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Background: Mild cognitive impairment (MCI) is a transitory yet reversible stage of 
dementia. Systematic, scientific and population-wide early screening system for 
MCI is lacking. This study aimed to construct prediction models using longitudinal 
data to identify potential MCI patients and explore its critical features among 
Chinese older adults.

Methods: A total of 2,128 participants were selected from wave 5–8 of Chinese 
Longitudinal Healthy Longevity Study. Cognitive function was measured using the 
Chinese version of Mini-Mental State Examination. Long- short-term memory 
(LSTM) and three machine learning techniques, including 8 sociodemographic 
features and 12 health behavior and health status features, were used to predict 
individual risk of MCI in the next year. Performances of prediction models were 
evaluated through receiver operating curve and decision curve analysis. The 
importance of predictors in prediction models were explored using Shapley 
Additive explanation (SHAP) model.

Results: The area under the curve values of three models were around 0.90 and 
decision curve analysis indicated that the net benefit of XGboost and Random 
Forest were approximate when threshold is lower than 0.8. SHAP models showed 
that age, education, respiratory disease, gastrointestinal ulcer and self-rated 
health are the five most important predictors of MCI.

Conclusion: This screening method of MCI, combining LSTM and machine 
learning, successfully predicted the risk of MCI using longitudinal datasets, and 
enables health care providers to implement early intervention to delay the process 
from MCI to dementia, reducing the incidence and treatment cost of dementia 
ultimately.
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1. Introduction

With an increasing older adult population worldwide, geriatric 
health concerns cannot be ignored. Aging results in declining physical 
and cognitive functions, leading to a high risk of disability and death 
(Klimova et  al., 2017). Distinguishing between pathological and 
normal cognitive decline, generally referred to as dementia or 
cognitive impairment, remains challenging. As an inevitable human 
phenomenon, aging is a significant factor in deteriorating cognitive 
function. With a global increase in life expectancy, older adults have 
an increased likelihood of developing dementia and cognitive 
impairment. The World Health Organization (WHO) stated that >55 
million older adults had a diagnosis of dementia in 2021, with >139 
million older adults estimated to be diagnosed with dementia in 2050 
worldwide. In 2019, the annual cost of dementia-related treatment 
exceeded US $1.3 trillion (World Health Organization, 2021). China 
has the greatest population of people with dementia, comprising 25% 
of the global population. Aggregate expenditure on dementia in China 
reached US $195 billion in 2019 (Jia et al., 2020b; Mattap et al., 2022).

With no reversal therapies available, prevention of dementia 
remains a priority. Mild cognitive impairment (MCI), a risk factor for 
dementia, is considered a transitional stage between normal cognitive 
function and dementia, where there is objective cognitive decline but 
with a capacity to live independently. However, approximately 10–20% 
of older adults aged ≥65 years with MCI are diagnosed with dementia 
after 1 year (Langa and Levine, 2014). Delaying the progression of 
MCI to dementia is currently the most effective approach, as diverse 
treatments for MCI have proven to be effective and less costly (Langa 
and Levine, 2014; Anderson, 2019; Huang et al., 2022), with early 
identification and intervention in high-risk groups shown to prevent 
dementia onset in 40% of such cases.

Currently, screening techniques and questionnaires for MCI are 
limited. On account of the fact that neurodegenerative disease starts 
to develop many years before the symptoms are observed, while 
applying MCI screening to the population with normal cognitive 
function, imaging examinations, and fluid biomarkers can detect the 
neurodegenerative and pathological changes most accurately. Imaging 
techniques, such as magnetic resonance imaging (MRI), positron 
emission computed tomography (PET), and single photon emission 
computed tomography (SPECT), are capable of showing the tiny 
changes in brain structure, blood flow, metabolism, and 
neurotransmitters in patients with MCI. Nevertheless, due to the 
rarity and inaccessibility of these techniques for the general public, 
they cannot be used as a common screening tool for MCI (Dunne 
et al., 2021), with limited coverage in terms of MCI questionnaires 
[Mini-Mental State Examination (MMSE) and the Montreal Cognitive 
Assessment (MoCA)] that generally require a significant investment 
in manpower and their training. Therefore, an effective, systematic, 
and convenient MCI screening method to identify high-risk older 
adults in the general population is urgently needed. Effective screening 
could be conducive to targeted interventions for those at high risk of 
MCI. One study reported significant changes through implementing 
appropriate early intervention for potential patients in England, 
namely, an 8.5% decrease in the incidence of dementia and a reduction 
in dementia-related expenditure of approximately $180 million 
(Mukadam et al., 2020). Owing to the irreversible nature of dementia, 
treatment for patients with dementia places considerable financial and 

psychological pressure on families and caregivers (Chiao et al., 2015). 
Given the significant negative effects of dementia, it is critical to 
identify high-risk individuals at an early stage.

Some studies have adopted multiple perspectives to identify risk 
factors in people with MCI. A national cross-sectional study in China 
that comprised 46,011 older adults showed that MCI was associated 
with sociodemographic characteristics, including age, sex, parental 
history, education level, residence, and marital status (Jia et al., 2020a). 
Several cohort studies have shown a causal relationship between 
health status and behaviors that contribute to MCI. Chronic diseases, 
such as hypertension, stroke, and diabetes as well as harmful lifestyle 
behaviors, such as smoking and alcohol consumption, significantly 
increase the risk of MCI, while regular physical exercise, tea/coffee 
consumption, and playing Mahjong can prevent cognitive impairment 
(Kivipelto et al., 2018; Kakutani et al., 2019; Zhang et al., 2020, 2022). 
Owing to limitations in conventional regression methods in terms of 
collinearity potentially affecting predictors, some studies have applied 
machine learning based on imaging data or biomarkers to further 
determine whether an individual has MCI and to explore key features 
of MCI (Mirzaei et al., 2016; Wang et al., 2022; Alamro et al., 2023). 
However, most machine learning studies have only used single-wave 
panel data, and neurodegenerative disorders have a natural history of 
progression, thus ignoring the dynamic and longitudinal nature of 
these diseases, such that early identification and intervention could 
be sufficient.

