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Background: Motor symptoms are well-characterized in Parkinson’s disease (PD). 
However, non-motor symptoms, such as depression, are commonly observed 
and can appear up to 10 years before motor features, resulting in one-third of 
individuals being misdiagnosed with a neuropsychiatric disorder. Thus, identifying 
diagnostic biomarkers is crucial for accurate PD diagnosis during its prodromal 
or early stages.

Methods: We employed an integrative approach, combining single nucleus RNA 
and bulk mRNA transcriptomics to perform comparative molecular signatures 
analysis between PD and major depressive disorder (MDD). We examined 39,834 
nuclei from PD (GSE202210) and 32,707 nuclei from MDD (GSE144136) in the 
dorsolateral prefrontal cortex (dlPFC) of Brodmann area 9. Additionally, we 
analyzed bulk mRNA peripheral blood samples from PD compared to controls 
(GSE49126, GSE72267), as well as MDD compared to controls (GSE39653).

Results: Our findings show a higher proportion of astrocytes, and oligodendrocyte 
cells in the dlPFC of individuals with PD vs. MDD. The excitatory to inhibitory neurons 
(E/I) ratio analysis indicates that MDD has a ratio close to normal 80/20, while PD 
has a ratio of 62/38, indicating increased inhibition in the dlPFC. Microglia displayed 
the most pronounced differences in gene expression profiles between the two 
conditions. In PD, microglia display a pro-inflammatory phenotype, while in MDD, 
they regulate synaptic transmission through oligodendrocyte-microglia crosstalk. 
Analysis of bulk mRNA blood samples revealed that the COL5A, MID1, ZNF148, and 
CD22 genes were highly expressed in PD, whereas the DENR and RNU1G2 genes 
were highly expressed in MDD. CD22 is involved in B-cell activation and the negative 
regulation of B-cell receptor signaling. Additionally, CD86, which provides co-
stimulatory signals for T-cell activation and survival, was found to be a commonly 
differentially expressed gene in both conditions. Pathway analysis revealed several 
immune-related pathways common in both conditions, including the complement 
and coagulation cascade, and B-cell receptor signaling.

Discussion: This study demonstrates that bulk peripheral immune cells play a 
role in both conditions, but neuroinflammation in the dlPFC specifically manifests 
in PD as evidenced by the analysis of single nucleus dlPFC datasets. Integrating 
these two omics levels offers a better understanding of the shared and distinct 
molecular pathophysiology of PD and MDD in both the periphery and the brain. 
These findings could lead to potential diagnostic biomarkers, improving accuracy 
and guiding pharmacological treatments.
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1. Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease (ND), affecting approximately 2–3% of the 
population aged 65 years and older, with increasing incidence 
worldwide (Poewe et al., 2017; Ntetsika et al., 2021). PD is a chronic 
movement disorder of the central nervous system (CNS) (Kalia and 
Lang, 2015; Poewe et  al., 2017), characterized by early motor 
symptoms such as tremor, difficulty walking, rigidity, and slowness 
of movement.

In addition to motor symptoms, PD presents with various 
non-motor clinical features that significantly contribute to the overall 
disease burden. These include autonomic dysfunction, cognitive 
impairment, depression, constipation, hyposmia (smell impairment), 
and insomnia (Kalia and Lang, 2015; Poewe et  al., 2017). Some 
non-motor symptoms of PD, such as constipation and 
neuropsychiatric symptoms (NPS) like depression and anxiety, may 
appear up to 10 years before the onset of motor symptoms (Abbott 
et al., 2001; Jacob et al., 2010; Schrag et al., 2015). The presence of 
these prodromal non-motor symptoms often leads to low diagnostic 
accuracy during the early stages of PD, with up to 50% of cases being 
misdiagnosed (Adler et  al., 2014). Depression is a prominent 
non-motor symptom of PD, affecting approximately 40% of patients 
(Schrag et al., 2015). Furthermore, around one-third of individuals 
with PD are misdiagnosed with neuropsychiatric disorders (NPDs) 
during the prodromal or early stages, leading to inappropriate 
treatment (Woolley et  al., 2011). Thus, it is crucial to identify 
diagnostic biomarkers that can differentiate between depression 
arising from PD pathophysiology and other factors, such as trauma.

The main pathological hallmark of PD is neuronal loss in the 
substantia nigra pars compacta, resulting in striatal dopamine 
deficiency and the widespread accumulation of aggregated α-synuclein 
(Poewe et al., 2017). During the early stages of the disease, the loss of 
dopaminergic neurons is primarily constrained to the Ventrolateral 
Substantia Nigra, while other midbrain dopaminergic neurons remain 
relatively unaffected. However, as the disease progresses, neuronal loss 
becomes more widespread (Poewe et al., 2017).

Previous studies have investigated the role and involvement of the 
prefrontal cortex (PFC) in the pathogenesis of both PD and Major 
Depressive Disorder (MDD) (Brück et al., 2004; Zhou et al., 2019). 
The PFC seems to be the main brain region involved in the emergence 
of PD cognitive symptoms, including executive dysfunction and 
thought disorders, possibly due to altered prefrontal dopamine 
signaling (Narayanan et al., 2013). Early-stage PD patients exhibit 
higher activation of the dorsolateral PFC (dlPFC) during normal 
walking compared to controls, which was suggested to be  a 
compensatory mechanism for poor executive functioning (Ranchet 
et  al., 2020). The PFC has also emerged as one of the regions 
consistently impaired in MDD, both in those with current MDD and 
those with an increased vulnerability to MDD (Pizzagalli and Roberts, 
2022). PFC dysfunction has been associated with disordered thought 

and depression in NDs, including PD. However, further research is 
needed to gain insight into the pathophysiological explanation of 
cognitive impairment in PD and the potential association of 
behavioral impairment with prefrontal dysfunction (Narayanan et al., 
2013; Pizzagalli and Roberts, 2022).

The rapid advancement of next-generation sequencing (NGS) 
technologies in recent years has provided valuable insights into 
complex biological diseases, ranging from cancer and NDs to diverse 
microbial communities (Hwang et al., 2018). NGS-based technologies, 
including transcriptomics, are now increasingly focused on 
characterizing individual cells (Hwang et al., 2018). These single-cell 
analyses allow researchers to uncover new and potentially unexpected 
biological discoveries, which may not be evident through traditional 
profiling approaches that assess bulk populations (Hwang et al., 2018). 
For example, single-cell RNA sequencing (scRNA-seq) can reveal rare 
and complex cell populations, unveil regulatory relationships between 
genes, and track the trajectories of distinct cell lineages during 
development (Hwang et al., 2018).

In this study, we compared the molecular signatures of PD and 
MDD by leveraging publicly available transcriptomic datasets. 
We integrated post-mortem dlPFC Brodman area 9 (BA9) single-
nucleus RNA sequencing (snRNA-seq) samples and peripheral blood 
bulk mRNA samples obtained from patients with PD and MDD. By 
analyzing PD and MDD at the single-cell resolution in the dlPFC, 
we  characterized the relative proportion of specific cell types 
associated with each condition. Additionally, we identified differences 
in their gene expression patterns and pinpointed the functional 
biological processes that relate to the differentially expressed genes 
(DEGs) of PD and MDD in each cell type. At the bulk mRNA level, 
comparing blood samples between PD and MDD allowed us to 
characterize the similarities and differences in their gene expression 
patterns in the periphery. Furthermore, we identified the biological 
processes (BP), cellular components (CC), and molecular functions 
(MF) associated with these expression patterns. This integrative 
approach enabled us to combine high- and low-resolution data from 
different tissues (brain and periphery) and unravel the shared and 
divergent molecular signatures of PD and MDD with greater accuracy. 
As a result, we uncovered novel insights that can potentially contribute 
to the discovery of diagnostic biomarkers.

2. Materials and methods

The workflow implemented in this study is illustrated in Figure 1.

