
Frontiers in Aging Neuroscience 01 frontiersin.org

Deep learning model for 
individualized trajectory 
prediction of clinical outcomes in 
mild cognitive impairment
Wonsik Jung 1†, Si Eun Kim 2,3†, Jun Pyo Kim 2,4,5, Hyemin Jang 2,6, 
Chae Jung Park 7, Hee Jin Kim 2,4,5, Duk L. Na 2,4,5, 
Sang Won Seo 2,4,5,8,9,10* and Heung-Il Suk 11*
1 Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea, 
2 Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 
Seoul, Republic of Korea, 3 Department of Neurology, Inje University College of Medicine, Haeundae 
Paik Hospital, Busan, Republic of Korea, 4 Neuroscience Center, Seoul, Republic of Korea, 5 Alzheimer’s 
Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea, 
6 Department of Neurology, Seoul National University Hospital, Seoul National University College of 
Medicine, Seoul, Republic of Korea, 7 National Cancer Center Research Institute, Goyang, Republic of 
Korea, 8 Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 
Republic of Korea, 9 Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of 
Korea, 10 Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic 
of Korea, 11 Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea

Objectives: Accurately predicting when patients with mild cognitive impairment 
(MCI) will progress to dementia is a formidable challenge. This work aims to 
develop a predictive deep learning model to accurately predict future cognitive 
decline and magnetic resonance imaging (MRI) marker changes over time at the 
individual level for patients with MCI.

Methods: We recruited 657 amnestic patients with MCI from the Samsung 
Medical Center who underwent cognitive tests, brain MRI scans, and amyloid-β 
(Aβ) positron emission tomography (PET) scans. We  devised a novel deep 
learning architecture by leveraging an attention mechanism in a recurrent neural 
network. We  trained a predictive model by inputting age, gender, education, 
apolipoprotein E genotype, neuropsychological test scores, and brain MRI and 
amyloid PET features. Cognitive outcomes and MRI features of an MCI subject 
were predicted using the proposed network.

Results: The proposed predictive model demonstrated good prediction 
performance (AUC  =  0.814  ±  0.035) in five-fold cross-validation, along with 
reliable prediction in cognitive decline and MRI markers over time. Faster 
cognitive decline and brain atrophy in larger regions were forecasted in patients 
with Aβ (+) than with Aβ (−).

Conclusion: The proposed method provides effective and accurate means for 
predicting the progression of individuals within a specific period. This model 
could assist clinicians in identifying subjects at a higher risk of rapid cognitive 
decline by predicting future cognitive decline and MRI marker changes over time 
for patients with MCI. Future studies should validate and refine the proposed 
predictive model further to improve clinical decision-making.
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Introduction

Amnestic mild cognitive impairment (aMCI) is considered the 
preceding phase of dementia in Alzheimer’s disease (AD) (Zhu et al., 
2013). Approximately 10–15% of patients with aMCI develop AD 
dementia per year, with an average conversion rate of 60% after 5 years 
(Farias et  al., 2009). However, progression is variable among 
individuals with aMCI. Due to the heterogeneity in its etiology, 
different rates of cognitive decline are observed in patients with 
aMCI. While some patients exhibit rapid conversion to AD dementia, 
others remain stable or may even return to normal cognitive 
functioning (Busse et al., 2006). The deposition of amyloid-β (Aβ), a 
well-known pathological hallmark of AD, is a critical predictor of 
conversion to AD in aMCI patients. Indeed, it has been found that 
only 40 to 60% of patients diagnosed with aMCI exhibit Aβ positivity 
(Landau et al., 2012; Roberts et al., 2018), and the conversion rate for 
Aβ (+) patients with aMCI is 4 to 9 times higher than that of Aβ 
negative, Aβ (−) (Okello et al., 2009; Doraiswamy et al., 2014).

Recent treatment strategies for AD focus on the predementia stage 
encompassing MCI and aim at slowing cognitive deterioration. 
Identifying the timing when individuals with MCI would benefit from 
treatment is essential. Hence, recent studies have shifted its emphasis 
from the follow-up to predicting the time of progression in individuals 
with MCI (Li et al., 2013, 2018). Promising results have been achieved 
using clinical and imaging-based parameters at the baseline and 
employing their longitudinal change pattern to forecast of the 
progression of MCI to AD dementia in individuals.

Further, advances in technology have made deep learning capable 
of creating new prediction models. Previous studies have shown the 
newly developed deep learning methods to detect MCI and AD. These 
studies have demonstrated the ability to evaluate features of abnormal 
brain connections or identify discriminative brain regions of AD (Pan 
et  al., 2021; Zuo et  al., 2021, 2024). In contrast to conventional 
machine learning models, deep learning techniques have emerged as 
powerful tools capable of effectively analyzing high-dimensional data 
and capturing the intricate and nonlinear relationships between its 
features (Jung et al., 2021). Building on our previous work (Jung et al., 
2021), we demonstrated the feasibility of devising a deep recurrent 
network to address the four interrelated problems of missing value 
imputation, phenotypic measurement forecasting, cognitive score 
trajectory estimation, and clinical status prediction using longitudinal 
imaging biomarkers (Jung et  al., 2021). The proposed method is 
superior to the existing competing methods for a variety of 
quantitative metrics (Jung et al., 2021). To our knowledge, no existing 
research has reported the application of machine or deep learning 
models for predicting the future outcomes of patients with MCI 
regarding Aβ (+) and Aβ (−) in the context of AD progression.

The present study aims to extend a predictive model using 
multimodal biomarkers to forecast cognitive decline and magnetic 
resonance imaging (MRI) markers in the Aβ (+) and Aβ (−) MCI 
populations. We hypothesize that clinical, neuropsychological, and 
neuroimaging features of the characteristics of aMCI exhibit 
associations with cognitive decline and MRI markers, and a 
combination of these features could enable accurate individual-level 
predictions of cognitive decline and MRI markers. Under this 
assumption, we aim to enhance our understanding of the relationship 
between these features in aMCI and their respective implications for 
cognitive decline and MRI markers.

Dataset and preprocessing

Study participants

We recruited 657 patients with aMCI who underwent three-
dimensional (3D) MRI and Aβ positron emission tomography 
(PET) imaging (18F-florbetaben (FBB) PET or 18F-flutemetamol 
(FMM)) imaging between February 2015 and June 2021 at 
Samsung Medical Center (SMC). All participants diagnosed with 
MCI fulfilled the following criteria (Albert et  al., 2011): (1) 
Participants or their caregivers must report subjective cognitive 
complaints. (2) Participants must exhibit objective cognitive 
impairment in any cognitive domain, with scores falling below 
−1.0 standard deviations of age- and education-matched norms in 
memory and − 1.5 standard deviations in other cognitive domains. 
(3) Participants must not have significant impairment in activities 
of daily living. (4) Participants must not have dementia. 
We excluded laboratory-confirmed secondary causes of cognitive 
deficits, including thyroid, renal, and hepatic function tests, 
vitamin B12, and syphilis serology. Individuals who had structural 
abnormalities on their brain MRI, such as territorial infarctions, 
intracranial hemorrhages, brain tumors, hydrocephalus, or 
significant white matter hyperintensities as determined by the 
modified Fazekas ischemia scale (Noh et  al., 2014), were 
also excluded.

This study was approved by the Institutional Review Board of 
SMC (IRB No: 2018–10-120). Written informed consent was obtained 
from the patients and their caregivers.

Neuropsychological tests

All participants underwent the Seoul Neuropsychological 
Screening Battery second edition (SNSB-II) (Kang et al., 2003, 2019). 
All of the included tests in SNSB-II have been internationally used for 
several decades in clinical practice (Wechsler, 1955; Folstein et al., 
1975; Golden, 1978; Benton et al., 1983; Kaplan et al., 1983; Morris, 
1993; Meyers and Meyers, 1995; Kang et  al., 1997, 2003, 2012; 
Benedict et al., 1998; O'Bryant et al., 2008; Ryu and Yang, 2023). The 
items used in the tests were altered due to the linguistic and cultural 
differences between Korean and English speakers (Kim and Na, 1999; 
Kang et  al., 2003, 2012; Ryu and Yang, 2023). We  used tests that 
provided numerical scores, such as the Digit Span Forward (DSF), the 
Korean version of the Boston Naming (K-BNT), Rey complex figure 
test (RCFT) (copying and delayed recall), Seoul verbal learning test 
(SVLT) (delayed recall), semantic controlled oral word association test 
(COWAT), Stroop Test (color reading), Korean-Mini Mental State 
Examination (K-MMSE), and Clinical Dementia Rating-Sum of Boxes 
(CDR-SB). In the analysis, the results with numerically continuous 
values were used.

The participants’ attention and working memory were assessed 
using the DSF, and naming ability was evaluated using the K-BNT 
score. Verbal memory and visual memory were measured using the 
SVLT (delayed recall) and RCFT (delayed recall) scores, respectively. 
The visuospatial function was assessed using the RCFT copying test, 
and the frontal executive function was measured using the semantic 
COWAT and Stroop test. The global cognition was evaluated with 
K-MMSE and CDR-SB.
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MRI data processing for cortical thickness 
measurements

All subjects received 3D T1 turbo field echo images and 3D fluid-
attenuated inversion recovery at SMC with a 3.0 T MRI scanner (Philips 
3.0 T Achieva; Philips Healthcare, Andover, MA, USA), as previously 
described. The CIVET anatomical pipeline (v. 2.1.0) was used to 
process the images (Zijdenbos et al., 2002). The MRI images of the 
native subjects were aligned with the MNI-152 template using a linear 
transformation method (Collins et al., 1994). Additionally, the images 
were adjusted for variations in intensity using the N3 algorithm (Sled 
et  al., 1998). The images that were registered and corrected were 
segmented into distinct regions, including white matter, gray matter, 
cerebrospinal fluid, and background. Furthermore, the marching-cubes 
approach was employed to automatically extract the inner and outer 
cortex surfaces. This allowed for the calculation of cortical thickness, 
which is defined as the Euclidean distance between the connected 
vertices of the inner and outer surfaces (Lerch and Evans, 2005).

Intracranial volume (ICV) was calculated by measuring the total 
volumes of the voxels within the skull-stripped brain mask. After 
obtaining cortical surface models using MRI volumes that were 
converted into stereotaxic space, we evaluated the cortical thickness 
in the original space by using an inverse transformation matrix to 
rebuild the cortical surface in the original space (Im et al., 2006).

