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Introduction: In the last few years, several models trying to calculate the 
biological brain age have been proposed based on structural magnetic 
resonance imaging scans (T1-weighted MRIs, T1w) using multivariate 
methods and machine learning. We developed and validated a convolutional 
neural network (CNN)-based biological brain age prediction model that 
uses one T1w MRI preprocessing step when applying the model to external 
datasets to simplify implementation and increase accessibility in research 
settings. Our model only requires rigid image registration to the MNI space, 
which is an advantage compared to previous methods that require more 
preprocessing steps, such as feature extraction.

Methods: We used a multicohort dataset of cognitively healthy individuals 
(age range  =  32.0–95.7  years) comprising 17,296 MRIs for training and 
evaluation. We  compared our model using hold-out (CNN1) and cross-
validation (CNN2–4) approaches. To verify generalisability, we  used two 
external datasets with different populations and MRI scan characteristics to 
evaluate the model. To demonstrate its usability, we included the external 
dataset’s images in the cross-validation training (CNN3). To ensure that our 
model used only the brain signal on the image, we also predicted brain age 
using skull-stripped images (CNN4).

Results: The trained models achieved a mean absolute error of 2.99, 2.67, 
2.67, and 3.08  years for CNN1–4, respectively. The model’s performance 
in the external dataset was in the typical range of mean absolute error 
(MAE) found in the literature for testing sets. Adding the external dataset 
to the training set (CNN3), overall, MAE is unaffected, but individual cohort 
MAE improves (5.63–2.25  years). Salience maps of predictions reveal that 
periventricular, temporal, and insular regions are the most important for age 
prediction.
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Discussion: We provide indicators for using biological (predicted) brain age 
as a metric for age correction in neuroimaging studies as an alternative to 
the traditional chronological age. In conclusion, using different approaches, 
our CNN-based model showed good performance using one T1w brain MRI 
preprocessing step. The proposed CNN model is made publicly available for 
the research community to be easily implemented and used to study ageing 
and age-related disorders.

KEYWORDS

brain age, neurodegeneration, normal ageing, CNN, UK Biobank, ageing 
prediction

1 Introduction

In recent years, the concept of an individual’s biological age—
which can differ from the person’s chronological age—has sparked 
great interest in the medical research community, as ageing is a 
significant risk factor for several age-related health conditions and 
mortality. There is also substantial heterogeneity in health outcomes 
amongst individuals of the same chronological age (Jylhävä et al., 
2017). During the past decades, the research highlighted that the 
biological ageing process varies between people because of the 
complex interplay between genetic and environmental factors, such as 
lifestyle behaviours (Cole et al., 2017, 2019; Fratiglioni et al., 2020). 
Given the ongoing changes in the body and brain throughout the 
ageing process, chronological age stands out as a key risk factor for 
mortality, chronic diseases, and functional impairment (Jylhävä et al., 
2017). Various age-related changes in the brain are closely linked to 
the development of several neurodegenerative disorders, including 
Alzheimer’s disease (AD) and vascular dementia (Hou et al., 2019). 
Like other age-related health conditions and also in the dementia field, 
there is significant heterogeneity in the manifestation of the symptoms 
as well as underlying brain pathology between people of the same 
chronological age (Ferreira et al., 2020). Therefore, quantifying the 
biological age could be a useful additional metric than the traditional 
chronological age to identify individuals at risk of developing 
age-related diseases (Cole et al., 2019; Tian et al., 2023).

Parallel advancements in neuroscience and computational science 
have enabled researchers to develop novel algorithms to determine the 
biological age of the brain. A biological marker of brain age will enable 
us to adjust neuroimaging studies for the person’s biological age 
instead of chronological age, capturing anatomical and functional 
heterogeneities present in groups of healthy individuals. Another 
advantage is that this could lead to a deeper understanding of 
pathological ageing mechanisms, which can culminate in dementia. 
Dementia is a multifactorial syndrome in which decades of 
accumulating neuropathology precedes clinical manifestation (Jack 
et al., 2010). The loss of neurons and synapses during the preclinical 
and prodromal stages can lead to brain atrophy and, therefore, to 
“older-looking” brains (when biological brain age, i.e., predicted age, 
is higher than chronological age) (Cole and Franke, 2017; Bashyam 
et  al., 2020; Cole, 2020; Elliott et  al., 2021). In contrast, some 
individuals will show a higher chronological age than the biological 
brain age, thus showing a “younger-looking” brain, which could 
reflect relatively preserved brain structures (e.g., brain maintenance 

and/or cognitive reserve) (Cole et al., 2019; Stern et al., 2020). With 
the unprecedented growth of the elderly population worldwide and 
the expected increase in dementia cases (WHO guidelines, 2019), a 
biological marker of brain age could play a key role in dementia 
prevention (Brusini et al., 2022).

In recent years, several brain age models have been developed 
using different methods (Bocancea et al., 2021; Baecker et al., 2021a). 
Previous studies employed machine (Franke et al., 2010; Franke and 
Gaser, 2012; Cole et al., 2017; Hwang et al., 2021) and deep learning 
techniques, with a focus on convolutional neural networks (CNN) 
(Cole et al., 2017; Jonsson et al., 2019; Kolbeinsson et al., 2019; Liang 
et al., 2019; Bintsi et al., 2020; Lam et al., 2020; Niu et al., 2020; Gupta 
et  al., 2021; Wood et  al., 2022). These approaches achieved good 
performance regarding mean absolute error (MAE) between 2 and 
6 years, with CNNs exhibiting superior results using images with few 
image preprocessing steps. However, the model type and the input 
choice varied across these studies that used preprocessed magnetic 
resonance imaging (MRI) data (T1-weighted, T1w, or T2w), going 
through normalisation, corrections, segmentation steps, or image 
feature extraction. Such a chain of steps is challenging to implement 
in research and, in the long term, in clinical settings due to time- and 
resource-consuming constraints.

Developing a model to predict “biological brain age” hinges on 
selecting training data. Typically, a model is trained on neuroimaging 
data of healthy individuals sourced from one or multiple cohorts, 
encompassing a broad age range. The “ideal” dataset would include: 
(1) detailed information and clinical data of study participants in 
order to be as comprehensive as possible with the selection criteria; 
(2) a large set of images, which are required to train a CNN model 
(Sajedi and Pardakhti, 2019); (3) participants with a diverse 
demographical background and a large, preferably uniform, age 
distribution to apply the developed model in more datasets (i.e., 
increase generalisability); (4) images acquired with a wide range of 
MRI scanners and protocols to improve generalisation to new 
unseen data of the model (Mårtensson et  al., 2020), and (5) 
longitudinal data to ensure that the model does not predict a lower 
age at a later time point. Although initiatives to gather large-scale 
population-based datasets are ongoing (e.g., UK Biobank), to the 
best of our knowledge, no existing cohort possesses all the five 
characteristics listed above.

