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Prolonged moderate to vigorous 
physical activity may lead to a 
decline in cognitive performance: 
a Mendelian randomization study
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Objective: This study investigates the causal relationship between moderate to 
vigorous physical activity and cognitive performance.

Methods: Genetic loci strongly related to moderate to vigorous physical activity 
from genome-wide association studies were used as instrumental variables. 
These were combined with genetic data on cognitive performance from 
different Genome-Wide Association Study (GWAS) to conduct a two-sample 
Mendelian randomization analysis. The primary analysis used inverse variance 
weighting within a random effects model, supplemented by weighted median 
estimation, MR-Egger regression and other methods, with results expressed as 
Beta coefficient.

Results: This study selected 19 SNPs closely related to physical activity as 
instrumental variables. The multiplicative random-effects Inverse-Variance 
Weighted (IVW) analysis revealed that moderate to vigorous physical activity was 
negatively associated with cognitive performance (Beta  =  −0.551; OR  =  0.58; 95% 
CI: 0.46–0.72; p  <  0.001). Consistent results were obtained using the fixed effects 
IVW model (Beta  =  −0.551; OR  =  0.58; 95% CI: 0.52–0.63; p  <  0.001), weighted 
median (Beta  =  −0.424; OR  =  0.65; 95% CI: 0.55–0.78; p  <  0.001), simple mode 
(Beta  =  −0.467; OR  =  0.63; 95% CI: 0.44–0.90; p  <  0.001), and weighted mode 
(Beta  =  −0.504; OR  =  0.60; 95% CI: 0.44–0.83; p  <  0.001). After adjusting for 
BMI, smoking, sleep duration, and alcohol intake frequency, the multivariate MR 
analysis also showed a significant association between genetically predicted 
MVPA and cognitive performance, with Beta of −0.599 and OR  =  0.55 (95% CI: 
0.44–0.69; p  <  0.001).

Conclusion: The findings of this study indicate that genetically predicted 
moderate to vigorous physical activity may be  associated with a decline in 
cognitive performance.
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Introduction

A growing body of research suggests that physical activity has a 
significant impact on cognitive performance. However, establishing 
a causal relationship between physical activity and cognitive 
performance remains challenging due to confounding factors such 
as socioeconomic status, education, and access to healthcare. 
Cognitive performance refers to the brain’s ability to process and 
interpret information, encompassing essential functions such as 
reasoning, attention, thinking, reading, and learning (Gale et al., 
2010). This critical aspect of brain function is linked to various 
health outcomes, including morbidity, mortality, mental disorders, 
coronary heart disease (CHD), and certain cancers (Gale et al., 2010; 
Hart et al., 2003; Jaycox et al., 2009; Lawlor et al., 2008a). In recent 
years, the prevalence of risk factors such as aging, obesity, and 
unhealthy lifestyles (e.g., smoking, excessive alcohol consumption, 
irregular sleep patterns, etc.) has been associated with a decline in 
cognitive performance (Albert et al., 2011; Colcombe and Kramer, 
2003; Salthouse, 1996; Elias et al., 2003; Gunstad et al., 2007; Smith 
et al., 2011; Eckardt et al., 1998; Strine and Chapman, 2005). It is 
believed that individuals who engage in frequent physical activity in 
their early years are more likely to maintain a more active lifestyle in 
the middle and even old age. Additionally, research indicates that 
physical exercise and activity during early life can lead to beneficial 
changes in the brain, reducing the likelihood of cognitive deficits 
later in life (Sabia et al., 2017; Scarmeas and Stern, 2004). Therefore, 
identifying interventions or factors that can mitigate cognitive 
decline early is crucial for reducing the risk of cognitive-
related diseases.