Consequently, to address those deficiencies in previous studies, 
we used long short-term memory networks (LSTMs) in this study to 
capture the interdependence of predictors in longitudinal data. In 
combination with machine learning, it is possible to generate a model 
that can forecast the likelihood of conversion to MCI after several 
years. This model facilitates convenient and efficient screening for 
MCI and identification of risk groups for targeted intervention 
procedures. LSTMs are a form of recurrent neural network that 
address long-term dependencies and gaps between significant events 
in sequential data. Compared to traditional times series analysis like 
the Autoregressive Integrated Moving Average model (ARIMA), 
LSTMs models generally generate better outcomes in nonlinear and 
volatile time series data (Lou et al., 2022; Liu X. D. et al., 2023) despite 
the complexity of model interpretations and the long duration of 
model training. LSTMs were originally introduced into medically 
relevant applications to forecast the incidence and prevalence of 
diseases with considerable success during the COVID-19 pandemic 
(Borges and Nascimento, 2022; Gautam, 2022; Liu X. D. et al., 2023). 
Simultaneously, several studies have shown the feasibility of using 
LSTMs prediction in relation to individual characteristics in machine 
learning techniques to predict depression in older adults through 
applying longitudinal sequence data (Su et al., 2020; Lin et al., 2022).

No previous studies have used multiple sequence data waves to 
predict potential MCI in older Chinese adults. On the basis of the 
traits that LSTMs could effectively capture the temporal dependencies 
and trends of individual characters in longitudinal data from multiple 
data waves, and the capability that machine learning could extract 
important variables with significant trends related to MCI, therefore, 
this study assumes that the combination of LSTMs and machine 
learning could successfully identify the older adults at high risk for 
MCI and indicate instructions of implementing early interventions to 
prevent dementia.
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2. Materials and methods

2.1. Data source and samples

The data used in this study were Waves 5–8 (2008, 2011, 2014, 
2018) of the Chinese Longitudinal Healthy Longevity Survey 
(CLHLS), a secondary data series collected by the Center for Healthy 
Aging and Development and the China Mainland Information Group, 
Peking University, since 1998 (Center for Healthy Aging and 
Development Studies. The Chinese Longitudinal Healthy Longevity 
Survey (CLHLS)-Longitudinal Data, 1998–2018). Respondents in the 
CLHLS among the selected waves were randomly sampled from 
approximately half of the counties and city districts of China’s 23 
mainland provinces. The CLHLS questionnaire includes a wide range 
of instruments, such as the Mini-Mental State Examination (MMSE), 
the Center for Epidemiologic Studies Depression Scale, and the Self-
Rating Anxiety Scale. Previous studies have confirmed that the design 
of questionnaire and quality of datasets are excellent (Gu, 2008; 
Zeng, 2012).

The Wave 5 questionnaire of the CLHLS was used to obtain 
baseline characteristics of the older adults, including 2,334 home-
based interviewees who continuously responded until Wave 8. After 
excluding respondents lacking answers or records for cognition 
measurement, that is, the MMSE questionnaire in this study, and 
respondents who had been diagnosed with dementia in Waves 5–7 
based on the their MMSE scores, 2,128 eligible participants were 
included in the ultimate data preprocessing and statistical analysis.

2.2. Assessment of MCI and outcome 
variables

The MMSE has been widely applied to screen for cognitive 
dysfunction among older adults. In the CLHLS questionnaires, the 
MMSE was modified into a Chinese version, including 24 items 
within six dimensions: five items for orientation (five points in total), 
one for naming (seven points in total, one point for naming each kind 
of food), three for registration (three points in total), five for attention 
and calculation (five points in total), three for recall (three points in 
total), and seven for language (seven points in total). The final 
cognitive function score was the sum of the scores of the six 
dimensions, with a possible total of 30 points.

In this study, due to the age distribution of participants (age range, 
70–80 years, 31.72%; age ≥ 80 years, 68.28%), MCI was defined as an 
MMSE score < 18  in this study (patients with MCI = 1; normal 
participants = 0) (An and Liu, 2016; Gao et al., 2017).

2.3. Predictors

We considered three levels of individual characteristics to fit the 
LSTMs and machine learning models from Waves 5–8, namely 
(Supplementary Table 1), (i) sociodemographic characteristics, such 
as age, sex, geographical area, education level, marital status, residence, 
income level, and living status; (ii) health behavior factors, including 
active smoking, alcohol consumption, exercise, self-rated health 
[SRH], and sleep quality; and (iii) health status factors, such as a 

history of hypertension, diabetes, cardiopathy, stroke, chronic 
respiratory disease, cancer, or gastrointestinal ulcer.

2.4. Processing of missing values

In order to reduce the probability of bias during the imputation 
procedure, variables with >20% information were abandoned to 
guarantee good performance (Jakobsen et al., 2017). The ultimate 
predictors included from CLHLS Waves 5–7 were imputed utilizing a 
MICE package in R studio 4.2.3 software, applying multivariate 
iterative random forest (“RF” method) imputation algorithms with 
five iterations to produce datasets with the least variance compared 
with datasets being imputed before.

