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Causal role of immune cells on 
risk of Parkinson’s disease: a 
Mendelian randomization study
Jian Gu , Yue Qiao  and Shuyan Cong *

Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China

Background: Previous observational studies have suggested a correlation 
between immune cells and Parkinson’s disease (PD), yet specific investigations 
into the causal relationship between the two remain limited. This study aims to 
explore this potential causal relationship.

Methods: We utilized genome-wide association study (GWAS) data on 
immune cells and Parkinson’s Disease, conducting a two-sample Mendelian 
randomization (MR) analysis using single nucleotide polymorphisms (SNPs). To 
estimate causality, we employed inverse variance weighting (IVW), MR-Egger, 
and weighted median (WM) methods. For sensitivity analysis, we used Cochran’s 
Q-test, MR-Egger intercept, leave-one-out analysis, and funnel plots.

Results: After false discovery rate (FDR) correction, the effects of PD on 
immune cells, and vice versa, were not statistically significant. These include 
CX3CR1 on CD14+ CD16-monocyte (OR  =  0.91, 95% CI  =  0.86–0.96, p  =  0.0003 
PFDR  =  0.152), CD62L-CD86+ myeloid DC AC (OR  =  0.93, 95% CI  =  0.89–
0.97, p  =  0.0005, PFDR  =  0.152),CD11b on Mo (OR  =  1.08, 95% CI  =  1.03–1.13, 
p  =  0.001, PFDR  =  0.152), CD38 on igd+ cd24− (OR  =  1.14, 95% CI  =  1.06–1.23, 
p  =  0.001, PFDR  =  0.152), D14+ cd16+ monocyte %monocyte (OR  =  1.10, 95% 
CI  =  1.04–1.17, p  =  0.001, PFDR  =  0.159). Additionally, PD may be causally related 
to the immune phenotype of CM CD8br %T cell (beta  =  0.10, 95% CI  =  1.14–1.16, 
p  =  0.0004, PFDR  =  0.151), SSC-A on monocyte (beta  =  0.11, 95% CI  =  1.15–1.18, 
p  =  0.0004, PFDR  =  0.1 SSC-A on monocyte). No pleiotropy was determined.

Conclusion: This study suggested a potential causal link between immune cells 
and Parkinson’s Disease through the MR method, which could provide a new 
direction for the mechanistic research and clinical treatment of PD.
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1 Introduction

Parkinson’s disease is a neurodegenerative disease of central nervous system (CNS) that 
can cause loss of dopamine-producing neurons in the substantia nigra (Braak and Del Tredici, 
2008). The disease is characterized by four major motor symptoms: resting tremors, muscular 
rigidity, bradykinesia (slowness of movement), and postural instability (changes in posture) 
(Lee and Gilbert, 2016). In addition to the well-known motor symptoms, Parkinson’s disease 
can also lead to a range of non-motor symptoms such as Cognitive changes, Mood disorders, 
Sleep disturbances, Autonomic dysfunction and so on (Waskowiak et  al., 2022). These 
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symptoms result in the deterioration of the quality of life for patients 
(Wang et al., 2015). Furthermore, PD places a significant economic 
burden on not only the patients but also their families and society 
(Pan et al., 2005). Despite tremendous research efforts, no cure for PD 
has been discovered yet. As the global population ages, the incidence 
and prevalence of PD have been increasing year by year, posing a 
significant challenge to global health.

