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Background: Recent studies have shown that cerebrospinal fluid (CSF) levels of 
soluble triggering receptor expressed on myeloid cells 1 (sTREM1) are elevated 
in individuals with Alzheimer’s disease (AD), though the relationship between 
CSF sTREM1 and hippocampal atrophy remains to be elucidated. The primary 
aim of this study was to investigate the association between CSF sTREM1 levels 
and longitudinal changes in hippocampal volumes, and to determine if this 
relationship is moderated by cognitive status.

Methods: We included 576 participants, comprising 152 cognitively unimpaired 
(CU) and 424 cognitively impaired (CI) individuals. In the cross-sectional 
analyses, Pearson’s correlation tests were conducted to examine the relationship 
between baseline CSF sTREM1 levels and hippocampal volumes in both CU and 
CI participants. For the longitudinal analyses, a linear mixed-effects model was 
employed to assess the significance of the three-way interaction between CSF 
sTREM1 levels, cognitive status, and follow-up time on adjusted hippocampal 
volume (aHV). Further stratified analyses based on cognitive status were 
performed to dissect the specific effects within each group.

Results: Our findings revealed significantly elevated baseline CSF sTREM1 
levels in CI participants compared to CU participants. Cross-sectional 
analyses demonstrated that CSF sTREM1 levels were negatively associated 
with hippocampal volumes in both CU and CI participants. In the longitudinal 
analyses, the three-way interaction between CSF sTREM1 levels, cognitive 
status, and follow-up time was found to be significant for aHV. Stratified analyses 
indicated that, in CI participants, higher CSF sTREM1 levels were associated with 
a more accelerated rate of hippocampal atrophy, whereas no such association 
was observed in CU participants.

Conclusion: These results underscore the complex interplay between 
neuroinflammation, as reflected by CSF sTREM1 levels, hippocampal atrophy, 
and cognitive decline. The data suggest that neuroinflammation may contribute 
differently to hippocampal atrophy rates in CI versus CU individuals, highlighting 
the potential for targeted anti-inflammatory interventions in the prevention and 
treatment of AD.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that 
progressively impairs cognitive functions, with memory impairment 
being a primary symptom (Scheltens et  al., 2021). The disease is 
hallmarked by the accumulation of amyloid-beta (Aβ) plaques, 
neurofibrillary tangles, and atrophy of critical brain regions (Scheltens 
et  al., 2021). The hippocampus, a key structure for learning and 
memory (Kilpatrick et al., 1997; Eldridge et al., 2000), is particularly 
vulnerable to the degenerative processes associated with AD, making 
its volume a well-established marker for disease progression (Jack 
et al., 2010; Landau et al., 2010; Kantarci et al., 2013). Early detection 
and understanding of the mechanisms underlying hippocampal 
atrophy are crucial for the development of novel interventions 
and therapies.

The critical role of neuroinflammation in AD has attracted 
growing interest (Calsolaro and Edison, 2016). Microglia play a 
critical role in the surveillance and response to neuropathological 
changes (Cai et al., 2022; Wu and Eisel, 2023). The triggering receptor 
expressed on myeloid cells 1 (TREM1) is a glycoprotein receptor 
mainly expressed by microglia and monocytes (Saadipour, 2017). 
Elevated levels of sTREM1 have been reported in the cerebrospinal 
fluid (CSF) and plasma of individuals with AD compared to controls 
(Jiang et al., 2019; Del Campo et al., 2022; Hok et al., 2023), suggestive 
of a relation between microglial activation and disease progression. 
Polymorphisms in the TREM1 gene have been related with the 
aggregation of neuritic and amyloid plaques and a steeper cognitive 
decline (Replogle et  al., 2015). To our knowledge, however, the 
relationship between CSF sTREM1 levels and longitudinal 
hippocampal atrophy remains unknown.

