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Introduction: Alzheimer’s disease (AD) is a complex neurodegenerative disease 
with high heritability. Compared to autosomes, a higher proportion of disorder-
associated genes on X chromosome are expressed in the brain. However, only 
a few studies focused on the identification of the susceptibility loci for AD on X 
chromosome.

Methods: Using the data from the Alzheimer’s Disease Neuroimaging Initiative 
Study, we conducted an X chromosome-wide association study between 16  AD 
quantitative biomarkers and 19,692 single nucleotide polymorphisms (SNPs) 
based on both the cross-sectional and longitudinal studies.

Results: We identified 15 SNPs statistically significantly associated with different 
quantitative biomarkers of the AD. For the cross-sectional study, six SNPs 
(rs5927116, rs4596772, rs5929538, rs2213488, rs5920524, and rs5945306) are 
located in or near to six genes DMD, TBX22, LOC101928437, TENM1, SPANXN1, 
and ZFP92, which have been reported to be  associated with schizophrenia or 
neuropsychiatric diseases in literature. For the longitudinal study, four SNPs 
(rs4829868, rs5931111, rs6540385, and rs763320) are included in or near to 
two genes RAC1P4 and AFF2, which have been demonstrated to be associated 
with brain development or intellectual disability in literature, while the functional 
annotations of other five novel SNPs (rs12157031, rs428303, rs5953487, 
rs10284107, and rs5955016) have not been found.

Discussion: 15 SNPs were found statistically significantly associated with the 
quantitative biomarkers of the AD. Follow-up study in molecular genetics is 
needed to verify whether they are indeed related to AD. The findings in this article 
expand our understanding of the role of the X chromosome in exploring disease 
susceptibility, introduce new insights into the molecular genetics behind the AD, 
and may provide a mechanistic clue to further AD-related studies.
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1. Introduction

Alzheimer’s disease (AD) is one of the most common 
neurodegenerative disorders worldwide which progressively destroys 
brain function (Lee et al., 2017; De Velasco Oriol et al., 2019; Li et al., 
2022). As a type of dementia, AD causes memory loss and cognitive 
impairment with deficits in executive, language and/or visuospatial 
functions (Nikolac Perkovic et al., 2021). So far, more than 50 million 
people around the world have lived with dementia, and approximately 
60–80% of them have suffered from the AD (Wang et al., 2021; Fareed 
et  al., 2022), which imposes social, psychological and economic 
burdens on patients (Andrews et al., 2020). It has been reported that 
genetic factors play an important role in developing the AD, with an 
estimated heritability being between 58 and 74% (Roussotte et al., 
2014). Thus, it is necessary to further explore genetic determinants of 
the AD through genome-wide association studies (GWAS) for the 
disease modeling.

Currently, there have been many GWAS for the AD focusing on 
qualitative traits (case–control design) (Lambert et al., 2013; Jansen 
et al., 2019; Kunkle et al., 2019; Yuan et al., 2019). For example, a large 
case–control study including more than 74,000 subjects found over 21 
loci associated with the AD, yet the contribution of each locus to 
genetic variation is small (Del-Aguila et al., 2018). It is worth noting 
that, there are several advantages in studying quantitative traits 
compared to qualitative traits, including higher statistical power and 
more objective interpretation of results (Yuan et al., 2019). Therefore, 
some key quantitative biomarkers (QBs) of the AD have been used in 
GWAS. Specifically, Kim et  al. (2011) performed a study of 
cerebrospinal fluid (CSF) biomarkers and found that single nucleotide 
polymorphisms (SNPs) rs429358, rs2075650, rs439401, and 
rs4499362, respectively located in the APOE, TOMM40, 
LOC100129500, and EPC2 gene regions, are statistically significantly 
associated with one or more CSF biomarkers. Among them, APOE, 
TOMM40, and LOC100129500 are known to be important genetic risk 
factors for the AD. More specifically, there are three most common 
alleles ε2, ε3, and ε4 in the APOE gene, which correspond to three 
protein isoforms: APOE2, APOE3, and APOE4, respectively (Safieh 
et al., 2019; Zhou et al., 2023). Genetically, the ε4 allele of the APOE 
gene is the strongest risk factor for the AD (Liu et al., 2013). Evidence 
suggests that heterozygous carriers of an ε4 allele are 3–4 times more 
likely to develop the AD than noncarriers (Colovati et al., 2020), so 
GWAS for the AD typically include APOE4 allelic dosage (i.e., the 
number of ε4 alleles in a subject’s APOE genotype) as a covariate 
(Mormino et al., 2016; Wang et al., 2021; Schneider et al., 2022). The 
EPC2 gene belonging to the polycomb protein family is involved in 
heterochromatin formation, and chromatin remodeling may play a 
role in neurodegenerative diseases such as AD (Kim et al., 2011). 
Potkin et al. (2009) used hippocampal atrophy measured on magnetic 
resonance imaging (MRI) as an objectively defined QB, and identified 
genes PRUNE2, MAGI2, ARSB, EFNA5, and CAND1, which may 
be related to the regulation of neuron loss and neural development in 
the hippocampus. On the other hand, the availability of the data from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) has 
facilitated a range of analyses on QBs of cognitive, imaging and other 
biomarkers, demonstrating the strength of multimodal quantitative 
phenotypic data to identify novel genetic variants (Shen et al., 2014). 
To date, previous studies on the ADNI database have used the 
cognitive biomarkers (Hu et al., 2011; Keenan et al., 2012), the CSF 

biomarkers (Han et al., 2010; Kim et al., 2011; Cruchaga et al., 2013), 
or the neuroimaging biomarkers (Potkin et al., 2009; Stein et al., 2010; 
Furney et al., 2011). However, not so many studies explicitly analyzed 
multiple types of QBs across subjects within the same cohort (Lee 
et al., 2022). Hence, it is necessary to conduct GWAS for different 
types of QBs from the ADNI database.

However, most previous analyses about QBs of the AD only 
considered cross-sectional studies at a certain visit, not taking account 
of temporal features (Shi et  al., 2021). In fact, the pathological 
progression of the AD is a longitudinal process. So, several researches 
(Whitwell et al., 2007; Yendiki et al., 2016; Kleineidam, 2020) have 
conducted longitudinal studies of the AD to better understand 
cognitive development and disease progression (Huang et al., 2017). 
For instance, Lim et al. (2022) analyzed some longitudinal cognitive 
biomarkers to detect cognitive changes in the development of the 
AD. They found that the subjects with mild cognitive impairment 
(MCI) and mild AD showed significant declines in verbal episodic 
memory performance compared to the cognitively normal subjects 
during their follow-up period of more than 18 months. Notably, the 
ADNI collected a rich set of longitudinal data, which allowed us to 
observe the longitudinal trajectory of specific QB. A case in point is 
that, Lee et al. (2022) conducted an analysis of key QBs from the 
ADNI database and identified a novel SNP rs5011804 at 12p12.1, 
which is significantly associated with three cognitive traits and one 
imaging trait. But this article only conducted a cross-sectional study 
at each visit separately, not a longitudinal study for their analysis. On 
the other hand, Ramanan et al. (2015) used the ADNI database to 
carry out the first GWAS of amyloid accumulation in a longitudinal 
framework, and identified the gene IL1RAP significantly associated 
with microglia activation. Therefore, further longitudinal GWAS on a 
series of QBs in the ADNI database are needed.