Recent scientific studies have stressed the essential role of the 
immune system in the development of Parkinson’s disease (PD) 
(Galiano-Landeira et al., 2020; Tan et al., 2020; Bloem et al., 2021). 
A strong association between PD and circulating immune cells is 
reported, specifically lymphocytes and monocytes (Morato Torres 
et al., 2020). These cells, which roam the body, react to inflammation 
and damage in various areas. They possess the ability to breach the 
blood–brain barrier, penetrate the brain, and potentially contribute 
to its functioning. Some PD patients have been observed that 
certain immune cell activities increasing may damage dopaminergic 
neurons (Barcia, 2013). For example, T cells may take part in 
targeting neurons, thereby accelerating disease progression 
(Garretti et al., 2022). Additionally, the presence of aberrant levels 
of specific immune markers in the bloodstream of individuals with 
Parkinson’s disease suggests a close association between immune 
system dysregulation and the progression of the disease. Previous 
studies have found that people with PD have lower lymphocyte 
counts than controls due to reduced counts of helper cd4+ T cells 
and B cells (Gruden et al., 2011; Stevens et al., 2012). Some case–
control studies also found that patients with confirmed PD had 
higher neutrophil and lymphocyte counts compared to controls 
(Akıl et  al., 2015). Evidence from genetic, epidemiological, and 
cytokine profile studies further supports the notion that immune 
dysregulation may contribute to the pathogenesis of PD (Tan et al., 
2020). It is critical to acknowledge that much of the existing 
evidence on the relationship between circulating immune cell 
counts and the onset of PD is derived from observational studies. 
These studies, while informative, may be subject to confounding 
factors and reverse causality. Consequently, the causal linkage 
between these immunological markers and Parkinson’s disease 
onset remains under-explored. Further research utilizing more 
robust, ideally experimental, methodologies is necessary to establish 
a definitive causal relationship.

Mendelian randomization (MR) emerged as an alternative to 
randomized controlled trials (RCTs) to establish reliable causal 
evidence between exposure and outcome by utilizing genetic 
variation (Smith and Ebrahim, 2003). This approach is effective in 
determining causality independently of confounders and avoiding 
reverse causality, as gene variants are randomly assigned at 
conception prior to the onset of disease (Davey Smith and Hemani, 
2014). Previous studies using two-sample MR had shown a causal 
link between BMI /serum iron levels and the risk of PD (Pichler 
et al., 2013; Noyce et al., 2017). Previous observational studies have 
identified a range of associations between characteristics of immune 
cells and Parkinson’s disease (PD), lending support to the hypothesis 
of a link between these two factors. To explore this potential 
connection further, the present study employs a comprehensive 
two-sample MR analysis. This approach is designed to determine 
the causal relationship, if any, between the characteristics of 
immune cells and the development of PD, thereby advancing our 
understanding of the immunological underpinnings of this 
neurodegenerative disease.

2 Materials and methods

2.1 Study design

In our investigation, we implemented a two-sample MR analysis to 
assess the causal relationship between a set of 731 immune cell signatures 
which categorized into seven distinct groups and the PD. This 
methodology utilizes genetic variations as proxies for risk factors. For 
the validity of our chosen instrumental variables in this analysis, they 
must satisfy three fundamental criteria: (1) The genetic variants selected 
must exhibit a direct and significant association with the exposure; (2) 
these genetic variants must not be associated with potential confounders 
that could obscure or confound the relationship between the exposure 
and the outcome (Parkinson’s disease); (3) the influence of the genetic 
variants on the outcome should occur solely through the exposure, 
without involving alternative pathways (Gagliano Taliun and Evans, 
2021). The overall design is shown in Figure 1.

2.2 Immunity-wide GWAS data sources

For exposure instrument, we publicly obtained summary statistics 
of blood cell traits from the GWAS catalog (accession numbers 
gcst90001391 to gcst90002121) (Orrù et al., 2020). The data included 
563,085 participants of European ancestry and 731 immunophenotypes 
were included. Genetic variants linked to the levels of circulating 
leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, and 
basophils were identified and utilized in this study. The data 
encompassed a range of immune cell characteristics, including 
absolute cell count (AC), median fluorescence intensity (MFI) which 
reflects the level of surface antigens, morphological parameters (MP), 
and relative cell count (RC). Specifically, the MFI, AC, and RC data 
encompassed various immune cell types such as B cells, CDCs 
(dendritic cells), mature T cells, monocytes, bone marrow cells, TBNK 
cells (T cells, B cells, natural killer cells), and Treg (regulatory T) cells. 
Meanwhile, the MP data included information on CDCs and TBNK 
cells. The reference panel based on the latest aggregated GWAS data 
including 3,757 Sardinians was used (Sidore et al., 2015).

2.3 Genome-wide association study data 
sources for PD

GWAS summary statistics for PD were obtained from the 
International Parkinson’s Disease Genomics Consortium (Nalls et al., 
2019). The consortium executed a genome-wide association study 
(GWAS) on a European cohort of 482,730 individuals, consisting of 
33,674 PD cases and 449,056 controls. Post stringent quality control 
and imputation, the study analyzed approximately 17.9 million genetic 
variants. This GWAS identified 90 independent genome-wide 
significant signals across 78 loci, including 38 independent risk signals 
in 37 novel loci. These variants explained 26–36% of the heritable risk 
of PD (Nalls et al., 2019).