In this study, we aimed to develop and validate a CNN model 
based on brain images that uses one preprocessing step (i.e., rigid 
registration of T1w MRIs to the Montreal Neurological 
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Institute—MNI—template space) for brain age prediction when using 
external datasets. This minimal preprocessing feature has the 
advantage and strength of simplifying the model’s implementation and 
increasing accessibility in research settings. When publicly available, 
the model can be quickly used for any T1w MRI scan without time- 
and resource-consuming preprocessing steps. To evaluate our model, 
we used a large dataset of cognitively healthy individuals from six 
cohorts to address the “ideal” dataset criteria. The CNN model was 
compared using hold-out and cross-validation approaches. To verify 
the model’s generalisability, we tested the abovementioned approaches 
using two external datasets containing different scanners and 
demographic characteristics from the training set. Furthermore, 
we included the two cohorts used as external datasets in the cross-
validation loop to verify the model’s usability with different cohorts. 
Finally, we employed the cross-validated model to predict brain age in 
skull-stripped images to ensure our model accurately predicted based 
on the brain image signal. We then evaluated the model’s performance 
using two external datasets.

2 Materials and methods

2.1 Study population

For this study, we  included 17,296 T1w MRIs from 15,289 
(1,176 are 1.5 T and 16,120 are 3 T) cognitively healthy participants 
from six cohorts: the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), the Australian Imaging, Biomarker & Lifestyle Flagship 
Study of Ageing (AIBL), the AddNeuroMed, the Group of 
Neuropsychological Studies from the Canary Islands (GENIC, 
from Grupo de Estudios Neuropsicologicos de las Islas Canarias), 
the Japanese ADNI, and the UK Biobank (Figure  1). The 
description of each cohort and information about image 
acquisition protocols and scanners are in Supplementary material, 
Section 1. A cognitively healthy status was defined based on the 
absence of dementia, mild cognitive impairment, and other 

neurological and psychiatric disorders. Furthermore, individuals 
had to have a clinical dementia rating (CDR) score equal to zero, a 
mini-mental state examination (MMSE) score ≥ 24, self-reported 
good health (this last when available), or ICD-9 or − 10 (details on 
the used ICD codes can be  found in Supplementary Table S1), 
depending on the available data in each cohort.

2.2 Convolutional neural networks

The implemented supervised CNN uses PyTorch’s deep learning 
framework (Paszke et  al., 2019). The network architecture of our 
model was based on the ResNet architecture (He et al., 2016), with 26 
layers in total but with 3D kernels. Each convolutional operation is 
followed by batch normalisation and a Rectified Linear Unit (ReLU) 
activation. The network was trained for 20 epochs with stochastic 
gradient descent and an initial learning rate of 𝜆 = 0.002 that decreases 
by a factor of 10 every five epochs. We used five independent models 
during CNN development and the trained networks as an ensemble 
model. Data augmentation was performed during model training in 
70% of the training set and included random scaling, cropping offsets, 
rotations (−5 to 5 degrees), affine, and gamma transformations 
(ranging from 0.5 to 2). In the data augmentation process, each image 
was cropped to a dimension of 80 × 96 × 80 voxels with 2 × 2 × 2 mm3 
resolution, thresholded to the 5th and 95th percentiles of the voxel 
values, and scaled so that all voxels’ values were in the interval [−1, 1].

For training the model, a T1w brain MRI registered to the MNI 
space and the individual’s chronological age were used. We streamlined 
the image preprocessing to improve the model’s accessibility and 
processing speed. The sole preprocessing step involved is a rigid 
registration (with six degrees of freedom) of the T1w MPRAGE MRI 
to the MNI template space using FSL FLIRT 6.0 (FMRIB’s Linear 
Image Registration Tool) for training the model and testing in external 
datasets. A rigid registration is more straightforward and quicker than 
an elastic registration. Omitting this step resulted in worse 
performance despite implementing heavy data augmentation in the 

FIGURE 1

Flowchart describing the data included in this study, which were available in our database system at the time of the study, for the different cohorts. 
Where age ± SD is the mean age and standard deviation. Age ± SD and age range are in years.
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training process (data not shown). Figure  2 shows a schematic 
representation of the CNN model, its input for training, and when 
using it with external datasets.

Four separate models were developed in this project: one model 
based on a hold-out approach of CNN (CNN1) and three models 
based on a cross-validation approach (CNN2–4). Figure 3 displays the 
evaluation process scheme of our CNN model. Each one of the 
turquoise rectangles represents 1/10 of the primary dataset, composed 
of 16,734 raw MRIs from ADNI, AIBL, GENIC, and UKB cohorts. 
Light blue rectangles indicate the 149 MRIs from AddNeuroMed 
cohort, whereas lilac rectangles indicate the 413 MRIs from 
J-ADNI. The CNN1 model is based on a hold-out approach with the 
training (80%), development (10%), and test (10%) datasets indicated 
by the arrows. CNN2 and CNN4 models incorporated all data from 
ADNI, AIBL, GENIC, and UKB cohorts in their cross-validation loop, 
while AddNeuromed and J-ADNI were used for external validation. 
The CNN3 model was similar to CNN2 and 4, except that 
AddNeuroMed and J-ADNI were also incorporated in the cross-
validation loop—thus, no external datasets were used for 
model evaluation.

2.2.1 Hold-out approach
Our CNN-based model was first trained in a hold-out fashion 

(CNN1). To not violate the test set and ensure comparability between 
the models, the primary dataset, composed of 16,734 MRIs from 

ADNI, AIBL, GENIC, and UKB cohorts, was randomly split into a 
training (Nimg = 15,052, Nsubj = 13,612, subsequently split into internal 
validation set for the development of each model) and a hold-out test 
(Nimg = 1,682, Nsubj = 1,503) set. If subjects had undergone multiple 
scans, all their images were assigned to the same set. The test set was 
evaluated after a satisfactory performance on the internal validation 
set to reduce the risk of model overfitting. The data distribution in 
train, development, and test sets for each cohort can be  found in 
Supplementary Figure S1. After training the CNN1 model, we applied 
this model in the AddNeuroMed and J-ADNI cohorts to assess the 
model’s performance and generalisability in external datasets.

