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The promises and challenges of artificial intelligence (AI), machine learning (ML),
and deep learning (DL) are based on the premise that we can build machines and write
algorithms that will mimic and even surpass the capacity and capabilities of the human
brain (Alzubaidi et al., 2021). AI uses artificial neural networks (ANNs) that intend to
mimic the works of the neural networks of the human brain. In AI, the strength of the
connection of each “neuron” to its “neighbor” is a parameter known as “weight”. The
network starts with random “weights” and adjusts them until the output agrees with the
correct answer during the “training,” which includes “reading” huge volumes of the text
in which some words are masked and then “asking” the network to “guess” what those
masked words are. Using over 3 billion words, the network “learns” what the masked words
are (Jain et al., 1996). By comparison, an average child requires 3,000 times fewer words to
learn and speak a language (Saenko, 2020). It should be noted, however, that a child needs
much longer time,∼4 to 5 years to learn∼3,000 words. Regardless of this, as illustrated by
generative AI, e.g., ChatGPT and Google’s Bard, such “brute force” works well for certain
brain functions, i.e., storing and analyzing and finding correlations in massive amounts of
existing data (Polyportis and Pahos, 2024).

The current AI comes, however, with caveats. One is the abovementioned inefficiency
of ANNs—even a large language model (LLM)—to “learn.” The other one is the currently
limited ability of AI for intuition and creativity as compared to the human brain. This
is despite the landmark 2016 victory of Google’s AlphaGo that beat the South Korean
Go champion, Lee Se-dol (Metz, 2016). A third and critical issue is the enormous energy
required by generative AI (Saenko, 2020; de Vries, 2023). Training an ANN, i.e., reading
through vast amounts of data until the system “understands it,” needs electricity that
can be as much as a small country’s electricity consumption. Currently, ∼2% of the
total and global electricity production is used by data centers. In addition, this is only
the very beginning of AI. With the predicted growth of AI—assessed by counting the
annual rate of increase in chip production, e.g., by NVIDIA—electricity demand for AI
will increase dramatically. By some estimates, the global electricity demand for AI and
related computing can increase by 85–134 TWh annually. Such an increase in electricity
demand is similar to that in Sweden, which doubles its electricity consumption yearly (de
Vries, 2023). The effect of such an increase in electricity demand on the “carbon footprint”
with the current mix of electric power generation (natural gas: 38%; coal: 22%; nuclear:
19%; renewables: 20%; hydroelectric 6%) can be alarmingly high (Dhar, 2020; Heikkilä,
2023). For example, creating GPT-3 needs 1,287 MWh of electricity with an added 552
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tons of CO2–or equivalent—and this is before any user has started
any queries (Patterson et al., 2021). It is no surprise then that
Microsoft has been interested—and has invested—in nuclear power
generation, especially in small modular reactors (SMRs) that will
not increase the carbon footprint (McFadden, 2023). Microsoft
has also invested in Helion—a SamAltman-backed company—that
plans to generate electricity using futuristic, nuclear fusion-based
power (Gardner, 2023).

We compare the massive hunger for energy by AI with that
of the human brain. While it is hard to calculate the exact
energy required by the human brain for its various functions
including information processing and analysis, it is clearly only
an insignificant fraction of that of AI. In 1989, Ralph Merkle
published his study “Energy Limits to the Computational Power of
the Human Brain” (Merkle, 1989). He estimated that the human
brain uses only ∼10W of energy per second. However, he also
estimated that the “computational power” of the human brain is
limited to ∼1013 to 1016 operations per second. Regardless of the
exact energy “consumption” of the human brain per operation,
which is rather challenging to determine even with magnetic
resonance spectroscopy (MRS) and functional magnetic resonance
spectroscopy (fMRS) (Rothman et al., 2011, 2019; Hyder and
Rothman, 2012), the notion that the human brain is using less
energy when compared to AI is hard to contest (Hughes, 2023).

