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Background: Neuroimaging studies have demonstrated alterations in 
hippocampal volume and hippocampal subfields among individuals with amnestic 
mild cognitive impairment (aMCI). However, research on using hippocampal 
subfield volume modeling to differentiate aMCI from normal controls (NCs) is 
limited, and the relationship between hippocampal volume and overall cognitive 
scores remains unclear.

Methods: We enrolled 50 subjects with aMCI and 44 NCs for this study. Initially, 
a univariate general linear model was employed to analyze differences in the 
volumes of hippocampal subfields. Subsequently, two sets of dimensionality 
reduction methods and four machine learning techniques were applied to 
distinguish aMCI from NCs based on hippocampal subfield volumes. Finally, 
we  assessed the correlation between the relative volumes of hippocampal 
subfields and cognitive test variables (Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment Scale (MoCA)).

Results: Significant volume differences were observed in several hippocampal 
subfields, notably in the left hippocampus. Specifically, the volumes of the 
hippocampal tail, subiculum, CA1, presubiculum, molecular layer, GC-ML-
DG, CA3, CA4, and fimbria differed significantly between the two groups. The 
highest area under the curve (AUC) values for left and right hippocampal machine 
learning classifiers were 0.678 and 0.701, respectively. Moreover, the volumes of 
the left subiculum, left molecular layer, right subiculum, right CA1, right molecular 
layer, right GC-ML-DG, and right CA4 exhibited the strongest and most consistent 
correlations with MoCA scores.

Conclusion: Hippocampal subfield volume may serve as a predictive marker for 
aMCI. These findings underscore the sensitivity of hippocampal subfield volume 
to overall cognitive performance.
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Introduction

Alzheimer’s disease (AD) is characterized by a prolonged 
prodromal phase, spanning from the preclinical stage to the 
prodromal stage before progressing to full-blown AD (Liu et al., 2021). 
Amnestic mild cognitive impairment (aMCI) represents a level of 
memory loss and cognitive decline in elderly individuals that falls 
short of dementia criteria and is considered a risk factor for 
Alzheimer’s disease (Oltra-Cucarella et al., 2018). Currently, clinical 
and research settings employ positron emission computed tomography 
(PET) imaging and the measurement of amyloid-β 42 (Aβ42) and Tau 
protein concentrations in cerebrospinal fluid as diagnostic biomarkers 
for AD. However, the high cost and radiation associated with PET 
scans limit their clinical utility. Cerebrospinal fluid examination via 
lumbar puncture, while providing valuable insights, carries the risks 
of local anesthetic allergies and intracranial infections. In contrast, 
structural magnetic resonance imaging (MRI) offers a non-invasive 
and highly repeatable alternative.

The hippocampus is an important brain region in the central 
nervous system involved in learning and memory storage. 
Hippocampal atrophy is one of the most effective, convenient, and 
widely used biomarkers for the clinical diagnosis of AD (Flores et al., 
2015). Recent advancements in neuroimaging have revealed abnormal 
intracranial structures in AD patients, notably the reduction in 
hippocampal volume. Our previous research has identified disparities 
in the imaging characteristics of the left and right hippocampi in 
aMCI patients compared to normal controls, suggesting that 
hippocampal imaging features hold promise as potential biomarkers 
for aMCI and AD diagnosis (Feng et al., 2019). The hippocampus is 
an important part of the memory system, which is composed of 
different subfields with different functional characteristics, and each 
subregion is affected differently in the course of AD (Tamnes et al., 
2014). West et al. (1994) reported a substantial neuronal loss, reaching 
up to 68%, in the hippocampal CA1 region of AD patients. Accurate 
measurement of hippocampal subfield volumes is of paramount 
importance for early diagnosis, and further advancements in this 
domain, including optimization, standardization, and automation of 
techniques, are imperative (Chételat, 2018).

Numerous methods have been employed to investigate 
hippocampal subfields in the context of AD spectrum diseases, 
including stereoscopic brain imaging, radial atrophy assessment, and 
the voxel-based morphometry (VBM) technique. One study 
examining hippocampal subfields in AD revealed that as the disease 
advances, the volume of both the hippocampus and its subfields (e.g., 
CA1, subiculum, presubiculum, molecular layer, and fimbria) 
gradually diminishes, with the left hippocampus exhibiting 
particularly pronounced changes (Zhao et al., 2019). Hari et al. (2022) 
found that compared with the MCI group and the subjective cognitive 
impairment (SCI) group, the volume of bilateral CA1, dentate gyrus 
DG, and subiculum decreased in the AD group; no significant volume 
change was found between the SCI and MCI groups. Boccardi et al. 
(2018) identified significant volume differences in 11 left hippocampal 
subfields (excluding the parasubiculum) among the AD, MCI, and NC 
groups, as well as in all 12 right hippocampal subfields among these 
groups. Moreover, Huang et  al. (2022) found atrophy in CA1, 
molecular layer, subiculum, GC-ML-DG, CA4, and CA3 in the aMCI 
group, but the left and right hemispheres were not studied separately. 
However, studies have indicated that the asymmetry of hippocampal 

subfield atrophy in AD and MCI exists (Alessia et al., 2018; Jahanshahi 
et  al., 2023). There is no consensus on how the hippocampal 
subfield atrophies.