2.2.2 Cross-validated approach
To allow comparability to the hold-out model (CNN1), we used the 

same 16,734 MRIs from ADNI, AIBL, GENIC, and UK Biobank in the 
cross-validation approach training loop (CNN2). Stratification by cohort 
was applied in splitting the 10-fold for training and testing. After 10-fold 
cross-validation, the trained model was evaluated in AddNeuroMed and 
J-ADNI (external cohorts). Furthermore, to ensure that our model’s 
prediction was based on the brain and not on other features (e.g., head 
shape), we trained a 10-fold cross-validation model using skull-stripped 
brain images (CNN4). For CNN4 model image input, Freesurfer 6.0.0 was 
used to perform skull-stripping, applying the algorithm recon-all, and 
select the image generated before brain parcellation (brain.finalsurfs.
mgz). Images were motion- and bias-corrected, transformed to Tailarach 

FIGURE 2

Scheme of our 3D CNN for training (A) and using for external dataset (B). In (A), the input is a T1w brain MRI previously registered to the MNI space, the 
subject’s chronological age, and the output is the predicted brain age of the subject. Training and developing (dev) datasets are also shown, with data 
augmentation being performed in 70% of the training set. In (B), the input is only a T1w MRI previously registered to the MNI space before using the 
trained network (model’s weight) to predict brain age in the new and unseen data of an external dataset. Conv3D, 3D convolution; BatchNorm3d, 3D 
batch normalisation; Dev, development dataset (for testing model’s performance while training); (Leaky)ReLu, (leaky) rectified linear unit; MaxPool3D, 
3D max pooling; AvgPool3D, 3D average pooling; FC, fully connected layer; ResNet, residual network block.
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space, intensity-normalised, and skull-stripped. To reduce the size of the 
final processed image and for comparative reasons, all skull-stripped 
images were rigidly registered to the MNI space. Similar to CNN2, the 
skull-stripped CNN4 model was externally validated in AddNeuroMed 
and J-ADNI. Finally, to ensure the cross-validated model’s usability when 
including more diverse data, we trained a last model, CNN3, that included 
all cohorts (ADNI, AIBL, GENIC, and UK Biobank plus AddNeuroMed 
and J-ADNI) to the ensemble of images within the 10-fold 
cross-validation.

2.3 Analyses

2.3.1 Model performance
Model performance was assessed using the MAE, defined as:

 
MAE

N
y y

i

N

i c i� ��1


,

where yc i,  is the chronological age of participant i and yi


 the 
predicted age. MAE’s values close to zero indicate the model’s 
good performance, with predicted brain age being similar or 
almost equal to chronological age. Consequently, the evaluation 
of the model’s performance includes assessing the distribution 
and correlations between chronological and predicted brain age, 
in addition to MAE. Adjusting for age-dependent predicted brain 
age differences from the chronological age (brain age difference/
gap—BAG) is problematic and can artificially inflate model 
performance (Butler et al., 2021). This can be illustrated with a 

model that, regardless of input data, only outputs a single 
predicted age of, e.g., 70. This will yield a suboptimal MAE, but 
when “correcting” for age, the MAE will be 0 between predicted 
and chronological age. Given the widespread use of the UK 
Biobank in the literature as a common dataset for training  
and evaluating brain age models, we  conducted additional 
assessments of our model’s performance using only the UK 
Biobank cohort.

2.3.2 Relevant regions for brain age prediction
To explain the model’s brain age prediction, we  generated 3D 

gradient-based saliency maps of each subject using the SmoothGrad 
(Smilkov et al., 2017) algorithm. Salience maps visualise the important 
voxels in individual predictions based on the computation of the gradient 
of the prediction with respect to the smoothed image. For gradient 
computation, we used the image with 15% noise added. The 3D gradient 
maps were averaged through the whole image sample, and only 1% of the 
higher salient values were shown to verify the most critical regions 
(Levakov et al., 2020; Mouches et al., 2022). For individual extrapolation, 
we plotted the 1% normalised higher values of the salience maps and 
overlayed them onto an arbitrary T1w brain MRI. The salience maps are 
presented according to their brain age difference in the CNN1 model, 
calculated from the chronological age, from −8 to +8 years of difference 
from the chronological age.

2.3.3 Differences in cortical thickness across age 
groups based on chronological and predicted 
brain age

To analyse the influence of correcting an individual’s brain age in 
neuroimaging studies, we  visualise how brain age predictions are 

FIGURE 3

Scheme of evaluation of our CNN model in this study. We primarily used ADNI, AIBL, GENIC, and the UK Biobank to develop our model (turquoise 
scale). CNN1 works in a hold-out approach (data split: 80% train, 10% development, 10% test set, each set of the data indicated by arrows). CNN2 was 
trained as a 10-fold cross-validation model using the data of the four primary cohorts (turquoise scale) in the training loop. To evaluate the 
performance of these two models, we used AddNeuroMed (light blue) and J-ADNI (lilac) as external test sets. In CNN3, we added the external test sets 
in the 10-fold cross-validation. For comparison reasons, we evaluated our CNN2 scheme with skull-stripped T1w MRIs (CNN4). HO, hold-out; CV, 
cross-validation; ED, external test set; SS, skull-stripped images.
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FIGURE 5

Scatterplots of the predicted brain age in CNN2, 3, and 4 (cross-validation approach). Each dot represents an individual, and the color code used for 
each cohort is presented in the legend. CNN2 was run using 4 cohorts, CNN3 with 6 cohorts, and CNN4 with 4 cohorts but with skull-stripped images. 
The red line is the linear regression based on the predicted brain age.

related to cortical thickness values. We ran surface group analysis with 
QDEC (Query, Design, Estimate, Contrast) in FreeSurfer 6.0.0. 
We used a smoothing kernel of full width at half maximum of 10 mm, 
used sex as a covariate, and adjusted for false discovery rate at a 
threshold of 0.05. We grouped subjects of ages 60, 65, 70, 75, and 80 
(±1 year) based on chronological and predicted ages. These groups 
were contrasted to a reference group of 55 ± 1 years old (based on 
corresponding chronological or predicted brain age) individuals in the 
general linear model. Since these groups are of different sizes—and 
p-values are influenced by group size—we present figures overlayed 
with z-scores.

3 Results

3.1 Model performance

Model performance was evaluated through the model’s mean 
absolute error and correlation coefficients to verify the relationship 
between chronological and predicted brain age. The results are 
presented in Figures 4–8, with MAE ranging from 5.63 to 2.25 years 
and correlation coefficients ranging from 0.77 to 0.90.

Scatterplots of the brain age predictions on the CNN1 (hold-out) 
approach for the training and testing set of healthy individuals are 
shown in Figure 4. The results show that there is a strong correlation 

between chronological and predicted brain age in training (0.83) and 
test sets (0.80), with MAE = 2.70  years in the training set and 
MAE = 2.99 years in the testing set.

