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Alzheimer’s disease (AD) is considered as one of the leading causes of

death among people over the age of 70 that is characterized by memory

degradation and language impairment. Due to language dysfunction observed

in individuals with AD patients, the speech-based methods o�er non-invasive,

convenient, and cost-e�ective solutions for the automatic detection of AD.

This paper systematically reviews the technologies to detect the onset of AD

from spontaneous speech, including data collection, feature extraction and

classification. First the paper formulates the task of automatic detection of AD and

describes the process of data collection. Then, feature extractors from speech data

and transcripts are reviewed, whichmainly contains acoustic features from speech

and linguistic features from text. Especially, general handcrafted features and

deep embedding features are organized from di�erent modalities. Additionally,

this paper summarizes optimization strategies for AD detection systems. Finally,

the paper addresses challenges related to data size, model explainability, reliability

and multimodality fusion, and discusses potential research directions based on

these challenges.
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1. Introduction

Alzheimer’s disease (AD) is one of themost prevalent neurological disorders. It primarily
affects older adults, with age being a significant risk factor for its development. Recently, AD
has become one of the main causes of death among people over 70 years old (Alzheimer’s
Association, 2019). The World Health Organization (WHO) has reported that dementia
currently affects over 50 million people worldwide, with millions of new diagnoses each
year (World Health Organisation, 2020), likely increasing to above 152 million in 2050
(Nichols et al., 2022). According to Alzheimer’s Society (2020), the prevalence of AD is
also expected to increase, as indicated by the doubling of AD cases in individuals over
the age of 60 approximately every 4-5 years. Among individuals over the age of 80, the
likelihood of developing AD is estimated to be one in three (Ritchie and Lovestone, 2002).
AD is characterized by a continuous deterioration of cognitive and functional abilities in
individuals over time, encompassing domains such as language, memory, attention and
executive function (Nestor et al., 2004; American Psychiatric Association, DSM-5 Task
Force , 2013). Therapeutic interventions have shown the greatest efficacy before neuronal
degeneration occurs in the brain (Nestor et al., 2004). Therefore, early identification of these
deficits is crucial, as it has the potential to significantly impede the progression of cognitive
impairments and enable the preservation of cognitive functions in patients (Dubois et al.,
2009).

To date, there has been a lot of research focused on developing methods for detecting
AD, including neuropsychological tests [e.g., self-report questionnaires, the mini-mental
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state examination (MMSE) (Folstein et al., 1975)], and
neuroimaging techniques [e.g., magnetic resonance imaging
(MRI) (Jack et al., 2008), positron emission tomography (PET)
(Samper-González et al., 2018)]. Although these methods can
offer relatively accurate diagnoses of AD, they suffer from some
drawbacks. Neuroimaging and cerebrospinal fluid analysis are
expensive, time-consuming, invasive, and require validation by
neurologists and manually clinical settings. Cognitive assessments
and self-report questionnaires are tedious and may not have good
test-retest reliability and validity. Therefore, there is a need for
more practical and reliable methods for AD detection that are less
invasive and can be used in a natural environment.

On the contrary, speech-based methods have the potential
to provide non-invasive, effective, simple, and inexpensive tools
for automatically detecting AD. There are several reasons why
speech is so useful for this purpose. First, speech is closely
related to cognitive status, and it has been widely used as the
main input in various mental health assessment applications. The
most significant correlation with AD is the difference in speech
comprehension, reasoning, language production, and memory
functions, which can result in a reduction in vocabulary and
verbal fluency, as well as difficulties in performing daily tasks
related to semantic information (Forbes-McKay and Venneri,
2005). Hoffmann et al. (2010) compared four temporal parameters
in individuals with AD and control subjects, namely articulation
rate, speech tempo, hesitation ratio and rate of grammatical errors.
Significant differences were observed between the two groups,
with hesitation ratio showing particularly notable disparities. These
findings indicate that temporal aspects of speech play a vital role in
the differentiation of AD from other neurodegenerative disorders
and can even aid in the detection of early-stage AD. Additionally,
the studies focusing on the speech of individuals with AD
have consistently demonstrated that their acoustic and linguistic
abilities are significantly impacted, even during the early stages
of the disease, leading to noticeable differences when compared
to individuals without AD (Ahmed et al., 2013; Szatloczki et al.,
2015). These distinctive differences observed between individuals
with AD and those without AD can be harnessed for the purpose of
detecting AD through speech analysis. Second, spontaneous speech
can be easily accessed anywhere, as it only requires a device with
a recording function. Speech can also be used as a cost-effective
long-term monitoring approach.