It is noteworthy that most of the previous GWAS of the AD were 
based on autosomes, and only a few considered X chromosome. 
Carrasquillo et al. (2009) analyzed late-onset AD in a case–control 
GWAS and found a significant SNP rs5984894, which is the first 
identified X-linked locus in the AD GWAS (Bertram and Tanzi, 
2009). This SNP is located in the PCDH11X gene, which encodes a 
protocadherin, a cell–cell adhesion molecule expressed in the brain 
(Naj et al., 2010). Furthermore, Davis et al. (2021) identified 29 genes 
on the X chromosome were significantly associated with cognitive 
change. Among these X-linked genes, proteins encoded by GRIA3, 
GPRASP2 and GRIPAP1 (or GRASP1) are essential for synaptic 
transmission, plasticity mechanisms and cognitive substrates (Davis 
et al., 2021). Bajic et al. (2015) suggested that the AD has always been 
characterized by X chromosome instability, and its inactivation 
pattern is closely related to the pathogenesis of the AD (Bajic et al., 
2020). Napolioni et al. performed an X chromosome-wide association 
study (XWAS) for late-onset AD in 12,987 Northwestern Europeans 
and discovered an X-linked locus rs112930037 on Xq25 DCAF12L2, 
which is widely expressed in the brain (Napolioni et  al., 2017). 
Christopher et al. also conducted an XWAS and found that the SNP 
rs11094635 located upstream of the MTM1 gene is associated with 
beta-amyloid accumulation in the ADNI database (Christopher et al., 
2018), but ignored the studies of other QBs in the ADNI database. 
Note that so far, we are not aware of any XWAS for different types of 
QBs in the ADNI database, although there have been some previous 
GWAS based on autosomal loci (Li et al., 2017; Kong et al., 2018; 
Zhou et al., 2018; Wang et al., 2021; Homann et al., 2022; Oatman 
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et al., 2023). Therefore, there is an urgent need to perform XWAS on 
the QBs of the ADNI. However, several analytical challenges arise 
from the complex biological mechanism of the X chromosome, 
including the differences of the copy number of the X chromosome 
between sexes and X chromosome inactivation (XCI) in females (Wu 
et  al., 2014; Sauteraud et  al., 2021). To balance the differences of 
transcriptional dosage between sexes, XCI transcriptionally silences 
one of the two X chromosomes in females during early embryogenesis 
(Smith et al., 2021). There are three patterns of XCI, random XCI 
(XCI-R), escape from XCI (XCI-E) and skewed XCI (Yu et al., 2022). 
The XCI-R is defined as the maternal or paternal alleles in females 
being expressed mono-allelically in different cell populations with 
probability approximately 50% (Wang et al., 2014; Jin et al., 2016). 
Additionally, approximately 15–30% of the X-linked genes are subject 
to undergo XCI-E, and express both alleles in female cells (Carrel 
et al., 2006; Posynick and Brown, 2019). Finally, the skewed XCI 
means that more than 75% of the cells in females have the same allele 
inactivated (Minks et al., 2008). For some extreme cases, it is possible 
that more than 90% of cells with the same allele inactive (Minks et al., 
2008; Chabchoub et  al., 2009). Accordingly, identifying the 
associations between the QBs of the AD and X-chromosomal SNPs 
requires special consideration. In recent years, to effectively 
incorporate the information of the XCI, some association analysis 
methods for the X-chromosomal SNPs have been developed (Chen 
et al., 2017, 2021; Özbek et al., 2018; Deng et al., 2019; Wang P. et al., 
2019; Yang et al., 2022). Deng et al. (2019) proposed a two-stage 
method (i.e., wM3VNA3.3) to test the SNP effect on the phenotypic 
variances, while this method was not designed to test for the 
differences in the phenotypic means. Özbek et al. (2018) and Chen 
et al. (2021) respectively suggested an X chromosomal association test 
statistic to detect the SNP effect on the phenotypic means (respectively 
denoted by Tplink  and Tchen in this article). Note that Tplink  and Tchen 
only compare the difference in the phenotypic means across different 
genotypes under the assumption of variance homogeneity, which may 
lead to increasing false positive results in the presence of variance 
heterogeneity. Influencing factors of variance heterogeneity include 
genotype-by-environment interactions (Wang H. et al., 2019), XCI 
(Deng et al., 2019), etc. Therefore, Yang et al. (2022) proposed the 
weighted versions of Tplink  and Tchen (i.e., Tplinkw and Tchenw), which 
estimate the regression coefficients using the weighted least square 
method. Additionally, Yang et  al. (2022) developed four novel X 
chromosome association analysis methods (i.e., QXcat , QZmax , 
QMVXcat , and QMVZmax), all of which effectively take account of 
the information of the XCI. Among them, QXcat  and QZmax  were 
designed for testing the differences in the phenotypic means, while 
QMVXcat  and QMVZmax  can simultaneously test for both the 
phenotypic mean and variance differences, where combining the 
p-values is based on Fisher’s method (Fisher et al., 1967). However, 
all the above-mentioned methods are only applicable to cross-
sectional studies. For longitudinal data, there is no specific method 
on the X chromosome available. The general practice is to assume that 
the XCI pattern is XCI-R or XCI-E, and then use the same analytical 
strategy as the autosomes to fit a linear mixed model (LMM).

Therefore, in this article, using the data from the ADNI database, 
we conducted XWAS between 16 QBs and X-chromosomal SNPs based 
on both the cross-sectional and longitudinal studies. The purpose of this 
article is to propose new insights into the molecular genetics behind the 
AD, and to provide a mechanistic clue to further AD-related studies.

2. Materials and methods

2.1. Samples

The data used in this article were downloaded and analyzed from 
the ADNI database1 (ADNI, 2022). The ADNI was launched in 2003 
as a public-private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The main goal of the ADNI has been always to test 
whether serial MRI, positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of MCI and early AD 
(for the latest information see text footnote 1) (ADNI, 2022). As a 
multisite longitudinal study, the ADNI has recruited the subjects aged 
55–90 years in North America and elsewhere since 2004. These 
subjects were from four ethnic groups, non-Hispanic White, 
non-Hispanic African American, Hispanic, and others (Wang et al., 
2021). With the subjects’ informed consent, the ADNI conducted a 
series of initial tests on them and repeated the tests over subsequent 
years, including clinical evaluations, neuropsychological tests, genetic 
tests, and more. Currently, the ADNI has carried out four cohorts, 
ADNI cohorts 1, GO, 2 and 3  in sequence, sharing the data with 
researchers around the world and making a significant contribution 
to the AD research. Considering the small number of the subjects with 
genetic data for ADNI cohort 3 (only 327), we analyzed only the first 
three cohorts. In addition, we merged ADNI cohorts GO and 2 into 
one cohort, namely ADNI cohort GO/2, since their genotyping 
platforms were both the Illumina HumanOmniExpress BeadChip and 
their recorded genetic data were similar (Jack et al., 2015; Moore et al., 
2019; St John-Williams et al., 2019). In a nutshell, 620,901 SNPs on 
both autosomes and X chromosome and 757 subjects were included 
in ADNI cohort 1, and 730,525 SNPs and 793 subjects were contained 
in ADNI cohort GO/2, which are two independent cohorts.

2.2. Genotyping and imputation

The genotyping platforms used in ADNI cohorts 1 and GO/2 were 
the Illumina Human610-Quad BeadChip and the Illumina 
HumanOmniExpress BeadChip, respectively. We  selected 15,599 
X-chromosomal SNPs in ADNI cohort 1 and 17,673 X-chromosomal 
SNPs in ADNI cohort GO/2, which are not in the pseudoautosomal 
region of the X chromosome. Note that in both the cohorts, there are 
7,322 SNPs are overlapping (Supplementary Figure S1). Then, for 
longitudinal XWAS, we filtered these SNPs and the subjects by using the 
following quality control (QC) criteria (Özbek et al., 2018; Yang et al., 
2022), in ADNI cohorts 1 and GO/2, respectively: (1) genotype call rate 
≥90%, (2) minor allele frequency ≥5%, (3) individual call rate ≥90%, 
based on the SNPs on the X chromosome, and (4) the p-value  
of the Hardy–Weinberg equilibrium test > ´ -

1 10
6. Here, the  

minor allele frequency at each SNP was estimated by 
2 2n n n n nAA f Aa f A m f m, , , /+ +( ) +( ) (Ma et al., 2015), where a and 

A are the major and minor alleles, respectively; n f  and nm  are the 
number of the females and that of the males, respectively; nAA f,  and 
nAa f,  are the numbers of the females with genotypes AA and Aa, 