Scatterplots of the brain age predictions for the CV approach for 
the CNN2 (CNN1 cohorts), CNN3 (CNN1 cohorts + J-ADNI and 
AddNeuroMed), and CNN4 (skull-stripped images from CNN1 
cohorts) are shown in Figure 5. For CNN2 and CNN3 models, results 
show a strong correlation (0.83, for both CNNs) between chronological 
and predicted brain age with a MAE within the lower range of 
previously published models (MAE = 2.67  years, for both CNNs). 
However, CNN4 presents a less strong correlation (0.77) and a higher 
MAE (3.08 years) within the presented models in this study. Age bias-
corrected scatterplots of all models are presented in 
Supplementary material, Section 4, Supplementary Figures S2, S3. 
Bland–Altman analysis of chronological and predicted brain age is 
presented in Supplementary material, Section 5. 
Supplementary Figure S4 illustrates that most of our predictions fit 
within the two standard deviations, with disagreements between 
models varying between −0.05 and 0.18.

In order to allow comparison between hold-out and cross-
validation approaches, we evaluated only the individuals used in the 
training/test set of the CNN1 model (hold-out) in the CNN2 (cross-
validation approach) (Figure 6). Figure 6A shows the performance of 
CNN1 (left) and CNN2 (right) using data from the test set. The cross-
validation approach (CNN2) shows better performance (smaller 

FIGURE 4

Scatterplots of the predicted brain age in the CNN1 model (hold-out approach) in the training and test datasets. Each colored dot represents an 
individual, and each color is a different cohort. The red line is a linear regression based on the predicted brain age.
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MAE) and correlation coefficient (0.86 compared to 0.80 from CNN1) 
than hold-out. Figures 6B,C illustrate the correlations between brain 
age predictions for both hold-out (CNN1, x-axis) and cross-validation 
(CNN2, y-axis) approaches in the training (left) and test (right) 
datasets. The correlation of brain age predictions for CNN1 and 
CNN2 is shown in Figure  6B, while Figure  6C illustrates the 
correlation between BAG of both models. Both predicted brain age 
and BAG show a high correlation between models.

We also evaluate the performance of our model in the external 
datasets AddNeuroMed and J-ADNI (CNN1, 2, and 4). The age 
prediction distribution is shown in Figure 7 and shows the variability 
in age prediction for each one of the trained models when applied to 
unseen data (external dataset).

The calculated MAE of each cohort for all models is presented in 
Table 1 and ranges from 5.63 to 2.25 years. Normalised MAE and 
coefficient of determination for each cohort of the trained models can 

be found in Supplementary Tables S2, S3 and range from 1.04 to 0.35 
and 0.89 to 0.55, respectively.

To understand how our model performed compared to 
existing models, we  further assessed our brain age models’ 
performance only within the UK Biobank. Then we compared the 
MAEs we  achieved with previous studies that evaluated their 
models only in the UK Biobank cohort or using different cohorts 
(Table 2). Our CNN models achieved MAEs ranging between 
2.66 and 3.03 years only using images of the UK Biobank cohort. 
These are very similar to the MAEs achieved by CNN models 
(Table 2) developed in previous studies (ranging between 2.13 
and 4.36). We  also present the coefficient of determination 
between predicted brain age and the identity line for all the 
available studies.

To understand the noise levels from our models and their ability 
to capture subtle changes as a result of the ageing process, we plotted 

FIGURE 6

Comparison of the CNN1 (hold-out approach) and CNN2 (cross-validation approach) models. Data used for the comparison is based only on the 
individuals used in the test dataset of CNN1. In (A), we present the test dataset’s predicted brain age (y-axis) for both models correlated to 
chronological age (x-axis). In (B), we present the correlation between the predicted brain age estimated by the two models (CNN1 on the x-axis and 
CNN2 on the y-axis) in the training (left) and test (right) datasets split by CNN1. In (C), we present the correlation between the brain age difference 
estimated by the two models (CNN1 on the x-axis and CNN2 on the y-axis) in the training and test datasets.
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longitudinal trajectories for the participants with multiple time 
points. The longitudinal predictions, supported by an average 
longitudinal brain age gap between 0.05 and − 0.18, align with the 
expected pattern, demonstrating an increase in predicted age over 
time (Figure 8).

3.2 Relevant regions for brain age 
prediction

For the explicability of our model, the salience map of each 
individual prediction was generated. The averaged overlayed salience 
maps for each CNN model are presented in Figure 9, showing similar 
patterns of relevant regions for predictions for CNN1-3 and higher 

variability in these patterns for CNN4. A complementary view of 
salience map slices is presented in Supplementary Figure S5.

To identify regions of importance for predicting biological 
brain age, 18 individuals were randomly selected according to the 
following criteria: being in the test dataset of the CNN1, being 
between 64 and 66 years, and having an age range difference 
between chronological and predicted brain age in the CNN1 
model between −8 and + 8 years (Figure 10). The brain age gap for 
each individual, predicted in each model, is presented in 
Supplementary Table S4.

Generally, the averaged salience map across the entire image 
sample aligns with the highlighted regions in the BAG analysis 
for the same chronological age (65 years). The BAG analysis 
reveals similar important regions for predictions, albeit with 

FIGURE 7

Comparison of brain age prediction distribution for chronological and predicted brain age in CNN1, 2, and 4 for the AddNeuroMed (A,B) and J-ADNI 
(C,D) cohorts. In (A,C), we present the boxplot of the predicted brain age for each model compared to the chronological age. In (B,D), the predicted 
brain age distribution is compared to the chronological age.

TABLE 1 Calculated MAE for each cohort for each of the trained models.

Model MAE per cohort (years)

ADNI AIBL GENIC UK Biobank AddNeuroMed J-ADNI

CNN11 2.56 2.85 4.20 2.75 4.03 5.63

CNN22 2.40 2.69 3.96 2.66 3.67 5.30

CNN32 2.41 2.69 3.98 2.67 3.02 2.25

CNN41 2.98 3.33 4.42 3.03 3.64 4.14

The numbers in italics (AddNeuroMed and J-ADNI cohorts for models CNN1, 2, and 4) were calculated as external datasets for the model. 1Statistical differences were found (value of p < 0.05) 
comparing the CNN absolute error; 2No statistical differences were found in the comparison between the absolute error of CNN2 and CNN3 (value of p = 0.37). Statistical differences between 
the models were calculated using Friedman’s test with Conover’s post hoc test, adjusting for multiple comparisons with the Bonferroni method.
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variations in the intensity of importance amongst them. The 
negligible (low importance values) importance observed for 
specific regions may be  attributed to the smaller number of 

images used to train CNN1. It is crucial to note that the BAGs 
depicted in the top row of Figure  10 are based on CNN1 
predictions for the plotted individuals.