2.1. GEO dataset information

We extensively searched the Gene Expression Omnibus (GEO) 
database, a resource provided by the National Center for 
Biotechnology Information (NCBI) (Edgar et  al., 2002), for 
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high-throughput gene expression and other functional genomics 
datasets related to PD and MDD (Edgar et al., 2002). Our search 
aimed to identify scRNA-seq and transcriptomics data that met the 
following criteria: (i) scRNA-seq datasets for PD and MDD containing 
the dlPFC region BA9; (ii) transcriptomics datasets for PD and MDD 
in peripheral blood mononuclear cells (PBMC). Based on these 
criteria, we identified the single-nucleus transcriptomic datasets with 
accession numbers GSE202210 (Zhu et al., 2022) and GSE144136 
(Nagy et al., 2020), as well as the PBMC bulk transcriptomic datasets 
with accession numbers GSE49126 (Mutez et al., 2014), GSE72267 
(Calligaris et al., 2015) and GSE39653 (Savitz et al., 2013). For detailed 
information regarding the collection and sequencing of the post-
mortem brain and peripheral blood samples included in these 
datasets, please refer to the respective papers associated with 
each dataset.

2.1.1. Single-nucleus RNA dlPFC datasets
The GSE202210 dataset contains tissue samples from the 

dlPFC obtained from three female and three male patients with 
PD, with ages ranging from 72 to 96, along with six non-diseased 
gender/age-matched controls. The six PD patients had tau Braak 
stage ranging from levels I-III. On the other hand, the GSE144136 
dataset consists of dlPFC tissue samples obtained from 17 male 
patients with MDD, along with 17 non-diseased gender/
age-matched controls (Nagy et al., 2020). The cause of death of the 
17 MDD cases was suicide, and their mean average age was 
41.06 ± 4.66 years. For the purpose of this study, only the sn-RNA 
data from the six PD patients and 17 MDD patients were used for 
analysis, while the control samples from both datasets were 
excluded. For a detailed description of the datasets, please refer to 
Table 1. The count matrix, barcodes, and features files for both 

FIGURE 1

Schematic representation of the workflows applied for the analysis of the (A) sn-RNA seq dlPFC datasets and (B) bulk mRNA peripheral blood 
mononuclear cells datasets of PD vs. MDD.
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datasets were downloaded from the GEO database and utilized for 
the analysis.

2.1.2. Bulk-mRNA peripheral blood datasets
The GSE49126 dataset consisted of 9 individuals heterozygous for 

LRRK2 G2019S mutation (mean age: 66.2 ± 17; 4 males and 5 females) 
and 20 individuals with sporadic PD (mean age: 62.3 ± 8; 9 males and 
11 females). Twenty controls (20 males, 20 females, mean age 
52.9 ± 19) were recruited from volunteers with no history of personal 
or familial neurological disorders (Mutez et al., 2014). The GSE72267 
dataset consists of 39 PD patients and 20 controls with mean ages of 
68.8 years and 60.3 years, respectively. Lastly, the GSE39653 dataset 
consisted of 8 individuals with bipolar disorder (BD) (4 BD type 1 and 
4 BD type 2), 21 individuals with MDD with a mean age of 35 ± 10, 
and 24 healthy controls with a mean age of 34 ± 12 (Savitz et al., 2013). 
Regarding GSE39653 (Savitz et al., 2013), only MDD patients and 
controls were used for further analysis, while BD type 1 and type 2 
samples were excluded. Table 2 provides a detailed description of the 
included datasets.

2.2. Analysis of the single-nucleus 
post-mortem brain samples form PD and 
MDD patients

2.2.1. Pre-processing and integration analysis of 
the single-nucleus datasets

Starting from the unique molecular identifier (UMI) count 
matrices of the two dlPFC snRNA-seq datasets of 6 patients with 
PD (GSE202210) and 17 patients (6 Batches) with MDD 
(GSE144136) without control cases, we used the Seurat (version 
4.0.2) single-cell analysis R package (Hao et al., 2021) to perform 
quality control (QC) on both datasets. Low-quality nuclei with 
either less than 1,000 features (genes) or more than 6,000 features 
were removed from the MDD dataset. For the PD dataset, 
low-quality nuclei with either less than 200 features or more than 
6,000 features and a mitochondrial percentage greater than 5 were 

removed. The MDD dataset did not contain any mitochondrial 
genes as they were removed by the authors (Nagy et al., 2020) who 
provided the GSE144136 dataset. To perform the integration 
between the two datasets, we limited the comparison only to their 
common genes (features), resulting in individual matrices limited 
to 20,093 common genes (features) profiled in 39,834 and 32,707 
nuclei in PD and MDD, respectively. Before performing the 
integration, each UMI dataset was normalized, and the 2000 most 
variable features across all nuclei in each sample were identified 
using Seurat. Then, the PD and MDD experimental conditions were 
normalized (using the Seurat function NormalizeData) and 
integrated using the Seurat data integration workflow.

2.2.2. Clustering and cell type annotation
After integrating the MDD and PD datasets, the integrated data 

were scaled using the ScaleData function of Seurat, and dimensionality 
reduction using principal components analysis (PCA) was performed 
on the first 50 PCs. The PC elbow plot, which visualizes the standard 
deviation for each PC (Supplementary File 1 Figure S1), was used to 
determine the number of PCs to be used for further analysis. Based 
on the elbow plot, the first 30 PCs were selected for Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP) 
and for the FindNeighbors function (Seurat). The FindClusters 
function (Seurat) was then applied at a resolution of 0.2, resulting in 
the identification of 26 clusters.

The annotation of the 26 clusters was performed by manually 
annotating the clusters, utilizing well-established cell markers (Zhang 
et  al., 2019). Additionally, this annotation was guided by the cell 
markers used in the annotations of the original studies that provided 
the two datasets (Nagy et al., 2020; Zhu et al., 2022). To annotate these 
26 clusters, we made use of specific markers for each cell type. These 
markers included: astrocytes (GFAP, AQP4, and SLC1A2), T cells 
(SKAP1 and IL7R), oligodendrocytes (PLP1, MOG, MOBP, and MBP), 
macrophage/microglia (CSF1R, CD74, and PYRY12), endothelial 
(FLT1, EBF1, and CLDN5), inhibitory neuron (GAD1 and GAD2), 
oligodendrocyte precursor cell (OPC) (CSPG4 and PDGFRA), and 
excitatory neuron (SATB2 and SLC17A7).

TABLE 1 Detailed information of the sn-RNA transcriptomics datasets of PD and MDD analyzed in this study.

Accession ID Platform Platform type Sample size (case/
control)

Sample type

GSE202210 GPL24676 Illumina NovaSeq 6000 6 PD Post-mortem brain tissue 

(BA9 area dlPFC)

GSE144136 GPL20301 Illumina HiSeq 4000 17 MDD Post-mortem brain tissue 

(BA9 area dlPFC)

TABLE 2 Detailed information of the bulk mRNA peripheral blood datasets of PD and MDD analyzed in this study.

Accession ID Platform Platform type Sample size (case/
control)

Sample type

GSE49126 GPL4133 Agilent 014850 Whole Genome 

Microarray 4x44K G4112F

30 PD/20 Controls Peripheral blood mononuclear 

cells

GSE72267 GPL571 Affymetrix Human Genome U133A 

2.0 Array

39 PD/20 Controls Peripheral blood mononuclear 

cells

GSE39653 GPL10558 Illumina HumanHT-12 V4.0 

expression beadchip

21 MDD/24 Controls Peripheral blood mononuclear 

cells

https://doi.org/10.3389/fnagi.2023.1273855
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Christodoulou et al. 10.3389/fnagi.2023.1273855

Frontiers in Aging Neuroscience 05 frontiersin.org

2.2.3. Differential gene expression analysis 
between the clusters, the cells and PD versus 
MDD

The FindAllMarkers function (Seurat) was used to identify 
differentially expressed genes (DEGs) that exhibit statistically 
significant difference in their expression between the clusters and 
between the cells. DEGs having an average log2FC > 2.0 and adjusted 
value of p < 0.05 were considered as statistically significant. The min.
pct and logFC threshold parameters were both set at 0.25, and the 
Wilcoxon Rank Sum test was used.

Additionally, to gain insight on the average gene expression 
patterns between PD and MDD we first used the AverageExpression 
function (Seurat) to identify the average expression level of genes 
across all samples in microglia cells, astrocytes, excitatory neurons and 
inhibitory neurons in each condition. Subsequently, the difference 
between the average gene expression of PD from MDD was found for 
each of the four cell types. Scatter plots were then used to visualize the 
gene expression differences between PD vs. MDD, for the four cell 
types, with the top 10 upregulated and top 10 downregulated genes 
between the two conditions highlighted on each scatter plot.

