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We investigated a screening method for mild cognitive impairment (MCI) 
that combined bioimpedance features and the Korean Mini-Mental State 
Examination (K-MMSE) score. Data were collected from 539 subjects aged 
60  years or older at the Gwangju Alzheimer’s & Related Dementias (GARD) 
Cohort Research Center, A total of 470 participants were used for the analysis, 
including 318 normal controls and 152 MCI participants. We  measured 
bioimpedance, K-MMSE, and the Seoul Neuropsychological Screening Battery 
(SNSB-II). We developed a multiple linear regression model to predict MCI by 
combining bioimpedance variables and K-MMSE total score and compared the 
model’s accuracy with SNSB-II domain scores by the area under the receiver 
operating characteristic curve (AUROC). We additionally compared the model 
performance with several machine learning models such as extreme gradient 
boosting, random forest, support vector machine, and elastic net. To test the 
model performances, the dataset was divided into a training set (70%) and a 
test set (30%). The AUROC values of SNSB-II scores were 0.803 in both sexes, 
0.840 for males, and 0.770 for females. In the combined model, the AUROC 
values were 0.790 (0.773) for males (and females), which were significantly 
higher than those from the model including MMSE scores alone (0.723 for males 
and 0.622 for females) or bioimpedance variables alone (0.640 for males and 
0.615 for females). Furthermore, the accuracies of the combined model were 
comparable to those of machine learning models. The bioimpedance-MMSE 
combined model effectively distinguished the MCI participants and suggests a 
technique for rapid and improved screening of the elderly population at risk of 
cognitive impairment.
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1 Introduction

Population aging is a global phenomenon because of improvement in hygiene, nutritional 
status, and medical technology. Consequently, the number of elderly individuals at risk of 
dementia or mild cognitive impairment (MCI) is increasing at an alarming rate. Dementia 
imposes a substantial social burden due to its challenging treatment and the suffering 
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experienced by patients and their care givers. Early detection of 
cognitive impairment may help to prevent or slow the progression 
of dementia.

To identify cognitive dysfunction, clinics often employ 
neuropsychological assessment questionnaires, such as the 
Consortium to Establish a Registry for Alzheimer’s Disease (CERAD), 
Dementia Rating Scale (DRS), Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog), and Seoul Neuropsychological 
Screening Battery II (SNSB II). These assessments are widely utilized 
for the comprehensive cognition test due to their accessibility, cost-
effectiveness, convenience, and the use of neuroimaging techniques 
such as magnetic resonance imaging (MRI) or positron emission 
tomography (PET) to determine the underlying causes of cognitive 
impairment (Benedict and Zivadinov, 2011; Risacher et  al., 2017; 
Petracca et al., 2021).

However, these comprehensive neuropsychological assessments 
may not be readily available to many participants due to their time-
consuming nature and the need for a professionally trained 
practitioner. As a result, brief neuropsychological questionnaires such 
as the Mini-Mental State Examination (MMSE) and the Montreal 
Cognitive Assessment (MoCA) have gained widespread popularity as 
screening tools for dementia (Folstein et al., 1975; Nasreddine et al., 
2005; Smith et  al., 2007; Roalf et  al., 2013). These tools are easily 
administered with minimal training, and can be completed within 
10 min and have demonstrated diagnostic utility. The MMSE, in 
particular, is the most widely adopted measure for screening cognitive 
function in medical and neuropsychological research. However, the 
MMSE is known to lack its accuracy to earlier cognitive impairment 
from cognitively normal elderly (Hoops et al., 2009; Lee et al., 2009; 
Arevalo-Rodriguez et al., 2015; Ciesielska et al., 2016).

Bioelectrical impedance analysis (BIA), also known as 
bioimpedance analysis, is widely acknowledged to be a safe, rapid, 
reliable, easy-to-use, portable, noninvasive, and cost-effective 
technique. BIA has extensive applications in measuring body 
composition (Abu Khaled et al., 1988; Jackson et al., 1988; Shafer et al., 
2009). Recently, numerous studies have reported the potential of using 
BIA measurements to assess health indicators and clinical outcomes 
among various patient populations. Specifically, BIA has been 
extensively used as a valuable index for monitoring and screening 
different diseases and conditions, including mortality, nutrition status, 
diabetes, hemodialysis, chronic heart failure, and liver cirrhosis 
(Selberg and Selberg, 2002; Colin-Ramirez et al., 2012; Beberashvili 
et al., 2014; Dittmar et al., 2015; Genton et al., 2017; Kuchnia et al., 
2017; Jun et al., 2018). Some studies have explored the association 
between cognitive function, such as MCI or dementia related to 
Alzheimer’s disease (AD), and BIA variables. Notably, BIA variables 
were significantly different in individuals with AD compared to 
controls. Participants with AD exhibited lower lean tissue mass and 
higher percent fat mass than healthy elderly individuals. Reactance 
and the ratio of reactance to height were approximately 21% lower in 
individuals with dementia than in older adults without dementia 
(Buffa et al., 2010, 2014; Camina Martin et al., 2015). Additionally, AD 
patients demonstrated significantly higher height-normalized 
impedance values and lower phase angles (indicative of body cell 
mass) than healthy controls. Men with MCI exhibited a higher ratio 
of impedance to height than healthy controls (Cova et  al., 2017). 
Furthermore, a study reported positive correlations between muscle 
mass percentage and cognitive function measures such as attention 

and executive function (Crespillo-Jurado et al., 2019). Recent research 
has also revealed associations between MCI and increased segmental 
water and lean mass in the lower extremities, as well as decreased 
resistance and reactance in the lower extremities (Doan et al., 2022b).

Numerous studies have highlighted the relationship between 
cognitive function and body composition, which can be influenced by 
factors such as nutrition status and physical activity. However, a 
screening method for cognitive in a manner that is easy, cost-effective, 
rapid, and relatively accurate is challenging. In this study, we propose 
a new approach to screen for MCI by combining MMSE with 
BIA measurements.

To evaluate the classification accuracy of prediction models that 
distinguish individuals with MCI from cognitively normal controls 
(NCs), we plotted a receiver operating characteristic (ROC) curve for 
the combined model (including MMSE scores and BIA measurements) 
and calculated the corresponding area under the ROC (AUROC). 
Specifically, we compared the AUROC value of the model combining 
the MMSE scores and BIA measures with that of a model with SNSB 
II scores. Furthermore, we explored the possibility of diagnosing MCI 
using various machine learning algorithms, by comparing their 
performance via AUROC values.