Physical activities encompass a range of daily activities such as 
walking, work exertion (da Silva et al., 2018), recreational activities, 
household chores, and more intense physical activities like running, 
dancing, and competitive sports. Work-related physical activity 
contributes most of overall physical activity, particularly for lower-
income groups with household incomes below the median of $36,000 
(Matsushita et al., 2015; Suminski et al., 2011). Numerous studies 
have consistently demonstrated the positive effects of moderate 
physical activity on cognitive performance (Cotman and Berchtold, 
2002; Ngandu et al., 2015; Chen et al., 2016; Weaver and Jaeggi, 2021; 
Wollseiffen et al., 2016). For instance, a large cohort study from Brazil 
found that adolescents engaging in moderate to vigorous physical 
activity (MVPA) tend to exhibit higher cognitive performance 
(Esteban-Cornejo et al., 2015). Additionally, research indicates that 
older adults with higher levels of physical activity experience a slower 
decline in cognitive performance (Albert et al., 2011; Gauthier et al., 
2011). However, a systematic review of studies found that the effects 
of physical activity on cognitive performance are inconsistent, with 
limited conclusive evidence supporting a positive impact of physical 
activity on cognition. It is inaccurate to generalize that physical 
activity universally improves cognitive performance, as the type, 
amount, frequency, and duration of physical activity can have varying 
effects (Barbosa et al., 2020; Donnelly et al., 2016; Latino and Tafuri, 
2023). Some studies suggest that high-intensity physical activity may 
lead to a decline in cognitive performance (Samuel et al., 2017). Even 
the most rigorous studies on brain cognitive health, such as those 
employing population-based cohorts with longitudinal follow-up or 
natural experiments, may exhibit biases. These biases can arise from 
attrition (e.g., higher dropout rates among individuals with the 

outcome of interest), self-selection (e.g., lifestyle and exercise 
behavior changes following cognitive impairment in older adults), 
and residual confounding (Besser et  al., 2021). In summary, the 
evidence from the aforementioned studies primarily relies on 
observational correlations, leaving the causal relationship between 
physical activity and cognitive performance uncertain.

While randomized controlled trials (RCTs) are the gold standard 
for establishing causal relationships, ethical and practical challenges 
often limit their feasibility in studying the effects of exercise on 
cognitive performance. Despite the established correlation between 
physical activity and cognitive performance, causality remains 
difficult to ascertain due to potential confounding factors. To 
overcome these limitations, this study employs Mendelian 
Randomization (MR) to investigate the causal relationship between 
physical activity and cognitive performance. MR leverages the 
principle of random gene allocation, as outlined by Mendel’s second 
law, to assess causal relationships between exposures and outcomes 
(Smith and Ebrahim, 2003). By using genetic variants associated with 
specific exposures as instrumental variables, MR minimizes 
confounding and reverse causality biases that often challenge 
traditional observational studies (Richmond and Smith, 2022).

In this study, a two-sample MR approach was utilized, drawing 
on data from Genome-Wide Association Studies (GWAS) to assess 
the independent role of moderate-to-vigorous physical activity 
(MVPA) in cognitive performance (Hu et al., 2023). Additionally, a 
multivariable Mendelian Randomization (MVMR) analysis was 
performed to evaluate the causal effect of MVPA on cognitive 
performance while adjusting for other risk factors, including BMI, 
smoking, alcohol consumption, and sleep patterns.

Methods

Study design

The study comprised five components: (1) Identifying genetic 
variants as instrumental SNPs for exposure data through screening; (2) 
Collecting instrumental SNPs for outcome data from a genome-wide 
association study database focused on cognitive performance; (3) 
Integrating instrumental SNPs from the exposure and outcome datasets; 
(4) Conducting two-sample Mendelian randomization analyses and 
multivariate Mendelian randomization analyses; and (5) Conducting 
sensitivity analyses to evaluate the robustness of the Mendelian 
randomization analysis. To ensure valid causal estimates from the 
Mendelian analyses, the selected single nucleotide polymorphisms 
(SNPs) as genetic instruments for physical activity must satisfy three 
assumptions: (A) strong association with physical activity, (B) no 
association with confounding factors of the exposure-outcome 
relationship, and (C) exclusive influence on cognitive performance risk 
through the exposure of physical activity (see Figure 1).