We utilized a surface-based 2D registration technique employing 
a sphere-to-sphere warping algorithm. Furthermore, we  spatially 
standardized the cortical thickness values to facilitate a comparison 
between the thickness obtained from the registration algorithm and 
an unbiased iterative group template with improved anatomical detail 
(Lyttelton et al., 2007). This transformation allowed us to align the 
thickness information for the vertices with the unbiased iterative 
group template. The technique of surface-based diffusion smoothing 
was employed to blur each cortical thickness map, with a full width at 
half maximum of 20 mm. This process was done to enhance the signal-
to-noise ratio and statistical power of the data, as described by 
previous studies (Chung et  al., 2003; Im et  al., 2006). In order to 
quantify the hippocampal volume (HV), we employed an automated 
method for segmenting the hippocampus. This method utilized a 
graph cut algorithm in conjunction with atlas-based segmentation and 
a morphological opening technique, as detailed in an earlier study.

Amyloid PET imaging acquisition, analysis, 
and Centiloid values

All participants underwent either FBB or FMM PET scans at SMC 
using a Discovery STe PET/CT scanner (GE Medical Systems, 
Milwaukee, WI, USA). The scans were performed in 3D mode, 
examining 47 slices of 3.3 mm thickness that covered the entire brain 
(Jang et al., 2019). The CT pictures were obtained using a 16-slice helical 
CT scanner with a section width of 3.75 mm. The scanner was set to 
140 keV and 80 mA for attenuation correction. Following the guidelines 
provided by the makers of the ligands, a dynamic emission PET scan 
lasting 20 min was conducted. This scan consisted of four frames, each 
lasting 5 min. The scan was performed 90 min after injecting an average 
dose of 311.5 MBq of FBB or 185 MBq of FMM. The 3D PET scans were 
reconstructed using the ordered-subset expectation–maximization 
algorithm with a voxel size of 2.00 × 2.00 × 3.27 mm. The reconstruction 

was done in a 128 × 128 × 48 matrix. The algorithm parameters used 
were FBB iterations = 4 and subsets = 20 for the ordered-subset 
expectation–maximization algorithm, and FMM iterations = 4 and 
subsets = 20 for the same algorithm. The PET images were aligned with 
individual 3D-T1 weighted MRI scans that were standardized to the 
T1-weighted MNI-152 template using statistical parametric mapping 
(SPM) 8. The quantification of Aβ uptakes was performed using 
BeauBrain Morph, a software developed by BeauBrain Healthcare Co., 
Ltd. This software utilizes fully-automated image processing to measure 
Aβ uptakes on PET scans. In the previous study, to improve the 
prediction of prognosis and early detection, we  developed an 
MRI-based regional modified Centiloid (rdcCL) method that 
harmonizes the overall and regional Aβ uptake among Aβ ligands 
(Klunk et al., 2015). More details of the analysis method are found in 
the original Centiloid project paper and previous paper (Kim et al., 
2022). The MRI and PET images underwent spatial normalization using 
the transformation parameters obtained from SPM8. The whole 
cerebellar (WC) mask for the reference region was obtained from the 
Global Alzheimer’s Association Interactive Network website.1 
We created a WC mask for rdc-SUVR to calculate global and regional 
Centiloid using FBB and FMM PET images of Aβ patients. The six 
regional Volume of interests (VOIs) were named the frontal, lateral 
temporal, occipital, parietal, posterior cingulate, and striatal areas. 
rdc-SUVR values were calculated using the global regional VOIs. 
We divided the groups into two groups using the K-means clustering 
algorithm, and the cut-off was obtained by using the Centiloid values 
of patients in the lower group of these two groups. We defined Aβ 
positivity based on the cutoff value of the FBB or FMM PET global 
rdcCL, which was previously computed as 27.08 (Jang et al., 2021). This 
cutoff value is similar to the cutoff of 30 CL which was reported by 
previously studies (Salvadó et al., 2019; Milà-Alomà et al., 2021, 2022).

Proposed method

This work proposes a simple but efficient framework for modeling 
personalized prognostic trajectories in participants with 
aMCI. Specifically, the proposed framework consists of three modules: 
a feature representation module (FRM), temporal representation 
module (TRM), and multi-task prediction module (MPM) as 
illustrated in Figure  1. In the FRM, we  employ a self-attention 
mechanism (Vaswani et al., 2017) to fuse diverse clinical information 
(e.g., MRI markers, cognitive test scores, and the presence of the 
apolipoprotein E (APOE) carrier) into representative features. This 
module captures complex relationships of the input data and provides 
a comprehensive representation. The representative features were 
input into the TRM. Through this process, the proposed framework 
embeds and captures the underlying temporal characteristics inherent 
in the longitudinal data. The temporally embedded features are then 
fed into the MRM to simultaneously predict the cortical thickness of 
MRI markers and cognitive test scores for the next time sequence. By 
integrating these three modules, our proposed framework facilitates 
modeling individualized prognostic trajectories in participants 
diagnosed with aMCI.

1 http://www.gaain.org
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Notation

In this work, we express matrices with boldface uppercase letters, 
vectors with boldface lowercase letters, and scalars with italic letters. For 
a given matrix C, we define its i j,( )th element and the i-th column as 
C i j,( ) and ci, respectively. Thus, the longitudinal neuroimaging dataset 
is characterized by a multivariate time series consisting of B  
variables across T  time sequences from N  number of samples  

as  X Y X x x xn n

n

N n n
t
n

T
n B T( ) ( )

=
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01, , , , ,  ,

 
and L represents the of

 

classes, number of classes, such as Aβ (+) and Aβ (−) status. Furthermore, 
each data point integrates demographic information (i.e., age, gender, 
and education) pertaining to the n-th sample from the first visit (i.e., 
baseline). To use them as input features, demographic information is 
duplicated across T  time sequences, with the exception of age. For 
simplicity, the superscript n is omitted. For clarity, the input features are 
defined as x m ,c ,p ,dt t t t t= { }, where mt  denotes the cortical thickness 
features, ct represents the cognitive test scores, pt indicates APOE 
features, and d , ,t t

age
t
edu

t
gend d d= { }  represents the demographic 

information, including age, education, and gender.Missing 
value imputation

Given the scarcity of longitudinal data X Y,{ }, we  tackle the 
problem of missing values by applying an imputation technique. To 
achieve this, we  employ a mask vector alongside a time interval 
between consecutive data observations. These variables-the mask 

vector and time interval-are instrumental in informing to the model 
about the presence or absence of input features and labels. 
Consequently, this facilitates the model’s capacity to adeptly manage 
missing values, thereby recuperating essential information both for 
the imputation of missing values and for the latent feature 
representation. To incorporate this information, we employed a time 
delay matrix, indicating the time interval of observation. Harnessing 
these characteristics, we embraced a data-driven imputation strategy, 
which proficiently utilizes both temporal and multivariate 
relationships to impute missing observations. A detailed explanation 
is provided in our earlier work (Jung et al., 2021).

Feature representation module

The proposed framework encompasses an feature representation 
module (FRM) designed to identify and understand the relationships 
among multimodal input data, thereby learning an enriched 
representation of clinical information. In other words, this module 
leverages a self-attention mechanism, thereby identifying feature-
specific relationships and acquiring intricate and comprehensive 
clinical information.

To adhere to the aforementioned assumption, at time t, we initially 
concatenate the input features that include MRI markers, cognitive 
test scores, and the presence of APOE carriers as follows:

 
x m c pt t t t

B= ∈( )′×  ( )
,

1

FIGURE 1

Overall framework. Our proposed framework comprises a feature representation module (FRM) to learn enriched feature representation and to fuse 
multimodal input features using a self-attention mechanism; a temporal representation module (TRM) dedicated to accounting for the characteristics 
of temporal dynamics; and a multi-task prediction module (MPM) aimed at predicting the MRI biomarkers and cognitive test score for subsequent time 
visits. Before our proposed framework is trained, the data extraction procedure is initially conducted, utilizing MRI, cognitive tests, APOE genotype, and 
demographic data. Henceforth, each module considers multivariate and temporal traits, thereby using various input features from the current visit to 
predict the MRI biomarkers and cognitive test scores for the subsequent visit. FRM, feature representation module; TRM, temporal representation 
module; MPM, multi-task prediction module; APOE, apolipoprotein E.
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where  represents a concatenation operator. Subsequently, these 
concatenated features are transformed into three distinct 
representations through the utilization of three feed-forward networks 
(FFNs): the query Q( ), key K( ), and value V( ):

 Q K Vt q t k t v= = =  x W x W x W, , ,

where W Wq
B B

k
B B∈ ∈′ ′ ′ ′×( ) ×( ) , ,  and Wv

B B∈ ′ ′×( )  are 
learnable weight matrices. Following this, the similarity between each 
query in the Q representation and each key in K  representation is 
computed using the elementwise product. A standard self-attention 
calculation (Vaswani et al., 2017) is then executed as follows:

 
( ), ,σ

 
=   

 k

QKAttention Q K
d



where dk  representing the feature dimension of K  and σ  denotes 
a softmax function. After performing the self-attention operation, the 
outcome is multiplied by the value features. FFN is then applied to 
further refine the transformed features. These refined features are 
added back to the original concatenated features (i.e., attentive feature 
vectors) and concatenated with the demographic features as outlined 
in Figure 1 (FRM).

Temporal representation module

Following the combining of attentive feature vectors with 
demographic features (xt

B∈ ′×( ) 1 ), we employed a gated recurrent 
unit (GRU) network (Chung et  al., 2014) to capture the temporal 
representation. We  introduce a novel computational strategy via a 
modified GRU cell incorporating a temporal decaying factor ωt

H∈ ×( ) 1  
(where H  denotes the number of hidden units) and a mask vector 
nt

B∈ ′×( ) 1  to delineate whether each observation was directly observed 
or imputed. The hidden state ht

H
−

×( )∈1
1  of the recurrent network 

embodies temporal context information up to the previous time t −( )1 ; 
nonetheless, it is crucial to deliberate on the manner of amalgamating 
this temporal data with the current observation, particularly concerning 
the term of recent true observation. To address this, we  leverage a 
temporal decaying factor that judiciously apportions the impact of past 
observations, thereby effectively embedding them with the current 
observation as follows: 1 1 ω− −= 

t t th h , where   denotes an 
elementwise multiplication operator. In doing so, the TRM captures 
temporal dependencies and adjusts its representation accordingly. 
Moreover, the inclusion of the mask vector into the TRM informs the 
model about the imputed values. Through the using of temporal patterns 
and mask vectors, our proposed framework adeptly discerns imputation 
patterns, thereby improving its representational capability.