2.5. Statistical analysis

Statistical analyses were performed using Keras package (version 
2.6.0) software for deep learning and Scikit-Learn package (version 
1.1.2) for machine learning in Python (version 3.9) software. 
We randomly partitioned the data into three disjoint sets: training, 
testing, and validation, with proportions of 60, 20, and 20%, 
respectively. Details about hyperparameters of LSTMs and parameters 
of three machine learning models were listed in 
Supplementary Tables 2, 3.

2.5.1. The multivariate LSTMs models
Machine learning techniques are generally applied to panel data 

from a cross-sectional perspective, but are not able to capture features 
with time sensitivity. To forecast the development of predictors and 
explore potential outcomes, recurrent neural networks (RNNs) are 
used to capture the inputs of predictors from specific time periods and 
transfer information to subsequent time periods through combining 
the interdependence among predictors. However, traditional RNNs 
cannot cope with gradient vanishing and gradient exploding in long-
term dependency issues owing to their simple neuron structure, 
whereas LSTMs can successfully handle these disadvantages in RNNs 
through the use of “forget gate” and the sigmoid function in each 
LSTMs unit. The LSTMs model has been validated as a powerful and 
precise model for forecasting time-series data in longitudinal studies. 
As shown in Figure 1, time-sensitivity predictors in CLHLS Waves 5–6 
were randomly split such that 70% of the samples were used to train 
the LSTMs model to forecast the values of the predictors in Wave 7, 
and the remaining 30% of the samples were used to test our LSTMs 
model. The model was then fitted to CLHLS Waves 6–7 to forecast 
predictors in Wave 8, combining invariable features such as age, sex, 
education level, and geographical area that did not need to 
be predicted over time to constitute a new dataset.

2.5.2. Synthetic minority oversampling technique
Imbalanced data were a challenge for machine learning as the 

proportion of older adults with MCI was only 16.92% in this study. A 
common issue is that models tend to be biased toward the majority 
class, resulting in suboptimal performance. To address this problem, 
we applied the synthetic minority oversampling technique (SMOTE). 
SMOTE creates synthetic samples from the existing minority class 
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through interpolation from its nearest neighbors, thereby increasing 
the number of minority samples in the datasets.

2.5.3. Gradient boosting decision tree (GBDT)
The GBDT is an ensemble machine learning approach for 

classification and regression based on the CART algorithm. The 
GBDT improves prediction accuracy through gradually improving 
estimation using a boosting method. In addition, the GBDT utilizes a 
nonlinear regression procedure to improve tree accuracy. A series of 
decision trees was created, which produced a set of weak prediction 
models and generated loss functions. The final classification model 
was the weighted sum of all weak prediction models through each 
round of training.

2.5.4. Extreme gradient boosting
XGBoost is a scalable and efficient implementation of gradient 

boosting, a popular machine learning technique that combines weak 
learners (typically decision trees) into a strong ensemble model. 
XGBoost offers several advantages over other gradient boosting 
frameworks, such as parallelization, regularization, and missing value 
handling. In addition, XGBoost can handle encoded 
categorical variables.

2.5.5. Random Forest algorithm
Random Forest (RF) is a machine learning technique that builds 

an ensemble of decision trees and aggregates their predictions. RF can 
handle both classification and regression problems, as well as 
categorical and numerical features. It also provides measures of feature 
importance and variable selection. RF introduces randomness in two 
ways: by bootstrapping the training data for each tree, and by selecting 
a random subset of features for each split. To analyze the ultimate 
result, each decision tree was accessed in the final decision to obtain 
a reliable result. Based on majority selection for all decision trees, each 
sample was classified into two classes.

2.6. Model assessment

To assess the outcomes of each machine learning model, 
we calculated the area under the receiver operating characteristic 
curve (ROC; AUC) and sensitivity (equation 1), specificity 
(equation 2), accuracy (equation 3), and balanced accuracy 
(equation 4). True positives and true negatives indicate older adults 
who were correctly identified as patients with MCI or the normal 
cognitive function group, respectively; false positives and false 
negatives indicate older adults who were inaccurately identified as 
patients with MCI or the normal cognitive function group, 
respectively. Each machine learning model could predict the 
probability of cognitive impairment in older adults. If the 
probability of an individual was greater than the threshold, then 
older adults were regarded as patients with MCI, and vice versa. To 
further evaluate and understand the prediction models, 
we calculated the net benefit of the machine learning models using 
decision curve analysis (DCA). This method indicated the 
proportion of patients who received a correct diagnosis minus the 
percentage of patients who were misdiagnosed under different 
threshold values.

 Sensitivity = True Positive
True Positive False Negative

 
  +

  (1)

 Specificity = True Negative
True Negative False Positive

 
  +

  (2)

 Accuracy = 

True Negative True Positive
True Negative True Positive
Fal

  
  

+
+

+ sse Negative False Positive  +
  (3)

FIGURE 1

The predictors of the LSTMs model for older adults with MCI from CLHLS wave 5 to wave 8.
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 Balance accuracy = 2∗ ∗
+

Specificity Sensitivity
Specificity Sensitivity

  (4)

2.7. SHapley Addictive explanation models

For ensemble machine learning models applied in this study, the 
processes of their predictions are generally opaque. Unlike the 
traditional statistical models, it is difficult for people to understand 
their working mechanisms and certain positive or negative 
contributions of predictors to the outcomes. To address this problem, 
post-hoc interpretations of the model output should be proposed for 
machine learning studies. Based on the individual and joint 
contributions among players, Shapley values are a way of fairly 
allocating the payoff of a game in cooperative game theory, which was 
introduced into machine learning techniques to explain the attribution 
of each input feature toward the outcome. SHapley Addictive 
explanation models (SHAP) is able to be used to provide various types 
of visualized explanations for machine learning models, including 
global feature importance, feature interaction, and feature dependence. 
SHAP was performed in Python using shap package (Version 0.42.1) 
in this study and was used to visualize the importance of each 
predictor and the association between predictors and MCI 
quantitatively (Ekanayake et al., 2022).