Furthermore, we conducted differential gene expression analysis 
using the normalized RNA data to identify statistically significant 
genes that are upregulated (average log2FC > 1, adj. value of p < 0.05) 
and downregulated (average log2FC < −1, adj. value of p < 0.05) in the 
cells of PD compared to MDD. The analysis was performed using the 
FindMarkers function (Seurat), selecting the default parameters and 
utilizing the Wilcoxon Rank Sum test. T cells were excluded from this 
segment of the analysis as they were exclusively present in PD samples 
and absent in MDD samples. These DEGs were subsequently subjected 
to enrichment analysis.

2.2.4. Reconstruction and analysis of microglia 
protein–protein interaction networks of the 
DEGs in PD compared to MDD

The upregulated and downregulated DEGs identified when 
comparing PD and MDD microglia cells were utilized as input in 
STRING plug-in of Cytoscape (Doncheva et al., 2019) to create 
microglia cell-specific PPI networks. Specifically, we constructed two 
separate networks for the upregulated and downregulated DEGs. 
Following the construction of the PPI networks, the cytoHubba (Chin 
et al., 2014) plugin of Cystoscope was used to perform topological 
analysis on each of these constructed PPI networks. The confidence 
cut-off score for the PPIs was set at 0.7. The primary objective of this 
analysis was to pinpoint DEGs that exhibit high connectivity and 
centrality within PD microglia cells relative to MDD, and vice versa. 
To achieve this goal, we employed two topological measures: degree 
centrality and closeness centrality. These measures helped us identify 
high centrality DEGs within the microglia PPI networks that play 
significant roles in the specific molecular interactions associated with 
PD compared to MDD.

2.2.5. Gene ontology enrichment analysis of the 
DEGs from each cell type

Enrichment analysis was performed using the clusterProfiler 
package (Wu et al., 2021) in R. For this analysis, we utilized the 
up- and down-regulated DEGs, identified for each cell when 
comparing PD condition to MDD condition, specifically focusing 
on genes with an adjusted value of p < 0.05. These genes were 

used as input in the enrichGO function of clusterProfiler to 
identify GO biological processes (GO-BP) associated with the 
upregulated and downregulated genes. The enrichGO function 
was configured with the following parameters: BP ontology, p 
adjusted method Benjamini & Hochberg (BH), a value of p 
cut-off set at 0.01, and a q-value cut-off set at 0.05. The default 
values were used for all other parameters. Redundant terms were 
removed from the obtained results using the simplify() method 
of clusterProfiler.

2.3. Analysis of the microarray peripheral 
blood samples from PD and MDD patients

2.3.1. Data processing and differential gene 
expression identification

The linear models for microarray data (Limma), an R package that 
permits the identification of DEGs from high-throughput techniques 
such as microarray experiments (Ritchie et al., 2015), was used to 
identify the DEGs for the GSE49126 dataset (PD vs. controls), 
GSE72267 (PD vs. controls), and GSE39653 (MDD vs. controls) 
(Ritchie et al., 2015). The GSE49126 and GSE72267 datasets were 
normalized and log2 transformed. Following the Limma analysis, a 
total of 400 DEGs (top 200 upregulated and top 200 downregulated 
DEGs) with an adjusted value of p < 0.05 were selected for each PD 
and MDD dataset for further analysis.

The intensity matrix and top IDs for each of the datasets were 
input into the Parmigene R-package, which performs parallel 
estimation of mutual information based on estimates from the 
k-nearest neighbor’s distances and uses algorithms to reconstruct 
gene regulatory networks (Sales and Romualdi, 2011). The output 
obtained is a clr file for PD patients vs. controls and MDD patients 
vs. controls. The R package Igraph (Aittokallio and Schwikowski, 
2006) was then used to obtain the edge lists for each dataset. 
However, to avoid noise within our gene co-expression networks and 
gain meaningful biological information from each of the networks, 
a further cutoff threshold of the log function [log(weight)]; was 
applied to the final edge list for all three datasets. Therefore, only 
genes with weights of 1 and above were used as inputs in Cytoscape 
(Shannon et al., 2003) for the construction of PD and MDD gene 
co-expression networks.

2.4. PPI networks of bulk-RNA datasets and 
hub gene identification

The STRING plug-in of Cytoscape (Doncheva et al., 2019) was 
used to obtain the PPIs of the PD and MDD gene co-expression 
networks. The constructed PPI networks were analyzed using the 
cytoHubba (Chin et al., 2014) plug-in. In addition, cytoHubba was 
utilized to rank the shared common gene/s obtained using the 
Venny tool1 from all three datasets. CytoHubba ranks the nodes 
within the biological network using different topological measures, 
including (i) degree, (ii) closeness, (iii) betweenness, and (iv) 

1 https://bioinfogp.cnb.csic.es/tools/venny/
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maximal clique centrality (MCC) measures. For further information 
regarding each approach, please refer to the cytoHubba paper (Chin 
et al., 2014).

2.5. Functional enrichment analysis of the 
DEGs of the bulk mRNA datasets

The top 200 over- and under-expressed genes identified for each 
dataset were used as inputs in Metascape, an open-source web-based 
tool that performs enrichment analysis for a variety of organisms 
(Zhou et al., 2019). In Metascape, terms with a value of p < 0.05, a 
minimum count of 3, and an enrichment factor of >1.5 (the ratio 
between the observed count and the counts expected by chance) are 
grouped into clusters based on their membership similarity. p-values 
are calculated based on the cumulative hypergeometric distribution, 
and q-values are based on the Benjamini-Hochberg method for 
multiple testing. Kappa Scores are used as the similarity metric to 
perform hierarchical clustering on the enriched terms obtained, and 
sub-trees with a similarity of >0.3 are clustered together. Only the 
most statistically significant terms are chosen to be represented within 
the cluster (Zhou et al., 2019). Enrichment analysis was performed by 
selecting the Homo Sapiens organism using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) library and the GO libraries of BP 
(Zhou et al., 2019), Cellular Components (GO-CC) and Molecular 
Function (GO-MF) to identify statistically significant biological 
pathways and processes with a value of p < 0.05. In addition, the 
shared, common, and distinct KEGG pathways and GO terms 
between the three bulk transcriptomic datasets were identified using 
the Venny tool (footnote 1).

3. Results

3.1. Single-nucleus comparative 
transcriptomic profiling of post-mortem 
brain tissue samples of PD and MDD

Using publicly available sn-RNA seq data obtained from the 
dlPFC (BA9) of post-mortem brain tissues from 17 patients with 
MDD (GSE144136) and 6 patients with PD (GSE202210), 
we  compared their transcriptomic signatures to identify 
commonalities and differences between the two conditions. By using 
the common genes between the two datasets, we integrated the two 
conditions (Butler et al., 2018) and performed quality control. We then 
clustered the 72,541 post-filtering brain nuclei (MDD and PD; 
Supplementary File 1 Figure S2) using the first 30 PCs (see Methods 
2.2.2), which led to the identification of 26 distinct clusters. By using 
known cell markers, we annotated the 26 clusters and identified eight 
cell types: astrocytes with two clusters (ASTRO-4, ASTRO-20), 
oligodendrocytes with two clusters (OLIGO-1, OLIGO-3), microglia 
with two clusters (MIGRO-25, MIGRO-7), inhibitory neurons with 
six clusters (INH-2, INH-13, INH-11, INH-19, INH-16, INH-8), 
excitatory neurons with ten clusters (EX-14, EX-17, EX-5, EX-15, 
EX-9, EX-12, EX-6, EX-0, EX-18, EX-24), endothelial with two 
clusters (ENDO-21, ENDO-23), T cells (TCELL-22), and OPC 
(OPC-10) (Figures  2A,B; Supplementary File 1 Table S1; 
Supplementary File 1 Figure S3).

Interestingly, T cells were only identified in PD but not in MDD, 
with all other seven cell types identified in both conditions 
(Figure 2C). However, the relative proportion of the seven cell types 
was different between the two conditions, with PD having significantly 
more microglia than MDD. This, in combination with the detection 
of T cells in PD, suggests the presence of neuroinflammation in the 
dlPFC (BA9) of PD. Additionally, there were more astrocytes in PD, 
indicating the presence of astrogliosis, as well as significantly more 
oligodendrocytes and OPCs compared to the MDD condition. 
Furthermore, the relative proportion of excitatory to inhibitory 
neurons (E/I ratio) in MDD was 75/25, while in PD it was 62/38. 
Regarding the clusters of cell types, microglia cluster MIGRO-25 was 
only found in the PD condition, while clusters ENDO-21 and EX-17 
of endothelial and excitatory neurons, respectively, had fewer nuclei 
in MDD compared to PD (Figure 2D). Moreover, some excitatory 
neuron clusters showed a higher proportion in the MDD condition 
than PD, including EX-12, EX-15, EX-5, and EX-6.