Before demonstrating the modified gating operation of the GRU 
cell, we introduce the role of its two gates (i.e., reset gate and update 
gate). These gates control the flow of information. Specifically, the 
reset gate determines how much of the previous hidden state should 
be forgotten or reset before considering the current input, while the 
update gate controls how much of the new hidden state should 
be updated with the current input. By dynamically adjusting the reset 
and update gates, the GRU cell can selectively remember or forget 
information from the past, allowing it to capture long-term 

dependencies in sequential data. The operation of TRM within the 
proposed framework is as follows:

 
rt r t t t r=   +( )−σ W h ,x n b� � �1  ,

 
zt z t t t z=   +( )−σ W h ,x n b� � �1  ,

 
h W h ,x′ =  ( )−t h t t trtanh ,� � � �1

 h h ht t t t tz z= −( ) + ′−1 1� �� ,

where W ,W ,W ,b ,bz r h z r{ } represent learnable parameters of the 
modified GRU cell. The outputs of the update and reset gates are 
denoted by rt  and zt, respectively, while h′t represents the candidate’s 
hidden state, and σ  denotes the sigmoid function. Each weight vector 
(i.e., W W Wz r h, , ) comprises two internal vectors: W gate i

H B
( )

×( )′∈ 2  
and W gate h

H H
( )

×( )∈ , where gate z r h( )∈{ }, , . Likewise, each bias 
vector has the same conditions, where the subscript i represents the 
connection between the weight vector and an input x nt t , and the 
subscript h represents the connection between the weight vector and 
temporal context information ht−1. The computation process is 
summarized as follows:

 
rt r t t t r=   +( )−σ W h ,x n b� � �1  ,

 rt ri t t ri rh t rh= ( ) + + +( )−σ W x n b W h b� �� � 1 .

Multi-task prediction module

Based on the hidden representation ht from the TRM, the multi-
task prediction module (MPM) generates two predictions for the next 
time point: the predicted MRI biomarker m



t+1 and the predicted 
cognitive test scores c



t+1. For each outcome, we employ simple linear 
regression models, defined as follows:

 1m W h b ,+ = + t m t m

 1c W h b ,+ = + t c t c

where W W bm c m, , , and bc denote the learnable parameters of the 
linear regression models. The MPM is connected with FRM and TRM, 
allowing for the joint optimization of the parameters across all 
three modules.

Optimization and algorithm

We formulated a composite objective function to simultaneously 
train the proposed framework. Specifically, for the prediction of the 
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MRI biomarker (i.e., cortical thickness), denoted as Lm, we computed 
the mean squared error (MSE) between the model output m t+1  from 
the MPM and the corresponding true observations mt+1:

 

21
11

1
m m .

−
++

=

 
= − 

 
∑ 

T
tm t

t
L

Similarly, for the prediction of cognitive test scores, denoted as Lc
, we measured the congruity between the model output 1c + t  from the 
MPM and the actual cognitive test score ct+1:

 

21
11

1
c c .

−
++

=

 
= − 

 
∑ 

T
tc t

t
L

Finally, the overall loss function Ltotal was defined as a weighted 
combination of the MRI biomarker loss Lm and the cognitive test 
score loss Lc:

 L L Ltotal m c= +α γ ,

where α  and γ  are hyperparameters to balance the influence of the 
respective losses. The optimization of this objective function enables 
the training of all learnable parameters in the proposed framework 
using the stochastic gradient descent method in an end-to-end 
manner. We performed the objective functions in various settings, 
including the MSE and mean absolute error (MAE). However, based 
on the experimental results, we selected MSE as the preferred metric.

Experiments and results

Participant characteristics and 
demographics

A total of 657 aMCI participants were included in the study. 
Table 1 presents the demographic characteristics of the participants. 
The mean age of the study participants was 71.5 ± 8.2 years, and 56.0% 
(n = 368) were females. Among participants, 312 (41.5%) were Aβ (−), 
and 345 (52.5%) were Aβ (+). No statistical differences were found in 
the mean age (p = 0.933), the proportion of females (p = 0.329), or 
years of education (p = 0.902) between the participants with Aβ (−) 
and Aβ (+) aMCI. Participants with Aβ (+) aMCI had a higher 
frequency of the APOE ε4 genotype (p < 0.001) than participants with 
Aβ (−) aMCI. Furthermore, statistically significant disparities were 
observed in most cognitive scores, with the exceptions of DSF, 
COWAT, and K-BNT. Among these assessments, CDR-SB and 
K-MMSE are known as pivotal tools for assessing the severity of 
dementia and cognitive impairment (Morris, 1993; Kang et al., 1997; 
O'Bryant et al., 2008). Based on these cognitive scores, it was observed 
that participants with Aβ (+) aMCI exhibited notably higher levels of 
cognitive impairment severity compared to those with Aβ (−) 
aMCI. Consequently, a higher score on the CDR-SB indicates greater 
dementia severity, while a lower score on the K-MMSE signifies more 
severe cognitive deficits. Based on the outcomes presented in Table 1, 
we validated the hypothesis that categorizing aMCI patients into Aβ 
(+) and Aβ (−) groups through quantitative criteria is plausible and 

provides a theoretical basis for developing treatment strategies for 
dementia and cognitive impairment. Furthermore, this approach 
reaffirmed the utility of CDR-SB and K-MMSE in assessing 
cognitive impairment.

Experimental settings

We validated the effectiveness of the proposed framework, which 
employs a systematic data-driven approach for multitask learning to 

TABLE 1 Baseline demographic characteristics of Aβ (−) and Aβ (+) aMCI.

Variables Total
(n  =  657)

Aβ (−) aMCI
(n  =  312)

Aβ (+) aMCI
(n  =  345)

Baseline age, yearsa

(−)

71.5 ± 8.2 71.0 ± 8.3 72.0 ± 8.2

Education, yearsa

(−)

12.1 ± 4.5 12.4 ± 4.5 11.8 ± 4.4

Female, N (%)

(−)

368 (56.0) 158 (50.6) 210 (60.9)

APOE ε4 carrier, N 

(%)

(p < 0.001)

276 (42.0) 53 (17.0) 223 (64.6)

CDR-SBa

(p < 0.001)

1.6 ± 1.1 1.3 ± 0.9 1.9 ± 1.2

K-MMSEa

(p < 0.001)

25.9 ± 3.0 26.8 ± 2.4 25.1 ± 3.3

DSFa

(−)

5.9 ± 1.4 5.9 ± 1.4 5.9 ± 1.4

K-BNTa

(−)

42.7 ± 9.3 43.2 ± 9.3 42.3 ± 9.4

RCFT-Copya

(p < 0.01)

29.9 ± 6.8 30.8 ± 5.7 29.1 ± 7.5

SVLT-Delayed 

recalla

(p < 0.001)

2.5 ± 2.5 3.4 ± 2.5 1.6 ± 2.1

RCFT-Delayed 

recalla

(p < 0.001)

6.8 ± 5.6 9.0 ± 6.1 4.7 ± 4.3

COWATa

(−)

22.5 ± 11.1 22.2 ± 10.0 22.7 ± 12.0

Stroop color 

readinga

(p < 0.001)

67.6 ± 27.9 72.5 ± 26.4 63.2 ± 28.4

Baseline Aβ uptake 

(dcCL)a

(p < 0.001)

49.3 ± 49.0 7.5 ± 18.8 90.9 ± 31.1

Follow-up 

duration, yearsa

2.1 ± 1.5 1.9 ± 1.3 2.3 ± 1.7

aValues are the mean and standard deviation. Aβ, Amyloid-β; aMCI, amnestic mild cognitive 
impairment; N, number; APOE ε4, apolipoprotein E ε4 allele; CDR-SB, Clinical Dementia 
Rating Scale Sum of Boxes; COWAT, controlled oral word association test; dcCL, direct 
comparison centiloid unit; DSF, digital span forward; K-BNT, Korean version of the Boston 
Naming Test; RCFT, Rey complex figure test; SVLT, Seoul verbal learning test; K-MMSE, 
Korean-Mini Mental State Examination.
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model personalized prognostic trajectories in patients with 
MCI. Specifically, the proposed framework focuses on forecasting 
MRI markers and cognitive test scores, which are crucial indicators in 
assessing disease progression. We made predictions for each time 
point, with a one-year interval covering four consecutive time 
sequences, corresponding to forecasting the outcomes for the 
subsequent 3 years following the baseline. In the prediction process, 
we  applied all available historical data, including observed 
measurements and imputed values for any missing or unobserved 
data. By incorporating this comprehensive information, the 
framework provides accurate and reliable predictions for each time 
sequence, enabling a thorough assessment of the future progression of 
the disease.

To ensure the reliability of the experimental results, we conducted 
a rigorous evaluation using five-fold cross-validation with five 
repetitions. In addition, the dataset was randomly partitioned into 
three mutually exclusive subsets: training, validation, and testing. 
Specifically, we randomly sampled 10% of the subjects from each class 
as the validation set, whereas another 10% were selected as the testing 
set from the baseline time point. This approach allowed the framework 
to validate the performance of the proposed model on unseen data 
and mitigate the influence of any specific subset of subjects. Regarding 
training settings, we  performed a grid search for hyperparameter 
selection, including 5 10 10 10 10

5 4 3 2×{ }− − − −
, , ,  for the learning rate, 

1 2 3, ,{ } for the number of hidden layers, 16 32 48 64 80 96, , , , ,{ } for the 
size of the hidden units, and 10 10 10 10

6 5 4 3− − − −{ }, , ,  for the l2
-regularization.

Subsequently, we leveraged an early stopping strategy to identify 
the optimal hyperparameters by minimizing the MSE on the 
validation set. In terms of the proposed framework, we used FFNs in 
the FRM and MPM. In particular, the FRM consisted of 17 input 
nodes ( ′B ) and 17 output nodes for the query, key, value, and gating 
layer. In MPM, we employed 21 input nodes (B) and six (number of 
MRI markers) and nine (number of cognitive test scores) output nodes 
for regression layers. Furthermore, we exploited a GRU cell in the 
TRM, consisting of 21 input nodes and 48 hidden states. To ensure a 
balanced optimization process, we introduced loss balance control by 
setting α  and γ  to 0.75 and 1.0, respectively. We implemented our 
proposed framework with PyTorch, and we trained them with Titan 
RTX GPU on Ubuntu 18.04.

