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Background: Alzheimer’s disease (AD), a common neurological disorder, has

no effective treatment due to its complex pathogenesis. Disulfidptosis, a newly

discovered type of cell death, seems to be closely related to the occurrence of

various diseases. In this study, through bioinformatics analysis, the expression

and function of disulfidptosis-related genes (DRGs) in Alzheimer’s disease were

explored.

Methods: Differential analysis was performed on the gene expression matrix

of AD, and the intersection of differentially expressed genes and disulfidptosis-

related genes in AD was obtained. Hub genes were further screened using

multiple machine learning methods, and a predictive model was constructed.

Finally, 97 AD samples were divided into two subgroups based on hub genes.

Results: In this study, a total of 22 overlapping genes were identified, and 7

hub genes were further obtained through machine learning, including MYH9,

IQGAP1, ACTN4, DSTN, ACTB, MYL6, and GYS1. Furthermore, the diagnostic

capability was validated using external datasets and clinical samples. Based on

these genes, a predictive model was constructed, with a large area under the

curve (AUC = 0.8847), and the AUCs of the two external validation datasets were

also higher than 0.7, indicating the high accuracy of the predictive model. Using

unsupervised clustering based on hub genes, 97 AD samples were divided into

Cluster1 (n = 24) and Cluster2 (n = 73), with most hub genes expressed at higher

levels in Cluster2. Immune infiltration analysis revealed that Cluster2 had a higher

level of immune infiltration and immune scores.

Conclusion: A close association between disulfidptosis and Alzheimer’s disease

was discovered in this study, and a predictive model was established to assess the

risk of disulfidptosis subtype in AD patients. This study provides new perspectives

for exploring biomarkers and potential therapeutic targets for Alzheimer’s disease.

KEYWORDS
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Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder characterized by
progressive cognitive decline, accompanied by a decline in daily living abilities and
psychiatric symptoms, and is the most common cause of dementia (McKhann et al., 2011).
The incidence of AD is increasing year by year, with approximately 50 million AD patients
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worldwide, and epidemiological data analysis predicts that the
global incidence of AD will double by 2050 (Scheltens et al., 2021).
AD was first discovered and reported by Aloïs Alzheimer in 1907,
and over the past century, extensive research has been conducted,
but the exact mechanism of AD remains largely unknown (Zhang
G. et al., 2021), and there is still no effective treatment for
preventing or slowing the progression of AD. Studies have shown
that the preclinical latency period of AD can reach 20 years,
indicating that we have a long time to intervene in the progression
of the disease, making the discovery of AD biomarkers even more
important.

Disulfidptosis is a newly discovered cell death mechanism that
differs from traditional programmed cell death modes such as
apoptosis, necrosis, autophagy, NETosis and pyroptosis (Jorgensen
et al., 2016). Liu et al. (2023) found that cells with high expression
of SLC7A11 undergo a previously uncharacterized form of cell
death, called disulfidptosis, under glucose-deprived conditions due
to the abnormal accumulation of disulfide molecules. Excessive
accumulation of disulfide molecules induces disulfide stress in actin
cytoskeleton proteins, resulting in an increase in disulfide bond
levels within actin filaments. This leads to filament contraction and
eventual disruption of the cellular skeleton structure, ultimately
resulting in cell death. Inhibitors targeting specific cell death
pathways have been used to treat various diseases, including
neurodegenerative diseases (Deng et al., 2023). The discovery of the
novel disulfidptosis mechanism of cell death induced by disulfide
bonds in the cellular skeleton provides new potential targets for this
form of treatment (Machesky, 2023).

Dendritic spines are excitatory synaptic protrusions located
on dendritic shafts and are considered as pathological targets
in Alzheimer’s disease (Yu and Lu, 2012). Actin is the major
cytoskeletal component of dendritic spines (Landis and Reese,
1983). Mounting evidence suggests that the actin cytoskeleton
is crucial for synaptic function and plasticity (Selkoe, 2002).
Dysregulation of actin cytoskeletal dynamics has been implicated
in the pathological development of Alzheimer’s disease (Pelucchi
et al., 2020). Disulfide bond accumulation, which is the mechanism
of disulfidptosis, can also lead to actin cytoskeleton damage. Thus
suggesting a potential link between disulfidptosis and Alzheimer’s
disease, although the specific process of the link requires further
analysis and investigation.