Motivated by these, research has increasingly focused on
utilizing spontaneous speech to extract information for the
automatic detection of AD. The studies can be broadly categorized
into two main directions: extracting discriminative features from
speech data to identify AD patients, and designing effective
classification models to achieve high detection performance. In
the feature domain, spontaneous speech of AD patients exhibits
many distinguishable characteristics, such as lower speech rate,
more frequent and longer hesitations, obscurer pronunciation,
and longer pauses, compared to non-AD (NAD) participants
(Hoffmann et al., 2010; Szatloczki et al., 2015). These distinctions
can be leveraged to extract linguistic and acoustic features for
the automatic detection of AD. Linguistic features encompass the
linguistic content and structure of speech and can be extracted from
manually annotated transcripts or generated through automatic

speech recognition (ASR) systems. These features include measures
of parts-of-speech (POS) tags (Bucks et al., 2000), grammatical
constituents (Fraser et al., 2014), lexical diversity (Fraser et al.,
2016a), global vectors (GLoVe) (Pennington et al., 2014), word2vec
(Mirheidari et al., 2018), and deep embeddings using techniques
such as bidirectional encoder representations from transformers
(BERT) (Yuan et al., 2020) and other neural network methods (Pan
et al., 2019). Acoustic features refer to the characteristics of speech
that are related to its physical properties, and can be extracted
using traditional handcrafted or deep embedding techniques, such
as Fourier analysis, Mel-frequency cepstral coefficients (MFCCs)
(Alhanai et al., 2017), term frequency-inverse document frequency
(TF-IDF) (Ramos et al., 2003), and wav2vec (Baevski et al., 2020).
Besides, other features can also provide useful information for AD
detection, including speaker-specific attributes such as age, gender,
and interactional features (e.g., turn-taking patterns).

In the model domain, the models for AD detection from
speech can be divided into three types based on different modal
input. Speech-based models are built with acoustic features as
model input, and text-based models exploit linguistic information
as model input. Multimodal-based models combine features from
speech and text modalities as model input. These models are
trained mainly based on statistical machine learning such as linear
discriminant analysis (LDA), decision tree (DT), support vector
machine (SVM) and random forests (RF), and deep learning (DL)
algorithms, including fully connected neural network (FCNN),
convolutional neural network (CNN), recurrent neural network
(RNN), long short-term memory (LSTM) network, gated recurrent
unit (GRU), and Transformer-based models.

However, automatic detection of AD is still a challenging
task from spontaneous speech. One reason lies in the lack of
specialist data due to the challenges associated with collecting a
large amount of transcribed speech recorded from AD patients
and the limited availability of clinical professionals. Then, another
reason is that many NNs appear black boxes, making it challenging
to understand the underlying features driving their predictions and
give meaningful interpretations.

The paper presents a review of automatic detection systems
for from spontaneous speech. The main contributions can be
summarized as follows:

• We conduct a comprehensive review and summary
of the development of each module in AD detection
systems, focusing on the data collection module, feature
extraction module and classification module. This provides
a comprehensive understanding of the various components
involved. Notably, our paper focuses on the advancements
made for AD detection technologies especially in the last
three years, providing an up-to-date analysis of the state-of-
the-art. This distinguishes our work from previous review
publications such as Petti et al. (2020) covering the period
between 2013 and 2019, Pulido et al. (2020) covering 2005–
2018, de la Fuente Garcia et al. (2020) covering 2000–2019,
(Vigo et al., 2022) covering 1996-2020, and (Martínez-Nicolás
et al., 2021) covering 2010-2020.

• Following a handbook-style approach, we provide a detailed
description of the features and classifiers usually used in
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AD detection models. This allows readers to easily access
information on AD detection without the need to search
through numerous papers.

• We compile a summary of the state-of-the-art performance on
popular datasets from recent papers, providing insights into
the corresponding technologies used for feature extraction,
classifiers, and optimization strategies.

