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Increasing evidence supports that age, APOE and sex interact to modulate 
Alzheimer’s disease (AD) risk, however the underlying pathways are unclear. One 
way that AD risk factors may modulate cognition is by impacting amyloid beta 
(Aβ) accumulation as plaques, and/or neuroinflammation Therefore, the goal 
of the present study was to evaluate the extent to which age, APOE and sex 
modulate Aβ pathology, neuroinflammation and behavior in vivo. To achieve this 
goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have 
five familial AD mutations (FAD) that result in Aβ42 overproduction. We assessed 
Aβ levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 
18-month-old EFAD mice. Female APOE4 mice had the highest Aβ deposition, 
fibrillar amyloid deposits and neuroinflammation as well as earlier behavior 
deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice 
had similar levels of pathology. Collectively our data support that the combination 
of APOE4 and female sex is the most detrimental combination for AD, and that at 
older ages, female sex may be equivalent to APOE4 genotype.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease associated with deficits 
in the cognitive system (Warren et al., 2023). Important risk factors for sporadic AD include age, 
and sex (Riedel et al., 2016). Age is the greatest overall AD risk factor, with 1 in 9 people over 
the age of 65 diagnosed with AD (Rajan et al., 2021). APOE, the gene encoding apolipoprotein 
E, is the greatest genetic risk factor with APOE4 increasing risk up to 15-fold compared to 
APOE3 (Corder et al., 1993; Strittmatter et al., 1993), and APOE4 is also associated with earlier 
age of AD onset (Corder et al., 1993; Locke et al., 1995; Bilgel et al., 2016; Polsinelli et al., 2023a). 
Females have increased AD risk compared to males (Brinton, 1999; Riedel et  al., 2016). 
Importantly, there is evidence that the AD risk factors interact. For example, there is higher AD 
risk in female APOE4 carriers, compared to male APOE4 carriers (Farrer et al., 1997; Altmann 
et al., 2014), which may be pronounced at older ages (65–75 years of age) (Neu et al., 2017). 
Furthermore, in APOE4 mice, behavioral impairments and AD pathology are worse in females 
compared to males (Raber et al., 1998, 2002; van Meer et al., 2007; Christensen et al., 2020). 
Therefore, it is important to understand how these risk factors interact to impact AD risk.
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One way that AD risk factors may modulate cognition is by 
impacting amyloid beta (Aβ) accumulation as plaques, and/or 
neuroinflammation. In fact, APOE4 is associated with greater levels of 
Aβ (Kok et al., 2009) and higher neuroinflammation (Reale et al., 
2012; Ringman et al., 2012; Tzioras et al., 2019; Friedberg et al., 2020) 
compared to non-carriers. In addition, older women generally have 
higher levels of amyloid pathology compared to men (Oveisgharan 
et al., 2018) and dysregulated neuroinflammatory responses (Klein 
and Flanagan, 2016). These human data are recapitulated in vivo in 
young mice, as APOE4 is associated with increased Aβ deposition and 
neuroinflammation, compared to APOE3 mice (Youmans et  al., 
2012b; Rodriguez et al., 2014; Stephen et al., 2019, 2022). Therefore, 
evaluating the extent that APOE and sex impact pathology at older 
ages is important for advancing our understanding of how each risk 
factor contributes to AD pathogenesis across the lifespan.

The goal of our study was to understand the extent that APOE and 
sex interact with age to impact Aβ levels, neuroinflammation, 
neuronal density and behavior in vivo. To this end, we used EFAD 
mice as they express human APOE3 (E3FAD) or APOE4 (E4FAD) and 
overproduce Aβ42. Pathology and behavior were assessed in male and 
female EFAD mice at 6-, 10-, 14-, and 18-months-of-age using 
biochemistry, immunohistochemistry, and the Morris water maze test.