The results of this study have the potential to facilitate easy, rapid, 
and relatively accurate screening of individuals suspected to have 
cognitive impairment within a large population. It can help identify 
individuals who need for further precision neuropsychological tests 
and/or neuroimaging in clinical settings, thereby saving energy and 
medical cost.

2 Materials and methods

2.1 Participants

From December 2017 to February 2020, participants were 
recruited from the GARD Cohort Research Center for the early 
diagnosis and progression of Alzheimer’s disease for local citizens 
aged 60 years or older from Gwangju city, South Korea. A total of 539 
participants were involved in this study, and data from 470 participants 
were used for the analysis, excluding 69 individuals with no data, 
failure to meet the criteria, or deferred diagnosis. There were 152 
individuals with clinical consensus regarding a diagnosis of MCI and 
318 elderly normal individuals, for a total of 470 participants. The sex 
ratio of the analyzed sample consisted of 219 males and 251 females. 
The study was approved by the Institutional Review Board (IRB) of 
Chonnam National University Hospital and Chosun University 
Hospital (IRB number: CNUH-2019-279, CHOSUN 2016–10–005-
017). All participants were informed of the objectives and methods of 
the research, and they provided written informed consent. The study 
was performed according to the Declaration of Helsinki guidelines.

2.2 Neuropsychological assessment

The Korean version of MMSE (K-MMSE) and the SNSB-II were 
used for neuropsychological evaluations. The K-MMSE incorporates 
a range of cognitive domains that include orientation in time (5 
points), orientation in place (5 points), memory registration (3 
points), attention and calculation (5 points), memory recall (3 points), 
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language (8 points), and spatiotemporal configuration (1 point) (Kang 
et  al., 2016). This creates a total score of 30 points. The SNSB-II 
assesses attention, language, memory, visuospatial skills, and frontal/
executive function; The memory domain includes the Seoul Verbal 
Learning Test (SVLT) and the Rey Complex Figure Test (RCFT) 
(Jahng et al., 2015). The frontal/executive function domain includes 
motor impersistence, contrasting program, the go-no-go task, the 
Luria test, alternating hand movements, the alternating square and 
triangle task, the Luria loop task, Controlled Oral Word Association 
Test (COWAT), Korean-Color Word Stroop Test (K-CWST), Digit 
Symbol Coding (DSC), and Korean-Trail Making Test. The language 
domain includes the Korean-Boston Naming Test (K-BNT), right–left 
orientation, and calculation. The attention domain includes the Digit 
Span Test (DST), letter cancellation, and vigilance test. The visuospatial 
domain is composed of the clock drawing test (CDT) and RCFT. It 
also includes other related tests, such as the Clinical Dementia Rating 
Scale (CDR), Barthel-Activities of Daily Living (B-ADL), Korean-
Instrumental Activities of Daily Living (K-IADL), and Geriatric 
Depression Scale (GDS). The estimated completion time of the whole 
battery is one and a half hours to two hours.

The diagnostic criteria for MCI proposed by the International 
Working Group on MCI were the absence of dementia according to 
the criteria of the Diagnostic and Statistical Manual of Mental 
Disorders, fifth edition (DSM-V) (Edition F, 2013). Detailly, 
we  evaluated all participants using comprehensive clinical 
consultations involving a combination of a neuropsychological battery 
and the Clinical Dementia Rating (CDR) scale. Individuals categorized 
as cognitively normal (CN) were clinically identified with a CDR score 
of zero and displayed no cognitive impairment. Meanwhile, those with 
a CDR score of 0.5 and evidence of cognitive decline in one or more 
domains, were classified as having MCI. MCI patients exhibited a 
Seoul Neuropsychological Screening Battery-Second Edition (SNSB-
II) z score of less than −1.5 in at least one cognitive domain.

2.3 Bioimpedance analysis measurements

Bioelectrical impedance was measured using a direct segmental 
multifrequency bioelectrical impedance analyzer with tetrapolar 
8-point electrodes (InBody S10, InBody, Korea). We measured the 
impedance at six frequencies (1, 5, 50, 250, 500, and 1,000 kHz) and 
reactance and phase angle (PhA) values at three frequencies (5, 50, 
and 250 kHz). Eight electrodes were used to measure segmental 
impedance in five body segments (the two arms, two legs, and trunk). 
After the readings sufficiently stabilized, BIA measurements were 
collected from the limbs of the body with the subjects in a supine 
position, which is one of the standard measurement positions.

2.4 Data selection and statistical analysis

All statistical analyses were performed with R (version 4.0.3, 
released on 2020-10-10) (Team RC, 2019). Individuals with invalid 
data (69 participants) or AD dementia (three participants) were 
excluded. An independent-sample t-test was carried out to assess the 
differences in means of variables between participants with MCI and 
healthy controls. The correlations between BIA variables and domain 
scores and total scores on the neuropsychological questionnaires were 

analyzed. A prediction model for MCI was constructed by combining 
BIA variables and the K-MMSE total score, and AUROC values of the 
combined model were compared to those of the model with the 
SNSB-II scores. Although the data were not extensive, the classification 
accuracy of several machine learning algorithms (constructed in R) 
was calculated in terms of AUROC values, and the differences between 
the prediction models with various variables and the variables 
included by the machine learning algorithms were compared.

To verify the models developed in this study, we  conducted 
machine learning experiments with several well-known machine 
learning algorithms on different feature sets. The candidate feature sets 
consisted of the following:

 1. Demographic characteristics (DM), including age, sex, 
education level, height, weight, and BMI

 2. BIA variables (including raw signals) with effect sizes greater 
than 0.2 (BIA feat. filtered)

 3. DM + MMSE scores
 4. DM + MMSE scores + BIA feat. filtered
 5. DM + BIA feat. filtered
 6. Features identified with a greedy search algorithm and a binary 

logistic regression model, previously used in the 
proposed models

All models based on different feature sets in this experiment were 
evaluated using datasets stratified by sex and the entire dataset. The 
candidate feature sets were randomly and identically divided into a 
training set comprising 70% of the data (females: 172, males: 157, total 
participants: 329) and a test set comprising 30% of the data (females: 
79, males: 62, total participants: 141), with a similar distribution of 
normal individuals and MCI participants as in the original dataset. To 
compensate for the imbalance of data in the distribution of NC and 
MCI participants, the synthetic minority oversampling technique 
(SMOTE) was applied to all candidate feature sets.