In this study, we aimed to explore potential mechanisms
underlying AD by analyzing differentially expressed genes
between normal and AD samples, utilizing the Gene Expression
Omnibus (GEO) database. We performed a cross-referencing
analysis between the differential genes and those associated with
disulfidptosis, aiming to identify the differentially expressed
disulfidptosis-related genes (DRGs). Subsequently, we applied
various machine learning algorithms to identify key genes
and developed a prediction model. The performance of the
prediction model was validated using a nomogram and two
external datasets. Finally, based on the expression profiles of
seven disulfidptosis-related genes, we classified 97 AD patients
into two disulfidptosis-related clusters and further evaluated the
differences in immune cells between the two clusters, providing a
new perspective for better understanding the potential molecular
mechanisms underlying the pathogenesis of AD.

Materials and methods

Data acquisition and pre-processing

Three raw datasets (GSE132903, GSE48350, GSE5281,
GSE33000, and GSE181279) were obtained from the GEO database
using the “GEOquery” R program (Davis and Meltzer, 2007).
These datasets contain gene expression data from both Alzheimer’s
disease patients and normal groups. The GSE132903 dataset
contains 97 AD samples and 98 normal samples, the GSE48350
dataset contains 80 AD samples and 173 control samples, and the
GSE5281 dataset contains 87 AD samples and 74 control samples,
the GSE33000 dataset contains 310 AD samples and 157 control
samples and the GSE181279 dataset contains 3 AD samples and 2
control samples.

Identification of differentially expressed
genes associated with AD and
disulfidptosis

Differential gene analysis was performed using the R package
“limma” (Ritchie et al., 2015), | log2 fold change (FC)| > 0 and
P < 0.05 were selected as the threshold for differentially expressed
genes (DEGs) between AD and normal samples in the dataset.
Differential gene expression data were displayed using volcano
plots and heatmaps. Gene ontology (GO) enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were also performed using the “clusterProfiler” package
(Yu et al., 2012) in R to further investigate the biological roles of
DEGs.

Evaluating the immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) was
performed using the R package “GSVA.” Twenty-eight immune
gene sets were established, and the degree of immune cell
infiltration was calculated for each sample based on the
expression matrix of each sample (Hänzelmann et al., 2013). Four
other algorithms, including quanTIseq, xCell, MCP-counter and
Estimating the Proportion of Immune and Cancer cells (EPIC),
were used to verify the stability of the ssGSEA results (Liu et al.,
2022; Chen et al., 2023a). These analyses were performed by R
package IOBR.

Construction of predictive model based
on machine learning methods

According to the study by Liu et al. (2023) and Zhao et al.
(2023a), a total of 26 DRGs were identified. By crossing DEGs
with DRGs, differentially expressed DRGs were identified. Three
machine learning techniques were then used to further screen the
potential gene list for AD diagnosis (Yuan et al., 2023). The least
absolute shrinkage and selection operator (LASSO) is a regression
method that improves prediction accuracy and selects important
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feature variables by using regularization techniques (Tibshirani,
1996). Support vector machine (SVM) can perform label prediction
on feature vectors by establishing a threshold between the two
classes (Noble, 2006). Random forest (RF) is a powerful method
for predicting continuous variables and providing stable prediction
results (Rigatti, 2017). The intersection genes resulting from LASSO
regression, SVM and RF analyses were considered as central hub
genes for AD diagnosis (Rajab et al., 2023). Next, a nomogram
model for AD cluster occurrence was established using the rms R
package (version 6.5.0). The pROC R package was used to perform
receiver operating characteristic (ROC) analysis to evaluate the
performance of the predictive model in discriminating AD from
normal samples. The diagnostic value of the predictive model
between AD and normal groups was validated using ROC analysis
with two external brain tissue datasets, GSE5281 and GSE48350.