There are relatively few studies based on hippocampal subfield 
volume modeling to distinguish aMCI from NC. Guo et al. (2020) 
applied FreeSurfer software version 5.0.0 to divide the bilateral 
hippocampus into 16 subregions. The achieved accuracy rates were 
64.62%, 78.96%, and 70.33% for the support vector machine (SVM) 
classifier based on hippocampal subfield volumes in distinguishing 
stable MCI-NC, converted MCI-NC, and converted MCI-stable MCI 
cases, respectively. However, their study employed only a single 
machine learning method. Qu et al. (2023) found the volumes of the 
right subiculum, CA1, molecular layer, whole hippocampus, whole 
amygdala, basal, and accessory basal were significantly larger in NC 
compared to the MCI group. They achieved an area under the curve 
(AUC) of 0.79  in the integrated receiver operating characteristic 
(ROC) analysis for discriminating between MCI and NC; however, 
cross-validation was not conducted in their study.

Several studies have made attempts to uncover the intrinsic 
connection between the hippocampus or its regions and memory, 
suggesting their potential involvement in early changes or progression 
of AD. In one correlational analysis, it was found that within the aMCI 
group, volumes of the subiculum, presubiculum, and CA4/dentate 
gyrus were associated with delayed recall scores, and volumes of the 
subiculum and CA4/dentate gyrus correlated with informant-reported 
memory difficulties (O’Shea et al., 2022). Huang et al. (2022) found 
that in the aMCI group, visual memory scores were positively 
correlated with CA1, molecular layer, subiculum, and GC-ML-DG 
volumes. Zhao et al. (2019) found that the left subiculum showed a 
positive correlation with memory scores. However, employing a 
combination of multiple memory tests can be burdensome for elderly 
individuals and may not be  suitable for routine clinical studies. 
Meanwhile, the Montreal Cognitive Assessment Scale (MoCA) offers 
a quick means of cognitive assessment that encompasses executive 
function, visuospatial recognition, memory, and other 
cognitive domains.

To address these considerations, this study pursued three primary 
objectives: (1) investigate changes in hippocampal subfield volumes in 
aMCI patients utilizing 3D T1 structural MRI and FreeSurfer 6.03 
software’s detailed partitioning method; (2) develop machine learning 
classification models grounded in hippocampal subfield volumes; and 
(3) analyze the correlation between hippocampal subfield volumes 
and cognitive function scores, with a specific focus on MoCA.

Materials and methods

Patient population and data acquisition

Between September 2016 and August 2020, we recruited a cohort 
comprising 50 individuals with aMCI and 44 normal control (NC) 
subjects. These participants were sourced from the Health Promotion 
Center and the Psychiatry Department of Zhejiang Provincial People’s 
Hospital. The study received approval from the Ethics Committee of 
Zhejiang Provincial People’s Hospital (2012KY002) and adhered to the 
principles outlined in the Declaration of Helsinki. Informed consent 
forms were duly signed either by the subjects or their 
legal representatives.
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All subjects underwent laboratory tests, physical examinations, 
and a 3.0 T MR scan. The inclusion criteria for aMCI subjects were 
as follows: self-reported memory impairment as the primary 
complaint; clinically normal manifestations; Mini-Mental State 
Examination (MMSE) score >24 but ≤27 (Mckhann et al., 2011). 
Inclusion criteria for NC subjects: no neurological impairment such 
as hearing or vision deficits; no history of stroke, epilepsy, 
depression, or other neurological or psychiatric disorders; 
conventional brain MR imaging revealing no evidence of infarction, 
hemorrhage, tumors, or other abnormalities; MMSE score ≥28. 
Exclusion criteria included severe anemia, hypertension, diabetes, 
or other systemic diseases; a history of brain trauma; neurological 
conditions such as stroke, brain tumors, Parkinson’s disease, 
epilepsy, or other disorders known to cause memory impairments; 
a history of mental illness or the use of psychotropic medications; 
contraindications for MRI scanning; and medial temporal lobe 
signal abnormalities detected on MRI fluid attenuated inversion 
recovery (FLAIR) or T2-weighted imaging (T2WI) images 
attributed to infectious or vascular factors.

Based on these inclusion and exclusion criteria, we  initially 
enrolled 60 aMCI patients and 46 NCs but subsequently excluded a 
few cases due to unsuccessful MRI image acquisition (4 aMCI patients 
and 1 NC subject). Ultimately, our study included 50 aMCI patients 
and 44 NC subjects.

Neuropsychological scale tests

The comprehensive assessment of cognitive function 
encompassed two components: (1) MMSE: this evaluation covered 
various domains, including orientation, memory, attention, 
numeracy, language abilities, and visuospatial cognition, with a 
maximum score of 30. (2) MoCA-Basic Edition (MoCA-B): This 
assessment addressed attention and concentration, executive 
function, memory, language skills, visual-spatial abilities, abstract 
thinking, computation, and orientation. The assessments were 
conducted in a quiet environment, assuming the patients had clear 
consciousness and were free from inhibitory psychology. The 
maximum score attainable on this scale was 30, with higher scores 
indicating better cognitive function.