All continuous features were transformed using two methods, 
z-transformation and min-max transformation, to examine the effect 
of the different normalization methods. We  trained four different 
machine learning (ML) algorithms on each feature set: Elastic-net 
logistic regression (ELASTIC-NET) (Zou and Hastie, 2005), support 
vector machine with a radial basis kernel (svmRBF) (Scholkopf et al., 
1997), random forest (RF) (Breiman, 2001), and extreme gradient 
boosting (XGBOOST) (Chen and Guestrin, 2016). The optimal 
hyperparameters in the training of each candidate feature set were 
selected via two rounds of 5-fold cross-validation. The performance 
of the models was evaluated using the AUROC values of the test sets, 
considering the combination of the sex-stratified datasets, entire 
dataset, candidate feature sets, candidate models, and normalization 
methods. All pipelines in this machine learning experiment were 
implemented using the tidymodels package within R.

3 Results

3.1 Patient demographic and clinical 
characteristics

The ages (mean ± SD) of male participants with MCI (n = 78) and 
normal controls (NCs) (n = 141) were 73.78 ± 6.35 years and 
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TABLE 1 Demographic characteristics according to sex and cognitive status.

Male Female

NC
(N  =  141)1

MCI
(N  =  78)1 D2 95% CI2 P-

value2
NC

(N  =  177)1
MCI

(N  =  74)1 D2 95% CI2 P-
value2

Demographics

Age (yrs.) 73.78 (6.35) 75.33 (6.61) −1.56 −3.35, 0.24 0.089 70.77 (6.29) 71.43 (6.21) −0.66 −2.37, 1.05 0.446

Education (yrs.) 15.09 (4.96) 14.72 (5.03) 0.37 −1.02, 1.75 0.602 11.55 (3.96) 12.11 (4.53) −0.55 −1.68, 0.57 0.334

Height (cm) 166.47 (5.43) 165.80 (5.39) 0.67 −0.84, 2.17 0.383 153.50 (5.10) 153.29 (6.28) 0.21 −1.28, 1.70 0.783

Weight (kg) 68.21 (8.54) 67.92 (9.07) 0.29 −2.14, 2.71 0.816 58.38 (7.27) 58.46 (10.76) −0.08 −2.38, 2.22 0.946

BMI (kg/m2) 24.58 (2.57) 24.69 (2.92) −0.11 −0.86, 0.64 0.774 24.79 (3.02) 24.79 (3.82) 0.00 −0.89, 0.90 0.993

K-MMSE 27.91 (1.65) 26.12 (2.44) 1.80 1.25, 2.35 <0.001 27.27 (1.95) 26.03 (2.82) 1.24 0.63, 1.85 <0.001

Family history

Dementia 38 (27%) 17 (22%) 5.2% −7.6, 18% 0.497 47 (27%) 19 (26%) 0.88% −12, 14% >0.999

Stroke 32 (23%) 9 (12%) 11% 0.26, 22% 0.065 43 (24%) 20 (27%) −2.7% −16, 10% 0.767

Medical history

Heart diseases† 23 (16%) 12 (15%) 0.93% −10, 12% >0.999 22 (12%) 15 (20%) −7.8% −19, 3.5% 0.161

Hypertension 57 (40%) 38 (49%) −8.3% −23, 6.4% 0.297 71 (40%) 27 (36%) 3.6% −10, 18% 0.693

Diabetes 29 (21%) 27 (35%) −14% −28, −0.56% 0.034 31 (18%) 14 (19%) −1.4% −13, 10% 0.933

Mental disease†† 1 (0.7%) 2 (2.6%) −1.9% −6.6, 2.9% 0.600 4 (2.3%) 2 (2.7%) −0.44% −5.2, 4.3% >0.999

SNSB-II domains

Attention 10.09 (2.22) 8.54 (1.82) 1.55 0.97, 2.13 <0.001 9.42 (2.05) 8.53 (2.01) 0.90 0.34, 1.45 0.002

Language 0.27 (0.28) −0.03 (0.50) 0.30 0.19, 0.40 <0.001 0.13 (0.35) −0.10 (0.44) 0.23 0.13, 0.33 <0.001

Visuospatial 0.58 (0.35) 0.22 (0.82) 0.36 0.20, 0.51 <0.001 0.53 (0.35) 0.12 (0.85) 0.41 0.26, 0.56 <0.001

Memory 0.30 (0.61) −0.54 (0.61) 0.84 0.67, 1.00 <0.001 0.29 (0.57) −0.26 (0.60) 0.55 0.39, 0.71 <0.001

Frontal/Executive 0.31 (0.59) −0.29 (0.66) 0.61 0.44, 0.78 <0.001 0.21 (0.58) −0.26 (0.68) 0.47 0.30, 0.64 <0.001

1Mean (SD); n (%). 2Two Sample t-test; Two sample test for equality of proportions. † Including CVD, heart failure, arrhythmia, and etc. †† Including depression, alcohol addiction, and etc. NC, 
normal control; MCI, mild cognitive impairment; D, mean difference or proportion difference; CI, confidence interval; K-MMSE, Korean mini-mental state examination; SNSB, Seoul 
Neuropsychological Screening Battery Scores.

75.33 ± 6.61 years, respectively, and the ages of female participants 
with MCI (n = 74) and NCs (n = 177) were 70.77 ± 6.29 years and 
71.43 ± 6.21 years, respectively. The demographic characteristics, 
family history, medical history, and neuropsychology test data, 
according to sex and cognitive status, are summarized in Table 1. BIA 
data are presented in Table  2 according to sex due to the large 
difference in body composition between males and females. The age, 
weight, height, body mass index (BMI), and years of education of 
participants with MCI and healthy controls were not significantly 
different according to t tests for males or females. Neuropsychological 
test scores (on the K-MMSE and SNSB-II) showed significant 
differences between participants with MCI and NCs in both sexes.

3.2 Prediction model

AUROC values were used to compare the classification accuracies 
of individual variables from neuropsychological screening tools and 
BIA measurements for the diagnosis of MCI, as shown in Figure 1. 
The AUROC values of the scores on the SNSB-II memory, frontal, 
language, and attention domains and the K-MMSE in the male group 
were more than 0.7, and the maximum AUROC value was obtained 
with the SNSB-II memory score (0.832). In the female group, AUROC 

values for SNSB II memory and language were more than 0.7, and the 
maximum value was obtained with the SNSB-II memory score 
(0.752), similar to the male group. In the classification model for both 
sexes, AUROC values of more than 0.7 were obtained for the SNSB-II 
memory, frontal, and language scores, and the maximum AUROC 
value was 0.794 (SNSB-II memory score). The AUROC values of 
K-MMSE scores in males, females, and both sexes were 0.723, 0.622, 
and 0.663, respectively. According to previous studies, the AUROC 
values of MMSE scores used for screening for MCI were approximately 
0.69–0.78 (Ahn et al., 2010; Shim et al., 2015; Lee et al., 2018). The 
AUROC value of classification accuracy using the MMSE score from 
our data was 0.663, showing similar accuracy to that of 
previous reports.