1 https://adni.loni.usc.edu/about/
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respectively; nA m,  refers to the number of the males with allele A. QC 
criteria (1)–(3) were implemented in PLINK (version 1.9) (Purcell et al., 
2007). Note that the Hardy–Weinberg equilibrium test in PLINK is 
carried out only based on female genotypes, while the exact test in the 
R package “HardyWeinberg” (Graffelman and Weir, 2016) can consider 
both the female and male genotypes. So, we used this R package for QC 
criterion (4). For each cohort, we imputed them using Beagle software 
(version 5.3) (Browning et al., 2018, 2021) without any reference panel, 
just based on the genotyped SNPs, and stratified by sexes according to 
its instruction, as females are diploids while males are hemizygotes in 
the non-pseudoautosomal region, when there are missing genotypes at 
the filtered SNPs. After the imputation, QC criteria (2) and (4) were 
conducted again in ADNI cohorts 1 and GO/2 separately. Figure 1 gives 
the detailed QC process for longitudinal XWAS. Finally, 12,718 
X-chromosomal SNPs and 741 subjects were remained in ADNI cohort 
1, while 13,507 SNPs X-chromosomal SNPs and 792 subjects were 
retained in ADNI cohort GO/2 (Figure 1). On the other hand, for cross-
sectional XWAS, besides the aforementioned process (i.e., QC criteria 
(1)–(4), the imputation, and then QC criteria (2) and (4) again), 
we added an additional QC criterion to filter the SNPs, i.e., (5) the 
minimum genotype counts ≥20, to avoid the inflated type I  errors 
(Soave et al., 2015). That is to say, only the SNPs which additionally meet 
criterion (5) were included in the cross-sectional XWAS. Lastly, the 
numbers of the X-chromosomal SNPs remained in ADNI cohorts 1 and 
GO/2  in the cross-sectional study were 6,793 and 7,782, and the 
corresponding sample sizes were 741 and 792, respectively (Figure 1). 
Note that different subjects may have missing values for different QBs. 
Thus, for different QBs, there may be different sample sizes and different 
numbers of the SNPs. The sample size and the number of the used SNPs 
for each QB and each ADNI cohort under the QC criteria (1)–(5) in the 
cross-sectional XWAS were listed in Supplementary Table S1. 
We analyzed all the respective filtered X-chromosomal SNPs in ADNI 
cohorts 1 and GO/2, including the overlapping SNPs in both of them. 
To further verify the results at the overlapping X-chromosomal SNPs in 
ADNI cohorts 1 and GO/2 and see if there are additional statistically 
significant SNPs to be found due to the increased sample size, we merged 
these two cohorts as a new cohort with 7,322 X-chromosomal SNPs and 
1,550 subjects, namely ADNI cohort 1/GO/2 (Li et al., 2016; Lorenzi 
et al., 2018; Lee et al., 2022), because the QBs and the covariates in these 
two cohorts are the same. We conducted the process for ADNI cohort 
1/GO/2 which is the same as ADNI cohorts 1 and GO/2 (the QC, the 
imputation and then the QC again). Eventually, 6,533 (4,942) SNPs on 
the X chromosome and 1,546 (1,546) subjects were kept in ADNI cohort 
1/GO/2 for the longitudinal (cross-sectional) XWAS (Figure 1).

2.3. Clinical phenotypes

According to the analytical ideas of the Quantitative Template for 
the Progression of the AD Project2 (Portland Institute for 
Computational Science, 2022) recommended by several research 
groups (Jedynak et al., 2012; Donohue et al., 2014; Young et al., 2014; 
Schmidt-Richberg et al., 2015), we selected 16 QBs of the AD, which 
can reflect the main changes of the AD process across four modalities: 

2 http://www.pi4cs.org/qt-pad-challenge

cognitive assessment, CSF, PET, and MRI. Table  1 shows the full 
names and the corresponding abbreviations of these 16 QBs of the AD 
in detail.

For cognitive assessment, five cognitive tests were chosen as 
cognitive biomarkers, including ADAS13, CDRSB, RAVLT.learning, 
MMSE, and FAQ. The ADAS13 scores the subjects with 13 subscales 
(Podhorna et  al., 2016) to evaluate memory, reasoning, language, 
orientation, ideational praxis, constructional praxis, etc., and the test 
is scored in terms of errors, with higher scores indicating poorer 
performance. The CDRSB is a global rating of dementia which 
aggregates impairment in six categories of cognitive function, 
including memory, orientation, judgment and problem solving, 
community affairs, home and hobbies, and personal care. A higher 
score is indicative of more severe disease (Doody et al., 2010). The 
RAVLT is an episodic memory measure which requires subjects to 
perform a word learning trial and immediately recall it. This process 
is repeated 5 times (Trials 1–5), resulting in the scores for five trials. 
And the RAVLT.learning is the score of Trial 5 minus that of Trial 1. 
The MMSE is a 30-item cognitive state assessment (Chapman et al., 
2016) involving orientation, memory, attention, concentration, 
naming, repetition, comprehension and other abilities. It is scored as 
the number of the items completed correctly, and lower score 
represents poor performance and more severe cognitive impairment. 
The FAQ rates the subjects’ disability to perform 10 activities of daily 
living and the scores of 10 activities are then added together to provide 
a total disability score.

The three core CSF biomarkers related to the AD involved in our 
analysis are CSF ABETA, CSF TAU, and CSF PTAU (Babić et al., 
2014). The CSF ABETA and the CSF TAU, respectively, reflect the 
deposition of amyloid in the cerebral cortex and the density of 
neurodegeneration, and the CSF PTAU is related to the pathological 
changes of neurofibrillary tangles. The decreased level of the ABETA 
and the elevated levels of the TAU and the PTAU are the important 
CSF features of the AD (Zou et al., 2020).

Neuroimaging data used in this article included two PET and six 
MRI biomarkers. Specifically, the FDG PET and Amyloid PET/AV45 
measurements are captured using PET image acquisition techniques. 
The former can reflect the extent of cellular metabolism in brain 
regions, and if this region is affected by the AD, it indicates a decrease 
in metabolism (Hojjati and Babajani-Feremi, 2022), while the latter 
assesses the amyloid load in the brain associated with the AD (Saint-
Aubert et al., 2013). The average FDG PET of angular gyrus, temporal 
gyrus, and posterior cingulate cortex, and the mean florbetapir 
(Amyloid PET/AV45) of the whole cerebellum can be obtained from 
the ADNI. More details please refer to the description about the PET 
analysis on the ADNI website (see text footnote 1) (ADNI, 2022). 
Moreover, the MRI biomarkers (FS WholeBrain, FS Hippocampus, FS 
Entorhinal, FS Ventricles, FS MidTemp, and FS Fusiform) are the 
volumes of whole brain, hippocampus, entorhinal cortex, ventricles, 
middle temporal gyrus and fusiform gyrus obtained from the 
FreeSurfer software. More details on the MRI data can be  found 
elsewhere (Jack et al., 2008; Wyman et al., 2013; Weiner et al., 2015).

Before the XWAS, we conducted the normality tests of 16 QBs at 
the baseline and the correlation tests among them. Initially,  
we drew the Q-Q plots (Supplementary Figures S2–S4) and  
carried out the Shapiro–Wilk tests for the normality at the  
significance level of 0 05 16 3 13 10

3
. / .= ´ -  after Bonferroni correction 

(Supplementary Table S2). As shown in Supplementary Figures S2–S4 
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and Supplementary Table S2, we  found that FS WholeBrain, FS 
Hippocampus, FS Entorhinal, FS MidTemp and FS Fusiform 
asymptotically follow the normal distributions, while other 11 QBs 
appear not to satisfy the normality assumptions. Thus, we used the 
rank-based inverse normal transformation proposed by McCaw et al. 
(2020) to transform these 11 QBs in the subsequent analyses (i.e., 
ADAS13, CDRSB, RAVLT.learning, MMSE, FAQ, CSF ABETA, CSF 
TAU, CSF PTAU, FDG PET, Amyloid PET/AV45, and FS Ventricles). 
Furthermore, we  computed the Pearson’s correlation coefficients 
among FS WholeBrain, FS Hippocampus, FS Entorhinal, FS MidTemp 
and FS Fusiform, while all other possible pairs of the QBs were 
analyzed with the Spearman’s rank correlation coefficients (see 

Supplementary Figures S5–S7 for the details). It is shown in 
Supplementary Figures S5–S7 that the correlations in ADNI cohort 1 
are generally consistent with those in ADNI cohort GO/2, and most 
of the QBs are significantly correlated (p-values less than 4 76 10

4
. ´ -  

in ADNI cohort 1 and 4 17 10
4

. ´ -  in ADNI cohort GO/2, respectively 
based on Bonferroni correction for 105 and 120 tests).