2. Materials and methods

2.1. Animals

All experiments follow the University of Illinois at Chicago 
Animal Care Committee protocols. EFAD mice express five familial 
AD (FAD) mutations and human APOE. Four groups of EFAD 
(5xFAD+/−/human APOE+/+) mice were used: male E3FAD, female 
E3FAD, male E4FAD, and female E4FAD mice as described previously 
(Youmans et al., 2012b). Mice from each of the four groups (male and 
female, E3FAD and E4FAD mice) were enrolled by age (i.e., 6, 10, 14, 
or 18 months euthanized together) as the breeding schedule permitted. 
Mice were ear-tagged during genotyping and investigators conducting 
experiments and data analysis were blinded for APOE genotype, sex, 
and age. Two cohorts of mice were used in this study (n = 13–25), one 
was used for biochemical and immunohistochemical analysis and the 
second for behavior analysis using Morris water maze.

2.2. Brain tissue harvest and processing

Mice were anesthetized via intraperitoneal injection with 
ketamine (100 mg/kg) and xylazine (5 mg/kg) and perfused 
transcardially with ~40 mL phosphate buffered saline with 
protease inhibitor cocktail. Then, the brains were removed and 
dissected at the midline to produce two hemi-brains, one each for 
immunohistochemical and biochemical analysis (Youmans et al., 
2012b; Valencia-Olvera et  al., 2023). The hemi for immuno 
histochemical analysis was drop-fixed in 4% paraformaldehyde 
for 24 h and then transferred to phosphate buffered saline 
containing 0.01% sodium azide until ready to section on a sliding 
microtome. Cortex was dissected from the hemi-brain for 
biochemical analysis, flash-frozen in liquid nitrogen and then 
stored at −80°C.

2.3. Immunohistochemical analysis

Serial sagittal brain sections (35 μm thick, 280 μm apart, ~0.24 mm 
– 3.44 mm lateral) from EFAD mice were immunostained for Aβ 
deposition, astrogliosis or microgliosis (Youmans et  al., 2012b; 
Rodriguez et al., 2014; Valencia-Olvera et al., 2023) and stained for 
fibrillar amyloid deposition via Thio-S (see full list of antibodies and 
reagents used in this study in Supplementary Table S1). The stained 
sections were imaged at 10X magnification with a Zeiss Fluorescence 
microscope and analyzed for cortical area covered by MOAB-2, 
Thio-S, GFAP and Iba-1 in the cortex using ImageJ by investigators 
blinded to age, APOE genotype, and sex. Serial sagittal sections (three 
sections between ~0.72-and 1.80-mm lateral) from EFAD mice were 
stained for NeuN and neuron numbers quantification in layer 5 of the 
somatosensory cortex, was performed by a design-based stereology 
system (Stereo Investigator 9, MBF Bioscience, Williston, VT, USA) 
using an optical fractionator applying the Nv × Vref method (West, 
2002; Schmitz and Hof, 2007).

2.4. Biochemical analysis

Cortices were homogenized in 70% formic acid at 1 mL/150 mg 
brain tissue and mixed by end-over-end rotation at room temperature 
for 2 h with vortexing. Samples were then centrifuged (100,000 × g, 1 h 
at 4°C), and the formic acid-soluble fraction was neutralized (with 20 
volumes of 1 M Tris base), aliquoted, and frozen at −80°C (Youmans 
et al., 2011). Total protein in the formic acid soluble extracts was 
quantified using the Bradford assay and formic acid-soluble Aβ42 was 
measured by ELISA following the manufacturer’s instructions 
(Youmans et al., 2011, 2012a,b). Cortical drebrin levels were measured 
using Western blotting as described previously (Valencia-Olvera 
et al., 2023).

2.5. Behavioral test: Morris water maze

All behavioral data were recorded and analyzed with ANY-maze 
software (Stoelting Co, Wood Dale, IL, USA). In the week prior to 
sacrifice, mouse behavior was tested using a modified Morris water 
maze protocol with acquisition trials consisting of 4 × 1 min trials/day 
for 5 consecutive days with latency to the platform recorded for each 
trial. A single probe trial was run on day 6 with the platform removed, 
and the readouts included latency to platform area, platform area 
crosses and latency to target quadrant (Liu et al., 2015; Thomas et al., 
2017; Valencia-Olvera et al., 2023).

