cyst-MgS
QDs. The Time-resolved fluorescence spectroscopy showed identical lifetime for both the
samples and no spectral overlap confirm the FRET free system. The underlyingmechanism is
explained based on the electron transfer from the conduction band of the L-Cyst-MgSQDs to
the HOMO of Levofloxacin. The limit of detection was found to be 0.21 μg/ml.

Keywords: hydrothermal synthesis, levofloxacin antibiotic, MgS quantum dots, L-cysteine, photo-induced electron
transfer

INTRODUCTION

The population increase in the last two centuries has considerably increased pharmaceuticals use in
society because of growing health problems. The discovery of the first antibiotic in 1928 has
revolutionized the pharmaceutical industry as antibiotics can cure many diseases (Martinez et al.,
2008; Adzitey, 2015). There is a considerable increase in antibiotics use since then in both human and
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animal hosts because of two main reasons. Firstly, because of the
specific nature against bacteria and fungi (Levy, 1978; Bungau
et al., 2015; Ferrone et al., 2017) and secondly, because of their
capability to increase the growth rate of animals and improve
their feed efficiency (Aarestrup and Wegener., 1999; Cháfer-
Pericás et al., 2010; Deng et al., 2014). However, their presence
in the environment is equally dangerous and alarming. If a
large quantity of antibiotics is introduced in the
environment, then it will give rise to bacterial resistance to
antibiotics making an adverse effect on the use of antibiotics
for treatment of both humans and animals (Martínez, 2008;
Bungau et al., 2015; Mahmood et al., 2019). These effects
necessitate the need to detect antibiotics in the environment
as it is a matter of great concern in modern times.
Conventionally, the methods available for detecting
antibiotics are chromatography, which requires extensive
equipment and preparation. The chromatography process
is quite complicated since it requires accurate
quantification, simultaneous detection, and high specificity
based on the structural information of the analytes (Deng
et al., 2014; Dai et al., 2017; Pérez et al., 2017). Other methods
for antibiotic determination include electrophoresis (Dai
et al., 2017; Jang et al., 2017; Ji et al., 2017), diode array
(Bitas and Samanidou, 2016), or enzyme immunosorbent
assay (ELISA) (Kong et al., 2017; Váradi et al., 2017),
polymerase chain reaction (PCR), or immunologic
reactions have been developed. While such well-established
techniques are present for the detection of antibiotics, there
are also some disadvantages of these techniques like costly
equipment, tiring and laborious work for the preparation of
samples, and a constant requirement for well-trained human
resources (Chauhan et al., 2016; Yadav et al., 2020). These
disadvantages give rise to the necessity of economically
feasible techniques. Optical sensing of antibiotics is a
solution for this significant problem since it requires fewer
human resources and instruments and involves less time than
other methods.

Fluorescent materials are mostly used for optical sensing
applications (Sarkar et al., 2020). Among various fluorescent
materials, quantum dots (QDs) have the highest fluorescence.
Also, their size can be easily controlled using different capping
agents and synthesis parameters. Such tunability of size allows the
fluorescence emission betweenUV and visible range (Garimella et al.,
2020; Kujur and Singh., 2020). Quantum dots as QDs only show
unique optical properties, such as the dramatic enhancement of
photoluminescence (PL) compared with the bulk counterpart of the
same material. This happens due to the quantum confinement
effect. Size is one of the significant parameters which affect the
PL of a material. Several authors have shown that with the
decrease in the size of the material, PL properties increases.
Also, PL emission can be obtained in either the UV region or
visible region. The UV region’s PL spectra arise due to the direct
transfer of e-from the conduction band to the valence band. The
PL spectra in the visible light can be due to the material’s surface
defect, giving non-radiative recombination. QDs have
symmetrical fluorescence emission spectra and broad
absorption spectra, having only 25–40 nm of half-width.

