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Objective: The purpose of this study is to explore whether machine learning can

be used to establish an e�ective model for the diagnosis of Parkinson’s disease

(PD) by using texture features extracted from cerebellar gray matter and white

matter, so as to identify subtle changes that cannot be observed by the naked eye.

Method: This study involved a data collection period from June 2010 to March

2023, including 374 subjects from two cohorts. The Parkinson’s Progression

Markers Initiative (PPMI) served as the training set, with control group and PD

patients (HC: 102 and PD: 102) from 24 global sites. Our institution’s data was

utilized as the test set (HC: 91 and PD: 79). Machine learning was employed

to establish multiple models for PD diagnosis based on texture features of

the cerebellum’s gray and white matter. Results underwent evaluation through

5-fold cross-validation analysis, calculating the area under the receiver operating

characteristic curve (AUC) for each model. The performance of each model was

compared using the Delong test, and the interpretability of the optimized model

was further augmented by employing Shapley additive explanations (SHAP).

Results: The AUCs for all pipelines in the validation dataset were compared

using FeAture Explorer (FAE) software. Among themodels established by Kruskal-

Wallis (KW) and logistic regression via Lasso (LRLasso), the AUCwas highest using

the “one-standard error” rule. ’WM_original_glrlm_GrayLevelNonUniformity’ was

considered the most stable and predictive feature.

Conclusion: The texture features of cerebellar gray matter and white matter

combined with machine learning may have potential value in the diagnosis of

Parkinson’s disease, in which the heterogeneity of white matter may be a more

valuable imaging marker.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disease that is commonly

observed in the elderly population and is characterized by significant motor dysfunction,

including resting tremors, muscle rigidity, bradykinesia, and balance impairment

(Bloem et al., 2021; Lang et al., 2022). As the disease progresses, patients may

experience non-motor symptoms such as significant cognitive impairment, emotional
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fluctuations, sleep irregularities, and autonomic dysfunction (Sun

et al., 2019). Although the cause of PD remains elusive, research

suggests that genetic predispositions, environmental factors such

as certain chemicals and toxins, aging, and other factors play

important roles. Currently, treatment for PD primarily focuses on

managing symptoms and improving patients’ quality of life. The

main approaches to treatment include pharmacotherapy, physical

therapy, and occasionally surgical procedures (Lang et al., 2022;

Cramb et al., 2023).

Medical image texture analysis is a quantification approach

for assessing internal patterns and image structures, having

demonstrated potential in disease quantitative analysis

(Zwanenburg et al., 2020; Fisher et al., 2024). Machine learning,

a pivotal tool in medical image texture analysis, offers numerous

unique benefits to the medical domain. Notably, machine learning

permits efficient processing of large-scale medical image data,

enabling swift and accurate extraction and analysis of texture

features, thus providing clinicians and researchers with more

comprehensive, objective data for precise disease diagnosis and

treatment (Sharma et al., 2023). Additionally, machine learning

uncovers and learns hidden complex patterns and features

within medical images during texture analysis. By harnessing

advanced technologies such as deep learning, machine learning

can autonomously extract crucial texture information beneficial

for disease diagnosis and prediction, thereby enhancing the

sensitivity and accuracy of potential disease detection (Yang

et al., 2023). Furthermore, machine learning personalizes medical

image analysis, tailoring diagnosis and treatment to patients’

unique conditions and medical histories, thus escalating treatment

precision and reducing needless interventions, ultimately

improving medical outcomes (Chen et al., 2023; Sheng et al.,

2023; Fisher et al., 2024). Machine learning and deep learning

have demonstrated their potential in assisting the diagnosis of

Parkinson’s disease, capable of characterizing disease stages and

patient functional impairments to better understand the brain

mechanisms of PD (Abós et al., 2017; Sivaranjini and Sujatha, 2019;

Guo et al., 2022).

Although the diagnosis of PD primarily relies on clinical

symptoms and signs, certain imaging techniques can assist in

ruling out other diseases with similar symptoms. For instance,

conventional magnetic resonance imaging (MRI) can exclude other

brain pathologies such as brain tumors or strokes that may cause

similar symptoms. Techniques like functional MRI (fMRI) (Shi

et al., 2022, 2023) and positron emission tomography (PET) can

detect patterns of activity and metabolic changes in the brain,

providing real-time information about the functioning of different

brain regions (Rischka et al., 2021; Malén et al., 2022). This helps to

understand the abnormal patterns of brain activity in PD patients,

particularly during the execution of motor and cognitive tasks

(Haq et al., 2020). By using specific radioactive tracers, PET scans

can detect molecular and biochemical processes in the brain, such

as the integrity of the dopamine transport system (Riou et al.,

2021; Nordin et al., 2022). This aids in early diagnosis and the

assessment of potential new therapies. Structural imaging analysis

using MRI can reveal structural changes in the brains of PD

patients, such as iron deposition and atrophy in the substantia nigra

pars compacta. While these changes are non-specific (Bouilleret

et al., 2008), they can serve as biomarkers for disease progression

(Fabbri et al., 2017; Du et al., 2018; Biondetti et al., 2020; He et al.,

2020).

Given the lack of specific clinical presentations in the early

stages of PD, and because the structural changes induced by PD

are almost imperceptible to the naked eye on magnetic resonance

imaging (MRI), developing an objective and accurate diagnostic

method has become a focal point of research. Prior research had

centered on the basal ganglia and cerebral cortex, but exploration

of the cerebellum in PD patients has recently gained researchers’

attention (Ko et al., 2017; Solana-Lavalle and Rosas-Romero,

2021; Pang et al., 2022; Wang et al., 2023). The cerebellum,

as a brain region associated with motor functions, may reveal

microstructural alterations related to PD through changes in its

texture features. Considering the cerebellum’s role in coordination

and fine motor control, investigating the texture features of gray

and white matter greatly contributes to a profound understanding

of PD’s neurodegenerative process (Deuter et al., 2023; Iskusnykh

et al., 2024; Saban et al., 2024). The purpose of this paper is not

only to explore the potential of Parkinson’s disease diagnosis using

machine learning with cerebellar gray matter and white matter

texture features, but also to find the most diagnostically valuable

factors through model visualization.

Methods

Subjects

Participants in this study were recruited from 2 cohorts: the

Parkinson’s Progression Markers Initiative (PPMI; http://www.

ppmi-info.org) (Marek et al., 2011) and First Affiliated Hospital of

Dalian Medical University. The inclusion criteria for Parkinson’s

disease patients in the PPMI cohort are as follows: (1) Imaging

studies have not revealed tumors, strokes, or other lesions; (2)

The image quality is good without artifacts; (3) The scanning

range covers the whole brain. The detailed HC standards in

the PPMI queue are found at https://www.ppmi-info.org/study-

design/research-documents-and-sops. Healthy subjects who are

demographically matched and do not have current or active

neurological diseases will also be included in the study. Finally, 204

patients were included in the PPMI cohort, including 102 patients

with Parkinson’s disease and 102 HCs. The PPMI cohort served

as the training set for the experiment. The data used in this study

came from the PPMI website in November 2023.The cohort data

obtained from PPMI was used as the training set of this study.