In the current study, we aimed to study the relationship between CSF 
sTREM1 levels and the rate of hippocampal atrophy over time in older 
individuals who are either cognitively unimpaired (CU) or cognitively 
impaired (CI). This research could provide important insights into the 
role of sTREM1 in the neurobiology of AD and may contribute to the 
development of new diagnostic and therapeutic strategies. Our hypothesis 
was that higher CSF sTREM1 levels would be associated with a more 
rapid rate of hippocampal atrophy in older individuals, particularly in CI 
individuals. By examining this relationship, the current work may help 
better understand the interplay between neuroinflammation, brain 
structure changes, and cognitive decline.

2 Methods

2.1 Alzheimer’s Disease Neuroimaging 
Initiative database

Cross-sectional and longitudinal data used in the current study 
were extracted from the ADNI database.1 The ADNI was launched in 
2003 as a public-private partnership. The primary aim of ADNI has 
been to examine whether a combination of methods, such as cognitive 
assessments, magnetic resonance imaging (MRI) techniques, positron 
emission tomography (PET) measurements, and other biological 

1 https://adni.loni.usc.edu/

markers, can be used to track the clinical progression of mild cognitive 
impairment (MCI) and early AD. For other detailed information 
about ADNI, see www.adni-info.org. The ADNI study was approved 
by the Institutional Review Boards at each participating site, and 
written informed consent was provided by each study participant or 
their authorized representatives.

2.2 Participants

In the current study, we selected subjects who had at least two 
MRI measurements of hippocampal volume and had baseline 
measurements of CSF sTREM1 levels. There were 576 study 
participants, including 152 CU subjects and 424 CI subjects, 
comprising MCI and mild AD dementia. Specific enrollment criteria 
have been described previously (Aisen et  al., 2024) and can also 
be found on the website.2 In addition, these criteria have been used in 
previous publications (Sundermann et al., 2016; Wang et al., 2023). 
Briefly, the criteria for CU included a Mini-Mental State Examination 
(MMSE) (Folstein et al., 1975) score of 24 or higher and a Clinical 
Dementia Rating (CDR) (Morris, 1993) score of 0. The criteria for 
MCI included an MMSE score of 24 or higher, a CDR score of 0.5, a 
subjective memory complaint, objective memory impairment as 
measured by the Wechsler Memory Scale Logical Memory II, and 
essentially preserved abilities to conduct daily life activities. The 
criteria for mild AD dementia included an MMSE score between 20 
and 26, a CDR score of 0.5 or 1, and meeting the National Institute of 
Neurological and Communicative Disorders and Stroke-Alzheimer’s 
Disease and Related Disorders Association criteria for probable AD 
(McKhann et al., 1984).

2.3 Measurement of CSF sTREM1, soluble 
triggering receptor expressed on myeloid 
cells 2 (sTREM2), and macrophage 
migration inhibitory factor (MIF) levels

CSF sTREM1, sTREM2, and MIF levels were determined as a part 
of proteomic analytes using SomaLogic’s SomaScan platform by the 
Neurogenomics and Informatics Center at Washington University. The 
preliminary standardization processes for SOMAscan protein 
quantifications were carried out by SomaLogic. In essence, the 
hybridization normalization was executed on a per-sample basis. The 
aptamers were subsequently categorized into three distinct 
normalization cohorts—designated S1, S2, and S3—this categorization 
was informed by the signal-to-noise ratio observed in both technical 
replicates and samples. This stratification was critical to prevent the 
amalgamation of aptamers with disparate protein signal intensities 
during subsequent normalization phases. Following this, a median-
based normalization was applied to mitigate various assay-related 
inconsistencies, including variations in protein concentration, pipetting, 
reagent concentration, and timing of the assay (Candia et al., 2017). 
Levels of CSF markers are expressed in relative fluorescence unit (RFU).

2 https://adni.loni.usc.edu/wp-content/uploads/2024/02/ADNI_General_

Procedures_Manual.pdf
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2.4 Measurement of CSF AD biomarkers

Lumbar puncture and sample collection were performed as 
detailed in the ADNI manual.3 Levels of CSF AD biomarkers, including 
CSF Aβ42 and phosphorylated-tau at threonine 181 (p-tau181), were 
examined by the Roche Elecsys Aβ42 CSF and Elecsys p-tau CSF 
immunoassays at the Department of Pathology & Laboratory Medicine 
and Center for neurodegenerative Diseases Research, Perelman School 
of Medicine University of Pennsylvania (UPENN). Details of the 
methods and procedures have been described elsewhere (Bittner et al., 
2016). Levels of CSF Aβ42 and p-tau181 were expressed as pg./ml.