Data sources for physical activity and 
cognitive performance

Genetic instruments for MVPA were obtained from a GWAS 
conducted by Klimentidis et  al. (2018) on a sample of 377,234 
individuals in Europe descent, comprising both males and females. 
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Physical activity levels were assessed using self-reported data 
collected via a touchscreen questionnaire. Participants were asked: 
“In a typical week, how many days did you do 10 min or more of 
moderate activities like carrying light loads or cycling at a normal 
pace (excluding walking)?” For vigorous activities, they were asked: 
“In a typical week, how many days did you do 10 min or more of 
vigorous activities like fast cycling, aerobics, or heavy lifting?” Those 
who reported engaging in such activities on at least 1 day were then 
asked how many minutes they usually spent on these daily activities, 
including work, leisure, travel, and housework (Klimentidis et al., 
2018). MVPA was quantified by multiplying the total number of 
minutes of moderate physical activity per week by four and the total 
number of minutes of vigorous physical activity per week by eight, 
corresponding to their metabolic equivalents, as previously described 
(Bassett, 2003; Ekelund et al., 2006). Data are available for download 
on the ieu website at https://gwas.mrcieu.ac.uk/datasets/
ebi-a-GCST006097/.

Summary-level genetic data for cognitive performance was 
collected by the Cognitive Genomics Consortium (COGENT) (Lee 
et  al., 2018). The COGENT consortium performed a GWAS for 
cognitive performance in 257,841 individuals, and these results were 
meta-analyzed with published results from the UK Biobank (Lee et al., 
2018). The participants included in the study were individuals of 
European descent, ranging in age from 16 to 102 years. Cognitive 
performance was measured using the first unrotated component 
derived from at least three neuropsychological tests. These tests include 
digit span for working memory, logical memory for verbal declarative 
memory, and digit symbol coding for processing speed. Population-
specific genotypic principal components were included as covariates 
(Trampush et al., 2017). Fluid intelligence was assessed using the verbal 
numerical reasoning test in the UK Biobank, which evaluates 
participants’ ability in numerical reasoning and verbal comprehension. 
Estimates are reported in standard deviation (SD) units per SNP.

Additionally, the UK Biobank provides data on three other 
cognitive tests: reaction time, pairs matching, and prospective memory 
(Lee et al., 2018). The cohorts participating in the GWAS mentioned 

above obtained ethics approval from the respective ethical review 
boards and informed written consent from all participants (Zonneveld 
et al., 2023). Data on Cognitive Performance can be downloaded from 
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST006572/.

SNP selection

This study defined a genome-wide significance level of 
P < 5 × 10−8.To filter out weak instrumental variables, the potency of 
each SNP as an instrumental variable was assessed using the formula 
provided in a previous study to calculate the F statistic (Papadimitriou 
et al., 2020). An F > 10 was required for effective selection. SNPs with 
significant linkage disequilibrium needed to be removed to satisfy the 
independence assumption. An r2 value of 1 indicates complete 
linkage disequilibrium between the two SNPs, while an r2 value of 0 
indicates complete linkage balance. In this study, the parameter r2 was 
set to 0.001, and kb was set to 10,000. This represents the removal of 
SNPs with an r2 value greater than 0.001 within a range of 10,000 kb. 
Consequently, instrumental variables with no linkage effect were 
screened from the different MVPA data.

Statistical analysis

The principal analysis was conducted with an inverse-variance 
weighted (IVW) multiplicative random-effects model. A series of 
sensitivity analyses were performed to calculate the error variance 
using a fixed IVW, an MR-Egger regression, a weighted median, a 
simple mode, and a weighted mode to account for potential invalid 
instrument bias or pleiotropy (Hu et al., 2023). Invalid instrument 
bias was assessed using the weighted median model, which provided 
consistent results even when up to 50% of the weight was derived 
from invalid SNPs (Burgess et  al., 2017). MR-Egger regression 
analysis was used to detect and correct for directional pleiotropy, 
and the intercept from MR-Egger was assessed to determine whether 

FIGURE 1

The overview of the study design.
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FIGURE 2

Associations between MVPA and cognitive performance. CI, confidence interval; OR, odd ratio; b, Beta; nsnp, number of SNP nsnp number.

horizontal pleiotropy existed (Bowden et al., 2015). Funnel plots 
were also used to identify potential horizontal pleiotropy by 
assessing asymmetry. A multivariable MR analysis was conducted to 
adjust for BMI and smoking as adjustment factors. Heterogeneity 
among the included SNPs was assessed using Cochrane’s Q value. 
SNPs individually were examined for their impact on the overall 
causal estimate by performing a leave-one-out sensitivity analysis. 
The “TwoSampleMR” and “MVMR” packages in R version 4.2.3 were 
used for all analyses.