TABLE 2 Comparison of our models MAE with the literature.

Study Model Modality Preprocessing MAE R2

Only using the UK Biobank

Dartora et al. CNN1 T1 Rigid reg. 2.75 0.88

Dartora et al. CNN2 T1 Rigid reg. 2.66 0.89

Dartora et al. CNN3 T1 Rigid reg. 2.67 0.89

Dartora et al. CNN4 T1 Bias-field and motion cor., Skull-strip., Rigid MNI reg. 3.03 0.85

Bintsi et al. (2020) CNN (3D ResNet) T1 Skull-strip., non-linear MNI reg. 2.64 0.77

Bintsi et al. (2020) CNN (patches) T1 Skull-strip., non-linear MNI reg. 2.13 0.85

Kolbeinsson et al. (2019) CNN T1 Skull-strip., non-linear MNI reg. 2.58 -

Lam et al. (2020) R-CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.86 0.87

Lam et al. (2020) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 4.36 0.66

Gupta et al. (2021) CNN (slices) T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.82 -

Dinsdale et al. (2021) CNN (Female population) T1 UK Biobank pipeline w/linear registration to MNI 2.86 0.87

Dinsdale et al. (2021) CNN (Male population) T1 UK Biobank pipeline w/linear registration to MNI 3.09 0.86

Jonsson et al. (2019) CNN (transfer learning) T1 Bias-field cor., Skull-strip., Dartel MNI reg., tissue maps 3.63 0.61

Peng et al. (2021) SFCN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.14 0.39

Peng et al. (2021) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.38 -

Study Model Modality Samples/
Cohorts

Preprocessing MAE R2

Using different cohorts

Dartora et al. CNN1 T1 16734/4 Rigid reg. 2.99 0.80

Dartora et al. CNN2 T1 16734/4 Rigid reg. 2.67 0.83

Dartora et al. CNN3 T1 17296/6 Rigid reg. 2.67 0.83

Dartora et al. CNN4 T1 16734/4 Bias-field and motion cor., Skull-strip., Rigid MNI 

reg.

3.08 0.77

Wood et al. (2022) 3D DenseNet T2 11735/2 Resampling, cropping, padding, intensity 

normalisation.

3.05 -

Wood et al. (2022) 3D DenseNet T2 11735/2 Resampling, cropping, padding, intensity 

normalisation, skull-strip.

3.65 -

Wood et al. (2022) 3D DenseNet T1 2387/1 Skull-strip., MNI registration 3.83 0.95

Wood et al. (2022) 3D DenseNet T1 2387/1 “Raw T1”* 4.86 0.90

He et al. (2022) 2D CNN T1 8379/8 Bias-field cor., field of view norm., Skull-stripp., 

registration to SRI atlas, cropping.

2.70 -

He et al. (2021) 3D FUS CNN T1 split 16705/8 Bias-field cor., field of view norm., Skull-stripp., 

multi-site data harmonisation with histogram 

matching to SRI atlas, split in two channels (contrast 

and morphometric), intensity normalisation.

3.00 -

Lee et al. (2022) 3D DenseNet T1/PET 4127/1 MRI: intensity correction, and segmentation of 

tissues, intensity normalisation; PET: registration to 

MRI and MCALT space, scale to SUVRpons, 

segmentation in meta-ROI.

4.20** -

CNN, convolutional neural network; CNN1, our CNN model in a hold-out approach; CNN2, our CNN model in a cross-validation approach; CNN3, our CNN model in a cross-validation 
approach, including two cohorts in the dataset; CNN4, our CNN model in a cross-validation approach, using skull-stripped images; R-CNN, recurrent CNN; SFCN, simple fully convolutional 
network; R2 = coefficient of determination. Dartoral et al. refer to the current study.  
*The authors do not specify if any processing was done. For the “raw” T2 images in the same study, resampling, cropping, and intensity normalisation were performed.  
**Calculated MAE only for the MRI. SUVRpons, standardised uptake volume ratio in relation to the pons; Meta-ROI, meta region of interest.
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In comparison, the CNN4 model exhibits BAG with greater 
variability than the other three models (CNN1–3). The intensity of 
importance, with higher importance depicted in yellow colours, proves 
more significant for predicting younger ages (e.g., −6 years), particularly 

near the ventricles (Bintsi et al., 2021) and insular cortex (Lee et al., 2022). 
Conversely, when predicting older ages, greater importance is assigned to 
the right side of the insular cortex (Lee et al., 2022) and the frontal–
occipital region.

FIGURE 8

Brain age prediction in longitudinal trajectories for all the models. The average brain age gap/difference (Avg. BAG) in the presented population was 
calculated and shows a trend towards zero for the brain age difference between predicted and chronological age. In CNN1, only the individuals with 
longitudinal data in the test set are presented.

FIGURE 9

Relevant regions for age prediction. The absolute values of the salience maps for each model were averaged through the whole MRI sample and 
normalized between 0 and 1 for better visualisation. The SmoothGrad method was used to generate all salience maps. Overlayed salience map colours 
are normalized for each individual between 0 and 1.

FIGURE 10

Relevant regions for the brain age prediction based on 1% of the salience maps of individuals with an average age of 65  years overlayed to a random 
T1w MRI sample for each of the four CNN models. The individuals were randomly selected in the test dataset used in CNN1, according to their brain 
age difference and proximity to the average age of our sample (65  years). Each row represents the salience maps of one CNN model, where the 
columns show the same individual’s salience map in each of the four models. The SmoothGrad method was used to generate all salience maps. The 
brain age difference is shown in the top row of the image, going from −8 to +8  years. Overlaid salience map colours are normalized for each individual 
between 0 and 1.
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3.3 Differences in cortical thickness across 
age groups based on chronological and 
predicted brain age

Figure 11 shows the age-related differences in cortical thickness for 
chronological and biological (predicted) age groups by the CNN2 
model. The number of individuals in each age group is presented in 
Supplementary Table S5. Differences in atrophy patterns between 
chronological and predicted brain age are observed in the older groups, 
from the age of 70 years, with mid-frontal and parietal–occipital regions 
of broader and more widespread differences around the cortex.