A total of 170 patient cohorts were included in our hospital,

including 79 PD patients and 91 normal controls. The inclusion

and exclusion criteria of all subjects in the study were consistent

with the screening of PPMI. This part of the data was used as the

test set of the model. The study received ethical approval from the

Ethics Committee (approval number: LCKY2014-29), and written

informed consent was obtained from all participants.

MRI acquisition

Image acquisition parameters for the standardized acquisition

were obtained from MRI scanner protocols provided by the
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TABLE 1 All MRI acquisition parameters.

General
electric
company
(n = 76)

Philips,
ingenia

CX
(n = 62)

United
imaging uMR

Omega
(n = 32)

Field/T 3.0 3.0 3.0

Coil/Channel 12 24 32

TR/ms 10.2 8.4 9

TE/ms 4.2 3.8 3.6

FOV 512× 512 200× 200 256× 180

Thickness/mm 1 1 1

Slice Gap/mm 0 0 0

Pixel spacing 1× 1×1 0.67× 0.67 0.5× 0.5

Parkinson’s Progression Markers Initiative (PPMI, https://ida.loni.

usc.edu/pages/access/studyData). The detailed MRI acquisition

parameters of enrolled patients in our hospital cohort were

presented in Table 1.

Image preprocessing and radiomic feature
extraction

The detailed processes of image preprocessing and radiomic

feature extraction were described in Figure 1. VolBrain (https://

volbrain.upv.es/), which was a robust, high-precision automatic

channel for brain segmentation is used to automatically extract

masks from each cerebellum (Næss-Schmidt et al., 2016; Park

et al., 2023). Prior to initiating the segmentation process, the

images undergo a preprocessing routine to ensure uniformity in

data analysis across different patients. This includes the application

of the N4 bias correction algorithm to eliminate undesired low-

frequency intensity variations, followed by standardization of the

signal intensity through z-score normalization. Furthermore, all

images were registered to the Montreal Neurological Institute

space and resampled to achieve a consistent voxel resolution

of 1 × 1 × 1 mm3. Subsequently, VolBrain employs a

specialized cerebellar template for the individual segmentation of

each image.

After the completion of image preprocessing, PyRadiomics

was used to extract radiomics features of cerebellar gray and

white matter, which conformed to the Image Biomarker

Standardization Initiative. A total of 73 features were

extracted each time, including 22 Gray-level co-occurrence

matrix (GLCM) features, 14 Gray-level dependence matrix

(GLDM) features, 16 Gray-level size zone matrix (GLSZM)

features, 16 Gray-level size zone matrix (GLRLM) features,

5 Neighboring gray tone difference matrix (NGTDM)

features. Details of these 73 features were described in

Supplementary material. In this study, a total of 146 imaging

features [73 features × 2 (cerebellar gray matter + white matter)]

were extracted.

Feature selections

We applied the normalization on the feature matrix. For each

feature vector, we calculated the mean value and the standard

deviation. Each feature vector was subtracted by the mean value

and was divided by the standard deviation. After normalization

process, each vector had zero center and unit standard deviation.

Since the dimension of feature space was high, we compared

the similarity of each feature pair. If the Pearson Correlation

Coefficient (PCC) value of the feature pair was larger than 0.90,

we removed one of them. After this process, the dimension of

the feature space was reduced and each feature was independent

to each other. Lastly, the analysis of variance (ANOVA), relief,

Kruskal-Wallis (KW), and recursive feature elimination (RFE)

were utilized for feature selections. ANOVA is a common analytic

method to explore the significant features corresponding to the

labels. The relief selected the sub-data set and finds the relative

features according to label recursivity. KW test was a rank sum test,

which sorted all data from small to large and calculates the rank of

each data. The goal of RFEwas to select features based on a classifier

by recursively considering a smaller set of features, and the weight

of each feature remained consistent. The feature number range was

set from 1 to 20.

Classification

The classification performances were tested with 10ML

algorithms based on Python code with scikit-learn library (https://

scikit-learn.org/), including the support vector machine (SVM),

linear discriminant analysis (LDA), autoencoder (AE), random

forests (RF), logistic regression (LR), logistic regression via Lasso

(LRLasso), ada-boost (AB), decision tree (DT), Gaussian process

(GP), and naive Bayes (NB). These 10 machine learning algorithms

will all be used to build models, and the indicator results of all

models are provided in the Supplementary material.

All above processes were implemented with FeAture Explorer

Pro (FAE, V 0.5.0) on Python (3.7.6) (Abraham et al., 2014; Song

et al., 2020).

Evaluations

This study utilized the 5-fold cross-validation method to assess

the results. Additionally, the performance metrics such as accuracy,

sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) were computed at a cutoff value that

maximized the Youden index for each predictive model. The area

under the receiver operating characteristic curve (AUC-ROC), a

common measure of model performance, was then calculated for

each tested condition (as depicted in Figure 1).

Model interpretability

SHAP (Shapley Additive exPlanations) was a Python library

used to interpret the prediction results of complex machine
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FIGURE 1

A schematic diagram for the whole radiomics and machine learning pipeline.

learning models (Kui et al., 2022; Yasin et al., 2023) (as depicted in

Figure 1). Based on the Shapley value in game theory, it distributes

the contribution of each characteristic (input variable) to the

predicted output in a fair way. The Shapley value was a fair

distribution solution, which takes into account the order of all

possible feature contributions, and the results satisfy the principles

of efficiency, symmetry, additivity, and zero contribution. The role

of SHAP was mainly reflected in that it provides a transparent,

intuitive, fair and consistent way to quantify and understand the

impact of characteristics on model prediction. Through SHAP, we

can get the impact of each feature on individual predictions and

overall predictions, as well as compare features, so as to understand

which features were more important to model prediction. The

machine learning model we use usually determines the prediction

results by a variety of input characteristics. To better understand

this model and make it transparent and interpretable, we can use

the SHAP library to see the extent to which each feature affects

and how these features interact to affect predictions. The positive

or negative SHAP value represents whether the influence of this

characteristic on model prediction was promoted or suppressed.

The larger the absolute value of SHAP value was, the greater

the influence of this characteristic on model prediction was.
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TABLE 2 Clinical characteristics of all participants.