2.6. Data and statistical analysis

Supplementary File S1 is a word file containing Supplementary  
Table S1 and Supplementary Figures S1–S6. Supplementary File S2 is 
an excel file containing all raw data and statistical analysis tables 
including number of mice used for each experiment. Morris water 
maze acquisition phase data was analyzed by using repeated measure 
univariate general linear model for within subjects’ effects with the 
independent variables day, age, APOE and sex in SPSS (IBM SPSS 
Statistics for Macintosh, Version 29.0.1.1). All other statistical 
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analyses were conducted using univariate general linear models for 
between subjects’ effects with the independent variables (age, APOE 
genotype, sex) and their interactions, followed by Bonferroni’s post 
hoc tests in SPSS. For all statistical tests, p < 0.05 was considered 
significant. All data are presented as scatter plots with the mean and 
standard error of mean (SEM). The n size range is indicated in Figure 
legends. Outliers were excluded using the ROUT method (Q = 5%). 
All data, detailed n sizes and statistical analysis are provided in 
Supplementary File S2.

3. Results

The goal of our study was to determine the extent to which age, 
APOE and sex modulates Aβ pathology, neuroinflammation and 
behavior in vivo. To this end, we used EFAD mice that overproduce 
Aβ42 (via 5xFAD mutations) and express human APOE3 (E3FAD) or 
APOE4 (E4FAD). EFAD mice were developed to identify how APOE 
modulates progression of AD-relevant pathology and behavior 
(Youmans et  al., 2012b). Previous studies in EFAD mice have 
demonstrated that at younger ages (≤ 6 months), Aβ levels, reactive 
microglia and astrocytes are higher with APOE4 compared to APOE3 
(Youmans et al., 2012b; Stephen et al., 2019, 2022), and that there are 
behavioral deficits in female APOE4 mice (Liu et al., 2015). Therefore, 
we  determined the extent that APOE, age and sex impact Aβ 
pathology, gliosis, and behavior in young (6 and 10 months), middle-
aged (14 months) and old (18 months) EFAD mice.

3.1. APOE and sex impact Aβ pathology: 
E4FAD females > E4FAD males  =  E3FAD 
females > E3FAD

Extracellular Aβ in fibrillar amyloid deposits are used to diagnose 
AD and are a current therapeutic target (Zhang Y. et  al., 2023). 
Although APOE4 is associated with higher amyloid deposits in human 
and in vivo, the extent that APOE and sex modulate extracellular Aβ 
with age is unclear. Therefore, we  initially evaluated cortical 
extracellular Aβ levels (MOAB-2 immunostaining for Aβ: Figure 1A) 
and fibrillar amyloid deposits (Thio-S staining: 
Supplementary Figure S1A) in male and female, E3FAD and E4FAD 
mice. We found that age interacts with APOE to modulate Aβ and 
fibrillar amyloid deposition (Figures 1B,C). This interaction was due 
to greater levels of Aβ at 10 and 18 months and amyloid deposits at 10, 
14, and 18 months of age, but not at 6 months, in E4FAD mice 
compared to E3FAD mice. In general, amyloid deposition increased 
at every age (18 > 14 > 10 > 6 months) in E4FAD mice, whereas levels 
plateaued at ~10–14 months of age in E3FAD mice (Figures 1B,C). 
There was also an interaction between age and sex in modulating Aβ 
deposition, with greater levels in females compared to males at older 
ages (10, 14, and 18 months) but not at younger ages (6 months). For 
fibrillar amyloid deposition there was an APOE by sex interaction as 
levels were in the order E4FAD females > E4FAD males = E3FAD 
females > E3FAD males (Figure 1C), however there was no age x sex 
interaction (Supplementary Figure S1B). We also evaluated the levels 
of formic acid soluble Aβ42 in the cortex (Supplementary Figure S2). 
In general, the pattern of insoluble Aβ42 levels appears like 
extracellular Aβ deposition, however the levels were more varied. 