Validation by real-time PCR and
differential expression of external
datasets

Total RNA was extracted from the blood samples of AD and
healthy controls (HCs) using TRIzol reagent Life Technologies
(lot number: 248207), following the manufacturer’s instructions.
Subsequently, reverse transcription reactions were performed using
RNA 1 µg and RevertAidTM M-MuLV reverse transcriptase
(TaKaRa). Real-time PCR was conducted using 2 × SYBR Green
qPCR Master Mix (High ROX) Servicebio (lot number: LT202201).
The expression data were normalized using the 2-11Ct method
with β-actin as the internal reference. The primer sequences used
for real-time fluorescence quantitative PCR analysis are provided
in Table 1. We also performed differential analysis of the hub genes
in GSE181279 and GSE33000. GSE181279 performed single-cell
RNA-seq analysis. Quality control, data cleaning, and data analysis
were performed using R packages such as “dplyr” and “Seurat.”
PCA analysis was conducted on the highly variable genes in the
HC and AD groups, resulting in 4 clusters (HCs) and 6 clusters
(AD), which were projected onto UMAP plots. The expression
distribution of the hub genes in the control and AD groups was
explored.

Subclusters analysis with seven
disulfidptosis-related genes

Based on the expression profiles of 7 DRGs, we
performed unsupervised hierarchical clustering analysis using
ConsensusClusterPlus on 97 AD samples. Gene set variation
analysis (GSVA) was conducted to elucidate the functional
differences between the disulfidptosis subclusters identified
through clustering analysis. The files “c2.cp.kegg.v7.4.symbols”
and “h.all.v2023.1.Hs.symbols” were downloaded from the
MSigDB online database for GSVA analysis. A heatmap
was generated to visualize the distinct activity patterns of
the two subclusters. DEGs were identified between the two
disulfidptosis-related subclusters. Statistically significant values
were considered when | log2 fold change (FC) | > 1 and
adj. p < 0.05. GO and KEGG enrichment analyses were then

conducted using the “clusterProfiler” package to describe their
biological functions.

Results

Identification of DEGs and functional and
pathway enrichment analysis

The dataset GSE132903 includes 97 AD samples and 98 normal
samples. Using the R package “limma,” a total of 11,637 DEGs
were identified. Figure 1 illustrates the specific analysis process,
while Figures 2A, B display the volcano plot and heatmap of the
DEGs, respectively. GO and KEGG enrichment pathway analysis
was performed in R to explore the potential role of DEGs. The
significant GO-BP (biological process) terms were mainly related
to nervous system development, positive regulation of cellular
metabolic process, establishment of localization. GO-CC (cellular
component) analysis showed that the DEGs were significantly
enriched in presynapse, cell junction, cell projection, nucleoplasm.
GO-MF (molecular function) enriched pathways were mainly
related to cytoskeletal protein binding, small molecule binding,
enzyme binding, nucleoside phosphate binding (Figure 2C).
The KEGG analysis revealed that these DEGs were enriched in
pathways such as salmonella infection, Fc gamma R-mediated
phagocytosis, axon guidance, ErbB signaling pathway, autophagy-
animal, regulation of actin cytoskeleton and mitogen-activated
protein kinase (MAPK) signaling pathway (Figure 2D). These
results suggest that these DEGs have important implications for the
research and can be further analyzed.