Results

After confirming a strong correlation and resolving any potential 
chain imbalance, 1.5 million items associated with MVPA were 

extracted for further analysis. Table 1 presents the basic characteristics 
of the 19 SNPs linked to physical activity. In this table, “Chr” denotes 
chromosomal information, “NEA/EA” represents the non-effect and 
effect alleles, respectively, and “Beta” indicates the effect size of the 
MVPA-associated SNPs. The F statistics corresponding to individual 
SNPs in this study range from 30 to 52, with all F > 10. This suggests 
that the instrumental variables used are robust, thereby reducing the 
likelihood of weak instrument bias and reinforcing the reliability of 
the study’s findings.

As shown in Figure  2, genetically predicted MVPA had a 
significant effect on cognitive performance under the multiplicative 
random-effects inverse-variance weighted (IVW) model, with a Beta 
coefficient of −0.551 and odds ratio (OR) of 0.58 (95% confidence 
interval [CI]: 0.46–0.72; p = 0.000). Consistent results were obtained 
using the fixed effects IVW model (OR = 0.58; 95% CI: 0.52–0.63; 

TABLE 1 Characteristics of SNPs associated with physical activity.

SNP chr EA NEA Beta SE P F

rs2942127 1 A G −0.016 0.003 3.30E-08 31

rs1974771 2 A G 0.021 0.004 6.60E-09 34

rs2035562 3 G A 0.014 0.002 3.90E-09 35

rs2114286 3 G A 0.012 0.002 3.30E-08 31

rs877483 3 C T −0.012 0.002 4.00E-08 30

rs1972763 4 T C −0.013 0.002 3.30E-08 31

rs77742115 5 C T 0.018 0.003 9.60E-09 33

rs2854277 6 T C −0.032 0.005 2.60E-10 40

rs1043595 7 A G −0.014 0.002 4.30E-09 34

rs1186721 7 A G 0.013 0.002 4.40E-08 30

rs7804463 7 C T −0.015 0.002 1.20E-11 46

rs921915 7 C T 0.014 0.002 5.70E-10 38

rs2988004 9 G T 0.013 0.002 4.10E-09 35

rs7326482 13 T G 0.013 0.002 1.60E-08 32

rs10145335 14 A G 0.014 0.003 2.70E-08 31

rs12912808 15 T C −0.018 0.003 1.70E-08 32

rs4886868 15 G T 0.012 0.002 3.50E-08 30

rs429358 19 C T 0.022 0.003 6.10E-13 52

rs1921981 21 A G −0.013 0.002 3.80E-08 30

Chr, chromosome; EA, effect allele; NEA, non-effect allele; SE, standard error; SNP, single nucleotide polymorphisms.
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p < 0.001), weighted median (Beta = −0.424; OR = 0.65; 95% CI: 0.55–
0.78; p < 0.001), simple mode (Beta = −0.467; OR = 0.63; 95% CI: 
0.44–0.90; p < 0.001), and weighted mode (Beta = −0.0.504; OR = 0.60; 
95% CI: 0.44–0.83; p < 0.001). After adjusting for BMI, smoking, sleep 
duration, and alcohol intake frequency, the multivariate MR analysis 
also showed a significant association between genetically predicted 
MVPA and cognitive performance, with a Beta coefficient of −0.599 
and OR = 0.55 (95% CI: 0.44–0.69; p < 0.001). However, only the 
MR-Egger model results indicated that MVPA did not significantly 
affect cognitive performance, with a Beta coefficient of −0.0.463 and 
OR of 0.63 (95% CI: 0.25–1.56; p = 0.330).