They can also emit multicolor fluorescence when excited at
the same wavelength, making them ideal optical detection
materials (Alivisatos et al., 2005). The capping agent also
allows for making them specific toward the detection of a
particular biomolecule. Magnesium sulfide (MgS) QDs have
been synthesized earlier using the hydrothermal method for
using as a potential replacement of electrode material in
lithium-ion batteries, but this material’s optical properties
remain unexplored (Zhang et al., 2018). MgS is a well-known
material for a potential replacement of electrode material in
lithium-ion batteries, but this material’s optical properties
remain unexplored. Here, we have tried to explore the optical
properties of MgS QDs. We have studied the absorption and
emission characteristics of extremely small size of L-Cyst-MgS.
This also helps us in understanding the effect of reduction in size
on optical properties of MgS QDs. In this work, optical sensing
of Levofloxacin was carried out by analyzing its interaction with
L-Cyst-MgS QDs. In this context, a novel and fully optimized
method for the synthesis of L-Cyst capped MgS QDs, and their
specific nature antibiotic for the detection of Levofloxacin has
been proposed. L-Cyst-MgS QDs were synthesized using the
hydrothermal method and characterized using transmission
electron microscopy (TEM), energy dispersive x-ray emission
(EDX), UV-visible, and fluorescence spectroscopy. L-Cyst-MgS
QDs were studied with thirteen antibiotics. Among these,
Levofloxacin antibiotics showed the most significant change.
Linear detection of Levofloxacin antibiotic was obtained in the
1–90 μg/ml range.

EXPERIMENTAL

Reagents
Magnesium nitrate [Mg(NO3)2.H2O] (98.99%) and
L-cysteine (99.99%) were purchased from Sigma Aldrich,
and sodium sulfide pellets [Na2S] (99.99%) was purchased
from SDL. All the antibiotics i.e., Thiamphenicol, Gentamicin,
Erythromycin, Ofloxacin, Ampicillin, Ciprofloxacin, Tetracycline,
Chloramphenicol, Florfenicol, Amoxicillin, Moxifloxacin,
Norfloxacin, Levofloxacin, were purchased from SRL, Hi-media, and
Sigma Aldrich. 10 ml of 0.1 millimolar concentration was prepared for
each antibiotic.

Characterizations Techniques
The obtained L-Cyst-MgS-QDs were further characterized using
high-resolution transmission electron microscopy (HR-TEM;
JEOL-TEM-2100F), energy dispersive x-ray spectroscopy
(EDX) (Bruker), UV-vis absorption spectroscopy (T-90+UV-
vis spectrometer, P. G. Instruments), and fluorescence
spectroscopy (Carry Eclipse Spectrophotometer, Agilent
Technologies). The interaction of L-Cyst-MgS-QDs with
thirteen antibiotics was studied using fluorescence
spectroscopy. The interaction study of Levofloxacin with
L-Cyst-MgS-QDs was studied at various concentrations in the
range of 0–100 μg/ml. These results were further confirmed with
Fourier transform infrared (FT-IR-Spectrum 2-Perkin Elmer),
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and Fluorescence life-time decay was recorded in a commercial
TCSPC setup FL-920 (Edinburgh Instruments) by exciting the
samples at 375 nm using a picosecond diode laser (pulse width
∼60 ps).

Synthesis of L-Cyst Capped MgS QDs
Magnesium nitrate [Mg(NO3)2.H2O] (98.99%) powder and
sodium sulfide pellets [Na2S] (99.99) were mixed with
L-Cysteine in various concentrations till the solution
becomes transparent. This solution was placed in a
hydrothermal teflon vessel and kept in a steel chamber for
hydrothermal synthesis at 200°C for 4 h. The obtained
solution was the first centrifuge for 30 min and then
dialyzed overnight to remove the impurities.

RESULTS AND DISCUSSIONS

Transmission Electron Microscopy (TEM)
Analysis
TEM study was carried out to observe the structure and the particle
size of the synthesized QDs. Figure 1A shows the HR-TEM image
of L-cyst-MgS-QDs. The d spacing calculated from the lattice
fringes was found to be 3.5 Å. Figure 1B shows images of TEM
of L-cyst-MgS-QDs showing uniformly distributed L-Cyst-MgS-
QDs. It can be seen from the image that the L-cyst-MgS-QDs size is
very small and monodispersed. The size of the QDs was calculated
using a histogram and fittedwith the gaussian function [Figure 1C]
and obtained the average size ranging from 2 to 4 nm. TEM study
shows that we have synthesized small size quantum dots with high
surface area to volume ratio capped with L-Cysteine.