Evaluation of immune cell infiltration

The overall expression patterns of 22 DRGs in AD and normal
samples are shown in Figures 3A, B. Except for NCKAP1, RAC1,
ACTB, NDUFA11, GYS1, DSTN, and MYH10, which are expressed
at lower levels in AD, most DRGs are expressed at higher levels
in AD. A total of 22 key genes were identified by intersecting
the 11,637 DEGs with the 26 DRGs (Figure 3C). To investigate
whether there are differences in the immune system between
AD and normal groups, an immune infiltration analysis was
conducted using the ssGSEA algorithm, which revealed differences
in the proportions of 28 infiltrating immune cell types between
the AD and normal groups (Figure 3D). The results showed
that AD patients had higher levels of activated CD8 T cell,
CD56bright natural killer cell, CD56dim natural killer cell, central
memory CD8 T cell, effector memory CD8 T cell, immature
B cell, immature dendritic cell, mast cell, MDSC, natural killer
cell, natural killer T cell and plasmacytoid dendritic cell, while
gamma delta T cell and Type 1 T helper cell did not show
significant differences (Figure 3E). To gain further insights into
the tumor microenvironment (TME) contexture, we employed
four additional methodologies, namely xCell, MCPcounter, EPIC,
and quanTIseq (Supplementary Figure 1). Furthermore, the
correlation analysis results also showed that Immune cells are
closely associated with DRGs (Figure 3F). These results indicate
that distinct immune cell types display unique infiltrations in AD
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TABLE 1 Primer sequences for RT-qPCR.

Gene Amplicon size (bp) Forward primer (5′→3′) Reverse primer (5′→3′)

Hu-β-actin 96 CCCTGGAGAAGAGCTACGAG GGAAGGAAGGCTGGAAGAGT

Hu-MYH9 150 AAGCTGGTATGGGTGCCTTC CTTGGGCGGGTTCATCTTCT

Hu-MYL6 196 GCATATCCTGTCGGGGTGAC GCTGACGGCAAACATCATCC

Hu-DSTN 179 TTGCCAGGACAATCATTAACTGC AATCCCAGTCCTCTCCTCAGA

Hu-ACTN4 180 GAACCGCTCGAAGTCCACAC TGTGGCATTCATGTCCTCCC

Hu-GYS1 146 CGAATGGGGCGACAACTACT TCTGTGCCAGGAACTTGCAG

Hu-IQGAP1 182 TCAGCCATTGTCAGCTCTGT TCAAAGGCATCAGGAGCAACA

FIGURE 1

The study flow chart.

patients, and DRGs may serve as a crucial factor in regulating the
immune infiltration status of AD patients.

Identification of the
disulfidptosis-signature via machine
learning

Based on 22 key genes, we used LASSO regression, random
forest and SVM algorithms to screen for potential genes and
construct a disulfidptosis-signature (Figures 4A–C). Ultimately,
we identified eight disulfidptosis-related feature genes as hub
genes, including MYL6, MYH9, IQGAP1, ACTN4, GYS1, DSTN,
and ACTB (Figure 4D). We conducted gene set enrichment

analysis (GSEA) analysis on the seven hub genes, which showed
that these genes exhibit enrichment in immune and metabolic
related pathways (Supplementary Figure 2). Most of the hub
genes were highly correlated with each other and IQGAP1 had
a strong synergistic relationship with MYH9 (coefficient = 0.68),
while DSTN had a strong antagonistic relationship with ACTN4
(coefficient = 0.63) (Figure 5A). The diagnostic ability of each
feature gene in predicting AD was evaluated through ROC curve
analysis, and a nomogram model was developed as a predictive
tool for AD diagnosis (Figure 5B). The AUC value of the ROC
curve for GYS1, ACTB, MYL6, MYH9, IQGAP1, ACTN4 and
DSTN were 0.627, 0.753, 0.672, 0.692, 0.637 and 0.753, respectively
(Figure 5C). The calibration curve shows that the error between
the actual risk and the predicted risk is small, which indicates that
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FIGURE 2

Analysis of differentially expressed genes and enriched pathways in AD. (A) An heatmap displays the expression levels of AD-related DEGs. (B) A
volcano plot highlights the significant DEGs. (C) GO analysis shows enriched terms related to AD. (D) KEGG pathway analysis reveals enriched
pathways in AD. DEGs, differentially expressed genes; GO, gene ontology; BP, biological process; CC, cellular component; MF, molecular function;
KEGG, Kyoto Encyclopedia of Genes and Genomes.

the nomogram model has good prediction accuracy (Figure 5D).
The AUC value of the ROC curve for nomogram was 0.8847
(Figure 5E). Further validation with external datasets GSE48350
and GSE5281 confirmed the diagnostic value of hub genes, with an
AUC of 0.7306 for GSE48350 and 0.9217 for GSE5281 (Figures 5F,
G). These results indicate that the nomogram model have good
diagnostic value, and we can infer that these genes can accurately
distinguish the AD group from the normal group.