Thus, at the statistical level formic acid Aβ42 levels were higher with 
APOE4 compared to APOE3 and in females vs. males at older ages 
(10–18 months).

Collectively these data support that female sex and APOE have a 
strong effect on extracellular Aβ deposition. That interaction results 
in highest fibrillar amyloid deposits in female APOE4 carriers, 
equivalent levels in female APOE3 and male APOE4 carriers, and 
lowest levels in male APOE3 carriers at older ages.

3.2. APOE and sex affect 
neuroinflammation: E4FAD females > 
E3FAD females ≥ E4FAD males > E3FAD 
males

APOE4 is associated with higher inflammatory responses in 
younger EFAD mice (Vitek et al., 2012; Rodriguez et al., 2014; Stephen 
et al., 2022) and in humans (Reale et al., 2012; Ringman et al., 2012; 
Tzioras et  al., 2019; Friedberg et  al., 2020). Therefore, we  next 
evaluated the extent that APOE, age and sex impacted levels of reactive 
astrocytes (GFAP: Figure 2A) and microglia (Iba-1: Figure 2C) via 
immunostaining, in male and female, E3FAD and E4FAD mice. 
We found that GFAP coverage was higher with APOE4 compared to 
APOE3, and for Iba-1 there was interaction between APOE and age 
with higher coverage in E4FAD mice compared to E3FAD mice at 
18 months of age with no effect at other ages (there were also no 
interactions between age and APOE or APOE and sex, 
Supplementary Figure S3A). As for extracellular Aβ, we found that age 
interacts with sex to modulate both astrogliosis and microgliosis. This 
interaction was due to significantly greater GFAP and Iba-1 coverage 
in the cortex of female mice between 10 and 18 months (Figures 2B,D). 
Furthermore, both percentage area covered by GFAP and Iba-1 
increased at every age (18 > 14 > 10 > 6 months) in female mice, 
whereas levels plateaued at ~10–14 months of age in male mice 
(Figures 2B,D). Overall, these results support that neuroinflammation 
measured as gliosis was significantly impacted by female sex 
and APOE.

3.3. Female E4FAD mice have early 
behavioral deficits in acquisition phase of 
Morris water maze

AD is associated with changes in cognitive trajectory in humans 
(Jack et al., 2015; Rasmussen et al., 2018) and behavioral deficits in 
FAD mice (Webster et  al., 2014; Jankowsky and Zheng, 2017) 
including EFAD mice (Liu et al., 2015; Marottoli et al., 2017; Thomas 
et al., 2017). Therefore, we evaluated the effect of age, APOE and sex 
in EFAD mice using a modified Morris water maze protocol. It is 
important to note that our protocol did not include a visible platform. 
Therefore, we cannot discern whether the swim speeds differ among 
the four cohorts of mice with age, which in turn may affect their 
performance in the water maze test. In the acquisition phase, 
we found that there was an interaction among age, APOE, sex and 
training day. This interaction was due to a few factors, one of which 
was differences among groups at each age. When comparing training 
day 1 to 5, all the four groups of mice learned the location of the 
platform 6 months of age (Figure 3A: 6 M) (i.e., no effect of APOE or 
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FIGURE 1

APOE and sex impact Aβ pathology: E4FAD females > E4FAD males  =  E3FAD females > E3FAD. Cortical extracellular Aβ deposits were assessed using 
histochemical analysis in male and female, E3FAD and E4FAD mice. (A) Brain sections were immunostained for Aβ using MOAB-2 (Red, scale bars: 
1000  μm) and the percentage area quantified (B). (C) Brain sections stained with Thio-S for fibrillar amyloid deposits (see Supplementary Figure S1 for 
representative images) were quantified for cortical amyloid burden. Data are expressed as mean ± S.E.M and analyzed by univariate general linear 
modeling followed by Bonferroni’s post-hoc analysis (n  =  9–15, # APOE/sex difference within an age group, * vs. previous age within APOE/sex 
combination p  <  0.05). See Supplementary File S2 for detailed n sizes and statistical analysis.
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FIGURE 2