For the quantitative evaluation, we used the MAE, mean absolute 
percentage error (MAPE), and coefficient of determination (R2) for 
the MRI biomarker prediction and cognitive test scores prediction 
tasks. We  also conducted statistical significance tests, including 
Pearson’s correlation coefficient for downstream tasks. For comparison 
with the other methods, we utilized the paired, two-sided Wilcoxon 
signed-rank test (Wilcoxon, 1992).

We compared our proposed method against the following 
approaches, which address tasks related to imputing missing values 
and forecasting:

 • Mean imputation combined with GRU (GRU-M): missing 
observations were imputed using the mean values of the 
respective variables from the training data. Subsequently, a GRU 
cell was employed for forecasting tasks, such as cognitive test 
scores and MRI markers.

 • Multi-directional recurrent neural network (M-RNN) (Yoon 
et al., 2018): This model, a variant of the traditional RNN, is 

designed to process data across multiple directions. Specifically, 
M-RNN leverages the concept of a bidirectional RNN to 
interpolate missing information within individual data streams, 
allowing it to analyze data in a more interconnected stream than 
in isolation. This makes it valuable for handling complex, multi-
stream datasets where understanding the context and correlation 
between data points is key to accurate forecasting and 
imputations. However, M-RNN does not consider correlations 
among features.

 • Self-Attention-based Imputation for Time Series (SAITS) (Du 
et  al., 2023): This model is trained with a joint optimization 
approach that utilizes two diagonal-masked self-attention blocks 
(DMSA) to effectively capture both the temporal dependencies 
and feature correlations between time steps, thereby improving 
imputation accuracy and training speed. In addition, a weighted-
combination block dynamically assigns weights to the 
representations learned from two DMSA blocks, guided by 
attention weights and missingness information, to further refine 
imputation precision.

For all comparative methods, the range of initial hyperparameters 
was set based on their original papers, and the optimal 
hyperparameters were selected based on the results of the validation 
set. All of the experiments were conducted using the same 
experimental settings as that of the proposed method.

Prediction of cognitive test scores

Table  2 summarizes the prediction errors for the longitudinal 
changes in neuropsychological test scores. Between the proposed 
framework and comparative methods. Namely, we  evaluated the 
prediction errors using MAE, MAPE, and R2 metrics. Note that the 
values for the highest performance are highlighted in bold, while the 
second-highest performance is denoted with an underline. First, it is 
noteworthy to highlight that our proposed method outperformed all 
the competing methods under our consideration, achieving the lowest 
MAE, MAPE, and R2 scores, with a statistical significance of p < 0 05.  
for most of the competing methods. Overall, M-RNN and SAITS 
demonstrated better performance than GRU-M across all cognitive 
test scores in terms of MAPE and R2 metrics. However, in terms of 
MAE, M-RNN showed lower performance than GRU-M specifically 
in the RCFT-Copy score, though it still outperformed GRU-M in 
terms of MAPE and R2. This underscores the importance of utilizing 
a variety of evaluation metrics rather than relying on a single one to 
ensure a fair comparison. Additionally, we  observed that among 
M-RNN and SAITS, the SAITS approach generally yielded better 
performance than M-RNN across all metrics, except for the 
COWAT score.

Table 2 indicates that, generally, all methodologies demonstrated 
high R2 values in the task of predicting cognitive test scores. Specifically, 
based on the R2 values resulting from our proposed method, the ranking 
of cognitive test scores was revealed as follows: K-BNT, Stroop Color 
Reading, RCFT-Delayed Recall, RCFT-Copy, SVLT-Delayed Recall, 
COWAT, CDR-SB, DSF, and K-MMSE. Furthermore, we conducted a 
group analysis of the groups with Aβ (+) and Aβ (−) aMCI to observe 
changes in the trajectory of the cognitive test scores over time and the 
intergroup differences in their values. Figure 2 presents the comparative 
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analysis of the cognitive test scores between the groups with Aβ (+) 
aMCI and Aβ (−) aMCI. The findings indicate that the group with Aβ 
(+) exhibited a more rapid decline in cognitive tests, including the 

K-MMSE and CDR-SB, compared to the group with Aβ (−). When 
examining the trajectories of longitudinal cognitive scores in the group 
comparison, we observed that the cognitive scores of the Aβ (+) group 
tended to be  lower than those of the Aβ (−) group, except for the 
CDR-SB score. However, higher values on CDR-SB indicate worse 
conditions; thus, this observation is meaningful. Based on this trend, the 
possibility of disease progression is expected to be higher in the group 
with Aβ (+) than that with Aβ (−) (Figure 2). Therefore, more attention 
should be focused on subjects with Aβ (+) MCI who are likely to exhibit 
rapid cognitive decline.

Prediction of MRI markers

Similarly to Tables 2, 3 describes the prediction errors for 
longitudinal changes in MRI markers, assessed using three metrics: 
MAE, MAPE, and R2. Note that the values for the highest performance 
are highlighted in bold, while the second-highest performance is 
denoted with an underline. Just as with the cognitive test score 
predictions, our proposed method outperformed all considered 
competing methods, achieving the lowest MAE, MAPE, and R2 scores 
with statistical significance of p < 0 05.  for most competing methods. 
Furthermore, for this task, we observed a performance improvement 
in the order of GRU-M, M-RNN, SAITS, and our proposed method 
with the R2 values indicating much stronger performance in predicting 
MRI markers compared to the cognitive test score prediction task. 
Significantly, the MRI markers, including HV and cortical thicknesses 
in the occipital, cingulate, temporal, parietal, and frontal regions, 
yielded favorable predictive results, ranked in descending order. 
Several studies (Singh et al., 2006; Verfaillie et al., 2016; Lee et al., 
2018) have reported consistent patterns of volume atrophy in various 
brain regions, particularly the prefrontal cortex, temporal lobe, and 
parietal lobe, in relation to cognitive decline. The extent of brain 
atrophy is predictive of cognitive decline over time.

Furthermore, we separately conducted a multifaceted analysis of the 
longitudinal cortical thinning in the groups with Aβ (+) and Aβ (−) to 
investigate the influence of the time interval from the baseline MRI 
scans. Initially, we examined the interaction effect between Aβ (+) and 
time, revealing that the group with Aβ (+) aMCI exhibited a significantly 
accelerated rate of cortical thinning than the group with Aβ (−) aMCI in 
specific brain regions, such as the cingulate, frontal, parietal, temporal, 
occipital, and hippocampal regions, as depicted in Figure 3A. Compared 
to the group with Aβ (−), those with Aβ (+) demonstrated a higher 
progression of brain region atrophy over time based on the ground truth 
(GT) in Figure 3A (right). Similarly, the predicted values also indicate 
that the group with Aβ (+) observed more significant brain region 
atrophy over time than the group with Aβ (−) in Figure 3A (left).

To delve deeper into the analysis, we further derived the following 
formula to quantify the relative changes in brain regions over time:
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where p g i, , , and t  indicate the prediction, GT, indices of MRI 
markers, and time points, respectively. The calculated relative changes 
were subsequently normalized by the minimum and maximum values 

TABLE 2 Performance predicting normalized cognitive test scores for 
MAE, MAPE, and R2 (†p<0.05).

Features Methods MAE↓ MAPE↓ R2↑

DSF

GRU-M 0.109 ± 0.012† 0.176 ± 0.010† 0.293 ± 0.030†

M-RNN 0.109 ± 0.013† 0.171 ± 0.023† 0.354 ± 0.066†

SAITS 0.096 ± 0.013† 0.157 ± 0.016† 0.401 ± 0.071†

Ours 0.089 ± 0.016 0.140 ± 0.021 0.524 ± 0.101

K-BNT

GRU-M 0.112 ± 0.005† 0.241 ± 0.057† 0.345 ± 0.099†

M-RNN 0.084 ± 0.003† 0.184 ± 0.029† 0.491 ± 0.081†

SAITS 0.082 ± 0.008† 0.179 ± 0.054† 0.603 ± 0.080†

Ours 0.065 ± 0.006 0.130 ± 0.021 0.771 ± 0.062

RCFT-Copy

GRU-M 0.125 ± 0.014† 0.570 ± 0.206† 0.353 ± 0.148†

M-RNN 0.139 ± 0.013† 0.467 ± 0.109† 0.418 ± 0.159†

SAITS 0.108 ± 0.006 0.377 ± 0.125 0.545 ± 0.099

Ours 0.100 ± 0.010 0.306 ± 0.063 0.631 ± 0.113

SVLT-

Delayed 

recall

GRU-M 0.128 ± 0.017† 0.575 ± 0.071† 0.354 ± 0.060†

M-RNN 0.109 ± 0.001† 0.493 ± 0.059† 0.487 ± 0.105†

SAITS 0.107 ± 0.011 0.439 ± 0.047 0.558 ± 0.066

Ours 0.096 ± 0.008 0.422 ± 0.031 0.626 ± 0.092

RCFT-

Delayed 

recall

GRU-M 0.113 ± 0.011† 0.897 ± 0.242† 0.351 ± 0.036†

M-RNN 0.099 ± 0.003† 0.763 ± 0.178† 0.466 ± 0.032†

SAITS 0.094 ± 0.008 0.758 ± 0.129 0.570 ± 0.059

Ours 0.085 ± 0.012 0.702 ± 0.143 0.634 ± 0.055

COWAT

GRU-M 0.106 ± 0.006† 0.876 ± 0.896† 0.367 ± 0.054†

M-RNN 0.095 ± 0.006 0.679 ± 0.671 0.495 ± 0.081

SAITS 0.093 ± 0.011 0.684 ± 0.617 0.506 ± 0.078

Ours 0.086 ± 0.011 0.518 ± 0.354 0.601 ± 0.084

Stroop

color reading

GRU-M 0.153 ± 0.009† 0.672 ± 0.199† 0.426 ± 0.024†

M-RNN 0.127 ± 0.009† 0.488 ± 0.171† 0.573 ± 0.126†

SAITS 0.121 ± 0.009† 0.437 ± 0.131† 0.607 ± 0.103†

Ours 0.098 ± 0.007 0.365 ± 0.089 0.736 ± 0.070

K-MMSE

GRU-M 0.084 ± 0.006† 0.886 ± 0.186† 0.211 ± 0.051†

M-RNN 0.078 ± 0.011† 0.851 ± 0.160† 0.291 ± 0.052†

SAITS 0.066 ± 0.006 0.700 ± 0.121 0.321 ± 0.098

Ours 0.066 ± 0.013 0.674 ± 0.185 0.418 ± 0.054

CDR-SB

GRU-M 0.097 ± 0.011† 0.145 ± 0.043† 0.324 ± 0.051†

M-RNN 0.090 ± 0.018† 0.126 ± 0.027† 0.377 ± 0.160†

SAITS 0.069 ± 0.012 0.107 ± 0.022 0.537 ± 0.091

Ours 0.065 ± 0.009 0.097 ± 0.026 0.581 ± 0.088

The values for the highest performance are highlighted in bold, while the second-highest 
performance is denoted with an underline. DSF, digital span forward; K-BNT, Korean version 
of the Boston Naming Test; RCFT, Rey complex figure test; SVLT, Seoul verbal learning test; 
COWAT, controlled oral word association test; K-MMSE, Korean-Mini Mental State 
Examination; CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; MAE, mean absolute 
error; MAPE, mean absolute percentage error; GRU-M, mean imputation combined with 
gated recurrent unit; M-RNN, multi-directional recurrent neural network; SAITS, self-
attention-based imputation for time series.
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so that the resulting values were in the range of [−1,1], with positive 
and negative values representing increasing and decreasing, 
respectively. While there were some variations between the predictions 
and actual observations, we observed discernible differences between 
the groups. Specifically, the findings based on the GT demonstrated a 
greater progression of brain region atrophy in the group with Aβ (+) 
than that with Aβ (−). Regarding the predicted values, although a 
relatively minimal intergroup difference exists in brain region atrophy 
during the first year, starting from the second year, the group with Aβ 
(+) exhibits a more rapid progression of brain region atrophy than the 
group with Aβ (−) (Figure 3B).