We then identified the DEGs between the 26 clusters and between 
the 8 cell types to determine cluster- and cell-type-specific marker 
patterns, respectively. DEGs with an average log2FC >2.0 and adjusted 
value of p < 0.05 were considered statistically significant, resulting in a 
total of 625 DEGs between the eight cell types (Figure 2E) and a  
total of 1,126 DEGs between the 26 clusters (Figure  2F; 
Supplementary File 2 Tables S1, S2). The top 3 enriched markers for 
each cell type were also identified, including PLP1, RNF220, and ST18 
for oligodendrocytes; SLC1A2, ADGRV1, and GPC5 for astrocytes; 
LHFPL3, VCAN, and TNR for OPCs; GRIK1, ERBB4, and ZNF385D 
for inhibitory neurons; RALYL, KCNIP4, and CHN1 for excitatory 
neurons; CEMIP, FLT1, and ADAMTS9 for endothelial cells; PTPRC, 
ETS1, and PRKCH for T cells; and SPP1, RUNX1, and DOCK8 
for microglia.

3.1.1. Differences in the gene expression profile 
of PD compared to MDD

We employed two distinct approaches to compare the gene 
expression profiles between PD and MDD cells. Firstly, we examined 
differences in the average gene expression patterns of PD compared to 
MDD in microglia cells, astrocytes, excitatory neurons and inhibitory 
neurons. This initial analysis aimed to broadly identify genes that 
deviate significantly between the two conditions. Secondly, 
we  conducted a more rigorous analysis to identify statistically 
significant DEGs that were either upregulated or downregulated in PD 
compared to all MDD cells. Subsequently, we  investigated the 
functional implications of these identified DEGs in each cell type. To 
achieve this, we performed GO enrichment analysis to uncover the 
biological functions associated with these DEGs.

3.1.1.1. Average gene expression
The analysis of the average gene expression profiles in microglia 

cells, astrocytes, excitatory neurons and inhibitory neurons between 
PD and MDD allowed to identify the top 10 upregulated and top 10 
downregulated genes that exhibited significant differences in their 
average gene expression levels between the two conditions within 
these cell types. Specifically, our findings reveal that PD microglia cells 
exhibit higher average expression levels of the SPP1, TLR2 and 
CCDC26 genes compared to MDD microglia. On the other hand, 
MDD microglia exhibit higher average expression levels of the 
IL1RAPL1, NRXN3 and SNAP25 genes (Figure  3A). Increased 
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expression of TLR2 plays a pivotal role in the underlying pathological 
mechanism contributing to chronic neuroinflammation in PD. When 
exposed to α-synuclein, microglia become activated, adopting a 
pro-inflammatory TLR2 phenotype, which facilitates 
neurodegeneration (Kim et al., 2013). Additionally, PD astrocytes 
exhibit higher average expression levels of the glial fibrillary acidic 
protein (GFAP) gene compared to MDD astrocytes (Figure  3B). 
Elevated GFAP expression is a hallmark of astrogliosis, a condition 

that is characterized by abnormal proliferation and activation of 
astrocytes that leads to the release various neurotoxic substances in 
response to nearby neuronal damage (Eng and Ghirnikarz, 1994). The 
presence of these reactive astrocytes contributes to neuroinflammation, 
which is a key pathological characteristic of PD (Booth et al., 2017). 
In contrast to PD, MDD astrocytes exhibit higher expression levels of 
the Ubiquitin specific protease 39 (USP39) gene, which has oncogenic 
effects and plays a role in various cancers, including promoting glioma 

FIGURE 2

Single-nucleus of dlPFC samples from PD and MDD. (A) UMAP plot of the 72,541 brain nuclei post-filtering from MDD and PD, colored by cell type: 
endothelial (ENDO), microglia (MIGRO), excitatory neurons (EX), inhibitory neurons (INH), oligodendrocytes (OLIGO), brain T cells (TCELL), astrocytes 
(ASTRO), and oligodendrocyte precursor cells (OPCs). (B) UMAP plot of the 26 annotated clusters, indicating the associated cell type for each cluster. 
(C) Proportion of brain nuclei found for each cell type in the MDD and PD conditions. (D) Proportion of brain nuclei found for each cluster in the MDD 
and PD conditions. (E) DEG markers (average log2FC >2.0 and adjusted value of p  <  0.05) found between the 8 cell types. (F) DEG markers (average 
log2FC >2.0 and adjusted value of p  <  0.05) found between the 26 clusters.
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progression (Ding et al., 2019; Xiao et al., 2022). Interestingly, patients 
with glioma have a higher risk of developing depression (Hu et al., 
2022), suggesting that USP39 may serve as a potential bridge between 
the two conditions. Both excitatory (Figure  3C) and inhibitory 
neurons (Figure  3D) in PD exhibited similar patterns of higher 
average expression levels of the NAV3, DLGAP2, KAZN, MTRNR2L12, 
CCNH and XIST genes compared to MDD excitatory and inhibitory 
neurons, which both display higher average expression of the MEG3, 
LRP4, LINGO1 and PDE5A genes.

3.1.1.2. DEGs analysis and biological functions
Furthermore, a more in-depth analysis analysis of the gene 

expression profiles across all PD cells compared to MDD was 
conducted. This involved employing differential gene expression 
analysis to identify statistically significant DEGs that distinguish the 
two conditions within each cell type. The differential expression 
analysis revealed a total of 466 upregulated DEGs (average log2FC 
>1, adj. value of p < 0.05) and 954 downregulated DEGs (average 
log2FC < −1, adj. value of p < 0.05) in the seven PD dlPFC cells 
when compared to MDD cells (see Supplementary File 2  
Tables S3, S4). T cells were excluded from this part of the analysis 
as they were exclusively found in PD samples and absent in MDD 

samples. Among the PD dlPFC cells, microglia exhibited the highest 
number of DEGs (235 upregulated, 371 downregulated), while 
inhibitory neurons had the fewest number of DEGs (23 upregulated, 
49 downregulated) (Table 3). Furthermore, endothelial cells showed 
only 3 upregulated DEGs and 202 downregulated DEGs in PD 
compared to MDD.

We also conducted GO enrichment analysis to determine the 
biological processes associated with the upregulated DEGs (Figure 4A) 
and downregulated DEGs (Figure 4B) in PD cells relative to MDD 
cells. Our analysis identified a total of 173 downregulated GO BP (see 
Supplementary File 2 Table S5) and 116 upregulated GO BP (see 
Supplementary File 2 Table S6) associated with the PD cells relative to 
MDD. PD microglia showed significant upregulation in biological 
processes related to hemopoiesis, including myeloid cell differentiation 
and myeloid cell homeostasis. Additionally, the immune response-
regulating signalling pathway, involved in immune response 
regulation, was also upregulated in microglia. Astrocytes exhibited 
upregulation in GO terms associated with protein stabilization, 
regulation of protein stability, negative regulation of growth, myeloid 
cell differentiation, cellular response to metal ion, and response to 
oxidative stress. For OPC, the upregulated GO terms were related to 
cell growth regulation, including regulation of extent of cell growth, 

FIGURE 3

Comparison of the average gene expression profile of PD compared to MDD in: (A) microglia cells, (B) astrocytes, (C) excitatory neurons and 
(D) inhibitory neurons.
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regulation of cell growth, and regulation of axon extension. No 
significant enriched upregulated terms were found for the remaining 
cell types.

The top downregulated GO terms of PD microglia, compared to 
MDD microglia, are associated with the regulation of neuron 
projection development, synapse organization, cell junction assembly, 
synaptic transmission, and trans-synaptic signalling. Interestingly, 
these downregulated terms are also observed in oligodendrocyte cells. 
In excitatory neurons, only the term “cytoplasmic translation” is 
downregulated, which is also found in endothelial cells. Similarly, like 
microglia and oligodendrocytes, downregulated terms in PD OPC 
relate to the regulation of synaptic transmission and trans-synaptic 
signalling. In addition, downregulated terms in PD OPC include those 
involved in the positive regulation of monoatomic ion transport. In 
PD endothelial cells, the top downregulated GO terms are associated 
with ribonucleoprotein assembly, including ribosome assembly, rRNA 
processing, and ribosomal small subunit biogenesis. No significant 
downregulated enriched terms were found in inhibitory neurons and 
astrocytes of PD cells compared to MDD cells.