FIGURE 1 | (A) HR-TEM image, (B) TEM image, (C) size distribution bar plot fitted with Gaussian function, and (D) EDX results showing the constituent elements,
and the inset Table shows the corresponding weight and atomic distribution.
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Figure 1D shows EDX measurement to find the elemental
composition. It can be seen from Figure 1D that the elemental
composition of L-cyst-MgS-QDs consists of carbon, oxygen,
magnesium, and sulfur (Sankararamakrishnan et al., 2019).
Carbon and oxygen confirm the L-cysteine presence, while Mg
and S confirm the presence of MgS. The inset of Figure 1D shows
the Table for the elemental composition and their percentage by
weight and atomic weight. It can be seen from the Table, the total
weight and atomic of all the elements compose of L-cyst-MgS-
QDs is 100 and 99.99%, respectively. This shows that the reaction
was completed, and no residual precursor was left over after
completing the reaction. Also, the atomic ratio of Mg and sulfur is
nearly equal in the 1:1 ratio; results confirm the formation of
L-cyst-MgS-QDs (Hu et al., 2010). TEM and EDX studies
confirm the formation of pure and small size L-cyst-MgS-QDs
without any impurity. These L-cyst-MgS-QDs were further
studied using a UV-vis spectrometer and fluorescence
spectrophotometer to study their optical properties.

UV-Vis Absorption Spectra and
Fluorescence Study of L-Cyst-MgS-QDs
UV-VIS absorption spectrum and fluorescence emission spectra
of L-Cyst-MgS QDs are shown in Figure 2. UV- vis absorption
spectrum was recorded in the wavelength range of 270–430 nm.
A small hump was obtained in L-Cyst-MgS QDs at a wavelength
of 310 nm as shown in Figure 2A. The first peak hump around
320 nm is due to the σ - σ transition of an electron from sigma
bond between Mg and S. The second hump at around 400 nm is
due to the n-σ* transition due to lone pair electron of sulfur and
sigma bond of Mg. The UV- vis absorption spectrum of
Levofloxacin shows two peaks at 292 nm and 330 nm. Out of
which broad peak at 292 nm indicate the n→ π* transition while
other peak at 330 nm shows the π → π* transition (Mat Amin
et al., 2012). Figure 2B shows the fluorescence spectra obtained
at different excitation wavelengths in the range of 260–360 nm.
The fluorescence spectra were recorded for the varying
excitation wavelengths of 300–350 nm. The highest emission
was obtained at a wavelength of 410 nm for an excitation
wavelength of 340 nm. These results indicate that L-Cyst-

MgS QDs is an excellent candidate to study antibiotics’
interaction using fluorescence spectroscopy. The quantum
yield of L-Cyst-MgS QDs was calculated against the reference
(quinine sulfate) that’s already known. The absorbance and
photoluminescence (PL) spectrum of quinine sulfate were
obtained using photometry at 340 nm. The quantum yield
was found to be 2%.

Response Study of L-Cyst-MgS-QDs With
Levofloxacin
L-Cyst-MgS-QDs were studied with thirteen antibiotics using
fluorescence spectroscopy as shown in Figure 3A. The thirteen
antibiotics are Thiamphenicol, Gentamicin, Erythromycin, Ofloxacin,
Ampicillin, Ciprofloxacin, Tetracycline, Chloramphenicol, Florfenicol,
Amoxicillin, Moxifloxacin, Norfloxacin and Levofloxacin. The
experiment was performed by adding 200 µL of L-Cyst-MgS-QDs
into a solution of 200 μL of each antibiotic (1 mg/ml) and 2.6 ml of
DI and the responses were recorded. The areawas calculated for each
study and a bar graph was plotted to see the specific detection of the
L-Cyst-MgS-QDs toward Levofloxacin. Figure 3A shows the area
under the curve for the response of the fluorescence signal. The area
under the curve for Levofloxacin is considerably higher than that of
the other antibiotics. Figures 3B,C show the image of all the
antibiotics under visible light and UV light, respectively. The
most significant change in the intensity can be observed for
Levofloxacin. These results demonstrate the high selectivity of
L-Cyst-MgS-QDs toward Levofloxacin. Figure 3B shows the
response study of the L-Cyst-MgS-QDs with varying Levofloxacin
concentrations in the physiological range of 0–100 μg/ml. It can be
seen from Figure 3B that with the increase in the Levofloxacin
concentration, the peak corresponding to L-Cyst-MgS-QDs
(410 nm) is decreasing; however, the peak corresponding to the
Levofloxacin is increasing (480 nm). The inset of Figure 3B shows
the calibration curve obtained using the area under the curve for
each concentration and plotted against the Levofloxacin
concentration. Good linearity of 0.95 was obtained from the
linear fit of the experimental data. Also, from this curve, it can
see that the linear range was obtained from 1 to 90 μg/ml. Using this
linearity plot, the limit of detection (LOD) was found to be 0.21 μg/