3. Results

As presented in Table 1, 2,146 older adults in the baseline CLHLS 
wave of 2008 participated in this study (older adults with MCI, 
17.29%). The median age of patients with MCI was 92 years (range, 
86–97 years), which was 10 years older than that of older adults with 
normal cognitive function (82 years, range, 78–88 years). The 
proportions of older adult males (46.62%) and females (53.38%) were 
relatively equal, with approximately two-thirds of the participants with 
MCI being female. Of older adults with MCI, 71.67% were illiterate, 
and 75.28% were single older adults. Older adults with low or very 
low-income levels comprised the majority of participants with 
MCI. The percentage of individuals living alone was higher among 
those with normal cognitive function than among those with 
MCI. Only 13.61% of older adults regularly exercised among those 
with MCI. People with normal cognitive function generally rated their 
health and sleep quality as better than those with MCI. A higher 
percentage of older adults in the normal group had a diagnosis of 
hypertension. A total of 14.17% of older adults with a history of stroke 
had poorer MMSE scores.

For further descriptive analysis, odds ratios (ORs) for each 
predictor were evaluated using univariate and multivariate logistic 
regression analyses. Among sociodemographic variables, the analysis 
showed that age was a risk factor for MCI (adjusted OR [aOR] 1.123, 
95% CI 1.103–1.143). Compared with literate older adults, illiterate 
older adults had a higher risk of developing MCI (aOR 1.641, 95% CI 
1.199–2.247). Older adults with very low income levels had a higher 
risk of MCI than their wealthier counterparts (aOR 5.673, 95% CI 
1.067–30.180). Among health behavior/health status variables, older 

adults who did not regularly exercise had a high risk of MCI (aOR 
2.277, 95% CI 1.596–3.248). Older adults with poor or very poor self-
rated health had a higher risk of MCI compared with those who had 
very good self-rated health (aOR 2.069, 95% CI 1.145–3.740 and aOR 
3.874, 95% CI 1.527–9.826, respectively). Moreover, older adults with 
no history of stroke had a reduced risk of MCI (aOR 0.515, 95% CI 
0.347–0.776).

LSTMs model performance is illustrated in Figure 2. The mean 
squared errors of both the training and validation sets were generally 
equal (approximately 0.08) after 30 rounds of training, and the 
inflection points of both sets were close, indicating that the LSTMs 
model could be utilized to forecast characteristics of older adults three 
years later. Table 2 and Figure 3A shows the ROC curves and AUC 
values of the three machine learning models in the testing set (GBDT 
0.902, 95% CI 0.879–0.925; XGBoost 0.928, 95% CI 0.908–0.948; and 
RF 0.938, 95% CI 0.919–0.956). Table 3 and Figure 3B shows the 
performance of the three models in the validation set. The AUC values 
of all three machine learning models in the test sets were >0.9. The 
three machine learning models produced equal results in the 
validation sets, indicating that they were robust models for classifying 
patients with MCI and healthy people. XGBoost had the highest and 
most balanced accuracy and the second-highest sensitivity using 0.3 
as a threshold (Table 2), and RF produced the highest sensitivity under 
this condition. The DCA results (Figure 4) showed that the XGboost 
and RF models were close, within the range of 0–0.8, and the net 
benefit values were higher than 0.4 using 0.3 as a threshold.

Figure 5 illustrates the ranking of feature importance in MCI 
prediction. Age, education, and chronic respiratory disease were the 
first, second, and third-most important characteristics of older adults 
when predicting MCI in all three models, respectively. Younger literate 
older adults with no history of chronic respiratory disease had a lower 
probability of developing MCI. Self-rated health was also an important 
feature that presented a direct trend in MCI output. All three SHAP 
models indicated that having a gastrointestinal ulcer was one of the 
most important features for predicting potential MCI in patients; 
however, it did not show a clear tendency in relation to 
MCI progression.

4. Discussion

To our knowledge, this study is the first to forecast cognitive 
impairment in older Chinese adults using an LSTMs model and 
machine learning based on CLHLS Waves 5–8, with predictions that 
included sociodemographic health behaviors and health status 
characteristics. In total, 2,128 older adults were included in this study. 
Our LSTMs model produced robust results in the validation set; thus, 
it was capable of forecasting the feature values of older adults in the 
next wave using the SMOTE algorithm and three machine learning 
approaches that performed well in predicting MCI. Figure 6 depicts 
the conceptual framework discussed, summarizes the accuracy of the 
prediction models, presents the results, and presents multiple 
perspective values.

Regarding model precision, this prediction method combining 
LSTMs and machine learning can be  successfully applied to 
longitudinal data to capture temporal information, thus improving the 
accuracy of MCI predictions in older adults (Chae et al., 2018; Wang 
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TABLE 1 Predicted characteristics in 2018 and odds ratio of older adults with MCI.