Image acquisition

All imaging procedures were conducted using a 3.0 T MR scanner 
(Discovery MR750; GE Healthcare, Waukesha, WI, United States). 
Routine MRI scans were performed on all subjects to exclude other 
conditions that might cause structural brain changes. High-resolution 
3D T1-weighted magnetization-prepared rapid gradient echo 
(T1-MPRAGE) sequences were acquired with the following 
parameters: repetition time (TR) = 6.7 ms, echo time (TE) = 2.9 ms, 
inversion time (TI) = 450 ms, flip angle = 12°, field of view 
(FOV) = 256 × 256 mm2, slice thickness/slice gap = 1/0 mm, 
matrix = 256 × 256, with a total of 192 sagittal sections. Subjects’ heads 
were securely positioned, and earplugs were inserted to minimize 
head movement.

Hippocampal subfields segmentation

The FreeSurfer software package (version 6.0.0, http://freesurfer.
net/) was utilized to process the 3D T1-MPRAGE images. These 
methods have been described previously (Fischl et al., 2002, 2004; 
Segonne et  al., 2004). The processing steps were as follows: (1) 
non-brain tissue was removed through cephalometric correction. (2) 
Registration in the Talairach standard space was conducted. (3) 
Cortical and subcortical structures were segmented using probabilistic 
brain maps. (4) Estimation of the estimated total intracranial volume 
(eTIV) for each subject was carried out through a standard FreeSurfer 
processing pipeline, employing the relationship between intracranial 
volume and the linear transformation of the map template (Buckner 
et al., 2004). (5) Bilateral hippocampal subfields were segmented using 
FreeSurfer’s built-in module, with a Bayesian statistical model 
incorporating a Markov random field prior used to estimate the label 
of each subfield. (6) An enclosure containing a seahorse was 
upsampled to an isotropic resolution of 0.5 mm. (7) Automatic 
division of the left and right hippocampus into 12 subfields, including 
parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, the 
molecular and granule cell layers of the dentate gyrus (GC-ML-DG), 
hippocampus-amygdala transition area (HATA), fimbria, molecular 
layer (ML), hippocampal fissure, and hippocampal tail (Figure 1), was 
accomplished by maximizing the posterior probability of splitting. 
Finally, the total volume of the hippocampus and the volume of each 
subfield were extracted for further analysis.

Statistical analysis

Statistical analysis was conducted using SPSS (version 22.0). All 
statistical tests were two-tailed. The data for demographic variables 
were subjected to a chi-square test. Continuous demographic variables 
were analyzed through a two-sample T-test. In this study, eTIV was 
used as a covariate to control for head size. Both the left and right 
hippocampi were analyzed separately. Univariate general linear 
models were employed to assess volume differences in hippocampal 
subfields, with age, sex, years of education, and eTIV included as 
covariates. These analyses were further adjusted using the Bonferroni 
correction. For correlation analysis, the relative volume of 
hippocampal subfields was initially calculated, representing the ratio 
of the volume of each subregion to eTIV. Subsequently, correlation 
assessments were performed between the relative volume of 
hippocampal subfields and cognitive test variables (MMSE and 
MoCA). These analyses were also corrected for multiple comparisons 
using Bonferroni correction, with a significance level of 0.05.

Machine learning models’ construction

Two sets of four dimensionality reduction methods, namely fisher 
score (FSCR), RELF-F, maximum relevance and minimum 
redundancy (MRMR), and conditional mutual information metric 
(CMIM), were combined with four machine learning methods: linear 
discriminant analysis (LDA), logistic regression (LR), naive Bayes 
(NB), and SVM. These combinations were employed to distinguish 
between aMCI and NC based on the relative volumes of the 12 
hippocampal subfields. Subsequently, a 5-fold cross-validation 
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procedure was applied. A total of 16 classifiers were constructed for 
each of the left and right hippocampi. These procedures were executed 
using MATLAB 2018b.

Results

Comparison of demographic and 
neuropsychological performance

There were no significant differences in age, sex, or education 
between the aMCI patients and NC subjects (p > 0.05). However, there 

were significant differences in cognitive scores (MMSE and MoCA) 
between the two groups (p < 0.01) (Table 1).

Comparisons of hippocampal subfield 
volumes

Table  2 displays the volumes and percentages of the 12 
hippocampal subfields in both groups. In the left hippocampus, the 
volumes of the hippocampal tail, subiculum, CA1, presubiculum, 
molecular layer, GC-ML-DG, CA3, CA4, and fimbria exhibited 
significant differences between the two groups (p < 0.05, Bonferroni 
corrected) (Figure  2A). Similarly, in the right hippocampus, the 
volumes of the hippocampal tail, subiculum, CA1, presubiculum, 
molecular layer, GC-ML-DG, and CA4 showed significant differences 
between the two groups (p < 0.05, Bonferroni corrected) (Figure 2B).

Machine learning results

The highest area under the curve (AUC) value in the left 
hippocampal model was 0.678, achieved through a combination of 
RELF-F and LDA (Figure 3A). In the right hippocampal model, the 
highest AUC value was 0.701, achieved through a combination of 
FSCR and NB (Figure 3B).