2.5 Determination of APOE4 genotype

APOE (gene map locus 19q13.2) genotypes of the study 
participants were extracted from the ADNI database. Detailed 
information on blood sample collection and genotyping processes can 
be found on the ADNI website (see text footnote 1). Participants with 
at least one ɛ4 allele were classified as APOE4 carriers, and those with 
no ɛ4 allele were categorized as APOE4 non-carriers.

2.6 Hippocampal volumetric MRI measures

The methodology pertaining to the acquisition of MRI data has 
been detailed previously (Jack et al., 2008). Utilizing either a 1.5 T or 
3 T scanner, scans were conducted following a uniform protocol that 
underwent validation across different locations. The imaging protocol 
included the collection of high-resolution, T1-weighted images using 
a volumetric magnetization-prepared rapid gradient echo sequence in 
the sagittal plane, as well as T2-weighted images using a fast-spin echo 
sequence in the axial plane. Before initiating data collection, customized 
imaging protocols were specifically developed and confirmed for 
accuracy through testing on both phantom models and in 137 human 
subjects. For each participant, a phantom scan was also performed to 
ensure an optimal signal-to-noise ratio, with centralized assessment for 
quality control. Further details on the validation procedures can 
be found on the ADNI website.4 Adjustments for sex-related variations 
in head size were made by computing the adjusted hippocampal 
volume (aHV), determined through the calculation: [(hippocampal 
volume/intracranial volume) * 1000]. As a result, the aHV indicates the 
proportional extent of gray matter volume in the regional context.

2.7 Statistics

Baseline demographic characteristics and variables of interest 
(CSF sTREM1 levels and aHV) were compared between disease 
stages (CU vs. CI) using Welch’s two-sample t-tests for continuous 
variables and Pearson’s chi-squared tests for categorical variables. 
Pearson’s correlation tests were employed to assess the relationship 

3 https://adni.loni.usc.edu/wp-content/uploads/2024/02/ADNI_General_

Procedures_Manual.pdf

4 www.loni.usc.edu/ADNI

between baseline CSF sTREM1 levels and aHV separately in CU and 
CI individuals. To explore whether baseline CSF sTREM1 levels 
influence hippocampal atrophy longitudinally and whether this effect 
varies by disease stage, several linear mixed-effects models were 
applied. Models were performed separately for CU and CI 
participants. The model specified repeatedly measured aHV as the 
outcome variable and the interaction term among continuous CSF 
sTREM1, disease stage (CU vs. CI), and follow-up time (years) as the 
focal predictor. Additional covariates included in the model were 
baseline age, gender, education, APOE4 carrier status (non-carriers 
vs. carriers), amyloid status [Aβ-negative vs. Aβ-positive; participants 
with CSF Aβ42 levels <1,098 pg./mL were classified as Aβ-positive 
based on previous literature (Schindler et  al., 2018)], and their 
interactions with follow-up time. Models included the main effects of 
predictors and their interactions with time. The model incorporated 
a random intercept to account for individual variability. The linear 
mixed-effects model is summarized using the following equation:

 

changeaHV CSF sTREM1 time Age time Gender time
Education time APOE4 status time
Amyloid status time

∼ ∗ + ∗ + ∗
+ ∗ + ∗
+ ∗

where aHVchange is the change in aHV from the baseline.
As a sensitivity analysis, we included raw hippocampal volumes, 

rather than adjusted volumes, as outcomes in the linear mixed-effect 
models. We conducted two separate linear mixed-effect models for the 
CU and CI groups. All statistical analyses were performed using R 
software (The R Core Team, 2014).