FIGURE 2 | (A) UV-Vis absorption spectra of L-Cyst-MgS-QDs and Levofloxacin and (B) shows the fluorescence spectra of L-Cyst-MgS-QDs for varying wavelengths.
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ml. These studies suggest that L-Cyst-MgS-QDs is a suitablematerial
for the detection of Levofloxacin.

FT-IR and TCSPC Studies of
L-Cyst-MgS-QDs Interaction With
Levofloxacin
Figure 4A shows the FT-IR study of L-Cyst-MgS-QDs and
Levofloxacin. FTIR measurement was carried out in the
wavenumber range between 400 and 4,000 cm−1. Figure 4A

represents the L-Cysteine capped MgS and having a well-resolved
peak at 1,556 and 2,920 cm−1 are ascribed the asymmetric stretching
vibration of COO- and anti-symmetric stretching of -CH2. Considering
the FTIR spectrumof pure L-Cysteine, the respective peak at 2,548 cm−1

corresponding to the stretching vibrations of S-H disappeared, resulting
in the cleavage of the S-H bond formation of MgS bonds (Li et al.,
2017). In Figure 4B, the symmetric stretching carboxylate (-COO-)
peak of Levofloxacin was observed at 1,394 cm−1, while in the case of
L-Cys-MgS-Levo, this peak was shifted to 1,385 cm−1, which suggests
the binding of MgS with Levofloxacin (Qassim., 2015).

FIGURE 3 | (A) Selectivity study for L-cyst-MgS with thirteen antibiotics, photographic image of all the thirteen antibiotics 1: L-Cyst-MgS, 2: Thiamphenicol,
3: Gentamicin, 4: Erythromycin, 5: Ofloxacin, 6: Ampicillin, 7: Ciprofloxacin, 8: Tetracycline, 9: Chloramphenicol, 10: Florfenicol, 11: Amoxicillin, 12: Moxifloxacin, 13:
Norfloxacin, and 14: Levofloxacin under (B) visible light, (C) UV light and (D) response study of L-cyst-MgS with Levofloxacin in the range of 0–100 g/ml concentrtion
range. The inset shows the corresponding calibration curve.
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Figure 4B shows the time-resolved fluorescence plot of L-Cyst-
MgS-QDs in the presence and absence of Levofloxacin and fitted
with three exponential decay function, which is given below;

I(t) � ap1 exp(− t
τ1
) + ap2 exp(− t

τ2
) + ap3 exp(− t

τ3
)

The calculated lifetime was obtained nearly 8.43 ns and 7.78 ns
for MgS-QDs and Levofloxacin’s presence, respectively, by three
exponential decay functions. There is a little difference of lifetime
among these two systems that showed no spectral overlap. So,
there is no fluorescence resonance energy transfer process took
place (Yan et al., 2015). From the plotted and calculated life-time
data, it is clear that Levofloxacin is not quenching the
fluorescence of MgS and this interaction between MgS and
Levofloxacin takes place through the electron transfer process.

L-Cyst-MgS Levofloxacin Interaction
Mechanism
While studying the UV-absorbance curve of Levofloxacin and
L-Cyst-MgS-QDs, Levofloxacin’s absorption band is much