2.4. Covariates

To deal with the population stratification caused by different races 
and other factors, we used PLINK (version 1.9) (Purcell et al., 2007) 

FIGURE 1

Workflow of the cross-sectional and longitudinal XWAS together with the quality control process and the number of identified SNPs. HWE, Hardy–
Weinberg equilibrium; PC, principal component.
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to perform the principal component analysis (Price et al., 2010) of all 
the autosomal and X-chromosomal SNPs, and chose the top  10 
principal components (PCs) generally recommended (Zhao et al., 
2018). Besides, socio-demographic factors are required to be adjusted, 
include sex, age and educational level. Education level is defined by 
years of education. Therefore, all the analyses in this article were 
implemented by adjusting socio-demographic factors, APOE4 allelic 
dosage (i.e., the number of ε4 alleles in a subject’s APOE genotype), 
and the top 10 PCs. For ADNI cohort 1/GO/2, besides the above 
covariates (i.e., sex, age, education level, APOE4 allelic dosage and the 
top 10 PCs), another covariate (i.e., batch) is included as a dummy 
variable to adjust the effect of different genotyping batches.

2.5. Cross-sectional XWAS

In the cross-sectional XWAS, we used the methods testing for the 
difference in the means of the QBs (i.e., QXcat , QZmax , Tchenw , and 
Tplinkw) (Yang et al., 2022), the method testing for the difference in the 
variances of the QBs (i.e., wM3VNA3.3) (Deng et al., 2019), and the 
methods simultaneously testing for the mean and variance differences 
of the QBs (i.e., QMVXcat  and QMVZmax ) (Yang et al., 2022), to 
detect the association between each of the 16 QBs at the baseline and 
the X-chromosomal SNPs. Note that the test statistics QXcat , QZmax ,  
QMVXcat , and QMVZmax  were constructed by stratifying the 
collected sample into females and males. So, the two coding schemes 
G = { }0 1,  and 0 2,{ }  for the male genotypes have no influence on the 
results. More details about these methods are given in 
Supplementary methods. The Bonferroni correction for multiple 
comparison was utilized and the corrected significance level of the 
association tests was set to be 0 05 19692 2 54 10

6
. / .= ´ -  in ADNI 

cohorts 1, GO/2 and 1/GO/2, where 19,692 is the number of the 
X-chromosomal SNPs after the QC used in this article, consisting of 
12,718 SNPs in ADNI cohort 1 and 13,507 SNPs in ADNI cohort 

GO/2, with the number of the overlapping SNPs being 6,533 in ADNI 
cohort 1/GO/2.

2.6. Longitudinal XWAS

To examine the longitudinal effects of the SNPs on the X 
chromosome, we used the LMM to model each of the 16 longitudinal 
QBs separately. Despite the extensive longitudinal data with 35 visits 
provided in the ADNI, not all the 16 QBs were simultaneously 
recorded for every subject at each visit. As such, the subjects who had 
at least one measurement were included in our analysis, and there 
were fewer data available as the follow-up progressed. Therefore, to 
ensure that the LMM has the sufficient statistical power, we  only 
studied six visits with at least 200 subjects being followed up, namely 
baseline (bl), month 3 (m03), month 6 (m06), month 12 (m12), month 
24 (m24), and month 48 (m48) visits.

Given the specific characteristics of the X chromosome, although 
we can code the female genotypes as the number of the minor alleles 
under an additive model (i.e., G = { }0 1 2, , ), as we do for autosomal 
SNPs, there are two distinct coding schemes for the male genotypes. 
Under the XCI-R, where one of the X chromosomes in females is 
inactive, one male minor allele is equivalent to the corresponding 
female homozygote, so we coded the male genotype as G = { }0 2, . On 
the other hand, under the XCI-E, where both the X chromosomes in 
females are expressed, we coded the male genotype as G = { }0 1,  (Ma 
et al., 2015). For each X-chromosomal SNP, the LMM can be expressed 
as follows

 0 1 2 3 ,T
ij i i ij i i ij i i ijy t G t Gb b b b= + + + + +Îb Z  (1)

where yij is the original or transformed QB of subject i at visit j, 
i N j= ¼ = ¼1 2 1 2 6, , , ; , , , ,     and N is the sample size; tij  is the visit 

TABLE 1 16 QBs of AD in ADNI database.

Category Full name Abbreviation

Cognition Alzheimer’s Disease Assessment Scale-Cognitive 13 ADAS13

Cognition Clinical Dementia Rating-Sum of Boxes CDRSB

Cognition Rey Auditory Verbal Learning Test Learning RAVLT.learning

Cognition Mini-Mental State Exam MMSE

Cognition Functional Assessment Questionnaire FAQ

CSF Cerebrospinal Fluid Amyloid Beta 42 CSF ABETA

CSF Cerebrospinal Fluid Tau CSF TAU

CSF Cerebrospinal Fluid Phosphorylated Tau CSF PTAU

PET Fluorodeoxyglucose Positron Emission Tomography FDG PET

PET Amyloid Positron Emission Tomography Amyloid PET/AV45

MRI FreeSurfer Whole Brain Volume FS WholeBrain

MRI FreeSurfer Hippocampus Volume FS Hippocampus

MRI FreeSurfer Entorhinal Cortex Volume FS Entorhinal

MRI FreeSurfer Ventricular Volume FS Ventricles

MRI FreeSurfer Middle Temporal Gyrus Volume FS MidTemp

MRI FreeSurfer Fusiform Volume FS Fusiform
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time, which was coded as 1, 2, …, 6 for the six visits, respectively; Gi 
denotes the genotype code at the SNP of interest for subject i; t Gij i is 
the time × SNP interaction term; iZ  is a vector of the covariates (i.e., 
sex, age, education level, APOE4 allelic dosage, the top 10 PCs and the 
batch) for subject i. b0i is the random intercept for subject i; b1i is the 
random effect for time tij ; b2 is the regression coefficient of the 
genotype code Gi; b3i is the random effect for the interaction term 
t Gij i; b is a vector of the regression coefficients of the covariates iZ ; 
ij is a random error which follows N e0

2
,  s( ) , where se

2 is the 
variance of ij and we assumed that the variances of ij across different 
genotypes at the SNP are the same.

In the longitudinal XWAS, we investigated whether or not the 
SNP affects the rate of the change of each of the original or transformed 
QBs, so the effect estimate of interest is that of the time×SNP 
interaction (i.e., b3i), which represents the longitudinal effect of the 
SNP (Sikorska et al., 2015; Carrion-Castillo et al., 2017; Allen et al., 
2023). Just like the cross-sectional XWAS, we used the Bonferroni 
correction to take account of multiple testing and fixed the corrected 
significance level of the association tests in ADNI cohorts 1, GO/2 and 
1/GO/2 to be 2 54 10

6
. ´ -  here.

2.7. Implementation in R

All statistical analyses were conducted in the R software (version 
4.1.2) (Team, 2013). The cross-sectional XWAS was fitted with the R 
package “QMVtest” (Yang et al., 2022). The LMM was fitted with the 
R package “lme4” (Bates et al., 2015) and the p-values were derived 
using the Satterthwaite approximation of the “lmerTest” package 
(Kuznetsova et al., 2017).