3 Results

3.1 Sample characteristics by cognitive status

At baseline, the study comprised 576 participants, consisting of 
152 CU and 424 CI individuals. Significant differences were observed 
between the CU and CI groups for most demographic and clinical 
variables, with the exception of years of education and the percentage 
of female participants (see Table  1). For instance, CI participants 
exhibited higher levels of CSF sTREM1 and reduced hippocampal 
volumes relative to CU participants. As anticipated, the CI group had 
a greater frequency of APOE4 carriers, and a higher prevalence of 
amyloid positivity compared to the CU group. Additionally, the 
average follow-up duration was shorter for CI participants than for 
those who were cognitively unimpaired. To alleviate the potential 
impact of sample imbalances, we randomly selected 152 out of the 
total 424 CI participants and then compared CSF sTREM1 levels 
between the CU and CI groups using two-sample t-tests. The results 
remained unchanged: the mean sTREM1 level was 216.04 in the CU 
group and 232.5 in the CI group (t = −4.28, df = 286.16, p < 0.001).

3.2 Relationship between baseline CSF 
sTREM1 levels and hippocampal volume in 
the CU and CI groups

To investigate the cross-sectional relationship between baseline 
CSF sTREM1 levels and hippocampal volumes, Pearson’s correlation 
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tests were performed in the combined sample (including both CU and 
CI participants). Our analysis revealed a significant negative 
association between CSF sTREM1 levels and aHV (r = −0.3, 
p < 0.001). To ascertain whether this relationship varies by cognitive 
status, we conducted stratified correlation analyses in the CU and CI 
groups individually. Among the CU participants (n = 152), CSF 
sTREM1 levels showed a significant negative correlation with aHV 
(r = −0.32, p < 0.001). Similarly, in the CI group (n = 424), CSF 
sTREM1 levels were also negatively correlated with aHV (r = −0.25, 
p < 0.001). Figure  1 illustrates the scatter plots depicting the 
relationship between CSF sTREM1 levels and aHV in the CU and CI 
groups, visually showing the observed negative correlations.

3.3 CSF sTREM1 by cognitive status 
interaction on longitudinal hippocampal 
atrophy

To test the hypothesis that cognitive status influences the 
association between CSF sTREM1 levels and the rate of hippocampal 
atrophy over time, we incorporated a three-way interaction term into 
the linear mixed-effects model. This interaction term included 
continuous CSF sTREM1 levels, cognitive status (CU vs. CI), and 
follow-up time. The regression coefficients that indicate the 
associations with the longitudinal change in hippocampal volume are 
summarized in Table 2. Although the main effects of the predictors 
were indeed part of the linear mixed-effects model, we have chosen 
not to present them in detail in Table 2 for the sake of conciseness. 

This decision was made to focus the presentation on the key 
interactions of interest. The three-way interaction term was 
significant for aHV (Coefficient: −0.0006; SE: 0.0001; p < 0.001), 
indicating that the relationship between CSF sTREM1 levels and 
changes in hippocampal volumes over time was influenced by 
cognitive status.

To further validate our findings and simplify the interpretation of 
the three-way interaction term, we conducted two linear mixed-effects 
models separately for the CU and CI groups. In the CU group 
(referenced in Table 3 and depicted in Figure 2A), we did not find a 
significant interaction between CSF sTREM1 levels and time for aHV 
(coefficients: 0.00005; se: 0.0001; p = 0.65). Conversely, in the CI group 
(as shown in Table 3; Figure 2B), we observed a significant interaction 
between CSF sTREM1 levels and time for aHV (coefficients: −0.0004; 
se: 0.00009; p < 0.0001).

3.4 Secondary analysis

As a sensitivity analysis, we included raw hippocampal volumes, 
rather than adjusted volumes, as outcomes in the linear mixed-effect 
models. We conducted two separate linear mixed-effect models for the 
CU and CI groups. The results were consistent across both groups, as 
depicted in Table 4 and Figures 3A,B. Higher CSF sTREM1 levels were 
associated with a rapid reduction in hippocampal volumes over time 
in the CI group (sTREM1 × time term: coefficients = −0.0005; 
se = 0.0001; p < 0.001), but not the CU group (sTREM1 × time term: 
coefficients = −0.0002; se = 0.0001; p = 0.1).

TABLE 1 Sample characteristics by cognitive status.