Relationship between MMSE, MoCA, and 
hippocampal subfield volumes

No significant correlation was observed between MMSE scores 
and the volumes of bilateral hippocampal subfields (p > 0.05, 
Bonferroni correction). left subiculum, left molecular layer, right 

FIGURE 1

Twelve hippocampal subfields segmented on FreeSurfer software package: parasubiculum, presubiculum, subiculum, CA1, CA3, CA4, the molecular 
and granule cell layers of the dentate gyrus (GC-ML-DG), hippocampus-amygdala transition area (HATA), fimbria, molecular layer (ML), hippocampal 
fissure, and hippocampal tail.

TABLE 1 Demographic characteristics of aMCI and normal control 
groups.

aMCI 
group

NC 
group

Statistic p-
value

Sample size 50 44 NA NA

Age (years, 

mean ± SD)

65.84 ± 11.17 65.48 ± 9.69 0.17
0.87

Gender 

(male: 

female)

27:23 20:24 0.68*

0.41*

Education 

(years, 

mean ± SD)

7.12 ± 4.06 7.11 ± 3.36 0.01

0.99

MMSE 26.20 ± 0.88 29.02 ± 0.90 −17.92 <0.01

MoCA 22.44 ± 2.36 27.45 ± 1.37 −12.78 <0.01

SD, standard deviation; unless otherwise indicated, statistics were calculated with t-tests; *χ2 
test was used; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive 
Assessment Scale.
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subiculum, right CA1, right molecular layer, right GC-ML-DG, and 
right CA4 were found to exhibit the strongest and most significant 
correlations with MoCA scores (p < 0.05, Bonferroni correction) 
(Table 3 and Figure 4).

Discussion

This study investigated the change in volume in aMCI patients 
and established machine learning classification models based on the 
hippocampal subfield volume. The volumes of hippocampal tail, 
subiculum, CA1, presubiculum, molecular layer, GC-ML-DG, CA3, 
CA4, and fimbria were significantly different between the two groups, 
especially in the left hippocampus. The highest area under curve 
(AUC) value in the left and right hippocampal machine learning 
classifiers was 0.678 and 0.701, respectively. The volume of the left 
subiculum, left molecular layer, right subiculum, right CA1, right 
molecular layer, right GC-ML-DG, and right CA4 was most strongly 
and actively correlated with MoCA scores.

Hippocampal atrophy is widely recognized as an early and specific 
marker in AD patients. Neuroimaging studies have consistently 
reported varying degrees of involvement of the hippocampus and its 
subfields in AD and early AD (Chételat, 2018). In the volume studies 
of hippocampal subregions in AD patients, the atrophy of the CA1 

region is a relatively consistent result (Flores et al., 2015). There have 
been many studies on hippocampal subfield volume using FreeSurfer 
software. It is commonly found that the volume of these subfields of 
the CA1, subiculum, presubiculum, molecular layer, GC-ML-DG, 
CA4, CA3, and fimbria decreases in MCI (Boccardi et al., 2018; Zhao 
et  al., 2019; Hari et  al., 2022; Huang et  al., 2022). In our study, 
significant differences in the volumes of the hippocampal tail, 
subiculum, CA1, presubiculum, molecular layer, GC-ML-DG, CA3, 
CA4, and fimbria between the aMCI and NC groups were observed, 
with a pronounced effect noted in the left hippocampus. In terms of 
neuron loss, one study reported that the main subfields of loss in AD 
patients were CA1 (68%) and subiculum (47%) compared to controls 
(25%) (West et al., 1994). The presubiculum plays a unique role in AD; 
these studies showed that “lake-like” amyloid beta (Aβ) deposits 
appear under the presubiculum early in the disease process (Murray 
et al., 2018). Interneurons and synaptic connections in the molecular 
layer are involved in the regulation of activity in the hippocampus. 
Volumetric studies showed that the volume reduction mainly occurred 
in CA1, but also involved CA3/DG (Yassa et  al., 2010), CA4/DG 
(Pluta et  al., 2012). Fimbria plays an important role in executive 
function (Seiger et al., 2021). These results are consistent with most of 
the aforementioned findings, and a novel subregion, the hippocampal 
tail, is introduced, which appears to play a distinctive role in aMCI 
patients (Peter et al., 2018). The hippocampal tail is often associated 

TABLE 2 Comparison of hippocampal subfield volumes between patients with aMCI and normal controls.

Left hemisphere Right hemisphere

aMCI NC aMCI NC

Hippocampal_tail 482.705 ± 80.722

(0.033%)**

549.229 ± 81.404

(0.038%)

501.597 ± 66.002

(0.034%)**

559.250 ± 87.532

(0.038%)

Subiculum 402.379 ± 61.609

(0.027%)**

442.309 ± 56.345

(0.030%)

412.293 ± 58.030

(0.028%)**

447.390 ± 54.578

(0.031%)

CA1 560.950 ± 68.110

(0.038%)*

603.848 ± 96.940

(0.041%)

598.164 ± 77.179

(0.040%)*

644.078 ± 84.479

(0.044%)

Hippocampal fissure 159.653 ± 27.231

(0.011%)

166.207 ± 26.576

(0.011%)

175.546 ± 27.179

(0.012%)

181.353 ± 27.440

(0.012%)

Presubiculum 311.758 ± 46.995

(0.021%)*

336.220 ± 39.341

(0.023%)