Sex impact neuroinflammation: E4FAD females > E3FAD females > E4FAD males > E3FAD males. Reactive astrocytes and microglia were assessed using 
immunohistochemical analysis in male and female, E3FAD and E4FAD mice. (A) Brain sections were immunostained for astrogliosis using GFAP (green, 

(Continued)
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sex). However, at 10-and 14-months of age, female E4FAD mice did 
not improve in performance from day 1 to day 5 (Figure 3A: 10 M 
and 14 M). Furthermore, at 18 months of age, only male E3FAD mice 
showed a significant latency reduction from day 1 to day 5 (Figure 3A: 

18 M). These data supported that female E4FAD mice had 
impairments in acquisition at an earlier age than other groups. Infact, 
when the day 5 latencies at 6 months of age were compared to other 
ages, we  found deficits at 10 months in E4FAD female mice, at 

FIGURE 3

Female E4FAD mice have early behavioral deficits. Learning and memory were assessed via Morris water maze. (A) EFAD mice were trained to locate 
the location of a platform over 5  days (acquisition phase) and (B) the ability to remember the location of the platform 24  h after the last training day 
(probe trial). Data are expressed as mean ± S.E.M. Latency to platform during acquisition phase was analyzed by repeated measure general linear 
modeling followed by Bonferroni’s post-hoc analysis (n  =  9–15, § day 1 vs. day 5 matched by mouse group color, p  <  0.05). Probe trial measures were 
analyzed by univariate general linear modeling followed by Bonferroni’s post-hoc analysis (n  =  9–15, # APOE/sex difference within an age group, * vs. 
previous age within APOE/sex combination p  <  0.05). See Supplementary File S2 for detailed n sizes and statistical analysis.

scale bars: 1000  μm) and the percentage area of cortex covered was quantified (B). (C) Reactive microglia in brain sections were immunostained for 
using Iba-1 (green, scale bars: 1000  μm) and the percentage area of cortex was quantified (D). Data are expressed as mean ± S.E.M and analyzed by 
univariate general linear modeling followed by Bonferroni’s post-hoc analysis (n  =  9–15, # APOE/sex difference within an age group, * vs. previous age 
within APOE/sex combination p  <  0.05). See Supplementary File S2 for detailed n sizes and statistical analysis.

FIGURE 2 (Continued)
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18 months in E3FAD females and E4FAD males, with no changes in 
E3FAD males (Supplementary Figure S4A). We  also evaluated 
memory 24 h after the last training day using a single probe trial. 
We found that most probe measures (latency to platform, latency to 
target quadrant and platform crosses) were impacted by APOE 
(Figure 3B). However, age, APOE and sex did not affect time spent in 
target quadrant during the probe trials (Supplementary Figure S4B). 
Also, there were no interactions among age, APOE and sex for the 
probe trial measures (Supplementary Figures S4C–F). Importantly, 
the latency to platform was independently modulated by APOE due 
to a greater latency to find the platform area and target quadrant in 
E4FAD compared to E3FAD mice.

We next assessed neuronal density (NeuN) in layer 5 of 
somatosensory cortex in male and female, E3FAD and E4FAD mice 
(Supplementary Figure S5A). Similar to the probe trial measures for 
memory, we found that neuronal density (Supplementary Figure S5B) 
and Drebrin levels (Supplementary Figure S5C) were impacted by age 
(lower with age) and APOE (APOE4 > APOE3). Collectively, our data 
support that E4FAD females demonstrated earlier behavioral deficits 
and loss of neurons at 6–10 months of age, compared to the other groups.