Characteristic Overall, N = 576 CU, N = 152 CI, N = 424 p-value

Age, years 73 (7) 74 (6) 73 (8) 0.002

Education, years 16 (3) 16 (3) 16 (3) 0.10

Gender 0.3

Male 326 (57%) 81 (53%) 245 (58%)

Female 250 (43%) 71 (47%) 179 (42%)

APOE4 status <0.001

APOE4 noncarriers 302 (52%) 118 (78%) 184 (43%)

APOE4 carriers 274 (48%) 34 (22%) 240 (57%)

MMSE score 27 (3) 29 (1) 27 (3) <0.001

Follow-up duration, years 3.24 (2.77) 4.76 (3.27) 2.94 (2.39) < 0.001

aHV 4.50 (0.80) 4.95 (0.54) 4.34 (0.82) <0.001

Amyloid statusa <0.001

Amyloid negative 207 (36%) 96 (63%) 111 (26%)

Amyloid positive 369 (64%) 56 (37%) 313 (74%)

Amyloid statusb <0.001

Amyloid negative 241 (42%) 106 (70%) 135 (32%)

Amyloid positive 335 (58%) 46 (30%) 289 (68%)

sTREM1, RFU 227 (35) 216 (29) 231 (37) <0.001

Continuous variables are summarized as Mean (SD), while categorical variables are summarized as n (%). Comparisons between two groups for continuous variables were conducted using 
Welch’s Two Sample t-tests, and comparisons for categorical variables were performed using Pearson’s Chi-squared tests. CU, cognitively unimpaired; CI, cognitively impaired; APOE, 
apolipoprotein E; MMSE, Mini-Mental State Examination; aHV, adjusted hippocampal volume; sTREM1, soluble Triggering Receptor Expressed on Myeloid Cells 1; RFU, Relative 
Fluorescence Unit.
aCSF Aβ42 levels < 1,098 pg/mL was used to classify amyloid positivity.
bCSF p-tau181/Aβ42 ratio > 0.0198 was used to classify amyloid positivity according to a previous study (Schindler et al., 2018).
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We conducted correlational analyses to examine the relationship 
between aHV and episodic memory, as examined by Rey Auditory 
Verbal Learning Test (RAVLT) total score. Among the CU 
participants, aHV showed a significant positive correlation with 
RAVLT total score (r = 0.16, p = 0.04). Similarly, in the CI group aHV 
was also positively correlated with RAVLT total score (r = 0.44, 
p < 0.001). Supplementary Figure S1 illustrates the scatter plots 
depicting the relationship between aHV and RAVLT total score in the 
CU and CI groups, visually showing the observed positive correlations.

We further conducted several linear mixed-effects models 
examining the relationship between CSF sTREM2 levels and 

FIGURE 1

Cross-sectional relationships between baseline CSF sTREM1 levels and hippocampal volumes in the CU and CI groups. (A) Illustrates the relationship 
between CSF sTREM1 levels and hippocampal volumes in CU participants (r = −0.32, p < 0.001), while (B) shows this relationship in CI participants 
(r = −0.25, p < 0.001). CSF sTREM1 levels were reported as Relative Fluorescence Unit (RFU). CU, cognitively unimpaired; CI, cognitively impaired; aHV, 
adjusted hippocampal volume; sTREM1, soluble Triggering Receptor Expressed on Myeloid Cells 1.

TABLE 2 Summary of linear mixed-effect model.

Predictors Coefficients Standard 
error

p-values

Age × time −0.0016 0.0003 < 0.001

Female gender × time −0.03 0.0038 < 0.001

Education × time 0.001 0.0006 0.08

APOE4 status × time −0.028 0.004 < 0.001

Amyloid positive × time −0.045 0.004 < 0.001

sTREM1 × time 0.00014 0.0001 0.16

Cognitive status (CI) × time 0.1 0.027 < 0.001

sTREM1 × cognitive status 

(CI) × time

−0.0006 0.0001 < 0.001

Models included the main effects of predictors and their interactions with time. However, for 
the sake of brevity, the coefficients of the main effects were not presented. The interaction 
term sTREM1 × cognitive status (CI) × time was significant for aHV (coefficient = −0.0006, 
p < 0.001), suggesting that the association between baseline CSF sTREM1 levels and changes 
in aHV over time was influenced by cognitive status. APOE, apolipoprotein E; CI, 
cognitively impaired; sTREM1, soluble Triggering Receptor Expressed on Myeloid Cells 1.