Validation of hub genes expression
through real-time PCR and differential
analysis with external datasets

To validate the reliability of the hub genes, we collected blood
samples from individuals with AD (n = 3) and healthy controls
(HCs) (n = 3) for quantitative real-time reverse transcription-
polymerase chain reaction (qRT-PCR). The results showed

significantly elevated expression levels of MYH9, MYL6, ACTN4,
IQGAP1, and GYS1 in AD patients compared to HCs, while
the expression of DSTN was significantly decreased (Figure 6).
Furthermore, the expression levels of the seven hub genes
were validated in the GSE181279 and GSE33000 datasets. For
GSE181279, we performed single-cell RNA sequencing (scRNA-
seq) analysis, and quality control, data cleaning, and PCA analysis
were conducted as shown in Supplementary Figure 3. The
expression and distribution of hub genes are illustrated in Figure 7.
The differential analysis results for GSE33000 can be found in
Supplementary Table 1. Except for ACTB expression, the results
from these two datasets were largely consistent, we considered the
discrepancies of ACTB results to the heterogeneity of single-cell
sequencing data, as well as differences in experimental methods,
technology platforms, data processing, and analysis methods. These
results suggest that these genes may have the potential to serve as
biomarkers for AD diagnosis.
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FIGURE 3

Expression of DRGs and immune cell infiltration in AD. (A) Heatmap showing the expression levels of DRGs. (B) Boxplot of DRGs expression levels.
(C) Overlap of genes between DEGs and DRGs. (D) The proportions of 28 immune cells infiltrating in AD and normal were compared. (E) Boxplots
illustrating the differences in immune infiltration between AD and normal. *p < 0.05, ***p < 0.001, ns, no significance. (F) Correlation analysis of 22
differentially expressed DRGs and infiltrated immune cells.

Consensus clustering analysis of
disulfidptosis gene clusters

We performed consensus clustering analysis using the
“Consensus Cluster Plus” package in R. Based on the expression
profiles of the 7 hub genes, we grouped 97 AD samples. The
stability of the clustering was found to be highest when k = 2,
as demonstrated (Figure 8A), and the CDF curve showed
fluctuations within the smallest consensus index range of 0.2 to 0.6
(Figures 8B, C). The same result was achieved from Nbclust testing
(Supplementary Figure 4). We ultimately divided the 97 AD
patients into two groups, namely Cluster1 (n = 24) and Cluster2
(n = 73). As shown in the PCA plot, the gene expression patterns
between the clusters were distinct (Figure 8D). The expression

levels of DRGs in the two subtypes were visualized by heatmap and
boxplot (Figures 8E, F). With the exception of ACTN4 and GYS1,
most DRGs had higher expression levels in Cluster2, including
MYH9, MYL6, ACTB, DSTN, and IQGAP1.

GSVA of biological pathways between
subclusters of disulfidptosis

Using GSVA analysis, we identified several enriched pathways
that showed differential expression between the two subtypes, as
visualized in a heat map. Based on KEGG pathways, Cluster1
showed higher expression levels in olfactory transduction, Notch
signaling pathway and hedgehog signaling pathway, while Cluster2
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FIGURE 4

Identification of disulfidptosis-signature using machine learning. (A–C) Three different algorithms, LASSO regression, SVM, and RF, were used to
construct disulfidptosis-signatures. (D) The Venn diagram shows the overlap of candidate genes identified by the three algorithms. LASSO, least
absolute shrinkage and selection operator; SVM, support vector machine; RF, random forest.