Predictors All N (%) MCI N (%) Normal N (%) Crude OR 
(95% CI)

Adjusted OR 
(95% CI)

Overall 2,128 360 (16.92) 1,768 (83.08)

Sociodemographic variables

Age 83 (78–90) 92 (86–97) 82 (78–88) 1.136 (1.119, 

1.154)***

1.123 (1.103, 

1.143)***

Gender Male 992 (46.62) 117 (32.50) 875 (49.49) Ref Ref

Female 1,136 (53.38) 243 (67.50)
893 (50.51)

2.035 (1.602, 

2.586)***

1.331 (0.956, 1.854)

Geographical area Eastern 959 (45.07) 155 (43.06) 804 (45.48) Ref Ref

Central 471 (22.13) 82 (22.78) 389 (22.00) 1.093 (0.815, 1.467) 1.008 (0.712, 1.425)

Northeastern 87 (4.09) 15 (4.17) 72 (4.07) 1.081 (0.604, 1.934) 1.749 (0.877, 3.489)

Northwestern 611 (28.71) 108 (30.00) 503 (28.45) 1.114 (0.850, 1.459) 0.843 (0.611, 1.164)

Education Literate 1,105 (51.93) 102 (28.33) 1,003 (56.73) Ref Ref

Illiterate 1,023 (48.07) 258 (71.67)
765 (43.27)

3.316 (2.588, 

4.249)***

1.641 (1.199, 2.247)**

Marital status Married 933 (43.84) 89 (24.72) 844 (47.74) Ref Ref

Single 1,195 (56.16) 271 (75.28)
924 (52.26)

2.781 (2.151, 

3.596)***

1.292 (0.931, 1.794)

Residence City 352 (16.54) 51 (14.17) 301 (17.02) Ref Ref

Town/Rural 1776 (83.46) 309 (85.83) 1,467 (82.98) 1.243 (0.902, 1.714) 0.967 (0.651, 1.436)

Income level Very high 52 (2.44) 3 (0.83) 49 (2.77) Ref Ref

High 396 (18.61) 41 (11.39) 355 (20.08) 1.886 (0.563, 6.324) 2.306 (0.594, 8.949)

Fair 1,467 (68.94) 267 (74.17)
1,200 (67.87)

3.634 (1.124, 

11.747)*

3.426 (0.923, 12.725)

Low 193 (9.07) 42 (11.67)
151 (8.54)

4.543 (1.348, 

15.309)*

3.671 (0.939, 14.350)

Very low 20 (0.94) 7 (1.94)
13 (0.74)

8.795 (1.993, 

38.802)**

5.674 (1.067, 30.180)*

Living With family 1732 (81.39) 309 (85.83) 1,423 (80.49) Ref Ref

Alone 396 (18.61) 51 (14.17)
345 (19.51)

0.681 (0.495, 

0.936)*

0.589 (0.405, 0.857)**

Health behavior/health status variables

Smoking Yes 345 (16.21) 36 (10.00) 309 (17.48) Ref Ref

No 1783 (83.79) 324 (90.00)
1,459 (82.52)

1.906 (1.322, 

2.747)***

1.086 (0.688, 1.712)

Alcohol consumption Yes 327 (15.37) 32 (8.89) 295 (16.69) Ref Ref

No 1801 (84.63) 328 (91.11)
1,473 (83.31)

2.053 (1.398, 

3.014)***

1.390 (0.866, 2.231)

Exercising Yes 711 (33.41) 49 (13.61) 662 (37.44) Ref Ref

No 1,417 (66.59) 311 (86.39)
1,106 (62.56)

3.799 (2.769, 

5.212)***

2.277 (1.596, 

3.248)***

SRH Very good 258 (12.12) 28 (7.78) 230 (13.01) Ref Ref

Good 744 (34.96) 99 (27.50) 645 (36.48) 1.261 (0.807, 1.969) 1.104 (0.653, 1.868)

Fair 824 (38.72) 155 (43.06)
669 (37.84)

1.903 (1.239, 

2.924)**

1.562 (0.928, 2.631)

Bad 262 (12.31) 64 (17.78)
198 (11.20)

2.655 (1.638, 

4.304)***

2.069 (1.145, 3.740)*

(Continued)
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et al., 2019; Su et al., 2020). To date, most studies have used LSTMs to 
forecast the prevalence and incidence rates or temporal trends in 
medical-related applications (Borges and Nascimento, 2022; Gautam, 
2022; Liu X. D. et al., 2023). In addition, LSTMs have shown excellent 
performance when predicting high-dimensional data such as air and 
water pollution (Kim et  al., 2022; Middya and Roy, 2022). Thus, 
building on previous LSTMs applications, some studies have used 
LSTMs to detect early health deterioration in individual clinical data 
(da Silva et  al., 2021). Furthermore, the utilization of LSTMs to 
forecast individual features, followed by machine learning to construct 
predictive models, has been shown to be useful in disease prediction; 
for example, in the prediction of depression (Su et al., 2020; Lin et al., 
2022) and in glaucoma assessment (Dixit et al., 2021). To date, no 
studies have utilized LSTMs and machine learning to establish a 
prediction model for MCI and explore its risk factors. Compared to 
the previous two prediction models using CLHLS, this study revealed 
relatively high accuracy and robustness with the AUCs of 0.902 to 
0.938 for the test set and high sensitivity and specificity, and from 
0.890 to 0.914 for the validation test. One longitudinal study proposed 
to use The Growth Mixed Model (GMM) and machine learning 
combination to forecast the MMSE trajectory of older adults. Due to 

the time effect bias for the application of constant baseline individual 
character in forecasting models, the AUCs of their models ranged 
from 0.51 to 0.66 in eight machine learning techniques (Wu et al., 
2022). The other study utilized sociodemographic and life behavioral 
features of Chinese older adults to construct prediction models, 
achieving an accuracy of 0.7540 and the AUC of 0.8269 at maximum 
(Wang et al., 2022). To conclude, the outcomes of LSTMs and machine 
learning framework demonstrates the feasibility and effectiveness of 
the study hypothesis.