A prediction model for multiple regression analysis was 
constructed with the 5 domain scores of SNSB-II (attention, language, 
memory, visuospatial, and frontal/executive function), and the 
AUROC values were calculated to evaluate the accuracy of MCI 
diagnosis. The AUROC values of the prediction model including the 
5 domain scores of the SNSB-II were 0.803 in both sexes, 0.840 in the 
male group, and 0.770 in the female group. In addition, the accuracy 
of MCI diagnosis was calculated with the AUROC values of the 
prediction model including the K-MMSE total score and demographic 
information as variables. The AUROC values of the prediction model 

https://doi.org/10.3389/fnagi.2024.1307204
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ju
n

 et al. 
10

.3
3

8
9

/fn
ag

i.2
0

24
.13

0
72

0
4

Fro
n

tie
rs in

 A
g

in
g

 N
e

u
ro

scie
n

ce
0

5
fro

n
tie

rsin
.o

rg

TABLE 2 BIA measures according to sex and cognitive status.

Male Female

NC
(N  =  141)1

MCI
(N  =  78)1

D2 95% CI2 P-value2 NC
(N  =  177)1

MCI
(N  =  74)1

D2 95% CI2 P-value2

S-10 features

ICW (L) 22.23 (2.53) 21.69 (2.36) 0.54 −0.14, 1.23 0.121 16.21 (1.68) 16.15 (2.03) 0.06 −0.43, 0.55 0.809

ECW (L) 14.22 (1.51) 14.03 (1.50) 0.19 −0.23, 0.61 0.364 10.52 (1.02) 10.59 (1.31) −0.07 −0.38, 0.23 0.640

TBW (L) 36.45 (4.00) 35.71 (3.81) 0.74 −0.36, 1.83 0.186 26.73 (2.68) 26.74 (3.33) −0.01 −0.80, 0.77 0.975

FAT (kg) 18.70 (5.39) 19.47 (6.04) −0.77 −2.34, 0.80 0.333 22.00 (5.56) 21.85 (7.55) 0.15 −1.54, 1.84 0.862

SLM (kg) 46.64 (5.15) 45.67 (4.89) 0.97 −0.44, 2.38 0.177 34.17 (3.44) 34.15 (4.26) 0.02 −0.99, 1.03 0.971

FFM (kg) 49.28 (5.45) 48.26 (5.15) 1.02 −0.47, 2.51 0.178 36.23 (3.62) 36.20 (4.49) 0.03 −1.04, 1.09 0.963

SMM (kg) 26.99 (3.31) 26.29 (3.08) 0.70 −0.19, 1.60 0.124 19.14 (2.19) 19.06 (2.65) 0.07 −0.56, 0.71 0.821

PBF (%) 27.15 (5.83) 28.24 (5.98) −1.09 −2.72, 0.55 0.192 37.34 (5.82) 36.78 (6.62) 0.56 −1.09, 2.21 0.506

WHR 0.884 (0.057) 0.888 (0.068) −0.003 −0.020, 0.014 0.703 0.886 (0.051) 0.881 (0.066) 0.005 −0.010, 0.020 0.479

ECW/TBW (L) 0.390 (0.008) 0.393 (0.008) −0.003 −0.005, 0.000 0.023 0.394 (0.007) 0.396 (0.006) −0.002 −0.004, −0.001 0.011

BCM (kg) 31.84 (3.64) 31.07 (3.38) 0.78 −0.21, 1.77 0.121 23.21 (2.40) 23.12 (2.92) 0.09 −0.61, 0.79 0.798

VFA (cm2) 86.76 (29.51) 92.05 (32.31) −5.29 −13.78, 3.20 0.221 118.12 (35.81) 116.71 (45.01) 1.40 −9.16, 11.96 0.794

TBW/FFM 73.96 (0.27) 74.02 (0.27) −0.05 −0.13, 0.02 0.159 73.78 (0.24) 73.85 (0.25) −0.07 −0.13, 0.00 0.047

Impedance

5 kHz-RA Z (Ω) 325.45 (33.89) 325.12 (34.21) 0.33 −9.13, 9.79 0.945 396.10 (38.19) 393.86 (40.63) 2.24 −8.37, 12.85 0.678

5 kHz-LA Z (Ω) 326.49 (32.25) 327.05 (35.33) −0.56 −9.85, 8.72 0.905 395.90 (37.69) 391.27 (39.64) 4.63 −5.80, 15.07 0.383

5 kHz-TR Z (Ω) 29.58 (2.87) 29.35 (2.91) 0.23 −0.57, 1.03 0.573 31.16 (3.41) 30.82 (3.29) 0.34 −0.58, 1.26 0.466

5 kHz-RL Z (Ω) 240.22 (27.12) 236.35 (31.55) 3.87 −4.13, 11.87 0.341 275.62 (35.21) 266.54 (32.65) 9.08 −0.32, 18.48 0.058

5 kHz-LL Z (Ω) 243.64 (29.43) 239.96 (33.83) 3.68 −4.96, 12.32 0.402 276.78 (35.30) 268.19 (31.90) 8.58 −0.78, 17.94 0.072

50 kHz-RA Z (Ω) 289.06 (31.71) 290.45 (32.47) −1.39 −10.28, 7.51 0.759 359.23 (35.52) 357.63 (36.70) 1.60 −8.18, 11.38 0.748

50 kHz-LA Z (Ω) 291.75 (30.17) 293.94 (33.61) −2.19 −10.93, 6.55 0.622 360.91 (35.54) 357.21 (36.56) 3.70 −6.07, 13.47 0.456

50 kHz-TR Z (Ω) 26.19 (2.66) 26.06 (2.67) 0.12 −0.62, 0.86 0.743 27.90 (3.10) 27.65 (3.21) 0.25 −0.60, 1.10 0.563

50 kHz-RL Z (Ω) 213.60 (24.69) 211.60 (28.50) 1.99 −5.27, 9.25 0.589 249.24 (31.38) 242.57 (29.08) 6.67 −1.70, 15.05 0.118

50 kHz-LL Z (Ω) 216.77 (26.85) 215.04 (30.48) 1.73 −6.11, 9.58 0.663 250.57 (31.52) 243.82 (28.61) 6.75 −1.62, 15.12 0.113