In addition, the sensitivity analysis results indicated the absence 
of pleiotropy in this study (p = 0.85). The MR-PRESSO test 

(p = 0.193) also yielded consistent results, as visualized in Figure 3D, 
where the funnel plot for the IVW method exhibited symmetry, 
indicating no presence of horizontal pleiotropy. Furthermore, 
scatter plots and forest plots based on all single nucleotide 
polymorphisms (SNPs) are presented in Figures 3A,B, respectively. 
In contrast, Figure 3C displays the sensitivity analysis results for the 
leave-one-out method.

Discussion

This study employed a two-sample MR analysis using genetic 
instruments derived from large-scale genome-wide association 

FIGURE 3

Scatter plot (A), forest plot (B), leave-one-out sensitivity analysis (C), and funnel plot (D) of the association of MVPA with cognitive performance.
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studies data to strengthen the causal inference. MR leverages gene 
variation associated with a target exposure to estimate causality. By 
relying on the random assignment of genetic variation from parents 
and offspring, MR helps overcome the limitations of observational 
studies, thereby reducing the potential for confounding (Lawlor et al., 
2008b). Since genetic variation is determined at conception, the 
method minimizes the risk of reverse causation. If MVPA has a causal 
effect on cognitive performance, genetic variants associated with 
physical activity should also be linked to cognitive performance. The 
study investigates the relationship between MVPA and cognitive 
performance. The approach utilizes genetic information to evaluate 
the causal relationship between MVPA and cognitive performance, 
mitigating confounding factors. The findings suggest that MVPA may 
have a detrimental effect on cognitive performance. Despite being 
widely recognized for its benefits in improving cognitive performance 
and preventing cognitive impairment, this study indicates that there 
might not be a direct causal relationship between physical activity 
and cognitive performance enhancement. Therefore, 
recommendations to promote physical activity may have an uncertain 
impact on improving cognitive performance improvement.

The mechanisms by which physical activity enhances cognitive 
performance can be explained on macro and cellular levels. On a 
macro level, individuals who engage in regular physical activity are 
often involved in cognitively stimulating activities such as gardening, 
hiking, or outdoor sports. These activities frequently include 
cognitive components, such as reading about outdoor sports, and 
increase social interaction, further stimulating cognitive processes 
and enhancing cognitive performance (Robitaille et  al., 2014; 
Berchtold et al., 2005; Hall et al., 2000). Cross-sectional studies have 
consistently shown a positive correlation between physical activity 
and cognitive performance (Reas et al., 2019). Aerobic exercise and 
strength training have improved executive function, memory, and 
verbal fluency. Longitudinal studies also suggest that more excellent 
physical activity is associated with a slower decline in overall 
cognitive performance, memory, attention, and processing speed 
(Wang et al., 2023). On a cellular and physiological level, physical 
activity may exert its effects through several mechanisms. It 
stimulates the production of brain-derived neurotrophic factor 
(BDNF), crucial for cognitive performance and brain development 
(Khan and Hillman, 2014). BDNF supports neuronal cell survival, 
facilitates synaptic plasticity, and promotes neurogenesis and 
neuronal differentiation, all contributing to improved cognitive 
performance (Griffin et al., 2011). Physical activity leads to a rapid 
and sustained increase in mature BDNF protein and signaling in the 
brain (Hall et al., 2000; Berchtold et al., 2005), which in turn raises 
serum concentrations of these neurotrophins and enhances cognitive 
performance through regulatory mechanisms (Tyrrell and Pereira, 
1980). In a study examining the effects of different interventions on 
BDNF levels in healthy older adults, 19 participants engaged in 
35 min of physical exercise, cognitive training, and mindfulness 
exercises. The study compared the changes in serum BDNF levels 
among the three intervention groups. The results revealed a 
significantly higher increase in serum BDNF levels in the physical 
exercise group compared to the cognitive training and positive 
thinking group (Hakansson et al., 2017).