4. Discussion

4.1. Aβ deposition

Aβ deposition as plaques is one of the main AD pathologies 
(Rodrigue et al., 2009; Ruan and Sun, 2023; Suemoto and Leite, 2023). As 
a well-established AD risk (Kawas et al., 2000; Farfel et al., 2019), age has 
been proposed to modulate Aβ deposition. However, amyloid deposits 
occur in about 20% of cognitively normal elderly subjects and therefore 
may also be modulated by other AD risk factors. APOE has a pronounced 
impact on Aβ deposition. Aβ levels are higher with APOE4 in human 
(Villemagne et al., 2011; Chiotis et al., 2015; Jack et al., 2015; Resnick et al., 
2015; Mishra et al., 2018; Ba et al., 2019; Baek et al., 2020; Therriault et al., 
2020, 2021; Cacciaglia et al., 2022) and mouse studies (Youmans et al., 
2012b; Moser and Pike, 2017; Montagne et al., 2021). Sex is also thought 
to impact Aβ deposition. The independent effect of sex in modulating Aβ 
deposition is conflicting in humans (Jack et al., 2015; Ba et al., 2019; 
Therriault et al., 2020, 2021; Cacciaglia et al., 2022), potentially due to 
variable hormone levels, disease stage, co-morbidities and other lifestyle 
factors. However, in FAD mice, females have greater Aβ pathology 
compared to males (Wang et al., 2003; Li et al., 2016; Dennison et al., 2021; 
Forner et al., 2021; Marazuela et al., 2022; Sil et al., 2022). Our data agree 
with in vivo and human studies that the combination of APOE4 and 
female sex results in highest levels of Aβ deposition compared to other 
groups (Figure 1; Supplementary Figure S2). Interestingly, our data also 
demonstrate that Aβ pathology is equivalent in female E3FAD mice and 
male E4FAD mice. These novel findings raise the possibility that female 
sex and APOE4 induce a similar impact on Aβ pathology. These findings 
support that female sex may be an important factor for enrolling in 
preclinical/clinical trials targeting Aβ (Shi et al., 2022).

4.2. Neuroinflammation

Neuroinflammation is also an important AD pathology, often 
defined as levels of reactive astrocytes and microglia (glia) in the brain 

(Streit et al., 2004). In general, in AD patients higher levels of reactive 
glia are thought to occur early in disease progression (Hoozemans et al., 
2011), in females compared to males (Duarte-Guterman et al., 2020; 
Lynch, 2022) and with APOE4 (Reale et al., 2012; Ringman et al., 2012; 
Tzioras et al., 2019; Friedberg et al., 2020). However, the interaction 
among age, APOE and sex on reactive glia has yet to be characterized 
in AD patients, and therefore FAD mouse models are currently being 
used to address this issue. In vivo studies demonstrate that there is 
greater neuroinflammation in females compared to males in FAD mice 
(Hou et al., 2015; Schmid et al., 2019; Guillot-Sestier et al., 2021; Mifflin 
et al., 2021; Sil et al., 2022). This sex effect is pronounced with APOE4 
in young mice (Stephen et al., 2019, 2022). We have extended these 
findings to older mice and demonstrate that the combination of APOE4 
and female sex results in the highest levels of reactive glia with age. In 
addition, our data revealed that in general, female E3FAD mice have 
greater neuroinflammation compared to male E4FAD mice. 
Collectively, our data demonstrates that targeting neuroinflammation 
may be an attractive therapeutic approach for females AD patients.