2.4 Selection of genetic instruments

We selected SNPs associated with the exposure under genome-
wide significance threshold and 1 × 10−5 was set to be the significance 
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level of instrumental variables (IVs) for each immune trace. 
We employed the clumping process using PLINK software (version 
v1.90) to selectively prune the identified SNPs. This was carried out 
under stringent criteria, setting the linkage disequilibrium (LD) r2 
threshold to less than 0.001 within a 1,000 kb distance (Auton et al., 
2015). We  calculated the F-statistic for each IV to avoid weak 
instrumental bias and evaluate the strength of its association with the 
exposure (Pierce et al., 2011), then removed IVs with an F statistic <10 
(Brion et al., 2013). To ensure that the observed association effects 
corresponded to the same alleles, we excluded SNPs from our analysis.

2.5 Statistical analysis

In our analysis, we  used five effective methods [MR-Egger; 
Bowden et al., 2015, weighted median Bowden et al., 2016, inverse 
variance weighted (IVW) Burgess et  al., 2017, simple mode, and 
weighted mode] to deduce the potential causal relationships between 
PD and 731 immunophenotypes. The IVW method yielded the most 
reliable outcomes in the absence of horizontal pleiotropy among the 
IVs (Huang et al., 2021). We used the IVW which evaluates the causal 
influence of genetically predicted exposures on outcomes by weighted 
regression of SNP-specific Wald ratios as the main approach. 
Heterogeneity p-values are based on the Cochran’s Q statistic, and 
p < 0.05 indicates that single nucleotide polymorphisms were 
considered to exist heterogeneity. Consistent estimations of the causal 
effect can be achieved through the weighted median method when a 
minimum of half of the SNPs serve as effective instrumental variables 
(Bowden et al., 2016). The directional horizontal pleiotropy effect can 
be evaluated by the MR-Egger method through the intercept term that 
if the intercept term has a statistical difference with zero, it means that 
horizontal pleiotropy is affecting the results of an MR analysis (Burgess 
and Thompson, 2017). If the effect directions derived from the 

MR-Egger and IVW methods are consistent, it will increase the 
credibility of the results (Slob and Burgess, 2020). The simple mode 
does not weigh the genetic variants based on their precision or effect 
on the exposure, potentially leading to less stable estimates when 
individual variants have varying directions or magnitudes of effect 
(Sun et al., 2021). Simple mode and weighted mode were conducted 
as complementary analytical approaches. The MR pleiotropy residuals 
sum and outliers (MR-PRESSO) method was used to detect and 
remove outliers that severely affect the estimation results to reduce 
bias (Verbanck et al., 2018). After conducting MR analysis using the 
IVW method for the 731 types of immune cells included as exposure 
factors, we  applied Benjamini-Hochberg (B-H) correction to the 
p-values obtained. We set the FDR correction threshold at 0.2 as the 
criterion to determine the presence of a causal relationship between 
the exposure and the outcome variable. We  used leave-one-out 
analysis to explore the stability of these genetic variants by removing 
one of the selected individual SNPs each time (Wu et  al., 2020). 
We also used the Scatter plots to ensured that these results were not 
driven by outliers. The robustness of the correlation and no 
heterogeneity were proved through Funnel plots. All statistical and 
sensitivity analyses were carried out using R statistical software 
(version 4.3.1) with the TwoSample MR package, MR (0.5.6), and MR 
PRESSO packages.

3 Results

3.1 The causal effect and sensitivity analysis 
of immunophenotypes on PD

To assess the effect of immunophenotype on PD risk, we used 
IVW as the main analysis method to perform MR analysis of two 
samples. We used the Benjamini-Hochberg FDR method to correct 