showed higher activity in oxidative phosphorylation, valine
leucine and isoleucine biosynthesis, cysteine and methionine
metabolism, mismatch repair and Alzheimer’s disease (Figure 9A).
Cluster2 shows elevated expression in several metabolic pathways
(including glucose metabolism, lipid metabolism, and amino
acid metabolism), as well as disease pathways such as diabetes,
Alzheimer’s disease, and Parkinson’s disease. Compared to
Cluster1, Cluster2 showed higher Hallmark activity in PI3K
AKT MTOR SIGNALING, MTORC1 SIGNALING, TGF BETA
SIGNALING, APOPTOSIS, and IL2 STAT5 SIGNALING pathways
(Figure 9B).

Functional distinctions between the two
disulfidptosis subclusters

To gain further insight into the functional differences
between the two subclusters, differential expression analysis was
performed and a total of 298 DEGs were identified, including
90 upregulated and 208 downregulated genes. The distribution
of these DEGs is shown in the volcano plot (Figure 10A).
GO and KEGG enrichment analysis was then conducted on
the 298 DEGs to gain a better understanding of potential
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FIGURE 5

Validation of the diagnostic efficacy based on hub genes. (A) Correlation analysis of 7 hub genes. Positive correlations are represented by blue color
while negative correlations are represented by red color. The pie chart depicts the correlation coefficients with varying sizes of each slice. **p < 0.05.
(B) Creating a nomogram to predict the risk of AD using hub genes. (C) ROC curve of hub genes in AD. (D) Calibration curve to evaluate prediction
efficiency of nomogram model. (E–G) ROC curves from GSE132903, GSE48350, and GSE5821, respectively. ROC, receiver operating characteristic.

molecular processes and functions. GO analysis: (BP) shows
gene enrichment in protein S-nitrosocysteine, regulation of
transport, intracellular transport, nervous system development
and intracellular localization; (CC) shows gene clustering in
vesicle membrane, extracellular exosome, extracellular membrane-
bounded organelle, extracellular vesicle and organelle membrane;
(MF) shows cell enrichment in MHC class II protein complex
binding, microtubule binding and protein-containing complex
binding (Figure 10B). We performed KEGG enrichment analysis
and found that these genes were mainly enriched in pathways
such as Pathways of neurodegeneration−multiple diseases,
Long-term potentiation, apelin signaling pathway and oxidative
phosphorylation (Figures 10C, D). Subsequently, we conducted
immune infiltration analysis on the two subgroups, and the results
showed that the immune microenvironment between Cluster1 and
Cluster2 had changed. Activated B cells, activated CD8 T cells,
CD56dim natural killer cells, immature B cells, monocytes, natural
killer cell and natural killer T cell were expressed at higher levels in

Cluster1, while activated CD4 T cells, central memory CD4 T cells,
effector memory CD4 T cells, eosinophil, immature dendritic cells,
mast cell, memory B cells, neutrophil, regulatory T cells, type 1 T
helper cells, type 17 T helper cells and type 2 T helper cells were
expressed at higher levels in Cluster2 (Figure 10E). Moreover, the
immune score of Cluster2 was relatively higher, indicating that
Cluster2 may have a more significant level of immune infiltration
(Figure 10F).

Discussion

As the most common neurodegenerative disease worldwide,
Alzheimer’s disease has been extensively studied, and some progress
has been made (Zhao et al., 2023b). However, due to the lack
of sufficient neurobiological markers and the heterogeneity of
the pathogenesis of AD, the current therapeutic effects are still
unsatisfactory (Byun et al., 2015; Cano et al., 2021). Therefore, it
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FIGURE 6

The result of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) illustrated the expression levels of hub genes in
patients with AD (n = 3) and HC (n = 3). *p < 0.05, **p < 0.01.