A potential cue for such a highly energy-efficient “operation”
may be the “wiring”; neuronal connectivity is a critical but not
the only aspect of how the human brain operates (Gebicke-
Haerter, 2023). In contrast to the computers— and thus AI’s—
binary modus operandi, the human brain is an incredibly complex
“machine” using both analog and digital modes simultaneously
(Guidolin et al., 2022; Marcoli et al., 2022). The seamless
integration and utilization of digital and analog “modes” are
likely the “secret” to the unparalleled capacity and abilities
of the human brain. Its “operation” is not restricted to
binary signaling but to a highly sophisticated and complex
combination of electrical and chemical signaling within the
networks. The dozens of neurotransmitters and neuromodulators
along with their receptors, ion channels, and intracellular
“effectors” promote the fact that the human brain is such an
incredibly energy-efficient “computer.” In addition, neurons can
use more than one neurotransmitter (Svensson et al., 2018),
integrating various signaling modalities (e.g., Agoston et al., 1988,
1994). Knowledge of the neurotransmitters and neuromodulators
utilized by various human brain regions and neuronal pathways—
the chemical neuroanatomy—is fundamental to our understanding
of how the human brain operates in health and the chemical
changes underlying neuropsychiatric disorders (Hokfelt et al.,
1984).

Miklos Palkovits has made an enormous contribution to
this field. Miklos, along with Tomas Hokfelt, another significant
contributor to the field of chemical neuroanatomy (Hokfelt,
2010) along with other giants of neuroscience—Kjell Fuxe (e.g.,
Steinbusch, 1981; Rakic, 1988; Sawchenko, 1998; Greengard, 2001;
Agnati et al., 2011; Saper and Fuller, 2017; Swanson, 2018) to
name a few—have majorly contributed to the “chemical mapping”
of the human brain, thus helping us understand its majesty—
and mysteries. The Handbook of Chemical Neuroanatomy, first

published by editors Bjorklund and Hokfelt in 1983 has reached 22
volumes (Bjorklund and Hokfelt, 1996).

While celebrating Miklos’ 80th birthday, 10 years ago, I
wrote a short article entitled: “Great insight created by tiny
holes; celebrating 40 years of brain micropunch technique”
(Agoston, 2014) that summarized his immense contribution
to neuroanatomy—up to December 2013. By 2013, Miklos
had published more than 1,000 research papers—many of
his papers are citation classics, 59 book chapters, and eight
books, nominated twice for the Nobel prize. Ten years later,
in December 2023, I had the honor of attending Miklos’ 90th
birthday celebration just to learn about his current and—
yes—future projects. During the last 10 years, Miklos has
published 57 peer-reviewed papers, numerous book chapters,
and reviews and has written and constantly updated his
book Practical Neurology and Neuroanatomy (co-written
with Dr. S. Komoly) with the newest neuroimaging and
neurophysiology findings.

Miklos’ current research working with collaborators across
the globe includes the characterization of the human brain
(g)lymphatic system (Mezey and Palkovits, 2015; Mezey
et al., 2021), identifying SARS-CoV-2 entry sites into the
human brain (Vitale-Cross et al., 2022), identifying the
role of neuropeptides and their signaling in neuropsychiatric
disorders (Barde et al., 2016, 2024; Hökfelt et al., 2018; Zhong
et al., 2022; Samardžija et al., 2023; Vas et al., 2023), and
neurogenetics (Roy et al., 2017; Dóra et al., 2022; Hardwick et al.,
2022).

The last decade of neuroscience research utilizing powerful
imaging, electrophysiology, and such techniques has greatly
expanded our knowledge; however, we are still far from a
complete understanding of how the human brain works.
What are the neurobiological, neuroanatomical, and chemical
substrates of consciousness, inspiration, and intuition?
What we do know is that Miklos’ work has been paving
the way toward a better understanding of the marvel, the
human brain.

Miklós, thank you for teaching and inspiring so many of us,
happy (belated) 90th birthday, and I am so much looking forward
to learning much more from you!
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