FIGURE 1

Schematic diagram of MR analysis. SNP, single nucleotide polymorphisms.
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the p-value of multiple tests. After multiple test adjustment, no 
immune trait was identified when the significance threshold was set 
at p < 0.05 (Keselman et  al., 2002). We  identified three suggestive 
immunophenotypes associated with PD that were risk factors for PD 
(FDR < 0.2): CD11b on Mo MDSC (myeloid cell panel), CD38 on 
IgD+ CD24− (B cell panel) and CD14+ CD16+ monocyte %monocyte 
(monocyte panel) (Supplementary Figures S1–S4). We  identified 
CX3CR1 on CD14 + CD16-monocyte (monocyte panel) and CD62L-
CD86+ myeloid DC AC (cDC panel) as protective factors for PD 
(FDR < 0.2) (Supplementary Figures S1–S4). Our study’s findings 
indicate a significant causal association between the risk of Parkinson’s 
disease (PD) and an elevated level of CD11b on monocytes (Mo). This 
was evidenced by the inverse variance weighted (IVW) analysis 
(OR = 1.08, 95% CI = 1.03–1.13, p = 0.001, PFDR = 0.152). This 
association was further supported by similar outcomes from 
MR-Egger (OR = 1.11, 95% CI = 1.00–1.22, p = 0.066) and weighted 
median (WM) analyses (OR = 1.09, 95% CI = 1.02–1.17, p = 0.013) 
(Figure 2). Additionally, we investigated the impact of CD38 on IgD+ 
CD24-on PD risk using the IVW method, which suggested a 
significant correlation (OR = 1.14, 95% CI = 1.06–1.23, p = 0.001, 
PFDR = 0.152). Complementary results from MR-Egger (OR = 1.11, 
95% CI = 0.97–1.26, p = 0.165) and WM analyses (OR = 1.12, 95% 
CI = 1.02–1.25, p = 0.023) reinforced this finding (Figure 2). Further 
analysis of CD14+ CD16+ monocyte percentage in relation to PD risk, 
again using the IVW method, indicated a notable association 
(OR = 1.10, 95% CI = 1.04–1.17, p = 0.001, PFDR = 0.159). MR-Egger 
(OR = 1.17, 95% CI = 1.06–1.28, p = 0.005) and WM analyses 
(OR = 1.11, 95% CI = 1.03–1.19, p = 0.007) corroborated these results, 
respectively, both showing statistical significance (Figure 2). In the 
case of CX3CR1 on CD14+ CD16-monocyte with respect to PD risk, 
the IVW method revealed a significant relationship (OR = 0.91, 95% 
CI = 0.86–0.96, p = 0.0003 PFDR = 0.152). This finding was supported 
by MR-Egger (OR = 0.86, 95% CI = 0.77–0.96, p = 0.001), WM analysis 
indicated a stronger correlation (OR = 0.86, 95% CI = 0.81–0.92, 
p = 0.02) (Figure  2). Furthermore, our analysis of CD62L-CD86+ 
myeloid DC AC in PD risk, as assessed by the IVW method, showed 
a negative association (OR = 0.93, 95% CI = 0.89–0.97, p = 0.0005, 
PFDR = 0.152) and WM analyses showed similar result (OR = 0.92, 
95% CI = 0.8–0.98, p = 0.006). While MR-Egger analysis showed a 

non-significant trend (OR = 0.94, 95% CI = 0.88–1, p = 0.059) 
(Figure 2). Robustness tests including Cochran’s Q test, MR Egger 
regression, MR-PRESSO, and the leave-one-out test were conducted. 
These tests confirmed that the MR estimates were relatively robust, 
lending further credibility to our findings. Detailed information is 
shown in Supplementary Tables S1–S4.

3.2 The causal effect and sensitivity 
analysis of PD onset on 
immunophenotypes

To investigate the causal influence of PD onset on immune cell 
phenotypes, we applied the same analytical methods used to evaluate 
the causal effect of immunophenotypes on PD. After the selection and 
harmonization of IVs, we utilized 71 SNPs for CM CD8br %T cell and 
72 SNPs for SSC-A on monocytes for MR analysis. Our data revealed 
a significant increase in CM CD8br %T cell levels post-PD onset 
(FDR < 0.2) (Supplementary Figures S5–S8), with a beta coefficient of 
0.10 and 95% CI of 1.04–1.16 (p = 0.0004, PFDR = 0.151). This finding 
was supported by WM analysis, which showed beta values of 0.10 
(95% CI = 1.02–1.20, p = 0.02). While MR-Egger analysis showed a 
non-significant trend (beta = 0.06, 95% CI = 0.95–1.18, p = 0.229) 
(Figure 3). Moreover, an increase in SSC-A levels on monocytes was 
observed in PD patients, indicated by a beta coefficient of 0.11 (95% 
CI = 1.05–1.18, p = 0.0004, PFDR = 0.151). This trend was consistent 
with results from MR-Egger method (beta = 0.14, 95% CI = 1.03–1.30, 
p = 0.02) analyses. The results obtained by WM method were not 
statistically significant (beta = 0.06, 95% CI =0.97–1.17, p = 0.18) 
(Figure 3; Supplementary Tables S3, S4). These findings collectively 
suggest a potential causal relationship between PD onset and 
alterations in specific immunophenotypes. Detailed information is 
shown in Supplementary Tables S5–S7.