Research consistently highlights the positive impact of physical 
activity on the hippocampus, a brain region crucial for declarative 

memory consolidation, spatial orientation, and emotion regulation. 
Biologically, there is a positive correlation between hippocampal size 
and cognitive abilities, with a larger hippocampal volume generally 
being advantageous (Anblagan et  al., 2018; Konishi et  al., 2017; 
Reuben et al., 2011). Studies have shown that physical activity can 
increase hippocampal size in adults, thereby enhancing cognitive 
performance (Liu and Nusslock, 2018). The hippocampus, located 
deep within the brain’s medial temporal lobe, plays a critical role in 
cognitive performance (El-Falougy and Benuska, 2006; Geinisman 
et  al., 1995). Impairment in the structure and function of the 
hippocampus can contribute to cognitive performance declines and 
cognitive deficit development (Geinisman et  al., 1995). In a 
randomized controlled trial involving 120 older adults, aerobic 
exercise training increased the volume of the anterior hippocampus, 
leading to improvements in cognitive performance. The study 
observed a 2% increase in hippocampal volume due to exercise 
training, counteracting age-related volume loss and its associated 
adverse effects (Erickson et al., 2011). A study focusing on physically 
inactive older adults found that a physical activity intervention, 
including increased daily walking, increased hippocampal volume 
(Varma et al., 2015). Regarding the relationship between the BDNF 
gene and the hippocampus, the BDNF gene contains two main alleles 
that produce varying amounts of protein products. These products 
regulate neurons in the brain, including those in the hippocampus, 
influencing hippocampal volume and cognitive behavioral traits 
(Frodl et al., 2014; Marrocco et al., 2020; Palasz et al., 2020; Vilor-
Tejedor et al., 2020).

However, there is ongoing debate regarding the effects of physical 
activity on cognitive performance. Research has shown that the 
relationship between the intensity, type, and amount of exercise and 
its impact on BDNF levels or cognitive performance is not always 
straightforward. While several physiological mechanisms suggest that 
physical activity may enhance cognition, others propose that it could 
negatively affect cognitive performance. Given that these mechanisms 
are complex and sometimes conflicting, current scientific 
understanding and technology have yet to describe the relationship 
between physical activity and cognition precisely.

Certain studies have indicated that intense and strenuous 
exercise can disrupt the body’s metabolism and physiological 
processes, negatively impacting cognitive performance (Aguiló et al., 
2005). During physical activity, the rapid metabolism of oxygen 
produces reactive oxygen species (ROS) as a metabolic by-product. 
High levels of ROS accumulated during continuous intense exercise 
can lead to oxidative damage and increase neuronal mortality 
(Radak et al., 2016). While moderate physical activity enhances the 
body’s antioxidant defense system, excessive ROS generated from 
intense exercise may detrimentally affect cognitive performance if 
accumulated in excess (Mastaloudis et al., 2001). A cohort study on 
adolescents found that those engaged in high-intensity physical 
activity had lower cognitive scores, suggesting a negative impact of 
such exercise on cognitive performance during adolescence 
(Esteban-Cornejo et  al., 2015). Additionally, a population-based 
study reported that extending exercise beyond 1 h could decrease 
cognitive performance. This effect might be linked to dehydration 
or hypoglycemia during acute exercise, as increased sweating and 
elevated body temperature can lead to water and electrolyte loss, 
impairing cognitive performance such as decision-making and 
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perceptual tasks (Brisswalter et al., 2002). In a study involving older 
adults, 105 participants were randomly assigned to high-intensity 
interval training (n = 33), moderate-intensity continuous training 
(n = 24), or a control group (n = 48). The findings suggested that 
high-intensity interval exercise might negatively affect the 
hippocampus and overall cognitive performance (Pani et al., 2021). 
Furthermore, a large, nationally representative six-year longitudinal 
study on school sports participation revealed that increased 
participation had a negative effect on students’ performance in 
standardized tests (Marsh and Kleitman, 2003). Another study 
assessing an intensive physical education program found that intense 
intermittent aerobic exercise negatively impacted children’s 
numerical speed and accuracy in cognitive tasks such as simple 
addition problems (Travlos, 2010).