TABLE 3 Summary of linear mixed-effect models by cognitive status.

Predictors Coefficients Standard 
error

P-values

CU model

Age × time −0.0016 0.0005 0.004

Female gender × time −0.027 0.0055 < 0.001

Education × time 0.00055 0.0008 0.52

APOE4 status × time −0.019 0.006 0.002

Amyloid positive × time −0.026 0.006 < 0.001

sTREM1 × time 0.00005 0.0001 0.65

CI model

Age × time −0.001 0.0004 < 0.001

Female gender × time −0.037 0.005 < 0.001

Education × time 0.0011 0.0009 0.22

APOE4 status × time −0.03 0.005 < 0.001

Amyloid positive × time −0.062 0.0056 < 0.001

sTREM1 × time −0.0004 0.00009 < 0.001

Models included the main effects of predictors and their interactions with time. However, for 
the sake of brevity, the coefficients of the main effects were not presented. In the CU group, 
we did not find a significant interaction between CSF sTREM1 levels and time for aHV 
(coefficients: 0.00005; se: 0.0001; p = 0.65). Conversely, in the CI group, we observed a 
significant interaction between CSF sTREM1 levels and time for aHV (coefficients: −0.0004; 
se: 0.00009; p < 0.0001). CU, cognitively unimpaired; APOE, apolipoprotein E; CI, 
cognitively impaired; sTREM1, soluble Triggering Receptor Expressed on Myeloid Cells 1.
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hippocampal atrophy for the CU and CI groups separately. 
We observed that higher levels of CSF sTREM2 were associated with 
a faster reduction in hippocampal volumes over time both in the CU 
(sTREM2 × time term: coefficient = −0.00002; se = 0.000006; 
p = 0.001; see Supplementary Table S1; Supplementary Figure S2A) 
and CI (sTREM2 × time term: coefficient = −0.00002; se = 0.000006; 
p = 0.001; Supplementary Table S1; Supplementary Figure S2B) groups.

Additionally, several linear mixed-effects models were performed to 
investigate the association between CSF MIF and hippocampal atrophy 
for the CU and CI groups separately. We found that CSF MIF levels were 
not associated with changes in hippocampal volumes over time either in 
the CU (MIF × time term: coefficient = −0.000002; se = 0.000002; 
p = 0.31; see Supplementary Table S2; Supplementary Figure S3A) and 
CI (MIF× time term: coefficient = −0.000003; se = 0.000003; p = 0.22; 
Supplementary Table S2; Supplementary Figure S3B) groups.

Correlational analyses were performed to examine the relationship 
between CSF sTREM1 levels and CSF Aβ42 levels (using continuous 
values) for the CU and CI groups. Among the CU participants, CSF 
sTREM1 levels showed a significant negative correlation with CSF 
Aβ42 levels (r = −0.2, p = 0.01). Similarly, in the CI group, CSF 
sTREM1 levels were also negatively correlated with CSF Aβ42 levels 
(r = −0.17, p < 0.001). Supplementary Figure S4 illustrates scatter 
plots depicting the relationship between CSF sTREM1 levels and CSF 
Aβ42 levels in the CU and CI groups, visually showing the observed 
negative correlations.

The comprehensive version of the results of the linear mixed-
effects models for Tables 2–4, including the coefficients of the main 

FIGURE 2

Association of continuous CSF sTREM1 levels with changes in hippocampal volumes over time in CU and CI groups. (A,B) Created based on two 
separate linear mixed-effect models, one for CU participants and the other for CI participants, respectively. CSF sTREM1 levels were treated as a 
continuous variable in the linear mixed-effect models, while the three levels of CSF sTREM1 (1 SD below the mean, the mean, and 1 SD above the 
mean) were used only for illustrative purposes. In the CU group, we did not find a significant interaction between CSF sTREM1 levels and time for aHV 
(coefficients: 0.00005; se: 0.0001; p = 0.65; Table 3). In the CI group, we found a significant interaction between CSF sTREM1 levels and time for aHV 
(coefficients: −0.0004; se: 0.00009; p < 0.0001). CU, cognitively unimpaired; CI, cognitively impaired; aHV, adjusted hippocampal volume; sTREM1, 
soluble Triggering Receptor Expressed on Myeloid Cells 1.