4 Discussion

In this study, we  evaluated the causal relationship between 
immune cells and PD by two-sample bidirectional MR method after 

FIGURE 2

Forest plots showed the causal associations between PD and immune cell traits (FDR  <  0.2).
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consulting the newly published literature of 731 immune cell genetic 
data. To date, there has been one published article on MR concerning 
neurodegenerative diseases and immune cells (Tang et  al., 2024) 
however, the selection of instrumental variables and correction 
methods performed in our study were different, aiming to conduct a 
more comprehensive investigation into the possible causal relationship 
between immune cells and PD. Furthermore, we  analyzed the 
potential reverse causality of 731 immune cells with PD, allowing for 
a more comprehensive analysis of subtle reverse trends to provide 
different perspectives. According to our study, we  found that five 
immune phenotypes have causal effects on PD, of which three are risk 
factors for PD and two are protective factors. In addition, we found 
that PD has a causal protective effect on the 2 phenotypes (FDR < 0.20).

Our study found that the risk of PD increased with the increase of 
CD11b on Mo MDSC. myeloid derived suppressor cells (MDSC) are 
immunosuppressive cells that play a key role in a variety of biological 
processes. CD11b is a cell surface protein that belongs to the integrin 
family and is usually expressed on the surface of leukocytes (such as 
monocytes). It plays a role in cell adhesion, migration and 
phagocytosis. MDSCs are divided into two main types, namely 
neutrophil like MDSC (PMN-MDSC) and monocyte like MDSC (Mo 
MDSC). MDSC is similar to monocytes, expressing CD11b and other 
markers of monocytes. Yang et  al. (2017) and Chen et  al. (2017) 
analyzed MDSCs from 80 and 18 PD patients, respectively. Compared 
with the control group, the number of MDSCs in the peripheral 
circulation of PD patients was significantly increased. This suggests 
that MDSCs may be  an important factor in the occurrence and 
development of PD. MDSCs have the potential to serve as effective 
biomarkers for PD diagnosis. Gopinath et al. (2022) performed an 
immunophenotypic analysis of blood samples from PD patients and 
observed the presence of myeloid-derived suppressor cells (MDSCs), 
with a significant increase in monocyte MDSCs while granulocyte 
MDSCs remained unchanged. Previous studies have shown that Mo 
MDSC has a certain positive correlation with PD. We further speculate 
that Mo MDSC has a causal relationship with PD through MR 
method, and we  can further study its specific mechanism. 
Interleukin-10 (IL-10) has been implicated in the suppression of 
pathogenic inflammation and promotion of peripheral tolerance to 
inflammation (Yu et al., 2017). Meanwhile, regulatory B cells (Bregs), 
which are highly enriched in CD24+ CD38+ cells, express IL-10 (Zeng 
et al., 2022). We conclude that negative expression of CD24 may lead 
to insufficient secretion of IL-10, which may lead to decreased anti-
inflammatory ability of cells and further induce PD, but more 

experiments are needed to verify this. Specific studies directly 
correlating CD14+ CD16+ monocytes with PD were not found in the 
search, it is known that immune system alterations, including changes 
in monocyte populations, are associated with PD. It has been found 
that leucine rich repeat kinase 2 (LRRK2) is associated with PD. In 
some populations, more than 30% of PD patients carry the G2019S 
mutation (Cookson, 2010). Thévenet et al. found that the expression 
level of LRRK2 protein in CD14+ CD16+ cells was higher than that in 
CD14+ CD16-cells by analyzing the expression of LRRK2 mRNA and 
protein in human peripheral blood mononuclear cells (PBMCs) 
subpopulation (Thévenet et  al., 2011). We  speculate that CD14+ 
CD16+ monocyte% monocyte affects the pathogenesis of PD by 
increasing the expression of LRRK2, and the specific mechanism 
needs further experimental support.