3. Results

3.1. Characteristics of subjects

From Figure 1, there are 757 and 793 subjects in ADNI cohorts 1 
and GO/2, respectively, and the sample size of the merged ADNI 
cohort 1/GO/2 is 1,550. After the QC, ADNI cohorts 1, GO/2, and 1/
GO/2 contain 741, 792, and 1,546 subjects, respectively. Table  2 
presents the baseline characteristics of the subjects in ADNI cohorts 
1, GO/2, and 1/GO/2. For all the 1,546 subjects in ADNI cohort 1/
GO/2, the median age is 74.00 years and the interquartile range (IQR) 
is 69.33 ~ 78.97 years, and 676 (43.73%) are females and 870 (56.27%) 
are males. The majority of the subjects (1,384) are non-Hispanic 
White (89.52%), followed by 69 non-Hispanic African American 
(4.46%), 51 Hispanic (3.30%), and 42 others (2.72%). In addition, 
ADNI cohort GO/2 has more women, a younger median age, and 
lower APOE4 allelic dosage than ADNI cohort 1. As for 15 QBs (the 
values of Amyloid PET/AV45 at baseline are missing in ADNI cohort 
1), compared to ADNI cohort 1, ADNI cohort GO/2 has lower 
ADAS13, CDRSB, FAQ, CSF TAU, CSF PTAU, and FS Ventricles, 
while the remaining QBs (RAVLT.learning, MMSE, CSF ABETA, 
FDG PET, FS WholeBrain, FS Hippocampus, FS Entorhinal, FS 
MidTemp, and FS Fusiform) are higher.

For the longitudinal data, the follow-up information for the two 
cohorts decreases with the follow-up proceeds, and the missing rates 
of the 16 QBs are also different (Supplementary Tables S3–S5). For 

example, none of the 16 QBs were measured at the month 3 visit in 
ADNI cohort 1; Amyloid PET/AV45 was not measured at the  
first 5 visits and was only measured at the month 6 visit in ADNI 
cohort 1; all the QBs of the cognition, the CSF and the PET were not 
recorded at the month 3 visit in ADNI cohort GO/2. 
Supplementary Figures S8–S10 give the spaghetti plots of the 
longitudinal course of the 16 QBs in ADNI cohort 1, GO/2, and 1/
GO/2, respectively. As shown in Supplementary Figures S8–S10, the 
trajectories of the subjects corresponding to different QBs are highly 
variable. Therefore, it may be more appropriate to use the LMM to 
carry out the longitudinal XWAS, which can capture more information.

3.2. Cross-sectional XWAS

In the cross-sectional XWAS, we identified six SNPs (rs5927116, 
rs4596772, rs5929538, rs2213488, rs5920524, and rs5945306) which 
are statistically significantly associated with one of the QBs of the 
AD. Table  3 shows the p-values of all the methods (QMVXcat , 
QMVZmax , QXcat , QZmax , Tchenw , Tplinkw , and wM3VNA3.3) at 
these six SNPs. Table 4 presents the positions, the major alleles, the 
minor alleles, the minor allele frequencies, the p-values of the Hardy–
Weinberg equilibrium tests and the genes consisting of these six 
identified SNPs. SNP rs5927116 is in the DMD gene, which has the 
effects on the mean values of the FS Entorhinal (pQXcat = ´ -

1 74 10
6

. ).  
SNP rs4596772, located near to the TBX22 gene, only influences the 
mean values of the FS MidTemp (pQXcat = ´ -

9 94 10
7

.  and 
pQZmax

.= ´ -
7 55 10

7). SNP rs5929538 is included in the LOC101928437 
gene and has the effects on the mean values of the transformed FDG 
PET (pTchenw

= ´ -
2 28 10

6
. ). It is worth noting that SNP rs2213488, 

located in the TENM1 gene, is an overlapping variant in both ADNI 
cohorts 1 and GO/2. However, it demonstrates the statistical 
significance only in the analysis of ADNI cohort GO/2 with 792 
subjects (pQMVXcat

= ´ -
1 30 10

6
.  and pQMVZmax

.= ´ -
7 23 10

7), while 
it is not statistically significant in the analysis of ADNI cohort 1/GO/2 
with 1,546 subjects (pQMVXcat

= ´ -
6 16 10

5
. , pQMVZmax

.= ´ -
1 13 10

4, 
pQXcat = ´ -

5 06 10
4

. , pQZmax
.= ´ -

9 77 10
4 , pTchenw

= ´ -
7 86 10

4
. , 

pTplinkw
= ´ -

3 56 10
4

. , and pwM VNA3 3 3
3

9 17 10. .= ´ - ). Moreover, from 
the p-values of all the methods for SNP rs2213488 in the analysis of 
ADNI cohort GO/2, only the p-values of QMVXcat and QMVZmax for 
simultaneously testing for the means and the variances of the FS 
Hippocampus are lower than the significance level 2 54 10

6
. ´ - . This 

suggests that either the means or the variances of the FS Hippocampus 
across different genotypes are different, which needs to be  further 
investigated. SNP rs5920524, located near to the SPANXN1 gene, has 
the effects on the mean values of the transformed FDG PET 
(pQXcat = ´ -

5 57 10
7

.  and pTchenw
= ´ -

5 97 10
7

. ), and the resulting 
p-value of QMVXcat is 1 72 10

6
. ´ - . Finally, SNP rs5945306, located in 

the ZFP92 gene, only influences the mean values of the transformed 
FAQ (pQXcat = ´ -

7 67 10
7

.  and pTchenw
= ´ -

9 22 10
8

. ), and the resulting 
p-value of QMVXcat  is 1 82 10

6
. ´ - . On the other hand, to infer the 

direction of the SNP effect on the means and the variances of the QB 
under study, we can, respectively, observe the signs of the regression 
coefficients in the mean-based tests (QXcat  and QZmax) and those in 
the variance-based test (wM3VNA3.3), and the corresponding detailed 
descriptions can be  found in Supplementary results as well as 
Supplementary Tables S6, S7. For comparison, the results of the 
longitudinal XWAS for these six SNPs found by the cross-sectional 
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XWAS are also shown in Supplementary Tables S8, S9, although they 
are not statistically significant.

3.3. Longitudinal XWAS

We tested the longitudinal effects of 19,692 X-chromosomal SNPs 
on the 16 QBs of the AD by model (1) under the assumption that the 
XCI pattern of the SNP under study is the XCI-R and the XCI-E, 
respectively. We  identified nine SNPs which show the statistically 
significant effects of the time×SNP interaction at the significance level 
2 54 10

6
. ´ -  (rs12157031, rs428303, rs4829868, rs5931111, rs5953487, 

rs10284107, rs5955016, rs6540385, and rs763320), where SNP 
rs12157031 is statistically significantly associated with the original FS 

MidTemp in ADNI cohort 1/GO/2, SNP rs5931111 has the statistically 
significant effect on the transformed FS Ventricles in ADNI cohort 1, 
and other seven SNPs have statistically significant effects on the 
transformed FS Ventricles in ADNI cohort 1/GO/2. Table  5 and 
Supplementary Table S10 list the estimates of the time×SNP 
interaction effects and the SNP main effects, respectively. In Table 4, 
we also gave the positions, the major alleles, the minor alleles, the 
minor allele frequencies, the p-values of the Hardy–Weinberg 
equilibrium test, and the genes consisting of these nine identified 
SNPs. Specifically, SNP rs12157031 within the LOC124905257 gene 
has a time×SNP interaction effect of 59.803 on the original FS 
MidTemp under the XCI-R and the corresponding 95% confidence 
interval (CI) is 36.738 ~ 82.867 (p = ´ -

7 73 10
7

. ). The minor allele T 
at rs12157031 increases the FS MidTemp over time. As for the eight 

TABLE 2 Baseline characteristics of the subjects in ADNI cohorts 1, GO/2, and 1/GO/2.