Clinical variables Training set (n = 204) Test set (n = 170)

NC PD P value NC PD P value

N = 102 N = 102 N = 91 N = 79

Age (years)a 66.00 (62.00, 71.00) 66.00 (59.25, 70.00) 0.236 66.00 (62.00, 71.00) 67.00 (61.00, 71.00) 0.902

Gender, n (%)b 0.069 66.00 (62.00, 71.00) 67.00 (61.00, 71.00) 0.293

Male 43 (42.16) 56 (54.90) 32 (35.16) 34 (43.04)

Female 59 (57.84) 46 (45.10) 59(64.84) 45(56.96)

MDS-UPDRS III NA 24.00 (15.00, 30.75) NA NA

HY NA NA NA 2.50 (2.00, 3.00)

Data are presented as the mean ± SD (range) for normally distributed data or median (interquartile range) (range) for non-normally distributed data. aThe P-value was calculated using t-test.
bThe P-value was calculated using the chi-square test. MDS-UPDRS, MDS Unified-Parkinson Disease Rating Scale; HY, Hoehn and Yahr staging scale.

Therefore, through the SHAP library, we could deeply interpret the

prediction behavior of the model and visualize the influence of the

characteristics, and optimize and improve it more effectively.

Results

The baseline clinical characteristics of the 374 patients with

subjects in the training set (n = 204) and test set (n = 170)

were summarized in Table 2. In total, 102 (50.0%) and 79 (46.5%)

subjects in the training group and test group were Parkinson’s

disease patients. None of the parameters tested revealed significant

difference between groups.

We compared the AUC of all the pipelines on the validation

dataset with FAE. The pipeline using KW feature selection and a

SVM classifier yielded the highest AUCs using 12 features. When

the “one-standard error” rule was used, FAE also produces an

efficient and simple model. At this time, the pipeline used was the

KW feature selection and LRLasso classifier, and 8 features were

used for modeling. The ROC curves were shown in Figure 2A. The

feature selection of this model was shown in Figure 2B. The AUC

and the accuracy could achieve 0.826 and 0.760, respectively. In

this point, The AUC and the accuracy of the model achieve 0.806

and 0.741 on testing data set. FAE-selected features were shown

in Figure 2C, including one ngtdm feature, two gldm features, two

glrlm features, and three glcm features. The selected features were

shown in Table 3. The correlation heat map of the features in the

final model was shown in Figure 2D.

As for ANOVA, the pipeline using the LDA classifier yielded

the highest AUC using five features with a “one-standard error”

rule. The AUC and the accuracy could achieve 0.824 and

0.774, respectively. In this point, the AUC and the accuracy

of the model achieve 0.0.658 and 0.635 on testing data set

(Figure 3A). The features selected via FAE were depicted in

Figures 3B, C, which include one gldm feature, one gldm feature,

and three glcm features. These selected attributes were detailed

in Supplementary Table 5. Figure 3D presents a heat map that

illustrates the correlations among the features incorporated into the

final model.

Concerning the REF, the pipeline deploying an LDA classifier

secured the highest AUC while utilizing three features, in

accordance with the “one-standard error” rule. Concurrently, FAE

furnished a three-feature model, as depicted in Figure 4. The

model’s AUC and accuracy reached 0.823 and 0.740, respectively.

At this juncture, on the testing dataset, the model’s AUC

and accuracy stood at 0.696 and 0.653, respectively. The FAE

selected three features, illustrated in Figure 4C, which comprise

one glrlm feature and two gldm features. Supplementary Table 6

delineated the designated features for the model along with their

corresponding coefficients.

Regarding Relief, the LRLasso classifier-based pipeline, while

adhering to the “one-standard error” rule, had yielded the most

robust AUC. Concurrently, the implementation of the FAE had

resulted in a model encapsulating six features, as depicted in

Figure 5. The performance metrics, AUC and accuracy, had

impressively reached 0.793 and 0.735, respectively. Pertinently,

when assessed on the testing dataset, the model’s AUC and

accuracy stood at 0.764 and 0.729. The six features curated

by the FAE, presented in Figure 5C, encompass a diverse set

including three glcm features, one gldm feature, one glrlm

feature, and one ngtdm feature. Among these, two were sourced

from the cerebellar gray matter and four from cerebellar white

matter. The nomenclature and corresponding coefficients of the

features adopted for the model were systematically cataloged in

Supplementary Table 7.

Comparison of model performances

In the training set, the KW8LRLasso model generally

demonstrated enhanced performance relative to the other models

evaluated. Although there are differences in AUC among the

four models, it was found that not all of these differences

are statistically significant. The data from this study revealed a

statistical difference in AUC between the KW8LRLasso model and

the ANOVA5LDA model (AUC: 0.865 vs. 0.839, P = 0.0343), as

well as a statistical difference in AUC between the KW8LRLasso

model and the RELIEF6LRLasso model (P = 0.0112). In the test

set, the performance of the KW8LRLasso model was superior

to other models. There was a significant difference in AUC

between the ANOVA5LDA model and the KW8LRLasso model

(AUC: 0.651 vs. 0.768, P < 0.001). Additionally, there was also a
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FIGURE 2

Model performance generated using Kruskal-Wallis (KW). (A) Receiver operating characteristic (ROC) curves of this model using di�erent datasets. (B)

FeAture Explorer (FAE) software suggested a candidate eight-feature model according to the “one-standard error” rule. (C) Heatmap of the

correlation of the features in the final model. (D) Weight distribution map of features in the model.

significant difference in AUC between the KW8LRLasso model and

the REF3LDA model (AUC: 0.768 vs. 0.685, P < 0.001). In the

validation set, the KW8LRLasso model tended to show superior

performance compared to others. However, there was no statistical

difference in effectiveness between the four models. The detailed

comparison of each model can be found in Table 4, and their ROC

curves were shown in Figure 6.

In addition to the feature selection methods, we also compared

and listed the optimal AUCs of different ML classifications in the

validation dataset (Supplementary Table 8).

Model interpretability with SHAP

The SHAP values for each selected feature in the

KW8LRLasso model were calculated, and the relevant

plots were shown in Figure 7. Shapley values were used

to measure the impact and sign of each radiomic feature

in model prediction. Features with positive SHAP values

TABLE 3 The coe�cients of eight features of the model combined with

REF and RF.

Feature Coef in
model

A WM_original_glcm_Idn 0.000

B WM_original_glcm_Imc1 1.581

C WM_original_glcm_InverseVariance 0.000

D WM_original_gldm_DependenceNonUniformityNormalized −0.726

E WM_original_gldm_DependenceVariance −0.585

F WM_original_glrlm_GrayLevelNonUniformity 1.156

G WM_original_glrlm_LongRunEmphasis 0.136

H WM_original_ngtdm_Coarseness 0.000

contribute to the prediction of subjects with PD, while

features with negative SHAP values aid in predicting subjects

without PD. Details of other models can be found in

Supplementary Figures 8–10.
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FIGURE 3

Model performance generated using analysis of variance (ANOVA). (A) Receiver operating characteristic (ROC) curves of this model using di�erent

datasets. (B) FeAture Explorer (FAE) software suggested a candidate five-feature model according to the “one-standard error” rule. (C) Heatmap of

the correlation of the features in the final model. (D) Weight distribution map of features in the model.