Three decision tree-based models (GBDT, XGBoost, and RF) 
were used with SHAP to interpret individual predictions. Age, 
education level, chronic respiratory disease, gastrointestinal ulcers, 
and self-rated health were identified as the five most important 
predictors in this study. Age and education level have been reported 
in previous studies to be important predictors of MCI (Chun et al., 
2022; Liu H. et al., 2023). Physiological decline in cognitive function 
is inevitable as people age (Langa and Levine, 2014) and age is a 
major predictor of MCI. Lower educational levels have been shown 
to be significantly associated with cognitive decline, and education 
in later life may also contribute to improved cognitive function 
(Peeters et al., 2020). According to our results, older adults with a 

TABLE 1 (Continued)

Predictors All N (%) MCI N (%) Normal N (%) Crude OR 
(95% CI)

Adjusted OR 
(95% CI)

Very bad 40 (1.88) 14 (3.89)
26 (1.47)

4.423 (2.071, 

9.448)***

3.874 (1.527, 9.826)**

Sleep quality Very good 364 (17.11) 44 (12.22) 320 (18.10) Ref Ref

Good 725 (34.07) 121 (33.61)
604 (34.16)

1.457 (1.006, 

2.111)*

1.309 (0.847, 2.024)

Fair 704 (33.08) 133 (36.94)
571 (32.30)

1.694 (1.173, 

2.446)**

1.084 (0.698, 1.683)

Poor 285 (13.39) 47 (13.06) 238 (13.46) 1.436 (0.921, 2.239) 1.012 (0.598, 1.714)

Very poor 50 (2.35) 15 (4.17) 35 (1.98) 3.117 (1.576, 

6.165)***

2.442 (1.083, 5.506)*

Hypertension Yes 902 (42.39) 122 (33.89) 780 (44.12) Ref Ref

No 1,226 (57.61) 238 (66.11) 988 (55.88) 1.540 (1.214, 

1.953)***

1.278 (0.959, 1.703)

Diabetes Yes 177 (8.32) 21 (5.83) 156 (8.82) Ref Ref

No 1951 (91.68) 339 (94.17) 1,612 (91.18) 1.562 (0.976, 2.501) 1.091 (0.630, 1.890)

Cardiopathy Yes 360 (16.92) 42 (11.67) 318 (17.99) Ref Ref

No 1768 (83.08) 318 (88.33) 1,450 (82.01) 1.660 (1.177, 

2.342)**

1.565 (1.035, 2.368)*

Stroke Yes 253 (11.89) 51 (14.17) 202 (11.43) Ref Ref

No 1875 (88.11) 309 (85.83) 1,566 (88.58) 0.782 (0.562, 1.088) 0.519 (0.347, 

0.776)***

Respiratory disease Yes 264 (12.41) 53 (14.72) 211 (11.93) Ref Ref

No 1,864 (87.59) 307 (85.28) 1,557 (88.07) 0.785 (0.567, 1.087) 0.716 (0.487, 1.054)

Cancer Yes 15 (0.71) 2 (0.56) 13 (0.74) Ref Ref

No 2,113 (99.30) 358 (99.44) 1755 (99.27) 1.326 (0.298, 5.901) 0.673 (0.120, 3.783)

Gastrointestinal ulcer Yes 85 (3.99) 9 (2.50) 76 (4.30) Ref Ref

No 2043 (96.01) 351 (97.50) 1,692 (95.70) 1.752 (0.870, 3.529) 3.006 (1.314, 6.878)**

Bold font indicates statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001).
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formal education performed well in terms of MMSE scores. The 
other three features were not found to be strong predictors in other 
studies; however, they have all been shown to be closely associated 
with MCI. Older adults with no history of chronic respiratory 
disease are less likely to develop MCI. Common chronic respiratory 
diseases, such as chronic obstructive pulmonary disease and 
obstructive sleep apnea-hypopnea syndrome, lead to perennial 
hypoxia and hypercarbia (Olaithe et al., 2018), causing damage to 
brain functions, including language, execution, and attention. 
Ultimately, cognitive function continues to decline under these 
pathological conditions. Gastrointestinal ulcers did not show a clear 
trend in Figure 5, whereas changes in metabolic substances in the 
gastrointestinal tract under pathological conditions are reported to 
impair brain function via the gut-brain axis (Zeng et al., 2022). 
Moreover, a healthy gastrointestinal tract can guard against 
cognitive decline and mitigate neuroinflammation (Xiang et al., 
2022); hence, this result needs to be verified in another study. The 
SHAP analysis illustrated a positive correlation between self-rated 
health and MCI; that is, good self-rated health may represent good 
cognitive function and vice versa, which is consistent with previous 
cohort studies (Bond et al., 2006).

MCI prediction models could provide references for clinical 
practice and bring broad benefits to society; however, they still 
need adjustment and practice to meet the standards for real-
world application. When applied for MCI screening, the most 
appropriate prediction model requires striking a balance between 
sensitivity and specificity to achieve high precision and cost-
effectiveness. Consequently, it is critical to determine the 
threshold for identifying patients with MCI and conducting 
further interventions. As shown in Figure  4, the XGBoost 
prediction model had the greatest net benefit and balanced 
accuracy when the threshold probability was <0.6. When the 
threshold probability was 0.3, RF had the highest sensitivity and 

identifies most patients with MCI with relatively low cost-
effectiveness owing to the proportion of misdiagnoses. 
Determining the ultimate thresholds require constant evaluation 
and collaboration between governments and healthcare providers 
to obtain optimal clinical, economic, and social outcomes.