closer to the UV absorbance curve of L-Cyst-MgS-QDs,
allowing the transfer of electron in the L-Cyst-MgS QDs to
Levofloxacin. Moreover, time-resolved fluorescence
measurement also showed no significant change in the
fluorescence life-time of L-Cyst-MgS-QDs-LEVO and
L-Cyst-MgS QDs, as shown in Figure 4B. This excludes the
fluorescence resonance energy transfer mechanism (Yan et al.,
2015). Figures 5A,B shows the deconvoluted PL spectra of
L-cyst-MgS and L-cyst-MgS with 100 μg/ml Levofloxacin. The
spectrum was deconvoluted using the Gaussian function, and
in both the spectrum, two distinct peaks were obtained. These
two peaks PL 1 and PL 2 in Figure 5A have been explained
according to the band diagram of L-Cyst-MgS explained in
Figure 5C. The PL 1 peak in L-cyst-MgS arises due to band
edge transition of excited e-from conductance band to the
valence band. The PL 2 peak in L-cyst-MgS appears due to the
surface defect i.e., broadband transition (Pearson., 1963;
Garimella et al., 2020). In the mixture of L-Cyst-MgS QDs
and Levofloxacin solution, the Levofloxacin molecules tend to
come close to the surface L-Cyst-MgS QDs with the help of
hydrogen bonds. This bond forms among–NH2 group of
L-Cyst with the carbonyl group of Levofloxacin and
similarly carboxylic group L-Cyst with a carboxylic group
Levofloxacin as shown in Figure 5E. On the exposure of
light at a fixed wavelength of 340 nm, the
photoluminescence intensity successively decreased at
410 nm (band edge) and increased at 458 nm with the
increasing concentration of Levofloxacin as shown in
Figure 3D. It is because of the absorption of light at
340 nm by L-Cyst-MgS QDs, which create the electron and
hole in the valence band and conduction band, respectively.
The hole of MgS QDs has more tendency to trap Levofloxacin
(electron-rich) because of the vicinity between MgS and
Levofloxacin molecules via hydrogen bonding as shown in
Figures 5F,G. Thus electron-hole recombination does not take
place between them. As a result, the emission spectra of MgS
become quenched as it was coming from 410 nm (PL1) and
surface defect (PL2) (Figure 5D). At the same time,
Levofloxacin molecules were also excited at 340 nm, which
generated electron and hole in the valence band (VB) and
conduction band (CB), respectively. And therefore, the
electron in surface defect of MgS has an alternative route of
recombination of electron-hole with HOMO (hole) of
Levofloxacin. Thus, emission spectra were observed with
enhanced PL intensity at 458 nm (PL3) (Figure 5D). The
shifting in the PL spectra in Figure 3D is due to
Levofloxacin’s interaction with the MgS molecule as shown
in Figure 5G. The above results indicate that electron transfer
from the MgS-QDs to Levofloxacin is responsible for the
increase in Levofloxacin and a slight decrease in the
intensity of L-Cyst-MgS-QDs.

CONCLUSION

L-Cyst capped MgS QDS were synthesized using the
hydrothermal method. TEM study showed that L-Cyst-MgS

FIGURE 4 | (A) FT-IR spectra of (i) L-cysteine, (ii) L-cyst-MgS, (iii)
Levofloxacin and (iv) L-cyst-MgS-levofloxacin; and (B) TCSPC plot for L-cyst-
MgS and L-cyst-MgS-Levofloxacin.
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QDs have a size distribution from 2 to 4 nm and are very well
dispersed. EDX study confirmed the completion of the
reaction and formation of L-Cyst-MgS QDs without any
impurity. UV absorbance study revealed maximum
absorption in the range of 300–350 nm for L-Cyst-MgS. In
the photoluminescence (PL) study, maximum emission was
obtained at 410 nm for 340 nm of excitation for L-Cyst-MgS.
Among Thiamphenicol, Gentamicin, Erythromycin, Ofloxacin,
Ampicillin, Ciprofloxacin, Tetracycline, Chloramphenicol,
Florfenicol, Amoxicillin, Moxifloxacin, Norfloxacin, Levofloxacin
antibiotics, Levofloxacin showed the most significant change in PL
spectra. Linear detection of Levofloxacin was obtained in the
`range of 1–90 g/ml. The Time-resolved fluorescence
spectroscopy showed identical lifetime for both the samples and
no spectral overlap confirm the FRET free system. This was further
confirmed using Fourier Transform infrared spectroscopy. The
underlying mechanism can be explained based on the electron
transfer from the conduction band of the L-Cyst-MgS QDs to the
HOMOof Levofloxacin. The limit of detection (LOD)was found to
be 0.21 μg/ml.
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