250 kHz-RA Z (Ω) 259.89 (29.83) 262.00 (30.22) −2.11 −10.45, 6.22 0.618 326.35 (33.14) 324.88 (33.55) 1.48 −7.59, 10.54 0.749

250 kHz-LA Z (Ω) 262.90 (28.28) 266.15 (31.25) −3.26 −11.42, 4.91 0.433 328.87 (33.40) 325.66 (33.61) 3.21 −5.91, 12.33 0.489

250 kHz-TR Z (Ω) 23.06 (2.52) 23.06 (2.51) 0.00 −0.70, 0.70 0.996 24.91 (2.89) 24.68 (3.05) 0.24 −0.56, 1.04 0.561

250 kHz-RL Z (Ω) 193.42 (23.03) 192.17 (26.61) 1.26 −5.52, 8.03 0.715 226.93 (28.57) 221.79 (26.59) 5.14 −2.50, 12.77 0.186

250 kHz-LL Z (Ω) 196.76 (25.20) 195.98 (28.36) 0.78 −6.55, 8.11 0.835 228.49 (28.80) 223.45 (26.36) 5.04 −2.62, 12.70 0.196

(Continued)
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TABLE 2 (Continued)

Male Female

NC
(N  =  141)1

MCI
(N  =  78)1

D2 95% CI2 P-value2 NC
(N  =  177)1

MCI
(N  =  74)1

D2 95% CI2 P-value2

Reactance

5 kHz-RA Xc (Ω) 13.98 (2.34) 13.51 (2.31) 0.47 −0.18, 1.12 0.153 14.50 (2.22) 14.44 (2.89) 0.07 −0.60, 0.73 0.840

5 kHz-LA Xc (Ω) 13.46 (2.17) 12.96 (2.11) 0.50 −0.09, 1.10 0.098 14.14 (2.18) 13.72 (2.53) 0.43 −0.20, 1.05 0.179

5 kHz-TR Xc (Ω) 1.49 (0.31) 1.45 (0.33) 0.04 −0.05, 0.12 0.395 1.50 (0.32) 1.45 (0.29) 0.05 −0.04, 0.14 0.258

5 kHz-RL Xc (Ω) 9.82 (2.26) 9.14 (2.22) 0.68 0.05, 1.31 0.033 9.82 (2.22) 8.90 (2.03) 0.92 0.33, 1.51 0.002

5 kHz-LL Xc (Ω) 9.92 (2.35) 9.18 (2.26) 0.74 0.09, 1.38 0.025 9.52 (2.08) 8.97 (1.98) 0.56 0.00, 1.11 0.051

50 kHz-RA Xc (Ω) 28.36 (3.34) 27.59 (3.30) 0.76 −0.16, 1.69 0.106 31.11 (3.55) 30.74 (4.32) 0.36 −0.67, 1.40 0.488

50 kHz-LA Xc (Ω) 28.17 (3.24) 27.15 (3.32) 1.02 0.11, 1.93 0.028 30.58 (3.51) 29.97 (4.03) 0.61 −0.39, 1.61 0.234

50 kHz-TR Xc (Ω) 2.58 (0.46) 2.46 (0.45) 0.11 −0.01, 0.24 0.078 2.44 (0.53) 2.38 (0.46) 0.06 −0.08, 0.20 0.424

50 kHz-RL Xc (Ω) 19.50 (3.85) 18.47 (3.73) 1.03 −0.02, 2.09 0.055 20.39 (3.98) 18.82 (3.93) 1.58 0.50, 2.66 0.004

50 kHz-LL Xc (Ω) 19.58 (4.04) 18.45 (3.97) 1.13 0.02, 2.25 0.046 20.29 (4.11) 18.79 (3.57) 1.50 0.42, 2.58 0.007

250 kHz-RA Xc (Ω) 27.08 (3.07) 26.89 (3.74) 0.18 −0.74, 1.11 0.698 33.06 (3.89) 32.61 (4.10) 0.45 −0.62, 1.53 0.407

250 kHz-LA Xc (Ω) 29.34 (3.28) 28.77 (4.08) 0.58 −0.42, 1.57 0.256 35.47 (4.10) 34.90 (4.27) 0.56 −0.57, 1.70 0.327

250 kHz-TR Xc (Ω) 1.60 (0.47) 1.48 (0.48) 0.11 −0.02, 0.25 0.085 1.46 (0.52) 1.42 (0.53) 0.03 −0.11, 0.18 0.633

250 kHz-RL Xc (Ω) 12.12 (2.34) 11.73 (2.30) 0.39 −0.26, 1.03 0.238 13.42 (2.72) 12.82 (2.54) 0.60 −0.13, 1.33 0.107

250 kHz-LL Xc (Ω) 12.28 (2.38) 11.78 (2.39) 0.50 −0.16, 1.17 0.137 13.27 (2.71) 12.59 (2.31) 0.68 −0.02, 1.39 0.058

Phase angle

5 kHz-RA PhA (°) 2.47 (0.41) 2.39 (0.42) 0.08 −0.03, 0.20 0.167 2.10 (0.28) 2.10 (0.36) 0.00 −0.08, 0.09 0.931

5 kHz-LA PhA (°) 2.37 (0.37) 2.28 (0.37) 0.09 −0.01, 0.19 0.089 2.05 (0.29) 2.01 (0.30) 0.04 −0.04, 0.13 0.275

5 kHz-TR PhA (°) 2.89 (0.56) 2.83 (0.55) 0.07 −0.09, 0.22 0.393 2.75 (0.53) 2.71 (0.59) 0.04 −0.11, 0.19 0.587

5 kHz-RL PhA (°) 2.34 (0.49) 2.21 (0.46) 0.13 0.00, 0.26 0.051 2.04 (0.38) 1.91 (0.35) 0.13 0.03, 0.23 0.015

5 kHz-LL PhA (°) 2.34 (0.49) 2.20 (0.48) 0.14 0.01, 0.28 0.041 1.97 (0.35) 1.92 (0.36) 0.05 −0.04, 0.15 0.269

50 kHz-RA PhA (°) 5.66 (0.64) 5.48 (0.57) 0.18 0.01, 0.36 0.036 4.98 (0.47) 4.94 (0.54) 0.04 −0.09, 0.18 0.513

50 kHz-LA PhA (°) 5.56 (0.59) 5.32 (0.56) 0.24 0.08, 0.40 0.003 4.88 (0.49) 4.82 (0.49) 0.06 −0.07, 0.19 0.387

50 kHz-TR PhA (°) 5.69 (1.08) 5.46 (1.07) 0.23 −0.07, 0.53 0.127 5.03 (1.07) 4.99 (1.11) 0.04 −0.26, 0.33 0.800