Variable ADNI cohort 1
(N  =  741)

ADNI cohort GO/2
(N  =  792)

ADNI cohort 1/GO/2
(N  =  1,546)

Sex

Female, No. (%) 308 (41.57) 368 (46.46) 676 (43.73)

Male, No. (%) 433 (58.43) 424 (53.54) 870 (56.27)

Age (in years), median (IQR) 75.50 (71.20 ~ 80.00) 72.60 (67.57 ~ 77.70) 74.00 (69.33 ~ 78.97)

Education level (in years), median (IQR) 16 (13 ~ 18) 16 (14 ~ 18) 16 (14 ~ 18)

APOE4 allelic dosage

0, No. (%) 373 (50.34) 439 (55.43) 817 (52.85)

1, No. (%) 290 (39.14) 283 (35.73) 579 (37.45)

2, No. (%) 78 (10.53) 70 (8.84) 150 (9.70)

Race

White, No. (%) 671 (90.55) 701 (88.51) 1,384 (89.52)

African American, No. (%) 37 (4.99) 32 (4.04) 69 (4.46)

Hispanic, No. (%) 17 (2.29) 34 (4.29) 51 (3.30)

Others, No. (%) 16 (2.16) 25 (3.16) 42 (2.72)

ADAS13 (in scores), median (IQR) 18.00 (11.00 ~ 24.33) 13.00 (8.00 ~ 20.00) 15.00 (9.67 ~ 23.00)

CDRSB (in scores), median (IQR) 1.5 (0 ~ 3.0) 1.0 (0 ~ 2.0) 1.0 (0 ~ 2.5)

RAVLT.learning (in scores), median (IQR) 3 (2 ~ 6) 4 (3 ~ 7) 4 (2 ~ 6)

MMSE (in scores), median (IQR) 27 (25 ~ 29) 29 (26 ~ 30) 28 (26 ~ 29)

FAQ (in scores), median (IQR) 2.00 (0 ~ 8.00) 1.00 (0 ~ 5.00) 1.00 (0 ~ 6.00)

CSF ABETA (in pg./mL), median (IQR) 694.15 (535.88 ~ 1229.25) 928.75 (664.42 ~ 1532.50) 858.70 (596.60 ~ 1406.00)

CSF TAU (in pg./mL), median (IQR) 281.45 (209.85 ~ 368.45) 246.75 (186.88 ~ 329.82) 257.80 (193.50 ~ 351.80)

CSF PTAU (in pg./mL), median (IQR) 27.18 (18.65 ~ 37.13) 22.64 (16.74 ~ 32.22) 24.08 (17.31 ~ 34.05)

FDG PET (in SUVR), median (IQR) 1.24 (1.18 ~ 1.29) 1.27 (1.22 ~ 1.32) 1.26 (1.21 ~ 1.31)

Amyloid PET/AV45a (in SUVR), median (IQR) – 1.13 (1.02 ~ 1.40) 1.13 (1.02 ~ 1.40)

FS WholeBrain (in mm3), mean ± SDb 989673.62 ± 106621.05 1048929.29 ± 105742.11 1020009.00 ± 110047.70

FS Hippocampus (in mm3), mean ± SDb 6472.01 ± 1169.68 7036.37 ± 1127.23 6778.00 ± 1181.27

FS Entorhinal (in mm3), mean ± SDb 3332.98 ± 809.55 3632.71 ± 729.62 3491.00 ± 782.89

FS Ventricles (in mm3), median (IQR) 38509.00 (26164.75 ~ 55523.50) 32916.00 (21764.00 ~ 48505.00) 35549.00 (24229.00 ~ 51527.00)

FS MidTemp (in mm3), mean ± SDb 18624.48 ± 3109.97 20157.52 ± 2834.14 19438.00 ± 3056.10

FS Fusiform (in mm3), mean ± SDb 16191.48 ± 2480.94 18226.60 ± 2630.74 17273.00 ± 2755.35

IQR, interquartile range; pg/mL, picograms per milliliter; SD, standard deviation; SUVR, standardized uptake volume ratio. aThe values of Amyloid PET/AV45 at baseline are missing in ADNI 
cohort 1. bThe descriptive characteristics of FS WholeBrain, FS Hippocampus, FS Entorhinal, FS MidTemp and FS Fusiform are presented as mean ± SD, since they asymptotically follow the 
normal distributions.
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SNPs associated with the transformed FS Ventricles, they all show 
significant time × SNP interaction effects under the XCI-E. The minor 
allele A at SNP rs428303 has the significant time × SNP interaction 
effect of −0.010 (95% CI: −0.014 ~ −0.006), with the corresponding 
p-value being 1 29 10

6
. ´ - , decreasing the transformed FS Ventricles 

over time. The minor allele T at SNPs rs4829868 and rs5931111 shows 
significant time × SNP interaction effects of −0.017 (95% CI: 
−0.023 ~ −0.011; p = ´ -

3 19 10
8

. ) and − 0.022 (95% CI: 
−0.030 ~ −0.015; p = ´ -

1 92 10
8

. ), respectively, decreasing the 
transformed FS Ventricles over time. For SNP rs5953487, the 
regression coefficient of the interaction term is −0.010 (95% CI: 
−0.014 ~ −0.006; p = ´ -

1 50 10
6

. ), which means that the minor allele 
C at rs5953487 reduces the transformed FS Ventricles over time. The 
minor alleles at SNPs rs10284107 and rs5955016 are, respectively, G 
and C, with the time × SNP interaction effects on the transformed FS 
Ventricles being, respectively, −0.012 (95% CI: −0.017 ~ −0.007; 
p = ´ -

1 19 10
6

. ) and − 0.010 (95% CI: −0.014 ~ −0.006; p = ´ -
1 29 10

6
.

), decreasing the transformed FS Ventricles over time. In addition, 

SNPs rs6540385 and rs763320 located in the AFF2 gene, with the 
minor alleles C and G, respectively, both have the significant 
time × SNP interaction effect of −0.010 (95% CI: −0.014 ~ −0.006) 
with the respective p-values being 1 19 10

6
. ´ -  and 5 37 10

7
. ´ - . This 

appears to demonstrate that these two SNPs would decrease the 
transformed FS Ventricles over time. On the other hand, we could not 
find any SNP main effect in the LMM (Supplementary Table S10). For 
comparison, the results of the cross-sectional XWAS for these nine 
SNPs detected by the longitudinal XWAS are also displayed in 
Supplementary Table S11, although they are not statistically significant.

4. Discussion

AD is a highly heritable disease which brings severe social, 
psychological, and economic burdens to patients (Andrews et  al., 
2020). However, most studies have only focused on autosomes, and 
relatively few studies have tested the susceptibility loci of the AD on 

TABLE 3 p-values of all the methods at six SNPs in cross-sectional XWAS.a

SNP Trait
ADNI 

cohort
QMVXcat QMVZmax QXcat QZmax Tchenw Tplinkw wM3VNA3.3

rs5927116 FS entorhinal GO/2 1.35 × 10−5 2.04 × 10−5 1.74 × 10−6 2.71 × 10−6 2.28 × 10−5 1.18 × 10−4 5.20 × 10−1

rs4596772 FS MidTemp 1 1.39 × 10−5 1.07 × 10−5 9.94 × 10−7 7.75 × 10−7 2.28 × 10−5 4.38 × 10−5 9.37 × 10−1

rs5929538 FDG PETc 1 2.39 × 10−4 1.15 × 10−1 6.05 × 10−5 7.34 × 10−2 2.28 × 10−6 1.06 × 10−3 3.34 × 10−1

rs2213488b FS Hippocampus GO/2 1.30 × 10−6 7.23 × 10−7 3.70 × 10−4 1.99 × 10−4 8.20 × 10−4 2.39 × 10−4 2.02 × 10−4

rs5920524 FDG PETc GO/2 1.72 × 10−6 6.06 × 10−6 5.57 × 10−7 2.12 × 10−6 5.97 × 10−7 3.82 × 10−6 1.81 × 10−1

rs5945306 FAQc 1/GO/2 1.82 × 10−6 9.42 × 10−5 7.67 × 10−7 5.29 × 10−5 9.22 × 10−8 4.17 × 10−6 1.39 × 10−1

aThe p-values less than the significance level of 2.54 ×10–6 are highlighted in bold. bSNP rs2213488 is an overlapping variant in both ADNI cohorts 1 and GO/2. However, it demonstrates the 
statistical significance only in the analysis of ADNI cohort GO/2 with 792 subjects, while it is not statistically significant in the analysis of ADNI cohort 1/GO/2 with 1,546 subjects 
( pQMVX

cat
= ´ -

6 16 10
5

. ,  pQMVZ
max

. ,= ´ -
1 13 10

4  pQXcat = ´ -
5 06 10

4
. ,  pQZ

max
. ,= ´ -

9 77 10
4  pT

chenw
= ´ -

7 86 10
4

. ,  pT
plinkw

= ´ -
3 56 10

4
.  and pwM VNA3 3 3

3
9 17 10. .= ´ - ). cFDG PET 

and FAQ are transformed using the rank-based inverse normal transformation.