298.922 ± 27.423

(0.020%)*

324.587 ± 44.253

(0.022%)

Parasubiculum 65.844 ± 15.161

(0.004%)

66.965 ± 15.271

(0.005%)

59.579 ± 11.767

(0.004%)

61.008 ± 12.317

(0.004%)

Molecular_layer_HP 500.142 ± 67.718

(0.034%)**

546.876 ± 70.313

(0.037%)

524.365 ± 72.394

(0.035%)**

570.585 ± 66.949

(0.039%)

GC-ML-DG 256.648 ± 31.180

(0.017%)**

278.868 ± 37.804

(0.019%)

271.593 ± 36.230

(0.018%)**

293.844 ± 38.087

(0.020%)

CA3 169.411 ± 24.777

(0.011%)*

184.282 ± 26.477

(0.013%)

188.454 ± 28.717

(0.013%)

203.572 ± 27.298

(0.014%)

CA4 221.620 ± 29.946

(0.015%)**

240.300 ± 31.228

(0.016%)

234.615 ± 28.377

(0.016%)*

252.309 ± 31.754

(0.017%)

Fimbria 69.456 ± 24.788

(0.005%)*

83.327 ± 20.959

(0.006%)

71.544 ± 25.543

(0.005%)

84.723 ± 25.371

(0.006%)

HATA 52.983 ± 8.110

(0.004%)

55.583 ± 8.841

(0.004%)

55.588 ± 7.691

(0.004%)

58.625 ± 8.333

(0.004%)

The value is expressed in the form of a mean ± standard deviation for hippocampal subfield volumes in mm3. Values in parentheses = the mean of the subfield volume/eTIV. eTIV, estimated 
total intracranial volume; aMCI, amnestic mild cognitive impairment; NC, normal control. *Compared with the NC group, p < 0.05; **compared with NC group, p < 0.01.
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with verbal memory. Parker et al. reported significant volume declines 
in CA1 and hippocampal tail in AD patients (Parker et al., 2018). 
Additionally, previous studies have indicated the importance of the 
right hippocampal tail in SCD patients, with significant reductions in 
gray matter volume (Liang et al., 2020).

There are relatively few studies based on hippocampal subfield 
volume modeling to distinguish aMCI from NC. One study showed 
that the accuracy of an SVM classifier based on hippocampal 
subfield volumes was 64.62% for stable MCI-NC, 78.96% for 
converted MCI-NC, and 70.33% for converted MCI-stable MCI 
(Guo et  al., 2020). However, it used only one machine learning 
method. Qu et  al. (2023) found the AUC was 0.79 for the 
identification of MCI and NC, but no cross-validation was 
performed. In the present study, the highest AUC values achieved 
for the left and right hippocampal machine learning classifiers were 
0.678 and 0.701, respectively. Although the classification accuracy 
of the model is not very high, it also provides meaningful 
information, which can only say that the trend of hippocampal 
subfield volume change has diagnostic significance for aMCI, but 
cannot be said to have clinical value. The clinical value needs to 
be further studied.

Although there have been many studies showing that hippocampal 
subfield volume is associated with various memory scores (Zammit 
et al., 2017; Zhao et al., 2019; Huang et al., 2022; O’Shea et al., 2022). 
MoCA is a cognitive assessment that can measure executive function, 
visuospatial recognition, memory, and other cognitive functions, 
which is very important for the cognitive assessment of AD and aMCI 
patients. In our investigation, we identified that the volumes of the left 
subiculum, left molecular layer, right subiculum, right CA1, right 
molecular layer, right GC-ML-DG, and right CA4 were the most 
strongly and significantly correlated with MoCA scores. Liang et al. 
(2018) found that in MCI patients, left subiculum and presubiculum 
volumes were positively correlated with MoCA scores, but statistical 
p-values were not corrected. A study of AD and MCI in Japan Ogawa 
et al. (2019) found that the Japanese version of the MoCA had a higher 
correlation with the subfield volume of CA1, DG, subiculum, and 
entorhinal cortex than the MMSE. However, the sample size was 
relatively small. One study has found that some hippocampal subfield 
volumes were significantly correlated with the MMSE scores in AD 
patients (Chu et al., 2021). Nevertheless, in our study, there was no 
significant correlation observed between MMSE scores and the 
volumes of bilateral hippocampal subfields, potentially indicating the 
MMSE’s reduced sensitivity in identifying MCI.

FIGURE 2

(A,B) Comparison of hippocampal subfields volume in aMCI and 
normal controls using Bonferroni corrected. *p  <  0.05 and **p  <  0.01. 
aMCI, amnestic mild cognitive impairment; NC, normal controls.

FIGURE 3

Machine learning results of the left hippocampus (A) and right hippocampus (B).
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The present study has several limitations. First, the sample size was 
relatively small, and the study was conducted at a single center. Expanding 
the sample size and incorporating data from multiple centers would allow 

for the creation of independent validation sets. Second, the study 
exclusively utilized structural MRI data; a better classification accuracy of 
approximately 0.9 could be achieved if other imaging metrics such as 

TABLE 3 Correlation between relative volumes of hippocampal subregions and cognitive test scores (MMSE, MoCA).