Last, we conducted the individual-level changes in brain regions 
over time, as illustrated in Figure 4. In this study, we utilized the mean 
values for brain areas corresponding to each hemisphere. 
Consequently, as seen in Figure 4 [row (A)], there are overlapping 
areas when visualizing the results for specific regions. To enhance the 
clarity of these visualizations, we categorized the areas and separated 
them into left and right hemispheres. Following the calculations 
described in Figure  3B, we  applied a threshold of 0.25 for the 
visualization process. The figure reveals that the degree of brain region 
atrophy is less prominent in the Aβ (−) samples until the second year. 
In contrast, the Aβ (+) samples exhibit substantial brain region 
atrophy from the first year onwards.

The group with Aβ (+) had a greater magnitude of cortical thinning 
and volumetric changes in specific brain regions over time than the 

group with Aβ (−) (Figures 3A,B). Further, similar patterns of analysis 
by group occurred, with variations in individual levels (Figure 4). Based 
on these findings, we concluded that the group with Aβ (+) is more 
likely to progress toward dementia or exhibit cognitive decline.

Performance of the proposed framework 
(amyloid positivity prediction)

Although not the primary study focus, we conducted an analysis 
to indirectly assess the performance of the downstream task. 
We  defined three scenarios for comparison: (1) comparing the 
diagnostic outcomes for first-time visiting patients and comparing the 
predictive results (2) with and (3) without missing values.

First, regarding the diagnostic outcomes of the first-time visiting 
patients, we employed the same input features as used in the proposed 
method, with the distinction that the time interval of observation was 
limited to 1 year. To evaluate the performance, we  employed the 
support vector machine (SVM), which is widely used for classification 
tasks. We applied various metrics to assess the predictive performance, 
including accuracy, sensitivity, specificity, and the area under the 
receiver operating characteristic curve (AUC). The performance of 
this scenario is presented as follows: accuracy (0.731 ± 0.035), 
sensitivity (0.692 ± 0.057), specificity (0.765 ± 0.025), and AUC 
(0.779 ± 0.033).

FIGURE 2

Group comparison of changes in the cognitive test scores over time. ρ( ) represents the average Pearson correlation coefficient calculated within each 
group, where (N) and (P) denote groups with Aβ (−) and Aβ (+), respectively. Blue and red indicate the groups with Aβ (−) and Aβ (+), respectively. The 
solid line corresponds to the actual observations, whereas the dotted line depicts the predicted values. Aβ, amyloid-β; K-MMSE, Korean-Mini Mental 
State Examination; CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; SVLT, Seoul verbal learning test; RCFT, Rey complex figure test; DSF, digital 
span forward; K-BNT, Korean version of the Boston Naming Test; COWAT, controlled oral word association test.
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The subsequent scenario encompassed predicting outcomes in the 
presence and absence of missing values. For the case of missing values 
(i.e., without applying an imputation task), the following procedure was 
employed to derive the results. As described in the experimental setting 
section, in the process of estimating missing values using the data-driven 
imputation approach, we evaluated the performance of the prediction of 
the MCI progression in patients by considering the imputation and 
classification loss values. The performance of longitudinal prediction for 
the case when values were missing is as follows: accuracy (0.706 ± 0.058), 
sensitivity (0.735 ± 0.088), specificity (0.735 ± 0.088), and AUC 
(0.779 ± 0.044). Based on these results, we replaced missing observations 
with imputed features at specific points in time.

When input observations were missing (i.e., applying an imputation 
task), missing observations were imputed through a previous step. Then, 
the final outputs (i.e., predicted MRI markers and cognitive scores) were 
estimated from the data in this study and the trained model. These final 
outputs were applied as input features and input into the SVM for the 
prediction task. The performance of longitudinal prediction when no 
values were missing is as follows: accuracy (0.756 ± 0.039), sensitivity 
(0.763 ± 0.046), specificity (0.819 ± 0.055), and AUC (0.814 ± 0.035). The 

results are higher than two cases, i.e., comparing the diagnostic outcomes 
for first-time visiting patients and the predictive results for longitudinal 
data with missing values, with a margin of 0.025 (vs. the first case) and 
0.050 (vs. the second case) in accuracy, 0.039 (vs. the first case) and 0.028 
(vs. the second case) in sensitivity, 0.054 (vs. the first case) and 0.084 (vs. 
the second case) in specificity, and 0.035 (vs. the first case) and 0.035 (vs. 
the second case) in AUC, respectively.

Based on these analytical findings, even with longitudinal data 
available, the presence of missing values could lead to similar or even 
lower classification performance than using single time-point data. 
However, using imputation methods to address missing values in 
longitudinal data, the results outperformed predictions based solely on 
single time-point data or longitudinal data with missing values. 
Theoretically, longitudinal data are expected to yield better performance 
due to the abundant information. However, the presence of missing 
values in longitudinal data can complicate the learning patterns of the 
models and sometimes result in inferior performance. One of the 
approaches for handling missing values is to remove them to alleviate 
this problem. However, in this study, we did not consider this approach 
because it could result in a loss of information inherent in the data. 
Consequently, we argue that longitudinal data yield better results than 
single time-point data; however, it is crucial to employ appropriate 
techniques for addressing missing values to mitigate their influence.

Interpreting attention weights

We aim to use the attention weights within our proposed model 
(e.g., the feature representation module-FRM) to indirectly interpret the 
basis for its performance in forecasting MRI biomarkers and clinical test 
scores, as well as amyloid positivity prediction. Specifically, we analyzed 
group-specific attention weights according to the patient’s clinical status 
at different time points to identify which input features contributed to 
identifying clinical status. At first, we observed that visualizing attention 
weights by group (e.g., classes) revealed not only the learning of 
different patterns across groups but also changes in these patterns over 
time (Figure 5). In Figure 5, attention weight values are derived from 
averaging across each group, then normalized to a range of [0,1] for 
each time sequence. The orange boxes indicate instances where the 
difference in attention weight values between the first observation and 
the respective time point exceeds 0.05, simultaneously suggesting a 
decrease in values over time. Conversely, the red boxes denote instances 
where the difference in attention weight values between the first 
observation and each subsequent time point is greater than 0.2, 
simultaneously indicating increased values over time. Through Figure 5, 
we observed the following findings: First, changes in Aβ (+) individuals 
begin to be  noticeable from the 2-year (2Y), whereas in Aβ (−) 
individuals, no significant changes are observed at the same time 
sequence. Second, the observation of orange boxes for Aβ (−) indicates 
that as time progresses, differences in attention values emerge, leading 
to a pattern of attention changes in Aβ (−) that become similar to that 
observed in Aβ (+). However, the attention changes in Aβ (−) 
concerning APOE and SVLT features were not as marked as those in Aβ 
(+). Lastly, the most significant attention changes over time for both Aβ 
(+) and Aβ (−) were observed in the CDR-SB column. Specifically, for 
Aβ (+), significant attention changes were observed in DSF-Temporal 
and RCFT Delayed recall-Temporal, while for Aβ (−), significant 
changes were identified in Cingulate-K BNT and Temporal-K BNT.

TABLE 3 Performance of predicting MRI markers in terms of MAE, MAPE, 
and R2.

Features Methods MAE↓ MAPE↓ R2↑

Cingulate

GRU-M 0.080 ± 0.007† 0.082 ± 0.007† 0.514 ± 0.043†

M-RNN 0.066 ± 0.008† 0.020 ± 0.004† 0.683 ± 0.109†

SAITS 0.058 ± 0.007† 0.018 ± 0.002† 0.766 ± 0.102†

Ours 0.036 ± 0.006 0.011 ± 0.002 0.879 ± 0.047

Frontal

GRU-M 0.060 ± 0.004† 0.060 ± 0.005† 0.555 ± 0.061†

M-RNN 0.048 ± 0.008 0.016 ± 0.002 0.703 ± 0.086

SAITS 0.048 ± 0.007 0.015 ± 0.002 0.709 ± 0.069

Ours 0.034 ± 0.003 0.011 ± 0.001 0.815 ± 0.032

Parietal

GRU-M 0.066 ± 0.010† 0.070 ± 0.008† 0.543 ± 0.077†

M-RNN 0.055 ± 0.008† 0.019 ± 0.002† 0.693 ± 0.028†

SAITS 0.052 ± 0.006 0.018 ± 0.002 0.727 ± 0.104

Ours 0.038 ± 0.008 0.013 ± 0.002 0.822 ± 0.056

Temporal

GRU-M 0.071 ± 0.011† 0.071 ± 0.013† 0.529 ± 0.083†

M-RNN 0.056 ± 0.009† 0.017 ± 0.003† 0.693 ± 0.062†

SAITS 0.052 ± 0.007 0.016 ± 0.003 0.746 ± 0.080

Ours 0.040 ± 0.002 0.013 ± 0.001 0.829 ± 0.040

Occipital

GRU-M 0.079 ± 0.012† 0.078 ± 0.013† 0.557 ± 0.075†

M-RNN 0.065 ± 0.008† 0.021 ± 0.002† 0.710 ± 0.084†

SAITS 0.057 ± 0.004 0.019 ± 0.001 0.756 ± 0.068†

Ours 0.037 ± 0.006 0.013 ± 0.002 0.887 ± 0.043

HV

GRU-M 0.022 ± 0.001* 0.096 ± 0.010 0.600 ± 0.058†

M-RNN 0.015 ± 0.002* 0.085 ± 0.013 0.777 ± 0.093†

SAITS 0.015 ± 0.001* 0.077 ± 0.009 0.809 ± 0.066†

Ours 0.008 ± 0.002* 0.049 ± 0.011 0.924 ± 0.023

The values for the highest performance are highlighted in bold, while the second-highest 
performance is denoted with an underline. *: × −