3.1.1.3. High centrality DEGs in PD microglia compared to 
MDD

To identify key DEGs playing significant roles in the biological 
processes of microglia cells in PD compared to MDD, 
we  constructed microglia cell-specific PPI networks using the 
upregulated and downregulated DEGs identified in the comparison 
between PD and MDD (see Table 3). Through topological analysis, 
we pinpointed the top 5 upregulated DEGs exhibiting the highest 
degree centrality and closeness centrality within each of the 
microglia PPI networks.

In the microglia PPI network created with the upregulated DEGs 
in PD, the DEGs with the highest centrality scores included STAT3, 
LYN, SYK, and GRB2. These genes demonstrated both high degree and 
closeness centrality. Additionally, HCK ranked among the top 5 genes 
with the highest closeness centrality, while LCP2 ranked among the 
top 5 in terms of degree score. These findings underscore the critical 
role of tyrosine protein kinases HCK, LYN and SYK, along with the 
signal transduction gene STAT3, in orchestrating microglia-mediated 
neuroinflammation in PD.

TABLE 3 Number of upregulated and downregulated DEGs and enriched GO BP found for each cell type in PD compared to MDD.

Upregulated DEGs Downregulated DEGs Upregulated GO BP Downregulated GO BP

MIGRO 235 371 92 81

OLIGO 81 150 0 64

EX 24 62 0 1

INH 23 49 0 0

ASTRO 48 29 17 0

OPC 52 81 7 15

ENDO 3 202 0 12

FIGURE 4

GO enrichment analysis results of the (A) upregulated and (B) downregulated DEGs of PD compared to MDD for each cell type.
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FIGURE 5

KEGG enrichment analysis with Metascape (A) GSE49126 (PD vs. controls) dataset pathways, (B) GSE72267 (PD vs. controls) dataset pathways and 
(C) GSE39653 (MDD vs. controls) dataset pathways.

Furthermore, the topological analysis of the microglia PPI 
network involving the downregulated DEGs in PD, highlighted DEGs 
such as CAMK2A, GRIN2B, GRM5 and SYP, which exhibited both 
high degree and closeness centrality. Moreover, GRIN2A ranked 
among the top  5 genes with the highest degree centrality, while 
NRXN1 was among the top  5  in terms of closeness score. These 
findings emphasize the role of metabotropic (GRM5) and ionotropic 
glutamate receptors (GRIN2B, GRIN2A) in orchestrating microglia-
mediated synaptic transmission in MDD, in contrast to PD where 
microglia exhibit a neuroinflammation phenotype, and the expression 
of these genes is downregulated.

3.2. Bulk comparative transcriptomic 
profiling of peripheral blood samples of PD 
and MDD

3.2.1. Gene co-expression networks of PD and 
MDD

The gene co-expression networks of the GSE49126 (PD vs. 
Control), GSE72267 (PD vs. Control), and GSE39653 (MDD vs. 
Control) datasets, as shown in Supplementary File 3 Figures S1–S3, 
consisting of 375, 393, and 253 nodes, and 973, 886, and 360 edges, 
respectively. The top 200 upregulated and top 200 downregulated 
genes for each dataset can be found in Supplementary File 3 Tables S1–S3. 
Additionally, the cytoHubba (Chin et al., 2014) app was utilized for 
topological analysis, employing degree, closeness, betweenness, and 
MCC measures, to identify the highest-ranking genes within each 
co-expression network. The ranking tables and networks are available 
in Supplementary File 3 Tables S4–S15 and Supplementary File 3  
Figures S4–S7. For the GSE49126 (PD vs. controls) dataset, the 
top-ranking genes identified are COL5A1 (degree, closeness, and 
betweenness) and MID1 (MCC). In the GSE72267 (PD vs. controls) 
dataset, ZNF148 (degree, closeness, and betweenness) and CD22 
(MCC) are the top-ranking genes. Lastly, for the GSE39653 (MDD vs. 
controls) dataset, the top-ranking genes are DENR and RNU1G2 
(degree and MCC), and CSTA (closeness and betweenness).

In addition, the Venny tool (footnote 1) was employed to identify 
the shared, common, and distinct DEGs among the three datasets, as 
shown in Supplementary File 3 Table S16. CD86 was identified as a 
common DEG among all three datasets. The CD86 protein is expressed 
on antigen-presenting cells (APC), including dendritic cells, 
macrophages, Langerhans cells, B-cells, and memory B-cells 
(Lenschow et al., 1993). It provides co-stimulatory signals essential for 
T-cell activation and survival (Ohue and Nishikawa, 2019).

CytoHubba was also utilized to identify the top-ranking PPIs of 
CD86, based on degree, closeness, betweenness, and MCC topological 
measures. The results can be  found in Supplementary File 3  
Tables S17–S20 and Supplementary File 3 Figures S4–S7. The 
top-ranking proteins that CD86 interacts with, based on the three 
topological measures, are CD80 ➔ CD4➔ CD86 ➔ CTLA4 ➔ CD8A 
➔ IL10 ➔ CD28 ➔ CD247 ➔ CD3E ➔ ICAM. The order of proteins 
is based on the ranking obtained from cytoHubba, where nodes 
colored from red to yellow represent the highest to lowest ranked 
nodes based on the applied topological method.

3.2.2. KEGG enrichment analysis and GO of PD 
and MDD

Enrichment analysis was conducted using the KEGG and GO 
libraries with Metascape for each of the three datasets: GSE49126, 
GSE72267, and GSE39653. The top-ranked KEGG pathways for 
each dataset can be found in Supplementary File 4 Tables S1–S3. 
For the GSE49126 dataset (PD vs. Controls) (Figure 5A), the top 
three scoring pathways are as follows: (i) Malaria (hsa05144), (ii) 
Complement and coagulation cascades (hsa04610), and (iii) Bile 
secretion (hsa04976). In the GSE72267 dataset (PD vs. controls) 
(Figure 5B), the top three scoring pathways are: (i) Hematopoietic 
cell lineage (hsa04640), (ii) B cell receptor signalling pathway 
(hsa04662), and (iii) Cytokine-cytokine receptor interaction 
(hsa04060). Lastly, for the GSE39653 dataset (MDD vs. Controls) 
(Figure  5C), the top three scoring pathways are: (i) Intestinal 
immune network for IgA production (hsa04672), (ii) NF-kappa B 
signalling pathway (hsa04064), and (iii) Glutathione metabolism 
(hsa00480).
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Additionally, GO analysis was performed using GO-BP, GO-CC, 
and GO-MF for all three datasets. The results of the GO-CC analysis 
can be  found in Supplementary File 3 Figure S8 and 
Supplementary File 4 Tables S4–S6, and the GO-MF analysis in 
Supplementary File 3 Figure S9 and Supplementary File 4 Tables S7–S9. 
The GO-BP analysis (Figure 6A) for the GSE49126 dataset (PD vs. 
controls) revealed the top three GO terms as follows: (i) Positive 
regulation of immune response (GO:0050778), (ii) Tube 
morphogenesis (GO:0035239), and (iii) Regulation of leukocyte 
activation (GO:0002694). In the case of the GSE72267 dataset (PD vs. 
controls), the GO-BP analysis (Figure 6B) identified the top three GO 
terms as: (i) Positive regulation of immune response (GO:0050778), 
(ii) Regulation of protein kinase activity (GO:0045859), and (iii) 
Positive regulation of defence response (GO:0031349). For the 
GSE39653 dataset (MDD vs. controls), the top three GO terms from 
the GO-BP analysis (Figure  6C) were: (i) Positive regulation of 
leukocyte activation (GO:0002696), (ii) Regulation of innate immune 
response (GO:0045088), and (iii) Adaptive immune response based 
on somatic recombination of immune receptors built from 
immunoglobulin superfamily domains (GO:0002460).

The Venny tool (footnote 1) was utilized to identify the common 
and distinct KEGG pathways and GO terms among the three datasets: 
GSE49126, GSE72267, and GSE39653. The results of this analysis can 
be  found in Supplementary File 3 Figure S10 and 
Supplementary File 3 Tables S1–S2.