Discussion

In this study, our results support our basic hypothesis that

the texture features of the cerebellum can provide a robust

distinguishing feature space between PD and HC. Through the

visualization of the model by SHAP, we found that the texture

features extracted from the white matter of the cerebellum have

greater diagnostic value.

The ROIs (cerebellar gray matter and white matter) selected in

the present study included regions that are known to be involved in

the pathogenesis of PD. Actually, pathophysiological and atrophic

changes in the cerebellum are documented in Parkinson’s disease

(O’Callaghan et al., 2016; Ko et al., 2017). Usually, abnormal

changes in the cerebellum in patients with Parkinson’s disease

involve not only structural changes, but also functional changes.

Studies by O’Callaghan et al. have shown that although cerebellum

atrophy occurs in patients with Parkinson’s disease, this change

is miraculously accompanied by an increase in the connection

between the two functional subsystems (O’Callaghan et al., 2016).

More importantly, the evidence showed that the abnormality of

cortical network in patients with Parkinson’s disease is related

to the degree of local cerebellar atrophy, which indicated that

the internal structural changes of cerebellum play a greater

role in Parkinson’s disease (O’Callaghan et al., 2016). Increased

intracerebellar connectivity may reflect pathological, as opposed

to compensatory, activity (Pedroso et al., 2013; O’Callaghan et al.,

2016). Riou et al. (2021) assessed the motor, cognitive and mental

status of Parkinson’s patients, combined with resting 18FDG-

PET metabolic imaging to explore the relationship between these

three aspects and cerebellar metabolism. The results show that

the cerebellum not only plays a role in motor symptoms, but also

can be extended to other non-motor symptoms (such as cognitive,

mental, etc.).

Quantitative imaging, such as IBSI (Zwanenburg et al., 2020)

(Image Biomarker Standardization Program), based radiomics had

gained increasing attention in the field of oncology, while methods

for identifying PD and HC were limited. Image textures generally

define the finer spatial organization within an image or region
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FIGURE 4

Model performance generated using Recursive feature elimination (REF). (A) Receiver operating characteristic (ROC) curves of this model using

di�erent datasets. (B) FeAture Explorer (FAE) software suggested a candidate seven-feature model according to the “one-standard error” rule. (C)

Heatmap of the correlation of the features in the final model. (D) Weight distribution map of features in the model.

of interest (Park and Kim, 2018; van Timmeren et al., 2020; Le

et al., 2021). GLCM describes the frequency of occurrence of

adjacent pixel pairs with specific gray levels within an image.

For each pair of neighboring pixels, the GLCM calculates the

probability of their gray levels occurring together. GLDM was a

method for quantifying gray level dependencies within an image. It

operates by measuring the differences in gray level values between

a pixel and its surrounding pixels within a local area. Unlike the

GLCM, the GLDM focuses on the relationship of a pixel to its

surrounding pixels, rather than just to its immediate neighbors.

GLSZM represents the size of contiguous pixel areas, also known as

“size zones,” that share the same gray level value within the image.

By doing so, the GLSZMquantifies the size of common areas within

the image, which was directly related to the distribution of gray

levels and helps to describe the coarseness of textures within the

image. GLRLM measures the length of consecutive occurrences of

the same gray level value within an image (Palani et al., 2023). A

run length refers to a sequence of consecutive pixels in a specific

direction that had the same gray level. NGTDM was a method for

characterizing image texture, taking into account the differences in

gray level values between a pixel and the pixels in its neighborhood

(Liang et al., 2021).

Increasing evidence suggests that the cerebellum plays a role

in the pathophysiology of Parkinson’s disease (Vercruysse et al.,

2015; Zeng et al., 2016; Rusholt et al., 2020; Zwanenburg et al.,

2020; Yan et al., 2023; Zhong et al., 2023). However, most of

the past radiomics studies on Parkinson’s disease had focused

on the basal ganglia (Park et al., 2023; Sun et al., 2023), and

the value of advanced texture features in the gray and white

matter of the cerebellum had been greatly underestimated. In

this study, the common parameters used to differentiate PD

from HC was WM_original_glrlm_GrayLevelNonUniformity in

the four feature selection methods. Therefore, we consider this

feature as the most stable and efficient feature, contributing

to each model. The “Original_glrlm_GrayLevelNonUniformity”

measures the similarity of gray-level intensity values in an
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FIGURE 5

Model performance generated using Relief. (A) Receiver operating characteristic (ROC) curves of this model using di�erent datasets. (B) FeAture

Explorer (FAE) software suggested a candidate six-feature model according to the “one-standard error” rule. (C) Heatmap of the correlation of the

features in the final model. (D) Weight distribution map of features in the model.

TABLE 4 The performances of four models in the training, test, and validation sets.

ANOVA5LDA KW8LRLasso REF3LDA RELIEF6LRLasso P

Training set 0.839 0.865 0.838 0.814 0.034a

Test set 0.651 0.768 0.685 0.733 P < 0.001b,e

0.003c

0.004d

Validation set 0.824 0.826 0.823 0.793

aANOVA5LDA∼ KW8LRLasso, bANOVA5LDA∼ KW8LRLasso, cANOVA5LDA∼ REF3LDA, dANOVA5LDA∼ RELIEF6LRLasso, eKW8LRLasso∼ REF3LDA.

image, such that a higher value correlates with lesser similarity

and greater heterogeneity. In the cases included in this study,

the Original_glrlm_GrayLevelNonUniformity was higher in the

PD group than in the HC group, reflecting the variation and

distribution of grayscale values within T1WI images of white

matter in the cerebellum of PD patients, which were more

complex and varied compared to the HC group. Parkinson’s

disease is a common neurodegenerative disease characterized by

the abnormal accumulation of α-synuclein in the cytoplasm of

oligodendrocytes, known as glial cytoplasmic inclusions (GCI)

(Dickson, 2012; Kaindlstorfer et al., 2018). Abnormal accumulation

of alpha-synuclein in OLG cells can lead to pathological changes

such as neuronal degeneration, neuroinflammatory responses,

and oxidative stress, which may accelerate the progression of

neurodegenerative diseases. This abnormal accumulation is likely

one of the key factors leading to the death of substantia

nigra dopamine neurons. In Parkinson’s disease (PD), the

death of these neurons can result in damage to the pathways

between the substantia nigra and the striatum. These pathways

include numerous white matter tracts, such as the cortico-basal
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FIGURE 6

Receiver operating characteristics curves of the models in the training, test, and validation sets.