10
2, †: p < 0 05. .HV, hippocampal volume; 

MAE, mean absolute error; MAPE, mean absolute percentage error; GRU-M, mean 
imputation combined with gated recurrent unit; M-RNN, multi-directional recurrent neural 
network; SAITS, self-attention-based imputation for time series.
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Discussion

The present study develops a predictive model using a deep 
recurrent network with an attention mechanism in carefully 
phenotyped and large cohorts who underwent molecular and 
structural imaging. The major findings are as follows. First, the 

proposed predictive model presents reliable predictions regarding 
cognitive decline and MRI markers over time. Second, faster cognitive 
decline and brain atrophy in larger regions were forecasted in patients 
with Aβ (+) than Aβ (−) MCI. The proposed method provides 
effective and accurate means for prognosis with individuals likely to 
progress within a specific period. By identifying subjects who are at a 

FIGURE 3

Group comparison of the trajectories for longitudinal MRI markers (A) and the ratio of relative changes in longitudinal MRI markers over time (B). In 
figure (A), the x- and y-axes represent different brain regions and cortical thickness and HV values are divided by ICV, respectively. In figure (B), The 
x-axis represents different brain regions. The y-axis indicates the ratio of changes in cortical thickness and HV/ICV values relative to the baseline. The 
plots in each panel represent a specific time. Abbreviations: GT, ground truth; HV, hippocampal volume; ICV, intracranial volume; CT, cortical thickness.
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higher risk of rapid cognitive decline, the proposed model could 
accurately predict future cognitive decline and MRI marker changes 
over time for MCI patients at the individual level.

The prevalence of AD is expected to rise, with projections 
indicating that over 2% of the US population and 1% of the global 
population would be affected by AD by the year 2050 (Brookmeyer 

et  al., 2007). Prior research has shown encouraging results in 
forecasting the timing of individuals’ progression to AD dementia 
using time-to-event analysis methods (Li et al., 2013, 2018; Barnes 
et al., 2014; Kong et al., 2015). Particularly, clinical and imaging-based 
measures at the baseline (Li et al., 2013; Barnes et al., 2014; Kong et al., 
2015) and their longitudinal change trajectory (Li et al., 2018) have 

FIGURE 4

Individual trajectories of MRI markers representing relative changes over time. The color-coded values represent the normalized changes relative to 
the baseline values of the corresponding regions. The thickness of the brain region becomes thinner in Aβ (+) faster than Aβ (−). Aβ, amyloid-β; GT, 
ground truth.

FIGURE 5

Group comparison of the weights of attention over time (top: amyloid negative group, bottom: amyloid positive group). Aβ, amyloid-β; ApoE, 
Apolipoprotein E (1: with ApoE ε4 allele, 2: without ApoE ε4 allele); CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; COWAT, controlled oral 
word association test; dcCL, direct comparison Centiloid unit; DSF, digital span forward; HV, hippocampal volume; K-BNT, Korean version of the 
Boston Naming Test; K-MMSE, Korean-Mini Mental State Examination; RCFT, Rey complex figure test; SVLT, Seoul verbal learning test.
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been adopted for predicting the progression of patients with MCI to 
AD dementia. Consistent with these studies, the findings also 
demonstrate that the amyloid PET data can offer valuable indicators 
for predicting the timing of patients’ development of AD from MCI.

Despite the importance of early detection and management of 
MCI and AD dementia for clinical practice and treatment, we still lack 
robust techniques for forecasting individual progression. To address 
this issue, we  devise a simple but efficient deep learning-based 
prediction model that imputes missing observations and predicts 
cognitive outcomes using longitudinal data, drawing inspiration from 
Jung et al. (2021). However, our trajectory modeling approach differs 
from the previous work (Jung et  al., 2021) in that it incorporates 
cognitive scores, brain imaging data, and amyloid PET data. 
Furthermore, our model could forecast the progression of MCI and 
identify subgroups with various patterns of progression according to 
Aβ positivity. Unlike conventional models that rely on AD spectrum-
based diagnoses, our proposed model employs labels derived from 
amyloid PET scans. By integrating amyloid PET information, our 
model seeks to provide a more comprehensive and accurate 
representation of the pathological changes associated with AD, 
enhancing our prognostic models’ predictive power and specificity. 
Furthermore, our prognostic and predictive modeling targets the 
mid-point of the AD spectrum, specifically focusing on participants 
with (amnestic) MCI. Accordingly, the proposed method could 
provide a quantitative biomarker for predicting the longitudinal 
change of cognition and brain images simply by analyzing cognitive 
scores and brain images of Aβ (+) and Aβ (−) MCI patients. In the 
clinical setting, it would be more practical than simply predicting 
whether to proceed with AD (e.g., within a 3-year period of clinical 
assessment) because it would be  possible to predict when each 
individual’s cognition may deteriorate by showing continuous 
information in detailed prognostic trajectories.

The proposed framework demonstrated superior performance 
across all evaluation metrics for the prediction task, outperforming 
the considered scenarios, including single time-point data and 
longitudinal data with missing observations. Furthermore, the 
proposed framework has the benefit of automatically forecasting MRI 
markers and reliable trajectories of the cognitive test scores. Notably, 
in the context of the cognitive scores, SVLT-Delayed recall, K-MMSE, 
and CDR-SB exhibited strong positive correlations, as indicated by the 
Pearson correlation coefficient. Similarly, in terms of MRI markers, 
the hippocampal, occipital, and cingulate regions demonstrated a 
significant correlation, as reflected by the coefficient of determination, 
making them the top three predictive variables for predicting the 
progression of MCI in patients.

Although our model generally shows high R2 value in predicting 
cognitive test scores after training on cognitive data, prediction 
efficacy is significantly increased when brain MRI data, including 
cortical thickness and hippocampal volume, is added. The proposed 
deep learning-based framework is capable of leveraging information 
from predefined anatomical regions with varying degrees of influence 
from the brain images while integrating cognitive scores. This 
capability facilitates accurate predictions and highlights the strengths 
of deep learning systems in using voxel-by-voxel levels in brain 
images. This is consistent with previous studies showing improved 
prediction of time to AD conversion when biological markers are 
included rather than neuropsychological data alone (Grueso and 
Viejo-Sobera, 2021; Franciotti et al., 2023). This could be explained by 

disease course, because Aβ biomarkers become abnormal first, 
followed by tau, followed by FDG PET and MRI based on biomarker 
model of pure AD (Jack et al., 2013). Cognitive impairment is the last 
event in the progression of the disease (Jack et al., 2013). These results 
highlight the importance of utility of brain images in predicting the 
course managing MCI and AD patients at different stages of the 
disease process.

The strengths of this study are the standardized imaging 
procedures and thorough clinical evaluation. Using this proposed 
method, clinicians can identify patients at risk for cognitive decline 
and offer timely intervention to reduce risk, provide potential 
treatment, and assist patients and families in planning. Recently, anti-
amyloid monoclonal antibodies have shown some promise for slowing 
cognitive decline and adverse brain structure changes in MCI and 
early AD (van Dyck et al., 2022; Cummings, 2023; Sims et al., 2023). 
Our method allows clinicians to identify patients at risk of worsening 
using our proposed method in outpatient clinics in advance and apply 
these medications to delay the onset of dementia or even prevent 
disease. However, this study has several limitations. First, the 
robustness of the proposed framework is restricted by the clinical 
distribution of the SMC training dataset. Furthermore, this SMC 
training set excluded cases of non-AD neurodegenerative disorders, 
restricting the applicability of the algorithm to this patient population. 
We used Aβ PET uptakes and cortical thickness measurements from 
MRI to measure Aβ neurodegeneration, due to the lack of available 
pathological confirmation. However, we were unable to account for 
other pathologies contributing to neurodegeneration, such as tau, 
transactive response DNA-binding protein (TDP-43), hippocampal 
sclerosis, and argyrophilic grain disease. As a result, our findings may 
be  limited in generalizability. Therefore, external validation using 
other datasets from different cohorts should be  conducted in the 
future to further assess the model’s generalizability and robustness 
across diverse populations. Second, the diagnosis of MCI is inherently 
unstable because its accuracy relies on the duration of follow-up. For 
instance, some patients with MCI may have eventually developed AD 
if they had been followed for a sufficient time. Moreover, in the present 
study, neuropsychological tests were performed using SNSB-II, which 
may not be directly comparable to the test batteries more commonly 
used in international research contexts. However, all of the included 
tests in SNSB have been internationally used for several decades in 
clinical practice. The items used in the tests were altered due to the 
linguistic and cultural differences between Korean and English 
speakers. Therefore, the model’s predictions would remain valid if 
applied to populations assessed with different neuropsychological 
instruments, but further research is needed.

However, this study demonstrates that the proposed framework 
could forecast cognitive scores and imaging markers with high 
accuracy. By calibrating the model and conducting extensive external 
validation using data from many institutions, the algorithm could 
be  included into the clinical workflow and function as a crucial 
decision-support tool, assisting clinicians in the early prediction of 
MCI progression.