4. Discussion

Proper functioning of the PFC is crucial for higher executive 
functions, such as decision-making, thinking, attention, emotion 
regulation, and impulse control. Dysfunctions in the PFC have been 
implicated in various neurological and NPDs, including PD and MDD 
(Xu et al., 2019). Interestingly, the presence of an NPD, such as MDD, 

can increase susceptibility risk of developing comorbid NDs like PD 
and Alzheimer’s disease (AD) (Wang et al., 2018; Jeong et al., 2021). 
Similarly, PD is associated with a higher incidence of comorbid MDD, 
which often results in more severe symptomatology (Marsh, 2013). 
However, the underlying pathophysiological mechanisms contributing 
to the comorbidity of PD and MDD remain poorly understood. 
Additionally, NPS are prevalent in NDs like AD, PD, and multiple 
sclerosis (MS) (Lyketsos et al., 2007). During the prodromal phase or 
early stages of NDs, patients may exhibit NPS that emerge before the 
onset of classical neurological symptoms. These emotional and 
behavioral symptoms during the early stages can lead to misdiagnosis, 
with approximately one-third of individuals being incorrectly 
diagnosed with NPDs rather than NDs, ultimately receiving 
inappropriate treatment (Woolley et al., 2011).

In this study, we aimed to compare the transcriptomic molecular 
signatures of PD and MDD. We accomplished this by integrating data 
obtained from both the analysis of snRNA and bulk mRNA data in the 
brain and peripheral tissues, respectively. The integration of these two 
omics levels offers a more comprehensive understanding of the shared 
and distinct molecular pathophysiology of PD and MDD, enabling 
exploration of these conditions not only in the periphery but also at 
the brain level. This provides an enhanced resolution and an accurate 
view of their molecular signatures, potentially leading to the 
identification of more effective diagnostic markers.

Comparative analysis of the snRNA data from post-mortem 
dlPFC (BA9) tissues enabled us to identify specific differences in cell 
types and their gene expression patterns between PD and MDD. Our 
approach aimed at providing meaningful biological insights into both 
disorders, utilizing a condition-specific methodology that focused on 
differentiating distinct and shared clusters and cell types between 
MDD and PD, rather than conducting separate comparisons with 
control groups. In this single-cell analysis, we directly compared PD 
with MDD, rather than conducting separate analyses for PD versus 
control and MDD versus control, followed by a comparison of the two 

FIGURE 6

GO-BP terms with Metascape (A) GSE49126 (PD vs. controls) dataset GO-BP terms, (B) GSE72267 (PD vs. controls) dataset GO-BP terms and 
(C) GSE39653 (MDD vs. controls) GO-BP terms.
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conditions. This choice aimed to minimize potential biases or 
inaccuracies stemming from comparing datasets with different 
experimental conditions, platforms, or methodologies. This approach 
offers several advantages. By directly comparing PD and MDD, both 
conditions underwent the same data processing steps, reducing the 
influence of potential confounding factors. Additionally, directly 
comparing PD and MDD allowed us to concentrate on disease-
specific features, aiding in the identification of unique cellular and 
molecular characteristics associated with each condition. This enabled 
us to shed light on the distinct pathophysiological mechanisms 
underlying PD in comparison to MDD in the dlPFC. Finally, a direct 
comparison of PD and MDD can be  more biologically relevant, 
particularly when the research objective, as in our study, was to 
elucidate the potential distinct or shared clusters, cell types and 
mechanisms that characterize the two conditions. This might not have 
been apparent when comparing each condition individually to 
control groups.

Since we conducted a direct comparison between MDD and PD, 
which differs from the approach taken in the original studies where 
control groups were included, the annotation of our clusters 
incorporates components from the cluster annotations of both 
original papers. For instance, in line with the original paper of the 
MDD dataset, we identified 26 clusters, maintaining consistency with 
the previous annotations. This approach ensures that we align with the 
existing annotations while emphasizing the direct comparison of 
MDD and PD. Furthermore, in alignment with the original paper of 
the PD dataset, we identified the presence of T cells. However, it’s 
worth noting that this particular cell type was not identified in our 
annotation of the MDD dataset, which is also consistent with the 
original paper of the MDD dataset. Thus, the annotation of our 
clusters correctly incorporates aspects from both original studies to 
facilitate a meaningful comparison between MDD and PD.

Our approach, which involved directly comparing PD and MDD 
cells at the single-cell level, revealed the presence of seven common 
cell types in the dlPFC. However, it’s important to note that their 
relative proportions differed between the two conditions. PD exhibited 
a significantly higher proportion of immune system cells, with MDD 
showing very few microglia cells and a complete absence of T cells, 
indicating the presence of neuroinflammation in the dlPFC of PD 
patients but not MDD. Additionally, compared to MDD, PD showed 
a higher relative proportion of astrocytes, OPCs, and oligodendrocytes, 
suggesting the presence of astrogliosis, demyelination, and 
remyelination, respectively, in PD but not MDD. Previous studies have 
demonstrated higher myelin water fraction in frontal brain regions of 
PD patients, indicating alterations in myelin content (Dean et al., 
2016; Isaacs et al., 2019). Furthermore, MDD exhibited a significantly 
higher proportion of excitatory neurons (23,732 nuclei) compared to 
inhibitory neurons (7,823 nuclei), as well as a higher proportion of 
excitatory neurons compared to PD (10,346 nuclei). In the healthy 
mammalian cortex, the overall ratio of excitatory to inhibitory (E/I) 
neurons is approximately 80:20, although it can vary depending on the 
region and age (Dean et al., 2016; Isaacs et al., 2019). Based on our 
results, the E/I ratio in MDD is approximately 75:25, which is relatively 
close to the normal ratio, suggesting only a slight increase in inhibitory 
inputs in MDD. However, in PD, the E/I ratio is 62:38, indicating 
increased inhibition in the dlPFC of PD patients. Our findings suggest 
that neuroinflammation, increased inhibition, astrogliosis, and 
alterations in myelin content in the dlPFC contribute to the observed 

non-motor symptoms of PD, including cognitive dysfunction and 
NPS (Rubenstein and Merzenich, 2003).

Additionally, we  conducted differential expression analysis to 
profile the molecular signatures of each of the seven common cell 
types between the two conditions. We identified 466 upregulated and 
954 downregulated DEGs in PD compared to MDD. Notably, 
microglia exhibited the most significant difference in gene expression 
profiles, accounting for almost half (42%) of the observed differences 
in all cells. To gain insights into the biological functions disrupted in 
each cell type, we  performed GO enrichment analysis on the 
upregulated and downregulated DEGs identified when comparing PD 
to MDD. The analysis revealed that microglia in PD displayed a 
pro-inflammatory phenotype, characterized by the upregulation of 
Toll-like receptor 2 (TLR2) and Toll-like receptor 5 (TLR5) gene 
expression. Increasing evidence supports the role of Toll-like receptors 
(TLRs) in inducing neuroinflammation in various NDs, including PD, 
particularly TLR2 (Fiebich et al., 2018; Heidari et al., 2022). It has been 
shown that α-synuclein aggregates activate the Nod-like receptor 
family pyrin domain containing 3 (NLRP3) inflammasome through 
interactions with TLR2 and TLR5, leading to the release of 
pro-inflammatory cytokines and increased neuroinflammation, thus 
contributing to disease progression (Li et al., 2021; Scheiblich et al., 
2021). Contrary to PD, microglia in MDD appeared to be involved in 
the regulation of chemical synaptic transmission and trans-synaptic 
signaling, potentially through oligodendrocyte-microglia crosstalk. 
These processes were also found to be  downregulated in 
oligodendrocytes and OPCs in PD but upregulated in 
MDD. Oligodendrocyte-microglia crosstalk is essential for 
maintaining brain homeostasis, including synapse formation and 
transmission, remyelination, and immune regulation (Peferoen et al., 
2014; Kalafatakis and Karagogeos, 2021). Oligodendrocytes not only 
contribute to myelin formation but also regulate immune responses 
through the production of immune-regulating factors and act as 
antigen-presenting cells (APCs) for T cell activation (Peferoen et al., 
2014; Kalafatakis and Karagogeos, 2021). Thus, based on the single-
cell dlPFC data, PD and MDD exhibit distinct patterns of microglia-
oligodendrocyte/OPCs communication.