FIGURE 7

Model interpretability of the KW8LRLasso model with SHapley Additive exPlanations (SHAP). (A) Summary plot of feature impact on the decision of

the model showing positive and negative relationships of the predictors with the target variable. A positive SHAP value indicates an increase in the

probability of PD. (B) Decision diagram of the KW8LRLasso model. The vertical gray line in the middle of the decision graph represents the basic value

of the model. The colored line, on the other hand, indicates the prediction and shows whether each feature moves the output value above or below

the average predicted value. The eigenvalues are positioned next to the prediction line for reference. Moving to the bottom of the diagram, the

prediction line demonstrates the accumulation of SHAP value from the base value to the final score of the model at the top of the diagram. (C)

Variance importance plot listing the most significant variables. The features that were more valuable for the diagnosis of PD were located at the top,

presented in descending order. (D) Waterfall diagram of the first sample in the KW8LRLasso model. The waterfall diagram is designed to provide an

explanation for a single prediction. It takes a single line of the interpreted object as input. The diagram begins with the expected value of the model

output at the bottom. Each row then indicates whether each feature has a positive (red) or negative (blue) contribution. In other words, it shows how

the value is pushed from the model’s expected output value on the data set to the model’s predicted output value. It is worth noting that the most

contributing factor is ’WM_original_glrlm_GrayLevelNonUniformity’.

ganglia-brainstem pathway, the cortico-spinal tract, and the

cortico-thalamic tract, among others. Therefore, these white matter

tracts are also affected. Based on this pathological change, PD

patients often exhibit signs of demyelination, axonal loss, and

gliosis in their white matter, resulting in significant atrophy of

the cerebellar white matter in PD patients. Rusholt et al. (2020)

also confirmed this view. They found that cerebellar white matter

atrophy in patients with PD was significantly higher than that

in healthy controls, but there was no significant difference in

cerebellar cortical volume between the two groups. Previous studies

have confirmed the potential importance of white matter changes

in the pathology of PD, particularly in the cerebellum (Rusholt

et al., 2020; Yan et al., 2023; Zhong et al., 2023), where damaged

white matter changes are a prominent characteristic of PD (Rusholt
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et al., 2020). Previous studies have shown that gray matter atrophy

in PD patients is particularly prominent in the cerebral cortex,

while there are only a few small brain regions in the cerebellum

with abnormal atrophy (Nishio et al., 2010; Barber et al., 2017;

Xuan et al., 2017). Xuan et al. (2017) have suggested that this

may be due to compensatory changes in the gray matter of the

cerebellum. Rusholt et al. (2020)’s findings suggested that there

was no significant volume change in the entire gray matter of

the cerebellum or its main branches, which again emphasized the

importance of white matter changes in exploring PD pathological

changes. In this study, quantitative texture features of the white

matter were found to be more valuable than those of the gray

matter, consistent with the pathological basis and previous studies.

Therefore, leveraging the heterogeneity of white matter changes,

we constructed an efficient diagnostic model based on advanced

machine learning algorithms and visualized the contribution values

of quantitative texture feature imaging biomarkers using SHAP.

ANOVA, Relief, KW, and RFE were four feature selection

methods, each with its own set of advantages and disadvantages,

suitable for different circumstances. ANOVA was computationally

simple, easy to understand, and implement, yet it may overlook

significant feature combinations and struggle with non-linear

relationships. Relief took into account the interdependencies

between features; however, its computational cost can become

substantial when dealing with a large number of features. KW was

capable of handling non-linear relationships and interactions but

is sensitive to outliers and missing values. RFE enhanced model

interpretability by recursively selecting features, but it may lead to

overfitting, particularly when there were few features or the dataset

was small.

After comparing the indicators of the four models across

three data sets, it could be concluded that the KW8LRLasso

model exhibits the highest level of performance in this study.

Through the implementation of the KW feature screening method,

effective feature selection is achieved. This method not only

enhances the performance and efficiency of the model but also

improves its interpretability and generalizability, particularly when

confronted with high-dimensional data. The LRLasso algorithm

is known for its strong performance in high-dimensional data

analysis and feature selection. It can effectively handle datasets

with a large number of variables and improve both the stability

and interpretability of the model. Additionally, the regularization

feature of the algorithm helps mitigate multicollinearity issues and

enhances the model’s robustness. These advantages may explain

why the KW8LRLasso model is superior to the other three models.

However, when applying these findings clinically, it is important

to consider more complex factors. It is necessary to increase the

sample size in order to enhance the model’s universality, stability,

and sensitivity. This will ensure that the study’s conclusions are not

solely based on the current data set.

Our study has some limitations. First, this study only included

radiomics features and did not involve clinical-related data, lacking

a systematic and comprehensive investigation. In future research,

it is necessary to incorporate as detailed clinical information as

possible. Secondly, this study did not classify Parkinson’s patients

into phenotypes; the next step would be to expand the sample size

and subdivide into subtypes. Lastly, we treated the cerebellum as an

individual entity and only constructed models based on cerebellar

structural images; subsequent studies could incorporate more

functional images and sequences. In future research, acquiring

high-quality functional imaging data and subsequently integrating

functional connectivity analysis within the domain of machine

learning presents an intriguing possibility.

Conclusion

This study focused on the cerebellum and extracts texture

features from 3DT1WI images of its gray and white matter to

establish a model for diagnosing Parkinson’s disease. Through the

visualization of the model, the heterogeneity of the cerebellar white

matter in PD patients was highlighted. Future research can focus

on delving into these complex texture features and exploring their

relationship with potential pathological microstructural changes.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding authors.

Ethics statement

The studies involving humans were approved by the Ethics

Committee of Dalian Medical University. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.

Author contributions

YC: Formal analysis, Investigation, Methodology, Software,

Validation, Visualization, Writing – original draft, Writing

– review & editing, Resources. YQ: Investigation, Software,

Validation, Writing – original draft. TL: Software, Validation,

Writing – original draft, Funding acquisition, Supervision,

Visualization, Writing – review & editing, Project administration,

Resources. AL: Visualization, Writing – original draft, Data

curation, Investigation, Methodology, Resources. YN: Data

curation, Investigation, Methodology, Visualization, Writing

– original draft, Software, Formal analysis, Validation. RP:

Methodology, Writing – original draft, Project administration,

Resources, Supervision, Validation, Writing – review & editing. BS:

Methodology, Supervision, Validation, Writing – review & editing,

Conceptualization, Visualization.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

work was supported by the National Natural Science Foundation

of China (NSFC 82001483, TL).

Frontiers in AgingNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1393841
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnagi.2024.1393841

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnagi.2024.