Conclusion

In conclusion, the proposed framework for predicting the 
progression of MCI in patients could demonstrate promising 
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performance, assisting in differentiating subjects with MCI with 
different progression patterns. This method also identifies subjects 
with MCI with a higher progression risk, providing cost-effective 
treatment at the individual level. Furthermore, this framework has the 
ability to facilitate the process of enrolling patients in clinical trials 
who are likely to progress within a specific time frame. We anticipate 
that this approach can aid in selecting patients with MCI who would 
benefit from early intervention.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional 
Review Board of Samsung Medical Center (IRB No: 2018–10-120). 
The studies were conducted in accordance with the local legislation 
and institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

WJ: Conceptualization, Formal analysis, Methodology, Resources, 
Writing – original draft, Writing – review & editing. SK: 
Conceptualization, Methodology, Writing – original draft, Writing – 
review & editing. JK: Resources, Writing – review & editing. HJ: 
Resources, Writing – review & editing. CP: Resources, Writing – 
review & editing. HK: Resources, Writing – review & editing. DN: 
Resources, Writing – review & editing. SS: Conceptualization, 
Funding acquisition, Methodology, Resources, Supervision, Writing 
– original draft, Writing – review & editing. H-IS: Conceptualization, 
Formal analysis, Funding acquisition, Methodology, Resources, 
Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by a grant of the Korea Dementia Research Project 
through the Korea Dementia Research Center, funded by the Ministry 
of Health and Welfare and Ministry of Science and ICT (MSIT), 
Republic of Korea (Grant no: HU20C0111); the Korea Health 
Technology R&D Project through the Korea Health Industry 
Development Institute, funded by the Ministry of Health and Welfare 
and MSIT, Republic of Korea (Grant no: HU22C0170); the National 
Research Foundation of Korea (NRF) grant funded by the Korean 
government (MSIT; NRF-2019R1A5A2027340); the Institute of 
Information and Communications Technology Planning and 
Evaluation (IITP) grant funded by the Korean government (MSIT; No. 
2021–0-02068, Artificial Intelligence Innovation Hub); the Future 
Medicine 20*30 Project of the Samsung Medical Center 
[#SMX1240561]; the “Korea National Institute of Health” research 
project (2024-ER1003-00); IITP grant funded by the Korean 
government (MSIT; No. 2019–0-00079, Artificial Intelligence 
Graduate School Program, Korea University); and NRF grant funded 
by the Korean government (No. 2022R1A4A1033856).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., et al. 

(2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: 
recommendations from the National Institute on Aging-Alzheimer's Association 
workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 
270–279. doi: 10.1016/j.jalz.2011.03.008

Barnes, D. E., Cenzer, I. S., Yaffe, K., Ritchie, C. S., and Lee, S. J. (2014). A point-based 
tool to predict conversion from mild cognitive impairment to probable Alzheimer's 
disease. Alzheimers Dement. 10, 646–655. doi: 10.1016/j.jalz.2013.12.014

Benedict, R. H. B., Schretlen, D., Groninger, L., and Brandt, J. (1998). Hopkins verbal 
learning test—revised: normative data and analysis of inter-form and test–retest 
reliability. Clin. Neuropsychol. 12, 43–55. doi: 10.1076/clin.12.1.43.1726

Benton, A., Hamsher, K., and Sivan, A. (1983). Controlled oral word association test 
(COWAT). Multilingual aphasia examination. 3rd Edn. Iowa City, IA: AJA Associates.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H. M. (2007). 
Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 3, 186–191. 
doi: 10.1016/j.jalz.2007.04.381

Busse, A., Hensel, A., Gühne, U., Angermeyer, M. C., and Riedel-Heller, S. G. (2006). 
Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 67, 
2176–2185. doi: 10.1212/01.wnl.0000249117.23318.e1

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated 
recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep 
Learning arXiv:1412.3555. doi: 10.48550/arXiv.1412.3555

Chung, M. K., Worsley, K. J., Robbins, S., Paus, T., Taylor, J., Giedd, J. N., et al. (2003). 
Deformation-based surface morphometry applied to gray matter deformation. 
NeuroImage 18, 198–213. doi: 10.1016/S1053-8119(02)00017-4

Collins, D. L., Neelin, P., Peters, T. M., and Evans, A. C. (1994). Automatic 3D 
intersubject registration of MR volumetric data in standardized Talairach space. 
J. Comput. Assist. Tomogr. 18, 192–205. doi: 10.1097/00004728-199403000- 
00005

Cummings, J. (2023). Anti-amyloid monoclonal antibodies are transformative 
treatments that redefine Alzheimer's disease therapeutics. Drugs 83, 569–576. doi: 
10.1007/s40265-023-01858-9

Doraiswamy, P. M., Sperling, R. A., Johnson, K., Reiman, E. M., Wong, T. Z., 
Sabbagh, M. N., et al. (2014). Florbetapir F 18 amyloid PET and 36-month cognitive 
decline:a prospective multicenter study. Mol. Psychiatry 19, 1044–1051. doi: 10.1038/
mp.2014.9

Du, W., Côté, D., and Liu, Y. (2023). Saits: self-attention-based imputation for time 
series. Expert Syst. Appl. 219:119619. doi: 10.1016/j.eswa.2023.119619

Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., and DeCarli, C. (2009). Progression 
of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch. 
Neurol. 66, 1151–1157. doi: 10.1001/archneurol.2009.106

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). "Mini-mental state". A 
practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. 
Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6

https://doi.org/10.3389/fnagi.2024.1356745
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.jalz.2013.12.014
https://doi.org/10.1076/clin.12.1.43.1726
https://doi.org/10.1016/j.jalz.2007.04.381
https://doi.org/10.1212/01.wnl.0000249117.23318.e1
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1016/S1053-8119(02)00017-4
https://doi.org/10.1097/00004728-199403000-00005
https://doi.org/10.1097/00004728-199403000-00005
https://doi.org/10.1007/s40265-023-01858-9
https://doi.org/10.1038/mp.2014.9
https://doi.org/10.1038/mp.2014.9
https://doi.org/10.1016/j.eswa.2023.119619
https://doi.org/10.1001/archneurol.2009.106
https://doi.org/10.1016/0022-3956(75)90026-6


Jung et al. 10.3389/fnagi.2024.1356745

Frontiers in Aging Neuroscience 15 frontiersin.org

Franciotti, R., Nardini, D., Russo, M., Onofrj, M., and Sensi, S. L. (2023). Comparison 
of machine learning-based approaches to predict the conversion to Alzheimer’s disease 
from mild cognitive impairment. Neuroscience 514, 143–152. doi: 10.1016/j.
neuroscience.2023.01.029

Golden, C. J. (1978). Stroop color and word test: a manual for clinical and experimental 
uses. Chicago, IL, USA: Stoelting Company.

Grueso, S., and Viejo-Sobera, R. (2021). Machine learning methods for predicting 
progression from mild cognitive impairment to Alzheimer’s disease dementia: a 
systematic review. Alzheimers Res. Ther. 13:162. doi: 10.1186/s13195-021-00900-w

Im, K., Lee, J. M., Lee, J., Shin, Y. W., Kim, I. Y., Kwon, J. S., et al. (2006). Gender 
difference analysis of cortical thickness in healthy young adults with surface-based 
methods. NeuroImage 31, 31–38. doi: 10.1016/j.neuroimage.2005.11.042

Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., 
et al. (2013). Tracking pathophysiological processes in Alzheimer's disease: an updated 
hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216. doi: 10.1016/
S1474-4422(12)70291-0

Jang, H., Jang, Y. K., Kim, H. J., Werring, D. J., Lee, J. S., Choe, Y. S., et al. (2019). 
Clinical significance of amyloid β positivity in patients with probable cerebral amyloid 
angiopathy markers. Eur. J. Nucl. Med. Mol. Imaging 46, 1287–1298. doi: 10.1007/
s00259-019-04314-7

Jang, H., Kim, J. S., Lee, H. J., Kim, C.-H., Na, D. L., Kim, H. J., et al. (2021). 
Performance of the plasma Aβ42/Aβ40 ratio, measured with a novel HPLC-MS/MS 
method, as a biomarker of amyloid PET status in a DPUK-KOREAN cohort. Alzheimers 
Res. Ther. 13:179. doi: 10.1186/s13195-021-00911-7

Jung, W., Jun, E., and Suk, H. I. (2021). Deep recurrent model for individualized 
prediction of Alzheimer's disease progression. NeuroImage 237:118143. doi: 10.1016/j.
neuroimage.2021.118143

Kang, Y., Jahng, S., and Na, D. (2012). Seoul neuropsychological screening battery. 2nd 
Edn. Incheon: Human Brain Research & Consulting Co.

Kang, Y., Na, D.-L., and Hahn, S. (1997). A validity study on the Korean Mini-mental 
state examination (K-MMSE) in dementia patients. J. Korean Neurol. Assoc. 15, 300–308.

Kang, Y., Na, D., and Hahn, S. (2003). Seoul neuropsychological screening battery. 
Incheon: Human brain research & consulting co.

Kang, S. H., Park, Y. H., Lee, D., Kim, J. P., Chin, J., Ahn, Y., et al. (2019). The cortical 
neuroanatomy related to specific neuropsychological deficits in Alzheimer's continuum. 
Dement. Neurocogn. Disord. 18, 77–95. doi: 10.12779/dnd.2019.18.3.77

Kaplan, E., Goodglass, H., and Weintraub, S. (1983). The Boston naming test. 
Philadelphia, PA: Lea & Febiger.

Kim, S.-J., Ham, H., Park, Y. H., Choe, Y. S., Kim, Y. J., Jang, H., et al. (2022). 
Development and clinical validation of CT-based regional modified centiloid method 
for amyloid PET. Alzheimers Res. Ther. 14:157. doi: 10.1186/s13195-022-01099-0

Kim, H., and Na, D. L. (1999). Normative data on the Korean version of the Boston 
naming test. J. Clin. Exp. Neuropsychol. 21, 127–133. doi: 10.1076/jcen.21.1.127.942

Klunk, W. E., Koeppe, R. A., Price, J. C., Benzinger, T. L., Devous, M. D. Sr., 
Jagust, W. J., et al. (2015). The centiloid project: standardizing quantitative amyloid 
plaque estimation by PET. Alzheimers Dement. 11:1-15.e11-14. doi: 10.1016/j.
jalz.2014.07.003

Kong, D., Giovanello, K. S., Wang, Y., Lin, W., Lee, E., Fan, Y., et al. (2015). Predicting 
Alzheimer's disease using combined imaging-whole genome SNP data. J. Alzheimers 
Dis. 46, 695–702. doi: 10.3233/JAD-150164

Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., 
et al. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. 
Ann. Neurol. 72, 578–586. doi: 10.1002/ana.23650

Lee, J. S., Kim, C., Shin, J.-H., Cho, H., Shin, D.-S., Kim, N., et al. (2018). Machine 
learning-based individual assessment of cortical atrophy pattern in Alzheimer’s disease 
Spectrum: development of the classifier and longitudinal evaluation. Sci. Rep. 8:4161. 
doi: 10.1038/s41598-018-22277-x

Lerch, J. P., and Evans, A. C. (2005). Cortical thickness analysis examined through 
power analysis and a population simulation. NeuroImage 24, 163–173. doi: 10.1016/j.
neuroimage.2004.07.045

Li, K., O'Brien, R., Lutz, M., and Luo, S. (2018). A prognostic model of Alzheimer's 
disease relying on multiple longitudinal measures and time-to-event data. Alzheimers 
Dement. 14, 644–651. doi: 10.1016/j.jalz.2017.11.004

Li, S., Okonkwo, O., Albert, M., and Wang, M. C. (2013). Variation in variables that 
predict Progression from MCI to AD dementia over duration of follow-up. Am. J. 
Alzheimers Dis. 2, 12–28. doi: 10.7726/ajad.2013.1002

Lyttelton, O., Boucher, M., Robbins, S., and Evans, A. (2007). An unbiased iterative 
group registration template for cortical surface analysis. NeuroImage 34, 1535–1544. doi: 
10.1016/j.neuroimage.2006.10.041

Meyers, J., and Meyers, K. R. (1995). Rey complex figure test and recognition trial. 
Odessa: Psychological Assessment Resources.