4.3. Behavior

AD is typically characterized by memory loss, and a decline in 
overall cognitive function (Rao et  al., 2023). Several studies 
demonstrate that with age, cognitive decline is accelerated in AD 
patients (Rosselli et al., 2000; Conde-Sala et al., 2013; Zhao et al., 2014; 
Pan et al., 2021) and FAD mice (Middei et al., 2006; Ferguson et al., 
2013; Webster et al., 2013; Olesen et al., 2016; Forner et al., 2021; Locci 
et al., 2021). Among AD patients, cognitive decline is pronounced in 
APOE4, compared to APOE3 carriers (Emrani et al., 2020; Gharbi-
Meliani et al., 2021; Qian et al., 2021, 2023; Polsinelli et al., 2023b). 
This effect is mirrored in FAD mice in the presence of APOE4, 
compared to APOE3 in young (Thomas et  al., 2017) and old 
(Montagne et  al., 2021) mice. In addition, sex impacts cognitive 
decline in AD patients and memory deficits in mice. In general, 
women display poorer cognitive profiles compared to men at the same 
stage of AD (Subramaniapillai et al., 2021) and is mirrored in female 
mice compared to male FAD mice (Poon et al., 2023), also reviewed 
in Li and Singh (2014) and Laws et  al. (2016). In this study, 
we evaluated the combined effect of age, APOE and sex in Morris 
water maze performance and found that female E4FAD mice had 
earlier behavioral deficits during acquisition phase of Morris water 
maze compared to other groups (Figure 3A). Consistent with other 
readouts, APOE3 female and APOE4 male had similar behavioral 
deficits with age.

4.4. Limitations

There are some limitations due to the nature of our design. One issue 
is that we are limited in the extent that we can conclude APOE, sex and 
age impacted all aspects of AD pathology and behavior. Future studies 
could incorporate more detailed evaluation of Aβ production, clearance, 
and degradation pathways, the full neuroinflammatory phenotype, other 
AD-prevalent pathologies such as vascular function and metabolism, 
neuronal function, and a full battery of behavioral tests in the cognitive 
domain. Furthermore, it is important to validate our findings in other 
models that incorporate human APOE and human APP. For example, 
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human APP knock in mice have been crossed with APOE targeted 
replacement mice, and data supports greater behavioral deficits and Aβ 
pathology with APOE4 (Holden et al., 2022). In addition, understanding 
the effect APOE2 genotype which is protective for AD risk is important, 
with the caveat that these mice have Type III hyperlipoproteinemia 
(Sullivan et al., 1998). Our study raises an important discussion of the 
possible underlying mechanisms of how APOE4 and female sex impact 
AD pathology and cognition. For example, structural differences 
between apoE isoforms may modulate Aβ levels, glial reactivity, and 
neuron function [reviewed in Hunsberger et  al. (2019), Martinez-
Martinez et al. (2020), Raulin et al. (2022), Yang et al. (2023), and Zhang 
L. et al. (2023)]. As for female sex, the increase in AD risk/pathology has 
been attributed to loss of sex hormones with age particularly at 
menopause in humans (Rocca et al., 2011; Levine et al., 2016; Jett et al., 
2022; Mishra et al., 2022), which is recapitulated in ovariectomized mice 
(Ge et al., 2020; Sanchez et al., 2023). Although mice do not have the 
typical menopausal symptoms as humans, there are age-dependent 
changes in hormonal levels, which could impact AD-pathology and 
cognition in mice. Indeed, we observed that the number of mice in 
proestrus/estrus decrease with age in female EFAD mice 
(Supplementary Figure S6). In addition, there may be X chromosome-
mediated modulation of AD risk (Guo et al., 2022) may partly explain 
the sex-biased differences in AD. Furthermore, our study has also raised 
questions for future research including: What aspect of AD pathology is 
proximal to behavior changes in EFAD mice? What is the effect of 
APOE3/4 genotype on AD pathology and the interaction with sex? Does 
the impact of sex and APOE on pathology modify responses to 
therapeutic treatments?

4.5. Conclusion

Our data support that the combination of female sex and APOE4 
result in the greatest levels of Aβ pathology, neuroinflammation and 
behavioral impairments. In addition, we propose that the effect of 
female sex is analogous to the presence of APOE4 for AD pathology. 
Through reviewing previous published in vivo and human data, 
we believe that this important concept may have been overlooked 
(Holland et al., 2013; Huynh et al., 2019; Stephen et al., 2019, 2022; 
Cho et al., 2021; Montagne et al., 2021; Palmer et al., 2022). The female 
sex and APOE4 equivalency could therefore impact the optimal 
treatment window for therapeutics aimed at preventing AD through 
targeting Aβ and/or neuroinflammation.
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