TABLE 4 Summary of linear mixed-effect models with raw hippocampal 
volumes as the outcome.

Predictors Coefficients Standard 
error

P-values

CU model

Age × time −0.0025 0.0006 < 0.001

Female gender × time −0.011 0.006 0.09

Education × time 0.00036 0.001 0.72

APOE4 status × time −0.0297 0.007 < 0.001

Amyloid positive × time −0.0029 0.007 0.67

sTREM1 × time −0.0002 0.0001 0.1

CI model

Age × time −0.001 0.00055 0.038

Female gender × time −0.045 0.007 < 0.001

Education × time 0.001 0.001 0.32

APOE4 status × time −0.043 0.007 < 0.001

Amyloid positive × time −0.07 0.008 < 0.001

sTREM1 × time −0.0005 0.0001 < 0.001

Models included the main effects of predictors and their interactions with time. However, for 
the sake of brevity, the coefficients of the main effects were not presented. Higher CSF 
sTREM1 levels were associated with a rapid reduction in raw hippocampal volumes over 
time in the CI group (sTREM1 × time term: coefficients = −0.0005; se = 0.0001; p < 0.001), 
but not the CU group (sTREM1 × time term: coefficients = −0.0002; se = 0.0001; p = 0.1). 
CU, cognitively unimpaired; APOE, apolipoprotein E; CI, cognitively impaired; sTREM1, 
soluble Triggering Receptor Expressed on Myeloid Cells 1.
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effects and their interactions with time, is summarized in 
Supplementary Tables S3–S5, respectively.

4 Discussion

The current study had several major findings. First, in the cross-
sectional analyses, baseline CSF sTREM1 levels were increased in the 
CI participants compared the CU participants and were negatively 
associated with hippocampal volumes in both CU and CI participants. 
Second, the linear mixed-effect model showed that the three-way 
interaction between CSF sTREM1, cognitive status, and follow-up 
time was significant for aHV, suggesting that the association between 
CSF sTREM1 and changes in aHV over time differed depending on 
the cognitive status. More specifically, our stratified analyses based on 
cognitive status showed that higher levels of CSF sTREM1 were 
associated with a more rapid rate of hippocampal atrophy in CI but 
not in CU participants. Our data may provide a better understanding 
of the interplay between neuroinflammation, brain structure changes, 
and cognitive decline, potentially contributing to the development of 
novel therapeutic strategies for AD.

Our cross-sectional analysis revealed that baseline CSF sTREM1 
levels were significantly higher in CI participants compared to CU 
participants. This elevation in CSF sTREM1 levels in CI individuals 
is consistent with previous studies that have shown increased CSF 
and plasma sTREM1 levels in AD (Jiang et al., 2019; Del Campo 
et al., 2022; Hok et al., 2023), suggesting a role for neuroinflammation 
in the disease process (Calsolaro and Edison, 2016). We observed a 
negative correlation between CSF sTREM1 levels and hippocampal 
volumes in both CU and CI participants, suggesting that higher CSF 
sTREM1 levels may be  associated with a greater reduction in 

hippocampal volume, which is a well-established marker of 
neurodegeneration in AD (Jack et al., 2010; Jack et al., 2018). This 
finding is in line with the notion that neuroinflammation contributes 
to neurodegeneration, such as hippocampal degeneration, observed 
in the AD brains (Nichols et al., 2019).