50 kHz-RL PhA (°) 5.26 (0.95) 5.02 (0.89) 0.24 −0.02, 0.50 0.069 4.69 (0.71) 4.45 (0.73) 0.24 0.05, 0.44 0.014

50 kHz-LL PhA (°) 5.21 (0.99) 4.93 (0.90) 0.28 0.01, 0.55 0.041 4.64 (0.76) 4.42 (0.68) 0.22 0.02, 0.42 0.032

250 kHz-RA PhA (°) 6.00 (0.51) 5.89 (0.45) 0.11 −0.03, 0.24 0.117 5.82 (0.40) 5.76 (0.47) 0.05 −0.06, 0.17 0.361

250 kHz-LA PhA (°) 6.43 (0.50) 6.21 (0.52) 0.22 0.08, 0.36 0.003 6.20 (0.49) 6.16 (0.49) 0.04 −0.09, 0.18 0.539

(Continued)
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including the K-MMSE scores and demographic information were 
0.712 in both sexes, 0.756 in the male group, and 0.704 in the female 
group. The ROC curves of prediction models for MCI diagnosis 
including SNSB-II and K-MMSE scores are shown in Figure 2.

The correlations between BIA variables and neuropsychological 
test scores are shown in a heatmap in Figure 3. The highest correlation 
coefficient was between extra-cellular water/total body water (ECW/
TBW) (BIA variable) and age; this value was 0.449. The correlation 
coefficient of total body water/fat free mass (TBW/FFM) (BIA 
variable) and years of education was −0.190, that of the reactance of 
the right leg at 5 kHz (BIA variable) and SNSB-II attention scores was 
0.268, that of TBW/FFM (BIA variable) and SNSB-II language scores 
was −0.226, that of the phase angle of the left leg at 50 kHz (BIA 
variable) and SNSB-II visuospatial scores was 0.238, that of ECW/
TBW (BIA variable) and SNSB-II memory scores was −0.270, that of 
the phase angle of the right leg at 50 kHz (BIA variable) and SNSB-II 
frontal scores was 0.336, and that of ECW/TBW (BIA variable) and 
K-MMSE scores was −0.254. Previous studies have reported that the 
correlation coefficients between some of the variables of resting-state 
EEG data and K-MMSE scores were in the range of 0.3–0.6 (Choi 
et al., 2019; Doan et al., 2021). The present correlation analyses show 
that the BIA variables reflected both body composition and 
characteristic differences in cognitive decline, as indicated by 
neuropsychological test scores. Therefore, it is expected that the 
accuracy of MCI prediction can be  increased by combining BIA 
variables and K-MMSE scores.

The effect size of the difference between NCs and MCI was also 
analyzed to select BIA variables to include in the prediction model, as 
shown in Figure 4. There was a difference in the effect size according 
to sex; the effect size was 0.4 or more in the phase angles in the male 
group and in the reactance in the female group. There were also many 
variables with an effect size of 0.2 or more. Based on the correlation 
and effect size results, prediction models were developed to distinguish 
between NCs and individuals with MCI. The developed prediction 
models included the K-MMSE score and BIA variables; these 
combined models were compared (according to AUROC values) with 
prediction models including SNSB-II scores only. Three combined 
models were constructed: one each for males, females, and both sexes. 
This was because BIA variables showed significant differences between 
males and females and to enable comparison. The multiple regression 
equation of the combined model for males is as follows:

 

MCIprediction _ M 0.090 Edu – 0.656 MMSE –
0.084 FFM 204.640 ECWR –1.568 50kHz _
LA _ Xc 1.489 250kHz _ LA _ Xc 7.149
50kHz _ LA _ PhA – 7.430 250kHz _ LA _ PhA
3.528 50kHz _ WB_ PhA 71.174,

= × ×
× + × ×

+ × + ×
× +

× −

 (1)

where Edu is years of education, MMSE is the K-MMSE total 
score, FFM is fat-free mass, ECWR is the ratio of extracellular water 
to total body water (ECW/TBW), 50 kHz_LA_Xc is the reactance of 
the left arm at 50 kHz, 250 kHz_LA_Xc is the reactance of the left arm 
at 250 kHz frequency, 50 kHz_LA_PhA is the phase angle of the left 
arm at 50 kHz, 250kHz_LA_PhA is the phase angle of the left arm at 
250 kHz, and 50kHz_WB_PhA is the phase angle of the whole body 
at 50 kHz. To validate the developed prediction model, the AUROC 
values were calculated by dividing all male participants into a training 
set (of 154 participants; 70%) and a test set (of 65 participants; 30%). T
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FIGURE 1

The area under the receiver operating curve (AUROC) for each variable, including variables of the neuropsychological screening tools and BIA, and 
DeLong’s 95% confidence intervals for AUROC values.

The AUROC values of the training and test sets for the male combined 
model, MCIprediction_M, were 0.819 and 0.790, respectively, and the 
ROC curve and AUROC values are shown in Figure 5A. The multiple 
regression equation of the combined model for females is as follows:

 

MCIprediction _ F 0.153 Edu – 0.329 MMSE
0.349 wt 7.460 TBW – 0.370 PBF – 534.768
ECWRTR – 369.779 ECWRLL – 9.657 BCM –
1.172 50kHz _ LL _ Z 1.230 250kHz _
LL _ Z – 2.357 5kHz _ RL _ PhA 398.151,

= × × +
× + × × ×

× ×
× + ×

× +

 (2)

where wt is weight, TBW is total body water, PBF is percent body 
fat, ECWRTR is the ratio of extracellular water to segmental water in 
the trunk [extra-cellular water of trunk (ECWTR)/segmental water of 
trunk (SWTR)], ECWRLL is the ratio of extracellular water to 
segmental water in the left leg [ECWLL/segmental water of the left leg 
(SWLL)], BCM is body cell mass, 50kHz_LL_Z is the impedance of 
the left leg at 50 kHz, 250 kHz_LL_Z is the impedance of the left leg at 
250 kHz, and 5kHz_RL_PhA is the phase angle of the right leg at 
5 kHz. The AUROC values were calculated by dividing all female 
participants into a training set (of 176 participants; 70%) and a test set 
(of 75 participants; 30%). The AUROC values of the training and test 
sets of the female combined model, MCIprediction_F, were 0.811 and 
0.773, respectively, and the ROC curve and AUROC values are shown 
in Figure 5B. The multiple regression equation of the combined model 
for both sexes is as follows.