4 Discussion

In this study, we developed a CNN-based model using one 
preprocessing step (rigid registration to MNI space), when using 
new and unseen data in the model, to predict the person’s biological 
brain age from T1w images to be easily implemented and used. 
Furthermore, the study was performed as an effort to attend to the 
highlighted points related to an “ideal” image database (which 
includes diverse image data) to develop brain age prediction 
models. Finally, our model evaluation was performed using 
different approaches—hold-out (CNN1) and cross-validation 
(CNN2)—and generalisability was tested in external datasets. The 
usability (CNN3) of the model was also assessed by adding more 
data (from two external datasets) in the training loop, and to 
ensure that the previously trained models were using the brain 
signal for age prediction, we also trained the model using skull-
stripped images (CNN4).

Due to the complexity and time-consuming nature of the training 
networks with large amounts of data, the hold-out method used in 
CNN1 is the most common approach in the literature (Cole et al., 
2017; Jonsson et al., 2019; Lam et al., 2020; Dinsdale et al., 2021; Gupta 

et al., 2021; Kolbeinsson et al., 2021; Peng et al., 2021; Ren et al., 2022). 
Our CNN1 model achieved an MAE of 2.99 years in the test set, which 
agrees with the MAE reported in the literature for hold-out test sets 
using 1–3 cohorts (MAE of 2.14–4.65 years) but several time-
consuming preprocessing steps (Cole et al., 2017; Jonsson et al., 2019; 
Lam et al., 2020; Dinsdale et al., 2021; Gupta et al., 2021; Kolbeinsson 
et al., 2021; Peng et al., 2021; Ren et al., 2022). Our calculated MAE is 
also in the range of the available MAEs of the CNN models (Jonsson 
et al., 2019; Bintsi et al., 2020; Lam et al., 2020; Dinsdale et al., 2021; 
Gupta et al., 2021; He et al., 2021, 2022; Kolbeinsson et al., 2021; Peng 
et al., 2021; Lee et al., 2022; Wood et al., 2022) available in the literature 
that used hold-out approaches and only data from the UK Biobank 
but performed several preprocessing steps as opposed to our CNN 
model. The current debate surrounding the development of brain age 
models lacks a thorough evaluation of CNN-based brain age models 
across different external datasets. In such a scenario, it is difficult and 
relatively unfair to compare the performance of different models 
without using the same evaluation dataset (Sajedi and Pardakhti, 
2019). To overcome such a challenge, we evaluated the performance 
of our CNN models in two external datasets, AddNeuroMed and 
J-ADNI, showing that CNN1’s MAE performance is still within a 
range of 1.5 years when compared to the other CNNs.

Deep learning models, like CNNs, tested in out-of-distribution data 
result in performance dropping, increasing underestimation in new 
unseen data. However, including more diverse and variable data in the 
model’s training increases the model’s robustness/reliability (Mårtensson 
et al., 2020). One way of including variability in the model is by running 
it in a cross-validation fashion. We have done this in CNN2, where the 
same data used for training, validating, and testing CNN1 was used for 
training a 10-fold cross-validation model (CNN2). In general, the 
CNN2 model had better performance than CNN1. The correlation with 
chronological age was higher, the MAE was smaller in CNN2 in all cases 
of age prediction (training and test sets), and the calculated brain age 
difference (BAG) was smaller when comparing both models. 

FIGURE 11

Atrophy patterns in ageing according to chronological and predicted brain age in the cross-validation approach (CNN2). Analysis shows cortical 
thickness z-stat maps corrected for false discovery rate with a threshold of 0.05 of cross-sectional differences between a reference group of 55 (±1.0) 
years old and older subjects. Individuals were grouped by age  ±  1.0  years. The QDEC analyses were done with a 10  mm smoothing kernel and sex 
added as a covariate. Blue colours represent lower cortical thickness (increased atrophy) in the age group compared to the 55-year-old group, and red 
colours represent an increased cortical thickness compared to the younger group. It is possible to verify that the atrophy patterns start in parietal–
frontal regions in the 65-year-old group. The approach also captures the increased thickness (in red) around the lingual gyrus.
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Comparing the performance of the different cohorts used in the 
development of this study, we see a tendency for individual smaller 
MAEs in CNN2. To confirm the robustness of the model, CNN2 was 
also evaluated in external datasets, confirming the decrease in 
underestimation, as proved by the increase in the model’s performance 
in AddNeuroMed and J-ADNI cohorts when compared to CNN1. Even 
though CNN1 and CNN2 have similar performance in age prediction, 
the increased variability in the model’s training reduced the average and 
calculated MAE for each cohort. This is further proved by CNN3, where 
CNN2 and CNN3 performed similarly (p > 0.05). Both models 
presented the same MAE of 2.67 years and a coefficient of determination 
of 0.83, but different performances in out-of-distribution data. 
Specifically, evaluating the predictions in the J-ADNI cohort in CNN3, 
it is possible to verify that adding the cohort to the training set decreased 
the predicted MAE for this cohort, going from an MAE of 5.63  in 
CNN1 to 2.25 in CNN3. This reinforces our hypothesis that the small 
number of data does not increase the absolute error across all the 
cohorts (AddNeuroMed and J-ADNI represent ~3% of the total number 
of images used in CNN3) but increases the performance in a specific 
cohort. This increases the model’s usability, as data with more variability 
will be included in the training set, ameliorating the age prediction in 
external cohorts (Mårtensson et al., 2020). Therefore, additional tests 
with a greater variety of cohorts are necessary to understand how wide 
the model’s generalisability is and how it can change by adding more 
data to the training set.

To ensure that our model was using only brain signals from the 
T1w MRI and that predictions were not depending on the head 
morphology or bone tissue, we trained and evaluated CNN4. This 
model is comparable to CNN2, apart from that skull-stripped brain 
images were used as input. Regarding performance, CNN2 presented 
a smaller MAE and a better correlation to chronological age than 
CNN4. The same tendency is also present in evaluating data only from 
the UK Biobank. This shows that our CNN works better with 
minimally preprocessed brain MRIs when compared to heavily 
preprocessed images. However, for evaluating the external dataset, 
J-ADNI, CNN4 presented a smaller MAE than CNN2. We hypothesise 
that using heavily preprocessed images as in CNN4 could remove or 
decrease the effects of bias field and skull size/format and partially 
mitigate the inhomogeneity present in the external dataset.