Left hemisphere Right hemisphere

MMSE MoCA MMSE MoCA

Hippocampal_tail 0.360 0.308 0.352 0.260

Subiculum 0.282 0.399* 0.345 0.454*

CA1 0.333 0.338 0.295 0.434*

Hippocampal fissure 0.006 0.208 0.125 0.256

Presubiculum 0.349 0.363 0.359 0.308

Parasubiculum 0.234 0.125 0.160 0.209

Molecular_layer_HP 0.390 0.416* 0.357 0.457*

GC-ML-DG 0.379 0.388 0.369 0.466*

CA3 0.324 0.370 0.216 0.395

CA4 0.387 0.390 0.356 0.457*

Fimbria 0.127 0.209 0.304 0.306

HATA 0.326 0.051 0.274 0.294

The values in the table are the correlation coefficients. *(p < 0.05, Bonferroni corrected).

FIGURE 4

Relationship between MoCA scores and hippocampal subfield volumes.
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abnormal functional connection mode of hippocampus subfields, default 
mode network (DMN) modulation, and quantitative analysis of amyloid 
and tau using PET molecular tracers were included and more classifiers 
were implemented (Zhou, 2021). Future research should consider the 
integration of multimodal imaging data and other domain metrics, such 
as multiomic biospecimens and genetic data. Third, this study was cross-
sectional in nature; further longitudinal studies are needed in future to 
observe the dynamic changes in hippocampal atrophy patterns in AD 
spectrum diseases.

Conclusion

Our findings indicate that multiple hippocampal subfield volumes 
undergo changes in individuals with aMCI. These alterations in 
hippocampal subfield volumes may serve as predictors of aMCI and 
appear to play a pivotal role in overall cognitive performance. 
Furthermore, ongoing refinement in the pattern of subfield atrophy 
holds promise for advancing precision medicine for MCI and AD 
patients, facilitating the identification of those MCI individuals at the 
highest risk of progressing to dementia.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Ethics 
Committee of Zhejiang Provincial People’s Hospital (2012KY002). The 
studies were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

QF: Formal analysis, Investigation, Methodology, Writing – 
original draft, Writing – review & editing. LW: Methodology, 
Validation, Writing – original draft, Writing – review & editing. XT: 
Methodology, Software, Writing – original draft. XG: Methodology, 
Validation, Writing – original draft. HH: Software, Visualization, 
Writing – original draft. ZL: Conceptualization, Validation, Writing 
– review & editing. ZD: Conceptualization, Validation, Writing – 
review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This study was 
funded by Natural Science Foundation of Zhejiang Province 
(Y22H185692) and Zhejiang Provincial Medical and Health 
Technology Project (2024KY1313).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
Alessia, S., Roberta, V., Fabiana, N., Grazia, V. M., Antonio, C., and Aldo, Q. (2018). 

MRI asymmetry index of hippocampal subfields increases through the continuum from 
the mild cognitive impairment to the Alzheimer’s disease. Front. Neurosci. 12:576. doi: 
10.3389/fnins.2018.00576

Boccardi, V., Westman, E., Pelini, L., Lindberg, O., Muehlboeck, J. S., Simmons, A., 
et al. (2018). Differential associations of IL-4 with hippocampal subfields in mild 
cognitive impairment and Alzheimer’s disease. Front. Aging Neurosci. 10:439. doi: 
10.3389/fnagi.2018.00439

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., et al. 
(2004). A unified approach for morphometric and functional data analysis in 
young, old, and demented adults using automated atlas-based head size 
normalization: reliability and validation against manual measurement of  
total intracranial volume. NeuroImage 23, 724–738. doi: 10.1016/j.
neuroimage.2004.06.018

Chételat, G. (2018). Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, 
physiopathological mechanisms, and impact of lifestyle. J. Alzheimers Dis. 64, S199–
S211. doi: 10.3233/JAD-179920

Chu, T., Li, J., Zhang, Z., Gong, P., and Mao, N. (2021). Altered structural covariance 
of hippocampal subregions in patients with Alzheimer’s disease. Behav. Brain Res. 
409:113327. doi: 10.1016/j.bbr.2021.113327

Feng, Q., Song, Q., Wang, M., Pang, P., Liao, Z., Jiang, H., et al. (2019). Hippocampus 
radiomic biomarkers for the diagnosis of amnestic mild cognitive impairment: a 
machine learning method. Front. Aging Neurosci. 11:323. doi: 10.3389/
fnagi.2019.00323

Fischl, B., Salat, D. H., Busa, E., Albert, M., and Dale, A. M. (2002). Whole brain 
segmentation: automated labeling of neuroanatomical structures in the human brain. 
Neuron 33, 341–355. doi: 10.1016/S0896-6273(02)00569-X

Fischl, B., Salat, D. H., Kouwe, A. J. W. V. D., Makris, N., Ségonne, F., Quinn, B. T., 
et al. (2004). Sequence-independent segmentation of magnetic resonance images. 
NeuroImage 23, S69–S84. doi: 10.1016/j.neuroimage.2004.07.016

Flores, R. D., Joie, R. L., and Chételat, G. (2015). Structural imaging of hippocampal 
subfields in healthy aging and Alzheimer’s disease. Neuroscience 309, 29–50. doi: 
10.1016/j.neuroscience.2015.08.033