 

MCIprediction _ B sex
70.869 – 0.351 wt – 0.266 MMSE

1.084 ICW 0.395 PBF 155.479
ECWR 0.321 50kHz _ RL _ Xc

0.132 Edu – 0.339 MMSE 0.351 wt –1.136
ICW – 0.333 PBF – 65.770 ECWR –130.934
ECWRLA 0.180 5kHz _ RA _ Xc

= ×
− × × + 
 × + × + × +
 

+ × 
× × + × ×

× × ×
+ × 0.153

50kHz _ RL _ Xc 0.698 250kHz _ RL _ PhA – 9.001
− ×

+ ×

 (3)

where male is 1 and female is 0 and ICW is intracellular water. The 
AUROC values were calculated by dividing all participants into a 
training set (of 329 participants; 70%) and a test set (of 141 
participants; 30%). The AUROC values of the training and test sets of 
the combined model, MCIprediction_B, were 0.776 and 0.751, 
respectively, and the ROC curve and AUROC values are shown in 
Figure 5C.

The combined model of MMSE and BIA variables for MCI 
screening exhibited an AUROC value in Figure 5, comparable to that 
of the comprehensive neuropsychological battery. While slight 
variations were observed based on dataset sizes or the extent of 
separation between training and test sets, it was evident that this 
model possesses sufficient potential for effective screening MCI. Given 
the current trend of 10–20% MCI incidence (Langa and Levine, 2014) 
and the rapid aging of populations, there’s an increasing need for 
prompt and cost-effective MCI screening technologies. This study’s 
results showed the feasibility of utilizing the developed models.

Next, to develop an improved MCI screening technique that 
combined K-MMSE scores and BIA variables, we further employed 
various machine learning algorithms beyond regression approach. The 
prediction models generated by these algorithms were compared 
according to the obtained AUROC values. The training data for 
machine learning consisted of SNSB-II and K-MMSE scores, BIA 
variables, and their combinations. ELASTIC-NET, svmRBF, RF, and 
XGBOOST algorithms were utilized for MCI screening.

Figure  6 presents the classification models developed with 
machine learning algorithms and their corresponding AUROC values. 
Among these prediction models, the svmRBF algorithm achieved the 
highest AUROC value of 0.76; the AUROC values of the RF algorithm 
for females and the svmRBF algorithm for males were 0.73 and 0.75, 
respectively. The AUROC values of the other machine learning models 
ranged from 0.65 to 0.73, with no significant difference from those of 
the svmRBF model and RF algorithm. Notably, the AUROC values of 
the prediction models developed with machine learning algorithms 
did not exhibit significant improvements from the subset regression 
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models developed. This could be attributed to the limited amount of 
data available for the analysis, which might not have been sufficient 
for robust machine learning analysis.

Expanding the sample size will likely lead to more accurate and 
reliable prediction models using machine learning techniques. Further 
studies with more diverse datasets including various ethnics, cultural 
background and body fat mass will improve clinical utility of the 
machine learning models for MCI prediction.

4 Discussion

With the rapid aging of the population, there’s a growing need for 
cognitive impairment detection tests among the elderly. However, 

while simple tools like MMSE or MoCA are less reliable for MCI 
diagnosis, comprehensive neuropsychological batteries like CERAD 
and SNSB-II, commonly used for diagnosis, present drawbacks: 
lengthy administration (around 1.5 h), costly, and need specialized 
experts. A rapid and accurate MCI screening method enables the 
prompt and precise identification of individuals at risk of 
MCI. Directing those identified to in-depth hospital examinations for 
precise diagnoses saves time and resources compared to extensive 
testing for more general population group. Therefore, there’s a demand 
for technology that enables relatively accurate, rapid, and cost-effective 
MCI screening. Diagnosing mild Cognitive Impairment (MCI) 
requires a comprehensive approach involving various criteria (Langa 
and Levine, 2014). These criteria serve as guidelines for clinicians in 
making a comprehensive judgment regarding the diagnosis of MCI, 

FIGURE 2

ROC curves of prediction models according to sex (both sexes, males, and females, from top to bottom). (A) AUROC results of the prediction models 
including the 5 domain scores of the SNSB-II. (B) AUROC results of the prediction models including K-MMSE scores and demographic information.

https://doi.org/10.3389/fnagi.2024.1307204
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jun et al. 10.3389/fnagi.2024.1307204

Frontiers in Aging Neuroscience 10 frontiersin.org

FIGURE 3

Heatmap of Pearson’s correlation coefficients between neuropsychological examination tools and BIA measures.

particularly when considering various potential underlying causes and 
clinical presentations. Certainly, diagnosing Mild Cognitive 
Impairment (MCI) relies on an expert’s assessment, combining 
multiple indicators. Relying on a single indicator for diagnosis is 
challenging. Having a reliable and simple screening tool for identifying 
individuals who require detailed MCI diagnosis would significantly 
aid in the diagnostic process.

Recently, several papers have reported an association between 
MCI or dementia due to AD and BIA measures. These studies have 
shown a significant association (ranging from 0.2 to 0.4, value of p 
<0.05) of BIA variables with MCI or dementia due to AD (Bae et al., 
2017; Fujisawa et al., 2017; Mathys et al., 2017). However, the specific 
BIA variables that vary are inconsistent across papers. Furthermore, 
the underlying physiological mechanism explaining why BIA variables 
differ between MCI, AD, and normal controls has not been clearly 
elucidated. Therefore, further studies are needed to investigate these 
mechanisms. In summary, there is still a need for reliable and efficient 
MCI screening techniques given population aging. Although BIA 
variables have shown promising associations with MCI and AD, more 
comprehensive research is needed to identify the specific BIA variables 
indicative of cognitive impairment and to better understand the 
underlying physiological mechanisms.

The MMSE has been widely utilized in clinical practice as an 
effective and sensitive test for detecting and screening cognitive 
impairment and dementia (Benson et al., 2005; Arevalo-Rodriguez 
et al., 2015). It has a high accuracy of 92% in detecting dementia, with 
sensitivity ranging from 78 to 84% and specificity ranging from 87 to 
91% (Tsoi et  al., 2015). However, the MMSE does have some 
limitations; it can be  influenced by factors such as the socio-
educational backgrounds of participants and practice, and it has low 
sensitivity for the early stage of cognitive decline (Scazufca et al., 2009; 
Duff et al., 2012; Carnero-Pardo, 2014). By integrating the MMSE with 
BIA variables, which can be easily and quickly performed, it is possible 
to provide a more convenient and accessible means to detect cognitive 
impairment in its early stage and recommend for MCI screening. This 
combination has the potential to overcome some of the limitations 
associated with use of the MMSE alone, providing a more 
comprehensive and reliable assessment of cognitive status especially 
in the early stage.