Milà-Alomà, M., Ashton, N. J., Shekari, M., Salvadó, G., Ortiz-Romero, P., 
Montoliu-Gaya, L., et al. (2022). Plasma p-tau231 and p-tau217 as state markers of 

amyloid-β pathology in preclinical Alzheimer’s disease. Nat. Med. 28, 1797–1801. doi: 
10.1038/s41591-022-01925-w

Milà-Alomà, M., Shekari, M., Salvadó, G., Gispert, J. D., Arenaza-Urquijo, E. M., 
Operto, G., et al. (2021). Cognitively unimpaired individuals with a low burden of Aβ 
pathology have a distinct CSF biomarker profile. Alzheimers Res. Ther. 13, 1–12,

Morris, J. C. (1993). The clinical dementia rating (CDR): current version and scoring 
rules. Neurology 43, 2412–2414. doi: 10.1212/WNL.43.11.2412-a

Noh, Y., Lee, Y., Seo, S. W., Jeong, J. H., Choi, S. H., Back, J. H., et al. (2014). A new 
classification system for ischemia using a combination of deep and periventricular white 
matter hyperintensities. J. Stroke Cerebrovasc. Dis. 23, 636–642. doi: 10.1016/j.
jstrokecerebrovasdis.2013.06.002

O'Bryant, S. E., Waring, S. C., Cullum, C. M., Hall, J., Lacritz, L., Massman, P. J., et al. (2008). 
Staging dementia using clinical dementia rating scale sum of boxes scores: a Texas Alzheimer's 
research consortium study. Arch. Neurol. 65, 1091–1095. doi: 10.1001/archneur.65.8.1091

Okello, A., Koivunen, J., Edison, P., Archer, H. A., Turkheimer, F. E., Någren, K., 
et al. (2009). Conversion of amyloid positive and negative MCI to AD over 3 years: 
an 11C-PIB PET study. Neurology 73, 754–760. doi: 10.1212/
WNL.0b013e3181b23564

Pan, J., Lei, B., Shen, Y., Liu, Y., Feng, Z., and Wang, S. (2021). “Characterization 
multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease 
analysis” in Pattern recognition and computer vision. PRCV 2021. Lecture Notes in 
Computer Science. Vol. 13021. eds. H. Ma, L. Wang, C. Zhang, F. Wu, T. Tan and Y. Wang, 
et al. (Springer, Cham), 467–478.

Roberts, R. O., Aakre, J. A., Kremers, W. K., Vassilaki, M., Knopman, D. S., 
Mielke, M. M., et al. (2018). Prevalence and outcomes of amyloid positivity among 
persons without dementia in a longitudinal, population-based setting. JAMA Neurol. 75, 
970–979. doi: 10.1001/jamaneurol.2018.0629

Ryu, H. J., and Yang, D. W. (2023). The Seoul neuropsychological screening battery 
(SNSB) for comprehensive neuropsychological assessment. Dement. Neurocogn. Disord. 
22, 1–15. doi: 10.12779/dnd.2023.22.1.1

Salvadó, G., Molinuevo, J. L., Brugulat-Serrat, A., Falcon, C., Grau-Rivera, O., 
Suárez-Calvet, M., et al. (2019). Centiloid cut-off values for optimal agreement between 
PET and CSF core AD biomarkers. Alzheimers Res. Ther. 11, 1–12. doi: 10.1186/
s13195-019-0478-z

Sims, J. R., Zimmer, J. A., Evans, C. D., Lu, M., Ardayfio, P., Sparks, J., et al. (2023). 
Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 
randomized clinical trial. JAMA 330, 512–527. doi: 10.1001/jama.2023.13239

Singh, V., Chertkow, H., Lerch, J. P., Evans, A. C., Dorr, A. E., and Kabani, N. J. (2006). 
Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's 
disease. Brain 129, 2885–2893. doi: 10.1093/brain/awl256

Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998). A nonparametric method for 
automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 
17, 87–97. doi: 10.1109/42.668698

van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., et al. 
(2022). Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21. doi: 10.1056/
NEJMoa2212948

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. 
(2017). Attention is all you need. Adv. Neural Inf. Proces. Syst. 30, 6000–6010.

Verfaillie, S. C., Tijms, B., Versteeg, A., Benedictus, M. R., Bouwman, F. H., 
Scheltens, P., et al. (2016). Thinner temporal and parietal cortex is related to incident 
clinical progression to dementia in patients with subjective cognitive decline. Alzheimers 
Dement. 5, 43–52. doi: 10.1016/j.dadm.2016.10.007

Wechsler, D. (1955). Wechsler adult intelligence scale. Front. Psychol.,

Wilcoxon, F. (1992). “Individual comparisons by ranking methods” in Breakthroughs 
in statistics: Methodology and distribution. (New York: Springer), 196–202.

Yoon, J., Zame, W. R., and van der Schaar, M. (2018). Estimating missing data in 
temporal data streams using multi-directional recurrent neural networks. IEEE Trans. 
Biomed. Eng. 66, 1477–1490. doi: 10.1109/TBME.2018.2874712

Zhu, D. C., Majumdar, S., Korolev, I. O., Berger, K. L., and Bozoki, A. C. (2013). 
Alzheimer's disease and amnestic mild cognitive impairment weaken connections 
within the default-mode network: a multi-modal imaging study. J. Alzheimers Dis. 34, 
969–984. doi: 10.3233/JAD-121879

Zijdenbos, A. P., Forghani, R., and Evans, A. C. (2002). Automatic "pipeline" analysis 
of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med. 
Imaging 21, 1280–1291. doi: 10.1109/TMI.2002.806283

Zuo, Q., Lei, B., Shen, Y., Liu, Y., Feng, Z., and Wang, S. (2021). “Multimodal 
representations learning and adversarial hypergraph fusion for early Alzheimer’s 
disease prediction” in Pattern recognition and computer vision. 4th Chinese 
Conference, PRCV 2021, Beijing, China, Proceedings, Part III. eds. H. Ma, L. Wang, C. 
Zhang, F. Wu, T. Tan, Y. Wang, J. Lai and Y. Zhao (Springer International 
Publishing), 479–490.

Zuo, Q., Wu, H., Chen, C. L. P., Lei, B., and Wang, S. (2024). Prior-guided adversarial 
learning with hypergraph for predicting abnormal connections in Alzheimer’s disease. 
IEEE Trans. Cybernet., 1–14. doi: 10.1109/TCYB.2023.3344641

https://doi.org/10.3389/fnagi.2024.1356745
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neuroscience.2023.01.029
https://doi.org/10.1016/j.neuroscience.2023.01.029
https://doi.org/10.1186/s13195-021-00900-w
https://doi.org/10.1016/j.neuroimage.2005.11.042
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1007/s00259-019-04314-7
https://doi.org/10.1007/s00259-019-04314-7
https://doi.org/10.1186/s13195-021-00911-7
https://doi.org/10.1016/j.neuroimage.2021.118143
https://doi.org/10.1016/j.neuroimage.2021.118143
https://doi.org/10.12779/dnd.2019.18.3.77
https://doi.org/10.1186/s13195-022-01099-0
https://doi.org/10.1076/jcen.21.1.127.942
https://doi.org/10.1016/j.jalz.2014.07.003
https://doi.org/10.1016/j.jalz.2014.07.003
https://doi.org/10.3233/JAD-150164
https://doi.org/10.1002/ana.23650
https://doi.org/10.1038/s41598-018-22277-x
https://doi.org/10.1016/j.neuroimage.2004.07.045
https://doi.org/10.1016/j.neuroimage.2004.07.045
https://doi.org/10.1016/j.jalz.2017.11.004
https://doi.org/10.7726/ajad.2013.1002
https://doi.org/10.1016/j.neuroimage.2006.10.041
https://doi.org/10.1038/s41591-022-01925-w
https://doi.org/10.1212/WNL.43.11.2412-a
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.002
https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.002
https://doi.org/10.1001/archneur.65.8.1091
https://doi.org/10.1212/WNL.0b013e3181b23564
https://doi.org/10.1212/WNL.0b013e3181b23564
https://doi.org/10.1001/jamaneurol.2018.0629
https://doi.org/10.12779/dnd.2023.22.1.1
https://doi.org/10.1186/s13195-019-0478-z
https://doi.org/10.1186/s13195-019-0478-z
https://doi.org/10.1001/jama.2023.13239
https://doi.org/10.1093/brain/awl256
https://doi.org/10.1109/42.668698
https://doi.org/10.1056/NEJMoa2212948
https://doi.org/10.1056/NEJMoa2212948
https://doi.org/10.1016/j.dadm.2016.10.007
https://doi.org/10.1109/TBME.2018.2874712
https://doi.org/10.3233/JAD-121879
https://doi.org/10.1109/TMI.2002.806283
https://doi.org/10.1109/TCYB.2023.3344641

	Deep learning model for individualized trajectory prediction of clinical outcomes in mild cognitive impairment
	Introduction
	Dataset and preprocessing
	Study participants
	Neuropsychological tests
	MRI data processing for cortical thickness measurements
	Amyloid PET imaging acquisition, analysis, and Centiloid values

	Proposed method
	Notation
	Missing value imputation
	Feature representation module
	Temporal representation module
	Multi-task prediction module
	Optimization and algorithm

	Experiments and results
	Participant characteristics and demographics
	Experimental settings
	Prediction of cognitive test scores
	Prediction of MRI markers
	Performance of the proposed framework (amyloid positivity prediction)
	Interpreting attention weights

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