We found that CD62L-CD86+ myeloid DC AC and CX3CR1 on 
CD14+ CD16-monocyte are protective factors for PD. CD62L-CD86+ 
myeloid dendritic cells are important immune modulatory cells that 
can affect the activation and suppression of the immune system. In 
Parkinson’s Disease, abnormal activation of the immune system is 
considered one of the key factors in disease progression. Through the 
action of their surface molecule CD86, these dendritic cells can 
promote the activation and differentiation of T cells, thereby affecting 
the immune response in Parkinson’s Disease. Moreover, some studies 
suggest that immune cells, including dendritic cells, can release 
neuroprotective factors involved in protecting neuronal cells from 
damage (Wang et al., 2024). Therefore, the absolute count of CD62L-
CD86+ myeloid dendritic cells may reflect the state of immune 
dysregulation in Parkinson’s Disease. CX3CR1 is a receptor expressed 
on various immune cells, including monocytes, microglia, 
macrophages, dendritic cells, T cells, and natural killer (NK) cells. In 
the context of Parkinson’s disease (PD), the CX3CR1 receptor and its 
ligand, the chemokine fractalkine (CX3CL1), are of significant 
interest. The CX3CL1-CX3CR1 interaction plays a pivotal role in 
modulating microglial activity, a crucial element in the 
neuroinflammatory processes associated with PD. Castro-Sánchez 
et al. (2018) suggest that CX3CR1 signaling may exert a protective 
effect against neuroinflammation and neurodegeneration in PD, 
particularly in relation to alpha-synuclein pathology, a characteristic 
feature of the disease. Further research is essential to unravel the 
intricacies of CX3CR1 signaling in PD, potentially leading to novel 
strategies for treatment or management of the disease.

In addition, our study indicated that the onset of PD might 
be causally related to the increase of CM CD8br %T cell and SSC-A 

FIGURE 3

Forest plots showed the causal associations between immune cell traits and PD by using different methods (FDR  <  0.2).
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on monocyte levels. Research indicates that T cells, including CD8+ 
T lymphocytes, play a key role in the pathogenesis of PD (Baird 
et  al., 2019). T cell dysregulation is closely related to disease 
progression and severity. The relationship between CM CD8br %T 
cells and Parkinson’s disease (PD) needs to be further explored in 
the future. SSC-A on monocytes refers to the measurement of side 
scatter area during flow cytometry and it is useful for identifying 
monocyte subpopulations and understanding their role in immune 
responses and disease. Changes in monocyte activation and 
function can be detected by parameters such as SSC-A, and the 
progression of neurodegenerative diseases may be  evaluated by 
changes in SSC-A due to the interaction of the immune system with 
the CNS.

However, several limitations are worth mentioning. First, this 
study is based on genome-wide association data from Europe, so 
it is necessary to be cautious about whether the interpretation and 
analysis of the conclusions can be extended to other ethnic groups. 
Secondly, it is important to acknowledge the inherent limitations 
of MR analysis due to epigenetic factors. These include issues such 
as DNA methylation, RNA editing, and the activity of transposable 
elements, all of which can influence gene expression and function 
independently of the genetic variants used as instrumental 
variables in MR studies. Thirdly, despite utilizing the most 
comprehensive and up-to-date GWAS database available, the 
sample size of our study remains relatively small when compared 
to large-scale, population-based observational studies. This 
limitation may affect the robustness and generalizability of our 
findings, and it underscores the need for further research with 
larger sample sizes to validate and extend our results. Fourth, 
we adjusted the threshold setting used to evaluate the results to 
p < 0.2, which may lead to some false positives, but it can more 
comprehensively include immune cell types that may be causally 
related to PD.

5 Conclusion

In conclusion, we performed a two sample MR analysis of the 
results of a recently published large GWAS cohort using genetic 
instrumental variables. Our results showed that PD was 
causally  related to several immune phenotypes, excluding the 
influence of confounding factors and reverse causality. This may 
help to explore the physiological and pathological mechanisms of 
PD, and provide new clues for early prevention and 
intervention of PD.
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