Based on the DEGs and biological functions results, there are 
notable differences in the function of microglia cells between PD and 
MDD conditions. To further investigate these differences, 
we constructed and analyzed microglia cell-specific PPI networks 
using the DEGs found to be upregulated and downregulated in the 
comparison between PD and MDD microglia cells. In the microglia 
cell-specific PPI network constructed using the upregulated DEGs, 
topological analysis revealed several key genes with high centrality 
that exhibited upregulation in PD microglia. These genes included 
STAT3, LYN, SYK, GRB2, HCK, and LCP2, all of which play crucial 
roles in orchestrating signaling pathways associated with inflammation 
and immune responses. Importantly, in vitro and in vivo evidence has 
demonstrated that exposure to α-synuclein activates the JAK/STAT 
pathway in microglia, leading to their activation (Qin et al., 2016). 
Furthermore, pharmacological inhibition of this pathway has been 
shown promise in protecting against α-synuclein-induced 
neuroinflammation and the subsequent neurodegeneration of 
dopaminergic neurons (Qin et al., 2016).

Conversely, topological analysis of the microglia cell-specific PPI 
network, which was constructed using the downregulated DEGs 
identified when comparing PD to MDD, revealed high centrality 
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genes such as CAMK2A, GRIN2B, GRM5, SYP, GRIN2A, and 
NRXN. These genes are closely associated with synaptic transmission, 
specifically glutamate receptor signaling. Microglia cells are known to 
express several receptors for neurotransmitters, including for 
glutamate (Liu et al., 2016). Activation of these receptors on microglia 
can modulate the release of neuroactive molecules, such as free 
radicals, chemokines and cytokines, which can have either 
neuroprotective or neurotoxic effects (Liu et al., 2016). For instance, 
the activation of metabotropic glutamate receptor 5α, encoded by the 
GRM5 gene, has been shown to reduce microglial tumor necrosis 
factor α (TNFα) production, thereby inhibiting microglia-mediated 
neuroinflammation and neurotoxicity (Byrnes et  al., 2009). 
Additionally, evidence suggests that GluN2A receptor on microglia, 
encoded by GRIN2A gene, plays a role in regulating microglia–neuron 
physical interactions (Eyo et  al., 2018). Through this interaction, 
microglia can influence neuronal activity, synapse formation, survival, 
and remodeling (Badimon et al., 2020).

These findings underscore significant differences in the high 
centrality DEGs of microglia between PD and MDD. In PD microglia, 
we observe high centrality nodes that promote a pro-inflammatory 
and immune-activating state. Conversely, in MDD microglia, the high 
centrality genes are associated to synaptic transmission. This 
divergence suggests that PD is characterized by microglia-mediated 
alterations in synaptic plasticity and neurotransmission, coupled with 
a neuroinflammatory phenotype, which together may contribute to 
the observed synaptic dysfunction and neurotoxicity in PD. These 
differences provide valuable insights into the distinct 
pathophysiological mechanisms underlying microglia in PD 
versus MDD.

Furthermore, analysis of bulk mRNA data from peripheral blood 
of PD and MDD patients identified CD86 as a shared DEG between 
the two conditions. Our analysis also revealed the top-ranking PPIs of 
CD86 based on three topological measures to be: CD80 ➔ CD4➔ 
CD86 ➔ CTLA4 ➔ CD8A ➔ IL10 ➔ CD28 ➔ CD247 ➔ CD3E ➔ 
ICAM1, arranged according to the cytoHubba ranking order. 
Interestingly, CD86 and CD80 act as ligands for CD28 on the surface 
of naive T cells and the inhibitory receptor CTLA-4 (Linsley et al., 
1991). CD28 and CTLA-4 play vital but opposing roles in T cell 
stimulation, with CD28 promoting T cell response and CTLA-4 
inhibiting it (Linsley et al., 1991). CD4 is found on T helper cells (Th1, 
Th2, Th17), CD4+ regulatory T cells, and binds to the major 
histocompatibility complex (MHC) class II molecules expressed on 
APCs such as B cells, macrophages, and dendritic cells (Safran et al., 
2010). CD8 glycoprotein, composed of CD8α and CD8β subunits, is 
expressed on CD8+ cytotoxic T lymphocytes and CD8+ regulatory T 
cells, which are crucial for host immune responses against viral 
infections and cancer cells. CD8 binds to MHC class I  molecules 
displayed by APCs to enhance T cell signaling. CTLA4 is located on T 
cells and is responsible for maintaining immune homeostasis. CD3E 
is part of the TCR-CD3 complex, which plays an important role in 
antigen recognition and several signal transduction pathways. The 
anti-inflammatory molecule IL-10 was also identified in the PPI 
network. CD247 plays a role in coupling antigen recognition to 
numerous intracellular signal transduction pathways. Additionally, 
low antigen expression results in an impaired immune response. 
Finally, ICAM1 (CD54) mediates adhesion of T cells with APCs and 
is also involved in T cell-to-T cell and T cell-to-B cell interactions 
(Safran et al., 2010).

The cell markers, cytokines, and interleukins identified in our 
analysis as being involved in PD and MDD pathophysiology have 
also been investigated in previous studies. Specifically, studies 
(Hisanaga et al., 2001) have shown that the continuous increase of 
these immune cells may indicate post-infectious immune 
abnormalities that are likely associated with PD pathogenesis or 
psychological distress (depression, stress, or anxiety), contributing 
to disease progression and severity in both NDs and NPDs. 
Moreover, dysfunction of regulatory T lymphocytes and a shift 
towards a pro-inflammatory phenotype (Thome et al., 2021), can 
result in the loss of Treg suppression, which may enhance PD 
progression. Conversely, enhancing Treg suppressive function may 
be a potential therapeutic avenue for PD patients as well as for other 
NDs and NPDs. In addition, a study by Chen et  al. (2021) 
investigated the percentage of T-cell subsets and immunoglobulins 
in the serum of PD patients. The study indicated that PD patients 
have increased levels of CD3+ and CD4+ T-cells compared to healthy 
controls, as well as a significantly higher CD4/CD8 ratio. However, 
PD patients and controls showed similar CD8+ T-cell percentages. 
Furthermore, CD4+ T-cells were found to be inversely correlated 
with the Hoehn and Yahr Staging Scale, which is used to describe 
symptom progression in PD, while IgG was positively correlated 
with disease duration and the Unified Parkinson’s Disease Rating 
Scale (UPDRS) section III. These findings suggest escalated immune 
activity in the periphery in PD, and alterations in CD4+/CD8+ and 
IgG levels indicate an active role of peripheral immunity in PD 
progression (Chen et al., 2021).

Interestingly, alterations in cell immunity have also been 
associated with MDD pathophysiology. Evidence suggests that 
immunological dysfunction in MDD may not necessarily be involved 
in its development but may be associated with specific features of the 
disease (Euteneuer et  al., 2017). The same study examined the 
association between different subtypes of depression and 
characteristics such as melancholic vs. non-melancholic depression, 
chronic vs. non-chronic depression, age of onset, and cognitive and 
somatic symptoms. They investigated C-reactive protein (CRP), 
interleukin 6 (IL-6), interleukin 10 (IL-10), and various leukocyte 
populations (lymphocytes, neutrophils, monocytes, T-helper and 
cytotoxic T-cells, B cells, and natural killer (NK) cells; Euteneuer et al., 
2017) by obtaining plasma from MDD patients and controls. Based 
on their results, MDD patients demonstrated increased CRP 
concentration, neutrophils and monocytes, and neutrophil/
lymphocyte (NLR) ratio (Euteneuer et al., 2017). MDD patients also 
showed lower IL-10 concentrations, which were associated with severe 
somatic symptoms.