Ongoing application of this approach and cooperation can 
be viewed from three perspectives: the nation (macro), healthcare 
providers (medium), and individuals (micro). As a macro-
regulator, the government should enhance the utilization of big 
data and incorporate prediction models into various healthcare 
provider and public Internet platforms. This screening method 
could promote population health and reduce the disease burden. 
Various healthcare providers can select different thresholds in 
terms of specific medical conditions and testing technologies and 
change their criteria according to local prevalence and incidence. 
As psychiatric hospitals are generally equipped with adequate 
medical resources, the threshold for machine learning models 
could be relatively low to achieve suitable resource allocation. 
Once MCI predictive models become more sophisticated with 
continuous training and with more individual information 
available, such as risk genes or biomarkers, the threshold can 
be adjusted to pursue relatively high cost-effectiveness. In terms 
of the micro perspective, the general public could benefit through 
becoming more aware of their own and their families’ risk of MCI 
through the application of this prediction model,  
avoiding additional examinations and ameliorating individual 
MCI risk.

This study contributes to the prevention of MCI and dementia. 
First, the combination of an LSTMs model and machine learning 
could precisely identify patients with MCI and their critical features 
several years earlier. Age, literacy level, chronic respiratory disease, 
gastrointestinal ulcers, and self-rated health were good predictors of 
MCI. Second, MCI prediction models have substantial clinical, 

FIGURE 2

The training and validation curve of LSTMs from CLHLS wave5 to wave 7 (MSE, Mean squared error).
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FIGURE 3

Performance of machine learning models in test set (A) and validation set (B).

TABLE 2 Performance of machine learning models in test set of predicting MCI among Chinese older adults.

Model AUC Thresholds TP/TN/FP/FN Sensitivity (%) Specificity (%) Accuracy (%) Balanced 
accuracy (%)

GBDT

0.902 

(0.879, 

0.925)

0.3 335/255/90/27 92.54 (89.84, 95.25) 73.91 (69.28, 78.55) 83.45 (80.71, 

86.19)

85.13 (82.65, 

87.62)

0.4 325/270/75/37 89.78 (86.66, 92.90) 78.26 (73.91, 82.61) 84.16 (81.47, 

86.85)

85.30 (82.79, 

87.82)

0.5 313/278/67/49 86.46 (82.94, 89.99) 80.58 (76.41, 84.75) 83.59 (80.86, 

86.32)

84.37 (81.75, 

86.98)

0.6 303/286/59/59 83.70 (79.90, 87.51) 82.90 (78.93, 86.87) 83.31 (80.56, 

86.06)

83.70 (81.01, 

86.39)

0.7 287/296/49/75 79.28 (75.11, 83.46) 85.80 (82.11, 89.48) 82.46 (79.66, 

85.26)

82.23 (79.40, 

85.07)

XGboost

0.928 

(0.908, 

0.948)

0.3 336/267/78/26 92.82 (90.16, 95.48) 77.39 (72.98, 81.81) 85.29 (82.68, 

87.90)

86.60 (84.20, 

88.99)

0.4 332/277/68/30 91.71 (88.87, 94.55) 80.29 (76.09, 84.49) 86.14 (83.59, 

88.69)

87.14 (84.76, 

89.52)

0.5 329/286/59/33 90.88 (87.92, 93.85) 82.90 (78.93, 86.87) 86.99 (84.51, 

89.47)

87.73 (85.39, 

90.08)

0.6 321/292/53/41 88.67 (85.41, 91.94) 84.64 (80.83, 88.44) 86.70 (84.20, 

89.21)

87.23 (84.82, 

89.64)

0.7 315/301/44/47 87.02 (83.55, 90.48) 87.25 (83.73, 90.77) 87.13 (84.66, 

89.60)

87.38 (84.95, 

89.80)

RF

0.938 

(0.919, 

0.956)

0.3 349/212/133/13 96.41 (94.49, 98.33) 61.45 (56.31, 66.59) 79.35 (76.37, 

82.33)

82.70 (80.15, 

85.25)

0.4 340/260/85/22 93.92 (91.46, 96.38) 75.36 (70.82, 79.91) 84.87 (82.22, 

87.51)

86.40 (84.01, 

88.80)

0.5 317/292/53/45 87.57 (84.17, 90.97) 84.64 (80.83, 88.44) 86.14 (83.59, 

88.69)

86.61 (84.15, 

89.08)

0.6 300/313/32/62 82.87 (78.99, 86.75) 90.72 (87.66, 93.79) 86.70 (84.20, 

89.21)

86.46 (83.91, 

89.00)

0.7 247/327/18/115 68.23 (63.44, 73.03) 94.78 (92.44, 97.13) 81.19 (78.31, 

84.07)

78.79 (75.59, 

81.99)

GBDT, Gradient boosting decision tree; XGboost, Extreme gradient boosting; RF, Random Forest; AUC, Area Under the Curve; TP, True Positives; TN, True Negatives; FP, False Positives; FN, 
False Negatives.
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economic, and social value through optimizing prediction under 
governmental direction and adjusting thresholds for MCI probability 
according to the specific needs of different healthcare providers. 
Finally, this study contributes to the prevention of dementia and MCI 
and promotes healthy aging.