1393841/full#supplementary-material

References

Abós, A., Baggio, H. C., Segura, B., García-Díaz, A. I., Compta, Y., Martí, M. J., et al.
C. (2017). Discriminating cognitive status in Parkinson’s disease through functional
connectomics and machine learning. Sci. Rep. 7:45347. doi: 10.1038/srep45347

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J.,
et al. (2014). Machine learning for neuroimaging with scikit-learn. Front. Neuroinform.
8:14. doi: 10.3389/fninf.2014.00014

Barber, T. R., Lawton, M., Rolinski, M., Evetts, S., Baig, F., Ruffmann, C., et al.
(2017). Prodromal parkinsonism and neurodegenerative risk stratification in REM
sleep behavior disorder. Sleep 40:zsx071. doi: 10.1093/sleep/zsx071

Biondetti, E., Gaurav, R., Yahia-Cherif, L., Mangone, G., Pyatigorskaya, N.,
Valabrègue, R., et al. (2020). Spatiotemporal changes in substantia nigra neuromelanin
content in Parkinson’s disease. Brain 143, 2757–2770. doi: 10.1093/brain/awaa216

Bloem, B. R., Okun, M. S., and Klein, C. (2021). Parkinson’s disease. Lancet 397,
2284–2303. doi: 10.1016/S0140-6736(21)00218-X

Bouilleret, V., Semah, F., Chassoux, F., Mantzaridez, M., Biraben, A., Trebossen,
R., et al. (2008). Basal ganglia involvement in temporal lobe epilepsy. Neurology 70,
177–184. doi: 10.1212/01.wnl.0000297514.47695.48

Chen, C., Lu, C., Viswanathan, V., Maveal, B., Maheshwari, B., Willis, J., et al.
(2023). Identifying primary tumor site of origin for liver metastases via a combination
of handcrafted and deep learning features. J. Pathol. 10:e344. doi: 10.1002/cjp2.344

Cramb, K. M. L., Beccano-Kelly, D., Cragg, S. J., and Wade-Martins, R.
(2023). Impaired dopamine release in Parkinson’s disease. Brain 146, 3117–3132.
doi: 10.1093/brain/awad064

Deuter, D., Mederer, T., Kohl, Z., Forras, P., Rosengarth, K., Schlabeck,
M., et al. (2023). Amelioration of Parkinsonian tremor evoked by DBS:
which role play cerebello-(sub)thalamic fiber tracts? J. Neurol. 271, 1451–1461.
doi: 10.1007/s00415-023-12095-1

Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: neuropathology.
Cold Spring Harbor Perspect. Med. 2, a009258. doi: 10.1101/cshperspect.a009258

Du, G., Lewis, M. M., Sica, C., He, L., Connor, J. R., Kong, L., et al. (2018). Distinct
progression pattern of susceptibilityMRI in the substantia nigra of Parkinson’s patients.
Movem. Disor. 33, 1423–1431. doi: 10.1002/mds.27318

Fabbri, M., Reimão, S., Carvalho, M., Nunes, R. G., Abreu, D., Guedes, L. C., et al.
(2017). Substantia nigra neuromelanin as an imaging biomarker of disease progression
in Parkinson’s disease. J. Parkinson’s Dis. 7, 491–501. doi: 10.3233/JPD-171135

Fisher, T. B., Saini, G., Rekha, T. S., Krishnamurthy, J., Bhattarai, S., Callagy, G., et al.
(2024). Digital image analysis andmachine learning-assisted prediction of neoadjuvant
chemotherapy response in triple-negative breast cancer. Breast Cancer Res. 26:12.
doi: 10.1186/s13058-023-01752-y

Guo, X., Tinaz, S., and Dvornek, N. C. (2022). Characterization of early stage
Parkinson’s disease from resting-state fMRI data using a long short-term memory
network. Front. Neuroimag. 1. doi: 10.3389/fnimg.2022.952084

Haq, N. F., Cai, J., Yu, T., McKeown, M. J., and Wang, Z. J. (2020). “Parkinson’s
disease detection from fmri-derived brainstem regional functional connectivity
networks,” in Medical Image Computing and Computer Assisted Intervention –
MICCAI 2020. MICCAI 2020, Lecture Notes in Computer Science (Cham: Springer).
doi: 10.1007/978-3-030-59728-3_4

He, N., Langley, J., Huddleston, D. E., Chen, S., Huang, P., Ling, H., et al.
(2020). Increased iron-deposition in lateral-ventral substantia nigra pars compacta:
Amazon.com promising neuroimaging marker for Parkinson’s disease. NeuroImage
28:102391. doi: 10.1016/j.nicl.2020.102391

Iskusnykh, I. Y., Zakharova, A. A., Kryl’skii, E. D., and Popova, T. N. (2024).
Aging, neurodegenerative disorders, and cerebellum. Int. J. Molec. Sci. 25:1018.
doi: 10.3390/ijms25021018

Kaindlstorfer, C., Jellinger, K. A., Eschlböck, S., Stefanova, N., Weiss, G., Wenning,
G. K., et al. (2018). The relevance of iron in the pathogenesis of multiple system
atrophy: a viewpoint. J. Alzheimer’s Dis. 61, 1253–1273. doi: 10.3233/JAD-170601

Ko, J. H., Spetsieris, P. G., and Eidelberg, D. (2017). Network structure and function
in Parkinson’s disease. Cerebr. Cortex 28, 4121–4135. doi: 10.1093/cercor/bhx267

Kui, B., Pintér, J., Molontay, R., Nagy, M., Farkas, N., Gede, N., et al. (2022). EASY-
APP: An artificial intelligence model and application for early and easy prediction of
severity in acute pancreatitis. Clin. Transl. Med. 12:e842. doi: 10.1002/ctm2.842

Lang, A. E., Siderowf, A. D., Macklin, E. A., Poewe, W., Brooks, D. J., Fernandez,
H. H., et al. (2022). Trial of cinpanemab in early Parkinson’s disease. New Engl. J. Med.
387, 408–420. doi: 10.1056/NEJMoa2203395

Le, N. Q. K., Hung, T. N. K., Do, D. T., Lam, L. H. T., Dang, L. H., Huynh, T.
T., et al. (2021). Radiomics-based machine learning model for efficiently classifying
transcriptome subtypes in glioblastoma patients from MRI. Comput. Biol. Med.
132:104320. doi: 10.1016/j.compbiomed.2021.104320

Liang, L., Ding, Y., Yu, Y., Liu, K., Rao, S., Ge, Y., et al. (2021). Whole-tumour
evaluation with MRI and radiomics features to predict the efficacy of S-1 for adjuvant
chemotherapy in postoperative pancreatic cancer patients: a pilot study. BMC Med.
Imag. 21:75. doi: 10.1186/s12880-021-00605-4

Malén, T., Karjalainen, T., Isojärvi, J., Vehtari, A., Bürkner, P. C., Putkinen,
V., et al. (2022). Atlas of type 2 dopamine receptors in the human brain: age
and sex dependent variability in a large PET cohort. NeuroImage 255:119149.
doi: 10.1016/j.neuroimage.2022.119149

Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., et al. (2011).
The Parkinson progression marker initiative (PPMI). Progr. Neurobiol. 95, 629–635.
doi: 10.1016/j.pneurobio.2011.09.005

Næss-Schmidt, E., Tietze, A., Blicher, J. U., Petersen, M., Mikkelsen, I. K., Coup,é,
P., et al. (2016). Automatic thalamus and hippocampus segmentation fromMP2RAGE:
comparison of publicly available methods and implications for DTI quantification.
Int. J. Comput. Assist. Radiol. Surg. 11, 1979–1991. doi: 10.1007/s11548-016-
1433-0

Nishio, Y., Hirayama, K., Takeda, A., Hosokai, Y., Ishioka, T., Suzuki, K.,
et al. (2010). Corticolimbic gray matter loss in Parkinson’s disease without
dementia. Eur. J. Neurol. 17, 1090–1097. doi: 10.1111/j.1468-1331.2010.
02980.x

Nordin, K., Gorbach, T., Pedersen, R., Panes Lundmark, V., Johansson, J.,
Andersson, M., et al. (2022). DyNAMiC: a prospective longitudinal study of dopamine
and brain connectomes: a new window into cognitive aging. J. Neurosci. Res. 100,
1296–1320. doi: 10.1002/jnr.25039

O’Callaghan, C., Hornberger, M., Balsters, J. H., Halliday, G. M., Lewis, S. J. G.,
Shine, J. M., et al. (2016). Cerebellar atrophy in Parkinson’s disease and its implication
for network connectivity. Brain 139, 845–855. doi: 10.1093/brain/awv399

Palani, D., Ganesh, K. M., Karunagaran, L., Govindaraj, K., and Shanmugam,
S. (2023). Statistical analysis on impact of image preprocessing of CT
texture patterns and its CT radiomic feature stability: a phantom study.
Asian Pacific J. Cancer Prev. 24, 2061–2072. doi: 10.31557/APJCP.2023.24.
6.2061

Pang, H., Yu, Z., Yu, H., Chang, M., Cao, J., Li, Y., et al. (2022). Multimodal
striatal neuromarkers in distinguishing parkinsonian variant of multiple system
atrophy from idiopathic Parkinson’s disease. CNS Neurosci. Therap. 28, 2172–2182.
doi: 10.1111/cns.13959

Park, C. J., Eom, J., Park, K. S., Park, Y. W., Chung, S. J., Kim, Y. J.,
et al. (2023). An interpretable multiparametric radiomics model of basal ganglia
to predict dementia conversion in Parkinson’s disease. NPJ Parkinson’s Dis. 9:127.
doi: 10.1038/s41531-023-00566-1

Frontiers in AgingNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1393841
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1393841/full#supplementary-material
https://doi.org/10.1038/srep45347
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.1093/sleep/zsx071
https://doi.org/10.1093/brain/awaa216
https://doi.org/10.1016/S0140-6736(21)00218-X
https://doi.org/10.1212/01.wnl.0000297514.47695.48
https://doi.org/10.1002/cjp2.344
https://doi.org/10.1093/brain/awad064
https://doi.org/10.1007/s00415-023-12095-1
https://doi.org/10.1101/cshperspect.a009258
https://doi.org/10.1002/mds.27318
https://doi.org/10.3233/JPD-171135
https://doi.org/10.1186/s13058-023-01752-y
https://doi.org/10.3389/fnimg.2022.952084
https://doi.org/10.1007/978-3-030-59728-3_4
https://doi.org/10.1016/j.nicl.2020.102391
https://doi.org/10.3390/ijms25021018
https://doi.org/10.3233/JAD-170601
https://doi.org/10.1093/cercor/bhx267
https://doi.org/10.1002/ctm2.842
https://doi.org/10.1056/NEJMoa2203395
https://doi.org/10.1016/j.compbiomed.2021.104320
https://doi.org/10.1186/s12880-021-00605-4
https://doi.org/10.1016/j.neuroimage.2022.119149
https://doi.org/10.1016/j.pneurobio.2011.09.005
https://doi.org/10.1007/s11548-016-1433-0
https://doi.org/10.1111/j.1468-1331.2010.02980.x
https://doi.org/10.1002/jnr.25039
https://doi.org/10.1093/brain/awv399
https://doi.org/10.31557/APJCP.2023.24.6.2061
https://doi.org/10.1111/cns.13959
https://doi.org/10.1038/s41531-023-00566-1
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnagi.2024.1393841

Park, J. E., and Kim, H. S. (2018). Radiomics as a quantitative imaging biomarker:
practical considerations and the current standpoint in neuro-oncologic studies. Nucl.
Med. Molec. Imag. 52, 99–108. doi: 10.1007/s13139-017-0512-7

Pedroso, J. L., Braga-Neto, P., de Souza, P. V. S., and Barsottini, O. G. (2013).
The cerebellum in Parkinson’s disease and parkinsonism in cerebellar disorders. Brain
136:e248. doi: 10.1093/brain/awt089

Riou, A., Houvenaghel, J. F., Dondaine, T., Drapier, S., Sauleau, P., Drapier, D.,
et al. (2021). Functional role of the cerebellum in Parkinson disease. Neurology 96,
e2874–e2884. doi: 10.1212/WNL.0000000000012036

Rischka, L., Godbersen, G. M., Pichler, V., Michenthaler, P., Klug, S., Klöbl, M.,
et al. (2021). Reliability of task-specific neuronal activation assessed with functional
PET, ASL and BOLD imaging. J. Cerebr. Blood Flow Metabol. 41, 2986–2999.
doi: 10.1177/0271678X211020589

Rusholt, E. H. L., Salvesen, L., Brudek, T., Tesfay, B., Pakkenberg, B., Olesen, M. V.,
et al. (2020). Pathological changes in the cerebellum of patients with multiple system
atrophy and Parkinson’s disease—a stereological study. Brain Pathol. 30, 576–588.
doi: 10.1111/bpa.12806

Saban, W., Pinheiro-Chagas, P., Borra, S., and Ivry, R. B. (2024). Distinct
contributions of the cerebellum and basal ganglia to arithmetic procedures. J. Neurosci.
44:2. doi: 10.1523/JNEUROSCI.1482-22.2023

Sharma, M., Kirby, M., McCormack, D. G., and Parraga, G. (2023). Machine
learning and CT texture features in ex-smokers with no CT evidence of emphysema
and mildly abnormal diffusing capacity. Acad. Radiol. doi: 10.1016/j.acra.2023.11.022.
[Epub ahead of print].