The results from our linear mixed-effect model further supported 
the role of sTREM1 in the progression of AD. The significant three-way 
interaction between CSF sTREM1, cognitive status, and follow-up time 
on aHV indicated that the relationship between CSF sTREM1 and 
longitudinal hippocampal atrophy is modified by cognitive status. This 
interaction underscores the importance of considering cognitive status 
when evaluating the impact of CSF sTREM1 on the rate of hippocampal 
atrophy. Our stratified analyses based on cognitive status revealed that 
higher levels of CSF sTREM1 were associated with a more rapid rate of 
hippocampal atrophy in CI participants while this association was absent 
in CU participants. This finding suggested that the neuroinflammatory 
processes, as indicated by CSF sTREM1 levels, may be more pronounced 
in individuals with cognitive impairment, potentially exacerbating the 
neurodegenerative processes. The findings from our study offered a 
nuanced perspective on the role of neuroinflammation in AD. The 
varying effects of CSF sTREM1 on hippocampal atrophy, contingent 
upon cognitive status, could stem from a multitude of factors, including 
the heightened susceptibility of neurons amidst pre-existing 
neurodegeneration (CI participants had decreased baseline hippocampal 
volumes compared CU participants), the intensification of ongoing 
inflammatory processes, or the disturbance of homeostatic mechanisms 
essential for preserving brain integrity. This may also be  due to an 
Aβ-dependent pathway by which elevated sTREM1 accelerates 
neurodegeneration. For instance, a previous study showed that variants 
within the TREM1 gene have been linked to the accumulation of Aβ 
plaques in the brain, as detected through Aβ PET imaging (Jiang et al., 

FIGURE 3

Association of continuous CSF sTREM1 levels with changes in raw hippocampal volumes over time in the CU and CI groups. CSF sTREM1 levels were 
treated as a continuous variable in the linear mixed-effect models, while the three levels of CSF sTREM1 (1 SD below the mean, the mean, and 1 SD 
above the mean) were used only for illustrative purposes. In the CU group, CSF sTREM1 levels were not associated with changes in raw hippocampal 
volumes over time (sTREM1 × time term: coefficients = −0.0002; se = 0.0001; p = 0.1; Table 4). However, we found that higher CSF sTREM1 levels were 
associated with a rapid reduction in raw hippocampal volumes over time in the CI group (sTREM1 × time term: coefficients = −0.0005; se = 0.0001; 
p < 0.001). CU, cognitively unimpaired; CI, cognitively impaired; sTREM1, soluble Triggering Receptor Expressed on Myeloid Cells 1.
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2016). However, caution is advised when accepting the notion that CSF 
sTREM1 affects neurodegeneration by an Aβ-dependent pathway. This 
is because a prior study failed to identify a correlation between CSF 
sTREM1 and CSF Aβ42 levels (Hok et al., 2023). Further studies are 
needed to clarify this notion. Our data suggested that targeting 
neuroinflammation, specifically through the modulation of sTREM1, 
may hold promise as a therapeutic strategy for AD (Saadipour, 2017), 
particularly for individuals with cognitive impairment. By reducing 
sTREM1 levels, it may be  possible to slow the rate of hippocampal 
atrophy and, consequently, the progression of cognitive decline. Future 
studies should explore the potential of sTREM1 as a therapeutic target, 
including the development of interventions that can modulate sTREM1 
levels in the CSF.

This study had several limitations. First, the cross-sectional and 
longitudinal designs of the current study limited the ability to establish 
causality. Future research employing experimental models or 
interventional studies could help clarify the causal relationships between 
neuroinflammation and hippocampal atrophy. Furthermore, the 
generalizability of our findings may be  limited by the demographic 
characteristics of our sample. A more diverse and larger sample could 
provide a broader understanding of the role of CSF sTREM1 in different 
populations and stages of AD. In addition, exploring the underlying 
mechanisms by which CSF sTREM1 influences hippocampal atrophy 
could reveal novel targets for therapeutic intervention. Finally, serum 
triglycerides (TG) have been reported to be associated with systemic 
inflammation. Therefore, it would be of great importance to test whether 
TG could serve as a more accessible biomarker. Future studies are needed 
to address this research question.

In conclusion, our study contributes to the growing body of research 
highlighting the importance of neuroinflammation in the pathogenesis 
of AD. The association between CSF sTREM1 levels and hippocampal 
atrophy, particularly in CI individuals, offers a promising avenue for the 
development of targeted therapies and underscores the need for a 
nuanced approach to the management of this complex disease.
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