TABLE 4 Information on 15 SNPs identified in cross-sectional XWAS and longitudinal XWAS.

XWAS SNP Position
Allele

MAF
p-value of 
HWE test

Gene
Major Minor

Cross-sectional

rs5927116 32,974,359 C T 0.450 0.593 DMD

rs4596772 79,847,546 G A 0.377 0.211 Near to TBX22

rs5929538 113,049,595 G A 0.485 0.485 LOC101928437

rs2213488a 125,142,940 C T 0.255 0.208 TENM1

rs5920524 145,431,897 C T 0.500 0.996 Near to SPANXN1

rs5945306 153,412,601 T C 0.198 0.392 ZFP92

Longitudinal

rs12157031 20,663,243 C T 0.072 0.606 LOC124905257

rs428303 97,936,863 G A 0.365 0.014 Near to NCKAP1P1

rs4829868 137,246,548 G T 0.085 0.116 Near to RAC1P4

rs5931111 137,258,892 C T 0.091 3.112 × 10−4 Near to RAC1P4

rs5953487 140,548,099 T C 0.333 0.014 Near to LOC105373344

rs10284107 143,202,859 A G 0.226 0.747 Near to RN7SKP149

rs5955016 143,402,732 T C 0.430 0.789 Near to MTND1P33

rs6540385 148,580,366 T C 0.428 0.090 AFF2

rs763320 148,593,511 T G 0.433 0.134 AFF2

HWE, Hardy–Weinberg equilibrium; MAF, minor allele frequency. aFor SNP rs2213488, the estimation of the MAF and the calculation of the p-value of the HWE test were based on ADNI 
cohort GO/2 with 792 subjects.
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the X chromosome. Leitão et  al. (2022) undertook a systematic 
analysis of human genes on the X chromosome, and observed a higher 
proportion of disorder-associated genes and an enrichment of the 
genes on the X chromosome involved in cognition, language, and 
seizures, compared to autosomes. Therefore, in this article, 
we identified possible susceptibility loci for the 16 QBs of the AD in 
the ADNI database from both the cross-sectional and longitudinal 
perspectives. To the best of our knowledge, this is the first XWAS of 
the 16 key QBs of the AD for the ADNI database, including the 
cognitive, CSF, and neuroimaging QBs. Specifically, we noticed that 
the 11 QBs (i.e., ADAS13, CDRSB, RAVLT.learning, MMSE, FAQ, 
CSF ABETA, CSF TAU, CSF PTAU, FDG PET, Amyloid PET/AV45, 
and FS Ventricles) are not normally distributed. As such, we used the 
rank-based inverse normal transformation on these QBs before 
conducting the XWAS to reduce the false positive results. For the 
cross-sectional studies, we applied the methods testing for means 
(i.e., QXcat , QZmax , Tchenw , and Tplinkw ), the method testing for 
variances (i.e., wM3VNA3.3), and the methods simultaneously testing 
for means and variances (QMVXcat  and QMVZmax ) for analysis. 
Then, the LMM was utilized to carry out the longitudinal studies, 
assuming that the XCI pattern at the SNP under study is either the 
XCI-R or the XCI-E. Finally, 15 X-chromosomal SNPs were identified 
to be statistically significantly associated with one of the QBs of the 
AD. To clearly understand the whole article, Figure  1 gives the 
workflow of the cross-sectional and longitudinal XWAS, together with 
the corresponding QC process and the number of eventually 
identified SNPs.

Among the 15 identified SNPs, six SNPs were discovered by the 
cross-sectional XWAS, and nine SNPs were found by the longitudinal 
XWAS. These 15 SNPs are statistically significantly associated with one 
cognitive (i.e., FAQ), one PET (i.e., FDG PET) and four MRI (i.e., FS 
Hippocampus, FS Entorhinal, FS Ventricles, and FS MidTemp) 
biomarkers, where PET and MRI are neuroimaging biomarkers. 
We performed the functional annotation for these 15 SNPs through 
the following four databases: Genotype-Tissue Expression3 (GTEx, 
2023), Genome Browser4 (Genome Browser, 2023), National Center 

3 https://gtexportal.org/home/

4 https://genome.ucsc.edu/

for Biotechnology Information5 (NCBI, 2023) and GeneCards6 
(GeneCards, 2023). Note that two of these SNPs, rs4829868 and 
rs5931111, which exhibit statistically significant time×SNP interaction 
effects on the FreeSurfer ventricular volume (i.e., FS Ventricles) in the 
longitudinal XWAS, with the respective p-values being 3 19 10

8
. ´ -  

and 1 92 10
8

. ´ -  (both less than the genome-wide significance level of 
5 10

8´ - ), are located near to the RAC1P4 gene. The RAC1P4 gene has 
been demonstrated to be associated with brain volume measurement 
(Smith et  al., 2021). For the six SNPs (rs5927116, rs4596772, 
rs5929538, rs2213488, rs5920524, and rs5945306) identified in the 
cross-sectional XWAS, SNP rs5927116, belonging to the DMD gene, 
is statistically significantly associated with the volume of the entorhinal 
cortex (i.e., FS Entorhinal). The small entorhinal cortex volume has 
been proved to be an early predictor of conversion to AD in patients 
with MCI (Devanand et  al., 2012). The DMD gene has been 
demonstrated to be associated with depressive disorder (Clark et al., 
2012; Schosser et  al., 2013; Blokland et  al., 2022), educational 
attainment (Lee et  al., 2018; Okbay et  al., 2022), migraine 
(Hautakangas et al., 2022) and schizophrenia (Trubetskoy et al., 2022). 
SNP rs4596772, having a statistically significant effect on the mean 
values of the FreeSurfer middle temporal gyrus volume (i.e., FS 
MidTemp), is found near to the TBX22 gene. One study demonstrated 
that the risk for the progression to the AD is reduced in the patients 
with the MCI having larger middle temporal gyrus volume (Desikan 
et al., 2009). It has been reported that the TBX22 gene is significantly 
associated with autism spectrum disorder in Vietnamese children 
(Tran et al., 2020). SNP rs5929538 is found within the LOC101928437 
gene and has the significant effect on FDG PET, which can reflect the 
brain glucose metabolism mainly determined by synaptic activity 
(Hojjati and Babajani-Feremi, 2022). The glucose metabolism in the 
angular gyrus, temporal gyrus and posterior cingulate cortex has been 
reported to be significantly reduced in patients with the AD, compared 
to controls (Hunt et al., 2007). The LOC101928437 gene is a novel 
candidate gene for non-syndromic intellectual disability in Han 
Chinese subjects of the Qinba region of China (Zhou et al., 2015). SNP 
rs2213488 is located in the TENM1 gene and influences the volume of 

5 https://www.ncbi.nlm.nih.gov/

6 https://www.genecards.org/

TABLE 5 Estimates of time  ×  SNP interaction effects at nine SNPs identified in longitudinal XWAS.