Sheng, L., Yang, C., Chen, Y., and Song, B. (2023). Machine learning combined with
radiomics facilitating the personal treatment of malignant liver tumors. Biomedicines
12:58. doi: 10.3390/biomedicines12010058

Shi, D., Ren, Z., Zhang, H., Wang, G., Guo, Q., Wang, S., et al. (2023). Amplitude of
low-frequency fluctuation-based regional radiomics similarity network: biomarker for
Parkinson’s disease. Heliyon 9:e14325. doi: 10.1016/j.heliyon.2023.e14325

Shi, D., Zhang, H., Wang, G., Wang, S., Yao, X., Li, Y., et al. (2022). Machine
learning for detecting parkinson’s disease by resting-state functional magnetic
resonance imaging: a multicenter radiomics analysis. Front. Aging Neurosci. 14:806828.
doi: 10.3389/fnagi.2022.806828

Sivaranjini, S., and Sujatha, C. M. (2019). Deep learning based diagnosis of
Parkinson’s disease using convolutional neural network. Multim. Tools Applic. 79,
15467–15479. doi: 10.1007/s11042-019-7469-8

Solana-Lavalle, G., and Rosas-Romero, R. (2021). Classification of PPMI MRI
scans with voxel-based morphometry and machine learning to assist in the
diagnosis of Parkinson’s disease. Comput. Methods Progr. Biomed. 198:105793.
doi: 10.1016/j.cmpb.2020.105793

Song, Y., Zhang, J., Zhang, Y. D., Hou, Y., Yan, X., Wang, Y., and Yang, G. (2020).
FeAture Explorer (FAE): a tool for developing and comparing radiomics models. PLoS
ONE 15:e0237587. doi: 10.1371/journal.pone.0237587

Sun, J., Cong, C., Li, X., Zhou, W., Xia, R., Liu, H., et al. (2023).
Identification of Parkinson’s disease and multiple system atrophy using multimodal
PET/MRI radiomics. Eur. Radiol. 34, 662–672. doi: 10.1007/s00330-023-10
003-9

Sun, J., Lai, Z., Ma, J., Gao, L., Chen, M., Chen, J., et al. (2019). Quantitative
evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder.
Movem. Disor. 35, 478–485. doi: 10.1002/mds.27929

van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., and Baessler, B.
(2020). Radiomics in medical imaging—how-to guide and critical reflection. Insights
into Imag. 11:91. doi: 10.1186/s13244-020-00887-2

Vercruysse, S., Leunissen, I., Vervoort, G., Vandenberghe, W., Swinnen,
S., Nieuwboer, A., et al. (2015). Microstructural changes in white matter
associated with freezing of gait in Parkinson’s disease. Movem. Disor. 30, 567–576.
doi: 10.1002/mds.26130

Wang, Y., He, N., Zhang, C., Zhang, Y., Wang, C., Huang, P., et al. (2023).
An automatic interpretable deep learning pipeline for accurate Parkinson’s disease
diagnosis using quantitative susceptibility mapping and T1-weighted images. Hum.
Brain Mapp. 44, 4426–4438. doi: 10.1002/hbm.26399

Xuan, M., Guan, X., Huang, P., Shen, Z., Gu, Q., Yu, X., et al. (2017).
Different patterns of gray matter density in early- and middle-late-onset Parkinson’s
disease: a voxel-based morphometry study. Brain Imag. Behav. 13, 172–179.
doi: 10.1007/s11682-017-9745-4

Yan, S., Lu, J., Li, Y., Cho, J., Zhang, S., Zhu, W., et al. (2023). Spatiotemporal
patterns of brain iron-oxygen metabolism in patients with Parkinson’s disease. Eur.
Radiol. 34, 3074–3083. doi: 10.1007/s00330-023-10283-1

Yang, H., Liu, H., Lin, J., Xiao, H., Guo, Y., Mei, H., et al. (2023). An automatic
texture feature analysis framework of renal tumor: surgical, pathological, and
molecular evaluation based on multi-phase abdominal CT. Eur. Radiol. 34, 355–366.
doi: 10.1007/s00330-023-10016-4

Yasin, P., Mardan, M., Abliz, D., Xu, T., Keyoumu, N., Aimaiti, A., et al. (2023).
The potential of a CT-based machine learning radiomics analysis to differentiate
brucella and pyogenic spondylitis. J. Inflam. Res. 16, 5585–5600. doi: 10.2147/JIR.S42
9593

Zeng, L.-. L., Xie, L., Shen, H., Luo, Z., Fang, P., Hou, Y., et al. (2016). Differentiating
patients with Parkinson’s disease from normal controls using gray matter in the
cerebellum. Cerebellum 16, 151–157. doi: 10.1007/s12311-016-0781-1

Zhong, Y., Liu, H., Liu, G., Liang, Y., Dai, C., Zhao, L., et al. (2023).
Cerebellar and cerebral white matter changes in Parkinson’s disease with
resting tremor. Neuroradiology 65, 1497–1506. doi: 10.1007/s00234-023-
03206-w

Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. W. L., Andrearczyk, V.,
Apte, A., et al. (2020). The image biomarker standardization initiative: standardized
quantitative radiomics for high-throughput image-based phenotyping. Radiology 295,
328–338. doi: 10.1148/radiol.2020191145

Frontiers in AgingNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1393841
https://doi.org/10.1007/s13139-017-0512-7
https://doi.org/10.1093/brain/awt089
https://doi.org/10.1212/WNL.0000000000012036
https://doi.org/10.1177/0271678X211020589
https://doi.org/10.1111/bpa.12806
https://doi.org/10.1523/JNEUROSCI.1482-22.2023
https://doi.org/10.1016/j.acra.2023.11.022
https://doi.org/10.3390/biomedicines12010058
https://doi.org/10.1016/j.heliyon.2023.e14325
https://doi.org/10.3389/fnagi.2022.806828
https://doi.org/10.1007/s11042-019-7469-8
https://doi.org/10.1016/j.cmpb.2020.105793
https://doi.org/10.1371/journal.pone.0237587
https://doi.org/10.1007/s00330-023-10003-9
https://doi.org/10.1002/mds.27929
https://doi.org/10.1186/s13244-020-00887-2
https://doi.org/10.1002/mds.26130
https://doi.org/10.1002/hbm.26399
https://doi.org/10.1007/s11682-017-9745-4
https://doi.org/10.1007/s00330-023-10283-1
https://doi.org/10.1007/s00330-023-10016-4
https://doi.org/10.2147/JIR.S429593
https://doi.org/10.1007/s12311-016-0781-1
https://doi.org/10.1007/s00234-023-03206-w
https://doi.org/10.1148/radiol.2020191145
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

	A more objective PD diagnostic model: integrating texture feature markers of cerebellar gray matter and white matter through machine learning
	Introduction
	Methods
	Subjects
	MRI acquisition
	Image preprocessing and radiomic feature extraction
	Feature selections
	Classification
	Evaluations
	Model interpretability

	Results
	Comparison of model performances
	Model interpretability with SHAP

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