Guo, S., Xiao, B., and Wu, C.Alzheimer’s Disease Neuroimaging Initiative (2020). 
Identifying subtypes of mild cognitive impairment from healthy aging based on 
multiple cortical features combined with volumetric measurements of the 
hippocampal subfields. Quant. Imaging Med. Surg. 10, 1477–1489. doi: 10.21037/
qims-19-872

Hari, E., Kurt, E., Bayram, A., Kizilates-Evin, G., Acar, B., Demiralp, T., et al. (2022). 
Volumetric changes within hippocampal subfields in Alzheimer’s disease continuum. 
Neurol. Sci. 43, 4175–4183. doi: 10.1007/s10072-022-05890-7

Huang, Y., Huang, L., Wang, Y., Liu, Y., Lo, C. Y. Z., and Guo, Q. (2022). Differential 
associations of visual memory with hippocampal subfields in subjective cognitive 
decline and amnestic mild cognitive impairment. BMC Geriatr. 22:153. doi: 10.1186/
s12877-022-02853-7

Jahanshahi, A. R., Sadeh, R. N., and Khezerloo, D. (2023). Atrophy asymmetry in 
hippocampal subfields in patients with Alzheimer’s disease and mild cognitive 
impairment. Exp. Brain Res. 241, 495–504. doi: 10.1007/s00221-022-06543-z

https://doi.org/10.3389/fnagi.2023.1273658
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.3389/fnins.2018.00576
https://doi.org/10.3389/fnagi.2018.00439
https://doi.org/10.1016/j.neuroimage.2004.06.018
https://doi.org/10.1016/j.neuroimage.2004.06.018
https://doi.org/10.3233/JAD-179920
https://doi.org/10.1016/j.bbr.2021.113327
https://doi.org/10.3389/fnagi.2019.00323
https://doi.org/10.3389/fnagi.2019.00323
https://doi.org/10.1016/S0896-6273(02)00569-X
https://doi.org/10.1016/j.neuroimage.2004.07.016
https://doi.org/10.1016/j.neuroscience.2015.08.033
https://doi.org/10.21037/qims-19-872
https://doi.org/10.21037/qims-19-872
https://doi.org/10.1007/s10072-022-05890-7
https://doi.org/10.1186/s12877-022-02853-7
https://doi.org/10.1186/s12877-022-02853-7
https://doi.org/10.1007/s00221-022-06543-z


Feng et al. 10.3389/fnagi.2023.1273658

Frontiers in Aging Neuroscience 09 frontiersin.org

Liang, X., Yin, Z., Liu, R., Zhao, H., Wu, S., Lu, J., et al. (2018). The role of MRI 
biomarkers and their interactions with cognitive status and APOE ε4 in nondemented 
elderly subjects. Neurodegener. Dis. 18, 270–280. doi: 10.1159/000495754

Liang, L., Zhao, L., Wei, Y., Mai, W., Duan, G., Su, J., et al. (2020). Structural and 
functional hippocampal changes in subjective cognitive decline from the community. 
Front. Aging Neurosci. 12:64. doi: 10.3389/fnagi.2020.00064

Liu, Y. H., Wang, J., Li, Q. X., Fowler, C. J., and Wang, Y. J. (2021). Association of 
naturally occurring antibodies to β-amyloid with cognitive decline and cerebral 
amyloidosis in Alzheimer’s disease. Sci. Adv. 7:eabb0457. doi: 10.1126/sciadv.
abb0457

Mckhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., 
Kawas, C. H., et al. (2011). The diagnosis of mild cognitive impairment due to 
Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s 
Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers 
Dement. 7, 263–269. doi: 10.1016/j.jalz.2011.03.005

Murray, C. E., Priya, G. P., Eleni, G., Gunnar, B., Erik, P., Oliver, W., et al. (2018). The 
presubiculum is preserved from neurodegenerative changes in Alzheimer’s disease. Acta 
Neuropathol. Commun. 6:62. doi: 10.1186/s40478-018-0563-8

O’Shea, D. M., Liselotte, D. W., Jared, T., Andrea, M. K., Priscilla, A., Ambar, P. L., et al. 
(2022). Hippocampal subfields in mild cognitive impairment: associations with objective 
and informant-report of memory function. Arch. Clin. Neuropsychol. 7, 1502–1504. doi: 
10.1093/arclin/acac018

Ogawa, M., Sone, D., and Matsuda, H. (2019). Association between subfield volumes 
of the medial temporal lobe and neuropsychological assessments. Alzheimer’s Dement. 
15, P783–P784. doi: 10.1016/j.jalz.2019.06.2850

Oltra-Cucarella, J., Ferrer-Cascales, R., Alegret, M., Gasparini, R., Michelle 
Diaz-Ortiz, L., Rios, R., et al. (2018). Risk of progression to Alzheimer’s disease for 
different neuropsychological mild cognitive impairment subtypes: a hierarchical 
meta-analysis of longitudinal studies. Psychol. Aging 33, 1007–1021. doi: 10.1037/
pag0000294

Parker, T. D., Slattery, C. F., Yong, K. X. X., Nicholas, J. M., Paterson, R. W., 
Foulkes, A. J. M., et al. (2018). Differences in hippocampal subfield volume are seen in 
phenotypic variants of early onset Alzheimer’s disease. NeuroImage Clin. 21:101632. doi: 
10.1016/j.nicl.2018.101632