SNP Trait
ADNI 

cohort

XCI-R XCI-E

Time  ×  SNP 95% CI p-valueb Time  ×  SNP 95% CI p-valueb

rs12157031 FS MidTemp 1/GO/2 59.803 36.738 ~ 82.867 7.73 × 10−7 89.681 52.564 ~ 126.797 3.82 × 10−6

rs428303 FS Ventriclesa 1/GO/2 −0.006 −0.009 ~ −0.002 6.61 × 10−4 −0.010 −0.014 ~ −0.006 1.29 × 10−6

rs4829868 FS Ventriclesa 1/GO/2 −0.010 −0.015 ~ −0.006 1.42 × 10−5 −0.017 −0.023 ~ −0.011 3.19 × 10−8

rs5931111 FS Ventriclesa 1 −0.014 −0.020 ~ −0.008 9.80 × 10−6 −0.022 −0.030 ~ −0.015 1.92 × 10−8

rs5953487 FS Ventriclesa 1/GO/2 −0.005 −0.008 ~ −0.001 4.14 × 10−3 −0.010 −0.014 ~ −0.006 1.50 × 10−6

rs10284107 FS Ventriclesa 1/GO/2 −0.006 −0.010 ~ −0.003 3.20 × 10−4 −0.012 −0.017 ~ −0.007 1.19 × 10−6

rs5955016 FS Ventriclesa 1/GO/2 −0.005 −0.008 ~ −0.002 3.82 × 10−3 −0.010 −0.014 ~ −0.006 1.29 × 10−6

rs6540385 FS Ventriclesa 1/GO/2 −0.006 −0.009 ~ −0.003 1.26 × 10−4 −0.010 −0.014 ~ −0.006 1.19 × 10−6

rs763320 FS Ventriclesa 1/GO/2 −0.006 −0.009 ~ −0.003 9.29 × 10−5 −0.010 −0.014 ~ −0.006 5.37 × 10−7

CI, confidence interval. aFS Ventricles is transformed using the rank-based inverse normal transformation. bThe p-values less than the significance level of 2.54 ×10–6 are highlighted in bold.
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the hippocampus (i.e., FS Hippocampus). One study reported that the 
patients with the MCI had the increased rate of hippocampal volume 
loss when they converted to the AD (Moon et al., 2018). The TENM1 
gene is broadly expressed in brain, prostate and 17 other tissues, is 
related to the fear of minor pain (Randall et  al., 2017), and may 
be  associated with X-linked intellectual disability (Bengani et  al., 
2021). SNP rs5920524, located near to the SPANXN1 gene, influences 
FDG PET. The SPANXN1 gene has been demonstrated to be associated 
with brain shape (Naqvi et  al., 2021). SNP rs5945306, within the 
ZFP92 gene, has the significant effect on FAQ. The ZFP92 gene 
exhibits predominant expression in pancreatic islets, with elevated 
levels also detected in the brain (Osipovich et al., 2023). Besides SNPs 
rs4829868 and rs5931111 with the p-values being less than 5 10

8´ -  
mentioned above, there were other seven SNPs (rs12157031, rs428303, 
rs5953487, rs10284107, rs5955016, rs6540385, and rs763320) 
identified in the longitudinal XWAS. SNPs rs6540385 and rs763320, 
which have the significant effects on the rate of the change of the FS 
Ventricles, are found located in the same gene, AFF2. One study 
showed that patients with the AD had the larger ventricular volume, 
compared to the MCI (Carmichael et  al., 2007). CCG repeat 
expansions in the AFF2 gene are associated with X-linked intellectual 
disability (Liu et al., 2021). Besides, the AFF2 gene has been reported 
to be associated with autism spectrum disorder (Mondal et al., 2012), 
neuroticism (Luciano et al., 2021), and educational attainment (Okbay 
et al., 2022). SNPs rs12157031, rs428303, rs5953487, rs10284107, and 
rs5955016 were found to be  located near to the LOC124905257, 
NCKAP1P1, LOC105373344, RN7SKP149, and MTND1P33 genes, 
respectively. However, to the best of our knowledge, there have not 
been functional annotations for these five genes. These novel SNPs 
we discovered may be associated with the QBs of the AD, but this still 
requires to be confirmed by subsequent molecular genetics.

Note that most of the 16 QBs of the AD are statistically 
significantly correlated, with the p-values being less than 4 76 10

4
. ´ -  

in ADNI cohort 1 (Supplementary Figure S5) and 4 17 10
4

. ´ -  in 
ADNI cohort GO/2 (Supplementary Figure S6), respectively. So, 
according to Carrion-Castillo et al. (2017), we did not consider further 
correcting the significance level based on these 16 QBs for multiple 
testing. On the other hand, the looser significance criterion for X 
chromosomes is generally used than autosomes. Therefore, in this 
article, we just set the corrected significance level of the association 
tests to be 0 05 19692 2 54 10

6
. / .= ´ -  in ADNI cohorts 1, GO/2, and 

1/GO/2, where 19,692 is the number of the X-chromosomal SNPs 
after the QC we  used. In fact, even at the significance level of 
0 05 19692 16 1 59 10

7
. / .´( ) = ´ -  corrected based on these 16 QBs of 

the AD, we still identified three SNPs (rs5945306, rs4829868, and 
rs5931111). Specifically, SNP rs5945306 is statistically significantly 
associated with the transformed FAQ (pTchenw

= ´ -
9 22 10

8
. ) from 

Table 3. SNPs rs4829868 and rs5931111 are statistically significantly 
associated with the transformed FS Ventricles over time, with the 
respective p-values of the time×SNP interaction effects being 
3 19 10

8
. ´ -  and 1 92 10

8
. ´ -  under the XCI-E from Table  5. 

Furthermore, we analyzed the ADNI database from both the cross-
sectional and longitudinal perspectives, but unfortunately, the 
identified SNPs of these two perspectives could not be  mutually 
validated (Supplementary Tables S8, S9, S11), and for the longitudinal 
XWAS, only the time×SNP interaction effects are statistically 
significant at the identified SNPs, while the SNP main effects are not 
(Supplementary Table S10). This may be due to the facts that the LMM 

needs to estimate more parameters and the models are more 
complicated, which require larger sample sizes than the cross-sectional 
XWAS to achieve the same statistical power (Uffelmann et al., 2021). 
Finally, we conducted two sensitive analyses as follows. Note that 
we  identified 15 significant SNPs based on a cross-ethnic sample 
consisting of non-Hispanic White, non-Hispanic African American, 
Hispanic and others, by regarding the top 10 PCs of all the autosomal 
and X-chromosomal SNPs as the covariates included in the models to 
adjust the influence of the population stratification. To confirm that 
these significant SNP effects are not due to the population 
stratification, the first sensitive analysis was that we  repeated the 
analysis just based on the non-Hispanic White subjects for these 15 
SNPs, while not incorporating the top 10 PCs, like the studies (Li et al., 
2018; Lee et  al., 2022). The corresponding results were listed in 
Supplementary Tables S12–S14. There were 671, 701, and 1,384 
non-Hispanic White subjects in ADNI cohorts 1, GO/2 and 1/GO/2, 
respectively (Table  2). In the cross-sectional XWAS, three SNPs 
(rs5927116, rs5920524, and rs5945306) among six retained their 
statistical significance (Supplementary Table S12). In the longitudinal 
XWAS, only the time×SNP interaction effects of two SNPs (rs6540385 
and rs763320) among nine remained statistically significant 
(Supplementary Table S13). However, other 10 SNPs were not 
statistically significant, which may be due to the reduced sample size. 
On the other hand, it should be noted that the test statistics QXcat , 
QZmax , QMVXcat and QMVZmax for the cross-sectional XWAS are 
constructed by stratifying the data into females and males. However, 
in the longitudinal XWAS, we only included the sex as a covariate in 
the model to adjust the effect of the sex. To investigate what gender 
drives the significant time×SNP interaction effects of the nine SNPs 
in the longitudinal XWAS, the second sensitive analysis was that 
we additionally performed the longitudinal XWAS in females and 
males separately for these nine SNPs. Unfortunately, there was no 
significant time×SNP interaction effect to be found, probably because 
the sample size for each gender was reduced when conducting the 
longitudinal XWAS stratified by the sex (the results omitted 
for brevity).

In this article, we considered the following issues. (1) Facing the 
challenge that the 11 QBs do not follow normal distributions, we used 
the rank-based inverse normal transformation method on these 11 
QBs to avoid increasing false positive results; (2) We analyzed the 
ADNI database from both the cross-sectional and longitudinal 
perspectives, which allow us to make full use of the ADNI data; (3) 15 
X-chromosomal SNPs for the AD were identified by taking into full 
consideration the XCI patterns. On the other hand, there are several 
limitations in this article which need to be discussed. Firstly, the onset 
of the AD is closely related to a variety of genetic and non-genetic 
factors. However, in addition to genetic information, this article only 
included a few covariates (sex, age, educational level, and APOE4 
allelic dosage), which may affect the accuracy of the results to a certain 
extent. Secondly, our work may be only an exploratory study and 
provide a reference for follow-up researches since the sample size is 
not so large.
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