5. Study limitations

This study had some limitations. First, we  examined the 
robustness of both LSTMs and machine learning models and 
included four waves of data; however, our findings need to 
be validated in another cohort. Lacking external validation may 

affect the performance and adaptability of prediction models in 
different scenarios, as well as the confidence in the predictive 
ability of the models. Therefore, future researchers need to use 
other sources or types of data to validate this method framework 
and explore possibilities for improvement. Second, most 
predictors in this study were self-reported, which could have led 
to information bias. Third, the MMSE has a ceiling effect, 
meaning that it may not detect subtle changes in cognition that 
occur during MCI. Furthermore, MMSE scores could be affected 
by certain individual sociodemographic background factors 
(Arevalo-Rodriguez et al., 2021; Wu et al., 2022); therefore, MCI 
evaluations should be more comprehensive and include using 
Montreal Cognitive Assessment and the Clinical Dementia 
Rating evaluations, in addition to detecting biomarkers and 
undertaking imaging examinations for a more accurate clinical 
diagnosis in future studies. While this study proposes a 
convenient screening method using accessible individual features 
for the general public, outcomes obtained using this method are 
for reference only and cannot replace acknowledged MCI 
diagnosis standards.

6. Conclusion

This study showed that individual features could be predicted 
through combining LSTMs and machine learning models. The 
risk of MCI could be  accurately predicted through exploring 
critical risk factors, such as age, education level, chronic 
respiratory disease, gastrointestinal ulcer, and self-rated health, 
in patients with MCI using three SHAP models among older 
Chinese adults based on four waves of CLHLS datasets. The 
combination of LSTMs and machine learning models captured 

TABLE 3 Performance of machine learning models in validation set of predicting MCI among Chinese older adults.

Model AUC TP/TN/FP/FN Sensitivity (%) Specificity (%) Accuracy (%) Balanced 
accuracy (%)

GBDT
0.890 (0.865, 

0.915)

304/266/98/40 88.37 (84.98, 91.76) 73.08 (68.52, 77.63) 80.51 (77.71, 83.54) 81.50 (78.72, 84.29)

300/273/91/44 87.21 (83.68, 90.74) 75.00 (70.55, 79.45) 80.93 (78.16, 83.94) 81.63 (78.83, 84.43)

297/282/82/47 86.34 (82.71, 89.97) 77.47 (73.18, 81.76) 81.78 (79.06, 84.73) 82.16 (79.37, 84.95)

292/289/75/52 84.88 (81.10, 88.67) 79.40 (75.24, 83.55) 82.06 (79.36, 85.00) 82.14 (79.32, 84.95)

284/302/62/60 82.56 (78.55, 86.57) 82.97 (79.11, 86.83) 82.77 (80.11, 85.66) 82.32 (79.47, 85.17)

XGboost
0.898 (0.874, 

0.922)

309/251/113/35 89.83 (86.63, 93.02) 68.96 (64.20, 73.71) 79.10 (76.10, 82.09) 80.68 (77.88, 83.47)

301/269/95/43 87.50 (84.01, 90.99) 73.90 (69.39, 78.41) 80.51 (77.71, 83.54) 81.35 (78.55, 84.16)

295/282/82/49 85.76 (82.06, 89.45) 77.47 (73.18, 81.76) 81.50 (78.76, 84.47) 81.83 (79.02, 84.65)

282/295/69/62 81.98 (77.91, 86.04) 81.04 (77.02, 85.07) 81.50 (78.76, 84.47) 81.15 (78.24, 84.06)

271/302/62/73 78.78 (74.46, 83.10) 82.97 (79.11, 86.83) 80.93 (78.16, 83.94) 80.06 (77.05, 83.07)

RF
0.914 (0.886, 

0.941)

329/226/138/15 95.64 (93.48, 97.80) 62.09 (57.10, 67.07) 78.39 (75.36, 81.42) 81.13 (78.44, 83.83)

310/261/103/34 90.12 (86.96, 93.27) 71.70 (67.08, 76.33) 80.65 (77.74, 83.56) 81.90 (79.16, 84.64)

290/303/61/54 84.30 (80.46, 88.15) 83.24 (79.40, 87.08) 83.76 (81.04, 86.47) 83.45 (80.69, 86.22)

269/318/46/75 78.20 (73.83, 82.56) 87.36 (83.95, 90.78) 82.91 (80.14, 85.68) 81.64 (78.68, 84.59)

233/339/25/111 67.73 (62.79, 72.67) 93.13 (90.53, 95.73) 80.79 (77.89, 83.69) 77.41 (74.07, 80.75)

GBDT, Gradient boosting decision tree; XGboost, Extreme gradient boosting; RF, Random Forest; AUC, Area Under the Curve; TP, True Positives; TN, True Negatives; FP, False Positives; FN, 
False Negatives.

FIGURE 4

Decision curve analysis. The x-axis indicates the threshold probability 
of MCI. The y-axis indicates the net benefit.
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the interdependence of predictors and generated an effective 
decision support system for healthcare providers to identify 
patients at high risk of MCI. With macro-direction undertaken 
at a governmental level, this screening method can continue to 
be optimized to obtain better thresholds for MCI screening. Our 

study findings may offer healthcare providers MCI screening 
support to implement early interventions to delay the progression 
from MCI to dementia, increase test availability among the 
population, and reduce incidence rates and treatment costs, 
ultimately contributing to healthy aging.

FIGURE 5 (Continued)
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FIGURE 6

Conceptual framework of discussion in this study.

FIGURE 5

Importance of predictors analysis by SHAP model. SHAP (SHapley Additive exPlanation) values are ranked by value of a feature to the predictions made 
by the GBDT/XGboost/RF.
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