The lower limit of the MAE score is unknown and depends on 
both the inter-subject variability and age distribution of both training 
and test datasets. By using stricter exclusion criteria for what is 
considered “cognitively healthy,” the variability and theoretical MAE 
lower bound decrease. This makes comparisons between studies of 
models evaluated on different datasets challenging. Several studies 
have trained and evaluated their model on the UK Biobank cohort, 
which enables rough comparisons. However, this restricts the model 
to cross-sectional image data (at least for the first wave of the UK 
Biobank data) from a “homogeneous” population from the 
United  Kingdom acquired in standard equipment (Siemens 
Magnetom Skyra Syngo MR D13) with 3 T MRI following the same 
protocol, which is not the reality for datasets and clinical/research 
settings. Also, the performance of CNNs trained on medical images 
from one cohort may produce systematically different predictions on 
images outside the training data distribution (Mårtensson et al., 2020). 
Comparing our results with the literature applied only to UK Biobank 
images, we  observed that using several time-consuming image 
preprocessing steps, none of the models achieved a MAE smaller than 

2.13. The CNN4, which uses skull-stripped images, showed the worst 
performance within our different approaches using the same CNN 
architecture. For a more accurate comparison of the model’s 
performance using the MAE metric, normalised MAE should be used. 
However, not all the selected papers for comparison presented the 
average age of the used subgroup of UK Biobank data, limiting the 
calculation of a normalised MAE. For future comparisons to our 
study, the normalised MAE for all four different approaches is 
presented in Supplementary material, Section 6.

Essentially, all our trained models showed MAE levels comparable 
to those reported in previous literature, which is typically in the range 
of 2.13–6 (Jonsson et al., 2019; Kolbeinsson et al., 2019; Sajedi and 
Pardakhti, 2019; Bintsi et  al., 2020; Cole, 2020; Lam et  al., 2020; 
Baecker et  al., 2021a,b; Dinsdale et  al., 2021; Gupta et  al., 2021; 
Tanveer et  al., 2022). This indicates that our models have good 
performance, with the advantage of requiring only one 
preprocessing step.

A “perfect” model for brain age prediction in cognitively 
unimpaired individuals should show smooth and non-declining 
trajectories within the same individual at different time points, assuming 
that a healthy person’s brain age does not vary rapidly or decrease/
increase substantially. Visually, our CNN model in different approaches 
seems to generate smooth predictions that increase with chronological 
age, with some noisy predictions deviating from the trajectory. For 
quantitative analysis, we also calculate the mean age gap (BAG) of all 
individuals, the mean squared error, and R2. The models present mean 
brain age differences between chronological and predicted brain ages 
smaller than 0.5 years. However, the predictions also show a potential 
confounder in subsequent analyses of brain age predictions: noise. As it 
can be observed, for some subjects, fluctuations in brain age differed 
some years between two scanning sessions that were 1 year apart. It 
seems unlikely that this is a biological phenomenon, but instead it is 
attributed to the input data being noisy or of low quality. Most datasets 
do not have abundant longitudinal data to sort “bad” predictions from 
“good” predictions. If the data and group sizes are extensive, some level 
of noise is acceptable and might not affect the interpretation of the 
results. The maximum average difference between chronological and 
brain age of all longitudinal plots was −0.11, with R2’s higher than 0.88. 
However, this effect can have a non-negligible impact when analysing 
datasets with small group sizes or running longitudinal analyses with 
few follow-up scans. This is important to remember when conducting 
future studies related to brain age, for example, when investigating the 
association between brain age and neurological disorders with a low 
prevalence in the population.

The analysis of important brain regions for prediction was realised 
qualitatively by the plots of the salience maps. The salience maps show 
that important regions for predicting subjects as older were on the 
right side of the insular cortex and in the frontal–occipital regions. In 
contrast, for predicting subjects as younger, highlighted regions are 
located around the ventricles and insular cortex. The salience maps 
also show regions symmetrical and asymmetrical, mainly on the left 
side of the brain (Roe et al., 2021) and around the ventricles (Bintsi 
et al., 2021), as important for age prediction. Left brain asymmetries 
with ageing are a typical pattern found in ageing studies of cortical 
thickness (Koelkebeck et  al., 2014; Frangou et  al., 2022), cortical 
volume, and surface area (Koelkebeck et al., 2014). In agreement with 
Lee et al. (2022), who plotted salience maps for different decades, 
regions with a higher contribution for age prediction were in the 
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insular cortex (from 30- to 50-year groups), ventricular boundary (50- 
to 60-year group), and cerebellum (90- to 100-year group). Further 
studies are necessary to understand why CNN3 has higher variability 
in the important regions for prediction. They should delve into the 
nuances of the CNN3 model, which uses the same image data as 
CNN2 but incorporates additional preprocessing steps.

Interestingly, regions around the eyes were selected in the three 
non-skull-stripped models (CNN1–3). We hypothesise that changes 
in the soft tissue and liquid surrounding the orbital space, such as the 
bony orbit, which has differences in sex (i.e., men usually have a 
greater skeleton size than women) (Erkoç et  al., 2015), as well as 
general dimensions in orbital structures (Rana et al., 2022), could 
be used in the model to predict age. For the model using skull-stripped 
brain images as input (CNN4), right regions close to the cerebellum 
and occipital lobe, outside the brain, were selected as important for 
prediction. We  believe that the increased noise used for the 
SmoothGrad in a region that could have a higher neurodegenerative 
load could be leading to prediction importance outside the brain in 
this model. More studies are necessary to understand the highlights 
of this region for prediction. However, we believe this could be an 
artefact generated by the SmoothGrad method due to the addition of 
noise in the image for the construction of the maps. Future studies 
could use different methods to generate salience maps and use 
different methods to generate skull-stripped images to verify if this 
outstanding region (right outside the skull region) continues to 
be highlighted for prediction in this model.

One of the theoretical uses of biological age is for age correction 
in neuroimaging studies. The hypothesis behind it is that correcting 
neuroimaging studies for the biological (predicted) age of the 
individuals will better handle the heterogeneity that we see in ageing, 
incorporating diversity in longitudinal brain trajectories due to 
lifestyle, environmental, or even biological factors (Cole et al., 2019; 
Tian et al., 2023). For the analysis of chronological and biological 
(predicted) age atrophy pattern differences, we can observe differences 
mainly in the older groups (as of 70 years). In the comparison of the 
group of 70 years in chronological and biological (predicted) brain 
age, atrophied areas of higher statistical significance are present in the 
mid-frontal to parietal–occipital regions of the group based on 
biological age. This agrees with the work of Thambisetty et al. (2010), 
where an anterior–posterior gradient in age-related brain atrophy was 
found, with frontal–parietal regions showing a greater decline. The 
groups between 75 and 80 years have more similar atrophy patterns, 
with higher spread to the parietal lobe in the biological (predicted) 
brain age. Interestingly, a region of greater thickness in the oldest 
groups, compared to the reference group (55 years), was found in the 
primary visual cortex, located in the calcarine sulcus. The shrinkage 
of the visual cortex is still widely discussed in the literature, with a 
handful of studies showing cortical thinning of the visual cortex to the 
sparing of this region. These studies suggest that the visual cortex 
thickness is use-dependent instead of age-related (Burge et al., 2016; 
Griffis et al., 2016; Jorge et al., 2020). We hypothesise that this can be a 
cohort confounding effect, even individuals of 75 years being present 
in all cohorts, but in larger amounts in ADNI and AIBL. Differences 
in atrophy patterns between individuals grouped by their 
chronological and biological (predicted) brain age need to be further 
studied. However, our results already show different tendencies in 
atrophy patterns between them. Correcting for biological (predicted) 
brain age in neuroimaging studies could be  one step further in 

understanding heterogeneity present in ageing and be used in early 
diagnosis of neurological diseases, prognosis, and even monitoring of 
treatment response, being one step further to precision medicine.