The comparison of BIA variables among individuals with MCI or 
dementia is a relatively recent research topic. While there may 
be  minimal disparities in muscle mass between individuals with 
cognitive impairment and normal cognition, differences in nutritional 
status or water ratios appear in the reactance or phase angles of 
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segmental BIA measurements. Based on these observations, 
we  constructed a prediction model for MCI that combined BIA 
variables with MMSE scores. The aim of incorporating BIA variables 
into the prediction model alongside MMSE scores was to identify new 
factors for detecting cognitive impairment. The study showed some 
BIA variables related to muscle mass, extra/intra-cellular water ratio 
and lower level of bioimpedance features such as reactance and phase 
angle as risk factors of cognitive impairment. Through the 

development and evaluation of the prediction model, we aimed to 
provide evidence of the feasibility of using BIA as a screening tool.

The screening accuracy of the MMSE for cognitive impairment 
varies with ethnic, language, and demographic factors. To address this 
variability, compensation tables with MMSE cut-off scores for MCI and 
dementia screening have been utilized accounting for differences in sex, 
age, and education level. On the other hand, BIA variables are influenced 
by factors such as sex, height, weight, age, and ethnicity. Previous studies 

FIGURE 4

Effect sizes of each BIA measurement and their 95% confidence intervals according to sex. Effect sizes (Cohen’s d) were calculated to compare NC 
and MCI participants.
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FIGURE 5

ROC curves of the training and test sets of the combined models including K-MMSE scores and BIA variables: (A) combined model for males, 
(B) combined model for females, and (C) combined model for both sexes.

FIGURE 6

The best predictive models (evaluated by test sets) according to the combination of sex-stratified datasets, feature sets, normalization methods and 
machine learning algorithms.

demonstrated differences in some BIA variables for MCI even after 
adjusting for age, sex, height, and weight (Doan et al., 2022a). However, 
there is currently no standardized approach for predicting dementia or 
MCI using BIA variables. This study used the results of previous studies 
as a reference to develop an MCI screening model. It is the first to 
propose combining MMSE scores with BIA variables to enhance the 
model’s predictive power for detecting MCI. Future studies aiming at 
developing refined prediction models by accounting for various 
demographic factors can facilitate more accurate and reliable screening 
tools for dementia and MCI. Healthcare professionals would effectively 
screen individuals with diverse backgrounds.

It’s reported that BIA variables serve as valuable indicators for 
monitoring and screening various diseases and conditions. However, 
it remains unclear how much these disease-dependent BIA variables 
would work as confounding factors in MCI screening. Previous 
studies have shown differences in BIA variables between individuals 

with diabetes and those without, particularly in PhA (Jun et al., 2018). 
Considering the previous research findings (Doan et  al., 2022a,b, 
2023), differences in BIA variables between MCI and normal groups 
persist even after adjusting for conditions like hyperlipidemia, 
diabetes, and CNS disorders. In our study, there was a difference in 
diabetes prevalence between the MCI and NC groups in the male 
group, but no significant difference was observed in the female group. 
Nevertheless, when looking at the model’s AUC values, the difference 
between the male and female groups was not substantial. This 
indicates that the model’s ability to screen for MCI remains consistent 
regardless of diabetes status.

In this study, we investigated combinations of machine learning 
algorithms, BIA variables, and K-MMSE total scores for screening for 
MCI. However, we  did not observe a significant improvement in 
diagnostic accuracy with machine learning algorithms compared to 
more classical regression models. Importantly, the small size of the 
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dataset used in this study may have influenced the results. With a 
larger dataset, machine learning models may be able to capture more 
patterns and relationships, leading to improved diagnostic accuracy. 
Additionally, including individuals with a wider range of demographic 
factors and considering other relevant variables may also contribute 
to better results in future research.

4.1 Limitations

One limitation of this study is the application of a matched-
samples design, which may restrict the generalizability of the findings. 
The sample used in this study may not be representative of the entire 
Korean population, further limiting the external validity of the results. 
Additionally, as BIA variables can vary based on geographical region, 
participant race, age, sex, BMI, and other factors, it is essential to 
develop a prediction model for MCI screening based on data from 
more diverse populations, considering a wider range of regions, age, 
sex, BMI values, and other factors. This will ensure the broader 
applicability of a screening tool to predict mild cognitive impairment.

While it is widely acknowledged that MoCA is more effective in 
detecting MCI than MMSE, our cohort center, the GARD Cohort 
Research Center, has been collecting data including MMSE, Seoul 
Neuropsychological Screening Battery (SNSB) II, and BIA since 2017. 
MoCA is not widely used in Korea yet and it is one of our study limitations.

5 Conclusion

The estimated prevalence of mild cognitive impairment (MCI) in 
those over 65 is approximately 10 to 20%. As comprehensive testing for 
all suspected MCI cases is challenging, a simple and accurate screening 
tool is needed. To examine the possibility of screening for cognitive 
impairment in elderly people, we developed a prediction model for 
mild cognitive impairment (MCI) based on the multivariate regressing 
model by combining multifrequency bioimpedance analysis (MF-BIA) 
variables and total scores of the Mini-Mental State Examination 
(MMSE). Pearson correlation analysis was performed to examine the 
associations between MF-BIA variables and scores on the MMSE and 
Seoul Neuropsychological Screening Battery Scores II (SNSB II). Weak 
correlations were observed with the highest value of 0.336.

To assess the model performance, the AUROC values of the 
combined model of MF-BIA and MMSE were compared with that of 
the model using the SNSB-II scores, which were popularly used 
diagnostic tool for cognitive impairment in South Korea, by dividing 
the dataset into training and test sets (70 and 30%, respectively). The 
AUROC values of the SNSB-II were 0.803 in both sexes, 0.840 in the 
male group, and 0.770 in the female group. The AUROC values of the 
training and test sets of the combined model were 0.776 and 0.751 in 
both sexes, 0.819 and 0.790 in the male group, and 0.811 and 0.773 in 
the female group, respectively. The maximum AUROC value of the 
model developed with machine learning was 0.76 (for the svmRBF 
algorithm), which did not significantly differ from the combined model.

The accuracy reduction of the combined model was not significant 
compared to that of the model based on a standard diagnostic battery 
(SNSB-II). Accounting for the ease of use, short measurement time, 
and the low cost to implement in clinics, the BIA and MMSE 
combined model is considered to have sufficient potential for 
screening for MCI.
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