FIGURE 7

Verification of hub genes expression on single-cell RNA-seq analysis.
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FIGURE 8

Identification of disulfidptosis subtypes in AD. (A) Consensus matrix displaying consensus values when k = 2. (B,C) CDF and CDF delta area curves
were plotted to assess the quality of consensus clustering. (D) PCA diagram s depicting the distribution of different subclusters. (E,F) Differential
expression of DRGs between subtypes is shown in the heatmap (E) and boxplot (F). **p < 0.01; ***p < 0.001; ns, no significance. CDF, cumulative
distribution function; PCA, principal component analysis.

is crucial to identify more effective diagnostic markers to guide
individualized treatment for AD. Disulfidptosis, a recently reported
novel form of cell death, is mainly caused by the accumulation of
disulfide bonds, leading to cytoskeleton collapse and subsequent

cell death, which is closely related to disease progression (Chen
et al., 2023b). However, the specific mechanism of disulfidptosis
and its regulatory role in various diseases, as well as potential
pathways, have not been further studied. Here, we attempted to
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FIGURE 9

Analysis of key pathways between disulfidptosis subtypes using GSVA. (A) Pathway enrichment analysis based on the KEGG database. (B) Pathway
enrichment analysis based on the Hallmark database.

elucidate the role of disulfidptosis-related genes in AD, linking
disulfidptosis to the pathogenesis of AD, and identifying potential
key genes through bioinformatics analysis to explore potential
therapeutic targets.

In this study, we used the GEO database to investigate
the gene expression levels of normal and AD patients and
ultimately identified 11,637 DEGs. GO and KEGG enrichment
analyses indicated that cells were enriched in positive regulation of
metabolic process, cytoskeletal protein binding, MAPK signaling
pathway, regulation of actin cytoskeleton and ErbB signaling
pathway. Consistent with previous research conclusions that
AD patients exhibit metabolic dysfunction in both the central
and peripheral nervous system, as well as damage to the actin
cytoskeleton in muscle cells leading to synaptic dysfunction and
the MAPK and ErbB pathways have been identified as potential
therapeutic targets for AD (Lee and Kim, 2017; Clarke et al., 2018;
Pelucchi et al., 2020; Zhang H. et al., 2021).

Subsequently, we comprehensively evaluated the expression of
DRGs in the brain tissues of both normal and AD individuals.
Compared to the normal population, AD patients exhibited more
abnormal expression of DRGs, indicating the important role of
DRGs in the development of AD. Meanwhile, there were significant
changes in the proportion of immune cells between normal and AD
patients. Previous studies have shown that the immune system is
closely related to AD (Mietelska-Porowska and Wojda, 2017), and
our study showed that CD8 T cells, B cells, dendritic cells, mast
cells, MDSCs, natural killer cells, and natural killer T cells were
more highly infiltrated in AD patients, consistent with previous
research (Salminen et al., 2018; Dai and Shen, 2021; Harcha et al.,
2021).

In addition, we also found a correlation between these immune
cells and DRGs. Furthermore, using three machine learning
classifiers, we identified seven hub genes (MYL6, MYH9, IQGAP1,
ACTN4, GYS1, DSTN, and ACTB) that are associated with AD.
The diagnostic capability was validated using external datasets and
clinical samples. Myosin II is an actin-binding protein composed of
MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and
ELCs (essential light chains) (Vierthaler et al., 2022). MYL6 is one
of the ELCs, while MYH9 and MYH10 are part of the MHC family
and encode non-muscle myosin II (NMM-II) which combines