A key strength of this study is the use of minimally processed 
images as input for the CNN model, which makes it feasible for 
implementation in research and, in the long term, clinical settings. 
Our model requires only registration in MNI space, which typically 
takes a few seconds and can be easily performed using an open brain 
image processing software such as FSL or FreeSurfer. Additional 
preprocessing steps would increase the likelihood of image exclusion 
during quality control and preprocessing. This would limit the model’s 
performance and the possibility of using cohorts with a small sample 
size. CNN models can learn from the image data, including structure 
and shape, which may not be captured by summary metrics such as 
volume or segmented tissue maps, without requiring pre-segmented 
data (Liang et  al., 2019; Niu et  al., 2020). Our focus on one-step 
preprocessing, using a rigid registration to the MNI space template 
previously implemented by Cole et al. (2017), is to ensure accessibility 
to our model in the future research.

This study includes cohorts to attend to the highlighted points 
related to, what we believe to be, an ideal image database to develop brain 
age prediction models. We used detailed information and clinical data 
for inclusion criteria of many individuals (more than 16,000 T1w MRIs) 
from different parts of the world (Asia, Australia, Europe, and America) 
and with a diverse number of image acquisition protocols and MRI 
scanners covering 1.5 T and 3 T scanners, which increases the model 
usability due to its generalisation to new unseen data (Mårtensson et al., 
2020). This model was compared to the model using only UK Biobank 
as input with the same acquisition protocol. The results show that the 
model performance is similar when we  include not only different 
scanners with different magnetic fields but also different acquisition 
protocols from the different cohorts. We also used all the longitudinal 
data available and showed that our model presents a reasonable age 
prediction congruent with the individual timeline. Also, our focus on the 
cognitive “healthy” status, rather than on the overall health status (e.g., 
excluding from the training set age-related diseases that affect the body’s 
organs other than the brain) is a strength of our study as it makes a clear 
separation between the outcome (brain age) and what leads to that 
outcome (risk factors, e.g., chronic cardiometabolic disease and risk 
factors, affective/mood disorders, etc.). Furthermore, to validate the 
generalisability of the models, we used external datasets of cognitively 
unimpaired individuals from two cohorts: AddNeuroMed, a cross-
European study designed to find biomarkers for Alzheimer’s disease, and 
J-ADNI, the Japanese version of the ADNI dataset. We chose to use these 
cohorts because of differences in age distribution, e.g., AddNeuroMed 
average age is approximately 10 years older than the average of our total 
sample, different ethnicities, e.g., our sample is composed mainly of 
European and North American individuals, and both cohorts mostly use 
images acquired in 1.5 T scanners, whereas the training dataset was 
based mainly on 3 T MRI, i.e., 96.2% of all images used for training and 
testing in the CNN1 approach.

Some limitations need to be acknowledged. The large dataset in 
the current study hindered the possibility of performing extensive 
quality control. For the CNN model, this would mean inspecting 
whether the rigid registration was adequate. The random cases 
we inspected suggested that the overall quality of the segmentations 
was sufficient. However, tools to automate the quality control 
process—such as Brusini et al. (2020) and Klapwijk et al. (2019)—will 
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be necessary for future studies on this data size. Regardless of the lack 
of extensive quality control of the images, our model showed robust 
findings with only slightly worse performance when compared to 
previously published works. A potential limitation of this type of 
model, only trained in cognitively intact individuals, is its performance 
in neurodegenerative diseases, which warrants further investigation.

Even though we  defined the cognitively “healthy” status as 
consistently as possible across the cohorts, some variation exists, but 
we acknowledge the clinical and cognitive assessments relied on similar 
procedures across cohorts. Given our large training set, heavy data 
augmentation, and running only 20 epochs in training, we minimised 
the risk of overfitting. However, a crucial consideration for future 
studies is evaluating how the inclusion of different populations 
influences brain age prediction models based on minimally processed 
MRIs. To enhance model robustness, future training models should 
encompass greater diversity, including cohorts from Asia, Africa, and 
Latin America, and involve a broader array of scanners (from 1.5 T to 
7 T) and imaging protocols (Mårtensson et al., 2020). It is also important 
to address differences in the distribution of chronological age and the 
number of subjects in each cohort, as these variations may contribute 
to overfitting some cohort-specific information and characteristics (e.g., 
the model may learn that images from GENIC generally fall within the 
lower age span). Finally, it is worth noting that there might 
be  sociodemographic differences between the cohorts since the 
recruitment of participants happened in different geographical areas 
(J-ADNI: Japan, AIBL: Australia, ADNI: North America, and UK 
Biobank, GENIC, and AddNeuroMed: Europe). However, this is not 
necessarily a limitation but rather a strength. Indeed, the developed 
algorithm could be applied in the future research, in which the biological 
age of the brain is a focus, to some extent independent of the cohort 
characteristics, thus increasing the generalisability of the model. Future 
studies need to further test this hypothesis and the impact of different 
cultural backgrounds on the estimation of brain age.

5 Conclusion

In this study, we  developed a CNN-based model to predict 
biological brain age using raw T1w MRI registered to the MNI space, 
with the goal of accessibility and simplicity in implementation. The 
model was systematically evaluated using different approaches, 
comprising several datasets of cognitively healthy individuals with 
different scans and population characteristics, as well as using cross-
sectional and longitudinal data. Our CNN-based model provides 
results comparable to other validated methods in the literature (a.k.a. 
state-of-the-art methods) but uses one preprocessing step when using 
external datasets. The generalisability and usability of the model were 
tested using external datasets with different demographic 
characteristics, MRI protocols, and MRI scanners, proving the 
robustness of the model. In addition, we present the important regions 
for brain age prediction. We also provide indicators for the use of 
biological (predicted) brain age as a metric for age correction in 
neuroimaging studies as an alternative to the traditional chronological 
age based on the differences in cortical atrophy. Finally, the model’s 
code and trained CNN weights are made publicly available for the 
research community to quickly implement and use in their research 
to study ageing and age-related brain disorders.
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