Peter, J., Sandkamp, R., Minkova, L., Schumacher, L. V., Kaller, C. P., Abdulkadir, A., 
et al. (2018). Real-world navigation in amnestic mild cognitive impairment: the relation 

to visuospatial memory and volume of hippocampal subregions. Neuropsychologia 109, 
86–94. doi: 10.1016/j.neuropsychologia.2017.12.014

Pluta, J., Yushkevich, P., Das, S., and Wolk, D. (2012). In vivo analysis of 
hippocampal subfield atrophy in mild cognitive impairment via semi-automatic 
segmentation of T2-weighted MRI. J. Alzheimers Dis. 31, 85–99. doi: 10.3233/
JAD-2012-111931

Qu, H., Ge, H., Wang, L., Wang, W., and Hu, C. (2023). Volume changes of 
hippocampal and amygdala subfields in patients with mild cognitive impairment 
and Alzheimer’s disease. Acta Neurol. Belg. 123, 1381–1393. doi: 10.1007/
s13760-023-02235-9

Segonne, F., Dale, A. M., Busa, E., Glessner, M., and Fischl, B. (2004). A hybrid 
approach to the skull stripping problem in MRI. NeuroImage 22, 1060–1075. doi: 
10.1016/j.neuroimage.2004.03.032

Seiger, R., Hammerle, F. P., Godbersen, G. M., Reed, M. B., Spurny-Dworak, B., 
Handschuh, P., et al. (2021). Comparison and reliability of hippocampal subfield 
segmentations within FreeSurfer utilizing T1- and T2-weighted multispectral MRI data. 
Front. Neurosci. 15:666000. doi: 10.3389/fnins.2021.666000

Tamnes, C. K., Walhovd, K. B., Engvig, A., Grydeland, H., Krogsrud, S. K., Ostby, Y., 
et al. (2014). Regional hippocampal volumes and development predict learning and 
memory. Dev. Neurosci. 36, 161–174. doi: 10.1159/000362445

West, M. J., Coleman, P. D., Flood, D. G., and Troncoso, J. C. (1994). Differences in 
the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. 
Lancet 344, 769–772. doi: 10.1016/S0140-6736(94)92338-8

Yassa, M. A., Stark, S. M., Bakker, A., Albert, M. S., Gallagher, M., and Stark, C. E. L. 
(2010). High-resolution structural and functional MRI of hippocampal CA3 and dentate 
gyrus in patients with amnestic mild cognitive impairment. NeuroImage 51, 1242–1252. 
doi: 10.1016/j.neuroimage.2010.03.040

Zammit, A. R., Ezzati, A., Zimmerman, M. E., Lipton, R. B., Lipton, M. L., and 
Katz, M. J. (2017). Roles of hippocampal subfields in verbal and visual episodic memory. 
Behav. Brain Res. 317, 157–162. doi: 10.1016/j.bbr.2016.09.038

Zhao, W., Wang, X., Yin, C., He, M., Li, S., and Han, Y. (2019). Trajectories of the 
hippocampal subfields atrophy in the Alzheimer’s disease: a structural imaging study. 
Front. Neuroinform. 13:13. doi: 10.3389/fninf.2019.00013

Zhou, Y. (2021). Imaging and multiomic biomarker applications: advances in early 
Alzheimer’s disease Nova Science Publishers.

https://doi.org/10.3389/fnagi.2023.1273658
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1159/000495754
https://doi.org/10.3389/fnagi.2020.00064
https://doi.org/10.1126/sciadv.abb0457
https://doi.org/10.1126/sciadv.abb0457
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1186/s40478-018-0563-8
https://doi.org/10.1093/arclin/acac018
https://doi.org/10.1016/j.jalz.2019.06.2850
https://doi.org/10.1037/pag0000294
https://doi.org/10.1037/pag0000294
https://doi.org/10.1016/j.nicl.2018.101632
https://doi.org/10.1016/j.neuropsychologia.2017.12.014
https://doi.org/10.3233/JAD-2012-111931
https://doi.org/10.3233/JAD-2012-111931
https://doi.org/10.1007/s13760-023-02235-9
https://doi.org/10.1007/s13760-023-02235-9
https://doi.org/10.1016/j.neuroimage.2004.03.032
https://doi.org/10.3389/fnins.2021.666000
https://doi.org/10.1159/000362445
https://doi.org/10.1016/S0140-6736(94)92338-8
https://doi.org/10.1016/j.neuroimage.2010.03.040
https://doi.org/10.1016/j.bbr.2016.09.038
https://doi.org/10.3389/fninf.2019.00013

	Machine learning classifiers and associations of cognitive performance with hippocampal subfields in amnestic mild cognitive impairment
	Introduction
	Materials and methods
	Patient population and data acquisition
	Neuropsychological scale tests
	Image acquisition
	Hippocampal subfields segmentation
	Statistical analysis
	Machine learning models’ construction

	Results
	Comparison of demographic and neuropsychological performance
	Comparisons of hippocampal subfield volumes
	Machine learning results
	Relationship between MMSE, MoCA, and hippocampal subfield volumes

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