with the F-actin network to form the actomyosin cytoskeleton
(Pecci et al., 2018; Acebedo et al., 2019); IQGAP1, a key regulatory
factor for dendritic spine density, plays an important role in tissue
cytoskeleton, microtubule network and cell adhesion by directly
binding to actin and promoting actin filament crosslinking, and
it also has a specific role in cognitive processes (Fukata et al.,
1997; Briggs and Sacks, 2003; Gao et al., 2011; White et al.,
2012); ACTN4, an important member of the actin-binding protein
family, plays a crucial role in maintaining cell skeleton integrity,
controlling cell movement, regulating mRNA metabolism and
signal transduction (Khotin et al., 2010; Hsu and Kao, 2013; de
Ribeiro et al., 2014); DSTN, a member of the actin depolymerizing
factor (ADF)/cofilin family, plays a crucial role in regulating cell
skeleton remodeling and actin filament turnover and has been
linked to neurological damage (Zhang et al., 2020). DSTN protein
has been proposed as a potential biomarker and regulatory protein
for AD protection with Rb1 pretreatment (Hwang et al., 2016);
Glycogen Synthase (GYS), belonging to the GT3 superfamily,
is classified as a retaining glycosyltransferase (GT). Its function
involves catalyzing the sequential addition of α-1, 4-linked glucose
residues to the non-reducing end of a growing polysaccharide
chain. GYS1, belonging to the GYS family, exhibits expression in
multiple tissues, including muscle and brain (Inoue et al., 1988;
McCorvie et al., 2022); beta-actin (ACTB) is a highly conserved
cytoskeletal protein that plays a crucial role in cell growth and cell
migration (Gu et al., 2021). ACTB is involved in various cellular
processes, including cell motility, intracellular transport, and signal
transduction. Its expression and function are essential for the
proper functioning and dynamics of cells. The correlation analysis
showed significant synergistic or antagonistic effects between these
hub genes. Building a diagnostic model using these 7 hub genes may
be useful in guiding the diagnosis of AD in clinical practice.

We used unsupervised clustering methods based on the
expression of 7 features of double disulfidptosis-regulating factors
to estimate molecular patterns in AD brain tissue and ultimately
identified two distinct molecular subtypes. Immune infiltration
analysis showed that Cluster2 had higher immune scores and
relatively higher levels of immune infiltration. Moreover, most
DRGs were expressed at higher levels in Cluster2. The KEGG
analysis results highlight the close relationship between the
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FIGURE 10

Functional enrichment analysis and infiltration of immune cells in disulfidptosis subtypes. (A) The volcano plot of DEGs. (B) GO analysis shows
enriched terms (C,D) Enriched pathways based on KEGG analysis. (E) Correlation matrix of all 28 immune cell subtype compositions. (F) Boxplots
depicting the immune score differences between the two disulfidptosis subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.

DEGs of Cluster2 and Cluster1 and various processes, including
metabolism, signal transduction, diseases, and neurodegeneration.
The activation of the PI3K/Akt pathway has been shown to have
beneficial effects on neurons and neural stem cells (Kitagishi et al.,
2014; Razani et al., 2021), while dysfunction of the TGF-β/TβRII
signaling axis in the AD brain may accelerate Aβ deposition and
neurodegeneration (Das and Golde, 2006; Dammer et al., 2022).
The GSVA analysis indicated an upregulation of Cluster2 in TGF
BETA SIGNALING and PI3K AKT MTOR SIGNALING.

This study has some limitations that need to be emphasized.
Firstly, as our current research is based on comprehensive
bioinformatics analysis and RT-PCR validation. It lacks more
experimental and clinical trial validation, our results need further
confirmation. Additionally, it should be noted that the sample
size of this study is relatively small, and larger studies are needed

to verify the reliability of the results. Furthermore, this study
only involved one group of AD patients and controls, without
considering the potential effects of different factors such as age,
sex, and race on the results. Moreover, more detailed clinical
information is needed to verify the predictive performance of
the model, and more external validation cohorts are needed to
ensure the stability of the diagnostic model. Finally, more AD
samples are needed to clarify the accuracy of the clustering related
to disulfidptosis.

Conclusion

In summary, our study has revealed the correlation between
the genes related to disulfidptosis and infiltrating immune cells,
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and identified 7 feature genes associated with disulfidptosis, which
accurately assess the AD subtypes and diagnose AD patients.
Moreover, we have elucidated significant immune heterogeneity
among different disulfidptosis subtypes of AD patients. Our study
has, for the first time, revealed the involvement of disulfidptosis in
the development of AD, providing new insights into the potential
pathogenic processes and therapeutic strategies for AD.
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