The KEGG enrichment analysis has identified various immune 
pathways for both the PD and MDD datasets. Specifically, some of the 
pathways identified include the complement & coagulation cascade 
(hsa 04060), B-cell receptor signaling (hsa 04662), cytokine-cytokine 
interaction (hsa 04060), intestinal immune network for IgA 
production (hsa 04672), and NF-kappa B signaling (hsa 04064). These 
findings suggest an important role of peripheral immune system 
activation in both PD and MDD. The enteric system which is the 
largest lymphoid tissue in the body, plays a prominent role in enteric 
immunity. This system has the ability to generate a large concentration 
of anti-inflammatory immunoglobulin A (IgA) (hsa 04672) 
antibodies, serving as the first line of defense against invading 
pathogens (Zeng et al., 2022).
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Emerging evidence suggests the importance of gastrointestinal tract 
(GIT) dysfunction and supports the hypothesis that PD pathogenesis 
may originate from the gut (Warnecke et al., 2022). Numerous PD 
patients suffer with GIT-related symptoms, such as dysphagia, vomiting, 
constipation, nausea and bloating during disease progression (Warnecke 
et  al., 2022). Lewy bodies, the histological hallmark of PD, can 
be transported to the CNS via the vagus nerve. Additionally, the altered 
composition of gut microbiota results in an imbalance between 
beneficial and harmful microbial metabolites, which in turn interacts 
with increased gut permeability and inflammation (Zeng et al., 2022). 
This activated inflammatory response subsequently affects the CNS 
resulting in PD pathology (Zeng et al., 2022).

A previous study conducted by Brown et al. (2023), investigated the 
IgA biome profiles and their correlation with clinical PD subtypes. The 
study utilized stool samples from akinetic rigid (AR) or tremor 
dominant (TD) PD patient subtypes to identify unique taxa associated 
with each clinical phenotype (Brown et al., 2023). IgA Biome analysis 
revealed significant differences in both alpha and beta diversity between 
PD phenotypes (Brown et al., 2023). Furthermore, the study found that 
the Firmicutes/Bacteroides ratio was higher in the TD phenotype in 
comparison to the AR phenotype. Taxa analysis further identified a 
pro-inflammatory bacterial profile in the IgA+ fraction of AR PD 
subtype compared to the TD subtype (Brown et al., 2023). Interestingly, 
a study conducted by our group, using network-based bioinformatics 
approaches, demonstrated that microbiota, through their metabolic 
products, have the capacity to affect humoral immune response 
mediated by circulating immunoglobulins (Onisiforou and Spyrou, 
2022). This finding aligns with existing evidence demonstrating that 
commensal gut microbiota can influence antibody production, 
particularly IgA (Kim and Kim, 2017). One can argue that special 
attention is needed to research and comprehend the connections 
between PD, the microbiota, dysfunction of the enteric system, and the 
anti-inflammatory role of IgA in PD.

Emerging evidence supports the concept of bi-directional 
communication between enteric microbiota, endocrine and immune 
systems, in mediating key nervous system process such as 
neuroinflammation, neurotransmission, neurogenesis and activation of 
the stress axes (Cruz-Pereira et al., 2020). In the field of research, there 
is growing appreciation of the significance of the microbiota-gut-brain 
axis and its role in the pathology of depression (Cruz-Pereira 
et al., 2020).

There are numerous studies (Cruz-Pereira et  al., 2020) 
indicating alternations in the composition of microbiota in 
individuals with depression individuals. These studies have 
observed that the abundance of Faecalibacterium is negatively 
correlated with symptom severity (Cruz-Pereira et al., 2020). One 
observational study revealed that challenging the enteric 
microbiota with either single or recurrent antibiotic treatment 
elevated the risk of anxiety and depression (Cruz-Pereira et al., 
2020). Most recently, a large population study demonstrated that 
Coprococcus and Dialister microbiota strains were predictors of a 
healthier quality of life but were frequently depleted in untreated 
depressive patients, while Butyricicoccu microbiota was correlated 
with anti-depressant treatment (Cruz-Pereira et al., 2020). Further 
research is required to understand the mechanisms underlying the 
interactions between microbiota and depression, as well as how 
dietary changes can affect the microbiota environment in treated 
and untreated MDD patients.

There is growing interest in the prospective role of the immune 
system in the pathogenesis of PD. Genome-wide association studies 
(GWASs) have linked haplotypes of the major histocompatibility 
complex (MHC) class II genes and numerous other immune-related 
gene (TLR9, IL-1R2, SATB1, STAB1, GBA, CD38, CD19, NOD2, and 
FYN) to an increased risk of developing the disease (Li et al., 2022). CD4+ 
T cell infiltration and deposition of IgG have been observed in post-
mortem brain tissues of PD mouse models and patients, implicating 
both humoral and cellular immune responses (Li et al., 2022). However, 
there are limited studies investigating the role of B-cells and the B-cell 
receptor signaling pathway (hsa 04662) in PD pathogenesis.

A previous study, by Scott et al. (2023) investigated B-cell response 
in PD patients. They measured alpha-synuclein and tau antibodies in the 
serum of PD patients with rapid eye movement sleep behavior disorder 
(REM-SBD), early PD, and matched controls. Furthermore, they 
measured B-cell activating factor of the tumor necrosis factor receptor 
family, C-reactive protein and total IgA. The study observed increased 
levels of antibodies against a-synuclein fibrils in REM-SBD patients 
(Scott et al., 2023). This suggests that an early humoral response to alpha-
synuclein occurs prior to the development of PD. Furthermore, B 
lymphocyte phenotyping was performed in early PD patients and their 
matched controls. They found that PD patients at a higher risk of 
developing early dementia had a decrease in their B-cells (Scott et al., 
2023). On the other hand, PD patients who had a higher proportion of 
regulatory B-cells had greater motor scores, suggesting a possible 
protective role of these cells in PD.

In contrast, B cells isolated from PD patients at a greater risk of 
dementia exhibited increased levels of IL-6 and IL-10. Additionally, 
peripheral blood lymphocytes in an alpha-synuclein transgenic PD 
mouse model showed a decrease in B-cells, suggesting a potential 
association with alpha-synuclein pathology (Scott et  al., 2023). In a 
toxin-based PD mouse model, B-cell depletion was associated to 
worsening of behavioral and pathological outcomes, supporting the 
assumption that B-cells play an early protective role in dopaminergic 
(DA) cell loss (Scott et al., 2023). Therefore, regulatory B-cells could have 
a protective role in PD mouse models, possibly by attenuating 
inflammation and DA cell loss. As a results, further investigation of 
B-cells is warranted, as they could be  considered as a potential 
therapeutic target (Scott et  al., 2023). It is well-established that 
dysregulation of both innate and adaptive immune responses occurs in 
MDD patients, which can hinder prognosis, including the response to 
anti-depressant treatments (Beurel et al., 2020). Altered B-cell 
homeostasis has been observed in MDD patients, and these patients 
often exhibit cell-mediated immune responses and pro-inflammatory 
activity (Scott et al., 2023). Besides their well-known role as antibody 
producers, B-cells play a critical role in inflammatory responses by 
secreting both pro- and anti-inflammatory factors (Scott et al., 2023). A 
study by Ahmetspahic et  al. (2018) characterized B-cells at distinct 
developmental stages such as (i) transitional, (ii) naïve-mature, (iii) 
antigen experienced, (iv) non-switched memory cells, (v) plasmablasts 
and (vi) regulatory B-cells. They conducted a six-week follow-up of 
circulating B-cells in MDD patients responding to therapy and 
non-responders. The study found that the prevalence of naïve 
lgD+CD27− B cells, but not lgD+CD27+ memory B cells, were lower in 
severely depressive patients in comparison to healthy controls or mildly/
moderately depressed patients (Ahmetspahic et al., 2018). Moreover, 
B-cells with immune-regulatory roles including CD1d+CD5+ B cells and 
CD24+CD38hi and transitional B-cells were shown to be decreased in 
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depressive patients (Ahmetspahic et al., 2018). Furthermore, a reduction 
of CD5 surface expression on transitional B-cells was correlated with 
severe depression. These fundings suggest that immune cells, including 
B-cells, may be  potential biomarkers for subtyping depression and 
patient stratification in future clinical trials for depression.

To the best of our knowledge, our study represents the first 
integration of bulk and single-cell transcriptomics data to investigate 
CNS diseases using two distinct tissues; dlPFC and blood. While 
limitations exist due to the small number of single-cell datasets 
available, our work provides valuable insights for identifying potential 
pharmacotherapies targeting the distinct tissue pathophysiological 
abnormalities observed in MDD and PD. Future research may explore 
multi-target drugs and pharmacotherapeutic strategies aimed at 
inflammatory cytokine signaling, immune pathways, and the impact 
of cytokines on neurotransmitters. These innovative approaches could 
offer novel ways to prevent, delay, or even reverse the effects of 
cytokines and immune cells on individuals suffering from 
MDD and PD.
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