Given the inconsistent evidence regarding the causal relationship 
between physical activity and cognitive performance in previous 
studies, the present study conducted an MR analysis to explore this 
relationship at the genetic level. Additionally, external factors such as 
age, environment, lifestyle, diet, and comorbidities interact with the 
genome through epigenetic modifications. These modifications 
regulate gene expression across various tissues without altering the 
underlying DNA sequence (Barati et al., 2022). Research has shown 
that changes in the epigenome can contribute to cognitive disorders 
(Strafella et al., 2018). Thus, epigenetic changes might influence the 
relationship between physical activity-related SNPs and cognitive 
performance. To account for potential epigenetic influences, relevant 
risk factors such as sleep duration, alcohol consumption, BMI, and 
smoking were identified through a literature review and adjusted for 
in a multivariate MR analysis. The findings of this study indicate that 
genetically predicted MVPA may be  associated with a decline in 
cognitive performance.

However, several potential positive biological adaptation 
pathways suggest that physical activity may help maintain cognitive 
performance throughout individual development. Aerobic exercise 
can modulate neurotransmission, promote angiogenesis, enhance 
neurotrophic factors and synaptic plasticity, and facilitate 
neurogenesis, thereby improving cerebrovascular function 
(Blomstrand et al., 1989; Isaacs et al., 1992; Farmer et al., 2004). The 
health benefits of physical activity are well-documented, including 
improved physical fitness, reduced disease risk, and enhanced quality 
of life. In both adults and adolescents, increased physical activity is 
strongly associated with positive subjective health outcomes 
(Mountjoy et  al., 2011). Self-reported health status, which 
encompasses illness experience, physical ability, health behaviors, 
living situation, and self-esteem, has been shown to predict mortality 
(Idler and Benyamini, 1997). Regular physical activity can lower 
mortality risk in coronary heart disease patients and improve their 
functional and emotional wellbeing (Rodriguez et  al., 1994; 
Haapanen et al., 1997; Lee et al., 2000). Studies on individuals with 
diabetes have shown moderate-intensity physical activity enhances 
metabolism (Lee et al., 2015), while high-intensity physical activity is 
particularly effective for cardiovascular health and blood sugar 
control (Jelleyman et al., 2015).

Furthermore, increasing physical activity is an effective strategy 
for improving the physical and mental health of the elderly (Scarmeas 
et  al., 2001; Gilovich et  al., 2002; Feldman et  al., 2015). Physical 
activity benefits the elderly by enhancing physical and mental health, 

social adaptation, activity levels, and nutritional status. It can extend 
healthy life expectancy, improve quality of life, and boost overall 
wellbeing (Cui et al., 2021). For example, a meta-analysis of 36 studies 
found that elderly individuals participating in physical activity 
programs reported significantly higher levels of mental health, 
including emotional wellbeing, self-perception, and life satisfaction, 
compared to non-participants (Netz et al., 2005). Given the overall 
health benefits of physical activity, promoting it in the general 
population remains justified despite concerns about reduced 
cognitive performance. However, caution is advised with prolonged 
MVPA to mitigate potential negative impacts on cognitive 
performance. Future research should explore the effects of different 
types and intensities of exercise at the genetic level to identify the 
most beneficial forms for cognitive performance and overall health 
while minimizing the risk of cognitive decline.

It is important to acknowledge certain limitations of this study. 
Firstly, the research focused exclusively on the unidirectional impact 
of physical activity on cognitive performance. However, literature 
suggests a potentially more complex bidirectional relationship 
between physical activity and cognitive performance. For instance, 
some studies have found that a decline in cognitive resources is 
associated with lower levels of moderate physical activity (Cheval 
et  al., 2020) and that a bidirectional relationship exists between 
physical activity and executive function in older adults (Daly et al., 
2015). Moreover, cognitive resources have been shown to moderate 
the negative impact of perceived poor neighborhood conditions on 
older adults’ self-reported physical activity (Cheval et  al., 2019). 
Future research should employ bidirectional Mendelian 
randomization to address these complexities to investigate the 
reciprocal causal relationship between physical activity and cognitive 
ability. This approach will provide a more nuanced understanding of 
how physical activity and cognitive performance interact and offer 
valuable scientific evidence for developing more effective public 
health policies and interventions.
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