• We provide a discussion of the existing challenges in AD
detection, with a focus on practical applications aspects such as
data, modality, explainability and reliability. Additionally, we
propose potential future directions to address these challenges.

The paper starts with a description of the task of automated
AD detection from spontaneous speech (Section 2). Then, some
recent public datasets are introduced and features extracted from
speech and text are detailed shown in Section 3. In Section 4, we
review popular classification algorithms used in AD detection and
discuss strategies for improving performance. Section 5 presents a
discussion of the challenges that still need to be addressed. Finally,
Section 6 provides conclusions and outlines potential ideas for
future work.

2. Task description

AD is thought to be the most prevalent neurodegenerative
condition with common signs of memory and cognitive decline.
AD detection and treatment is greatly helpful for delaying
irreversible brain damage, and thus important in AD research.
Since a key marker of early AD is decline in speech and language
functionality, like the reduction of vocabulary and verbal fluency,
this allows us to extract information from speech or/and the
corresponding transcripts to distinguish AD and non-AD (NAD).
Therefore, the automatic AD detection task is to determine a
category c∗ between AD and NAD with a higher probability given
data d, which is formulated as

c∗ = max
c={AD,NAD}

p(c|d). (1)

2.1. System architecture

To solve the problem, a typical system architecture is
demonstrated in Figure 1. The process of automation detection of
AD can be categorized into three stages: data collection, feature
extraction and classification.

First, the data d are collected by recording speech from both
individuals with and without AD using various methods. After
data collection, it is common to partition the dataset into a
training set, a validation set, and a test set. The training set is
used to train the model, while the validation set is used for fine-
tuning and hyperparameter tuning. Finally, the test set is kept
separate and used for unbiased evaluation of the trained classifier.
Given that the original audio waves and transcripts include both
valuable and redundant information for AD detection, it becomes
essential to extract relevant features, emphasizing the informative
aspects. The process can be conceptualized as mapping the raw

data d to meaningful representations F that capture the relevant
characteristics for AD detection, expressed as

F = f (d). (2)

The core is to extract discriminate features to classify AD
and NAD as accurately as possible, which should be designed
carefully. Three types of features are generally exploited for this
purpose. One is acoustic features extracted from speech data.
Many acoustic features such as MFCC, wav2vec2.0 are related to
the severity of AD. Another linguistic features are obtained from
transcripts which are usually from manual annotation or an ASR
system, containing GLoVe, word2vec, BERT embedding and so on.
Then, there are some other features including individual attributes
such as age and gender, and interactional features from dialogues.
More detailed description about feature extraction will be found in
Section 3.2. Therefore, instead of Equation 1, the practice uses the
features to detect AD, which is expressed as

c∗ = max
c={AD,NAD}

p(c|f (d)) = max
c={AD,NAD}

p(c|F). (3)

A classification model is used to address the issue of
Equation 3. The modeling methods contain two categories:
traditional statistical machine learning algorithms and DL
algorithms. Statistical machine learning algorithms usually have
clear theories and reduction process and thus have having desirable
interpretability, such as LDA, DT, SVM and RF. On the other hand,
DL algorithms have been proven to achieve a better performance
in many fields, such as CNN, RNN, LSTM and Tranformer-based
models. Several canonical classification models will be introduced
in detail in Section 4.

2.2. Evaluation metrics

The system for AD classification is typically evaluated by
metrics including the accuracy (A), precision (P), recall (R) and F1
score, which are defined as

A =
TN + TP

TN + TP + FN + FP
, (4)

P =
TP

TP + FP
, (5)

R =
TP

TP + FN
, (6)

F1 =
2PR

P + R
, (7)

where TP represents the number of true positives, TN represents
the number of true negatives, FP denotes the number of false
positives and FN is false negatives.

2.3. Study selection process

To comprehensively review the aforementioned systems, we
conducted a search for relevant articles published within the
current year. First, our primary focus is on the automatic detection
of AD based on speech data. Therefore, our inclusion criteria are
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FIGURE 1

A hierarchy of automatic detection of AD from spontaneous speech.

to select articles that employ speech and/or text analysis and ML
methods for the automatic detection of AD. On the other hand,
we excluded studies related to other dementia conditions, such as
Parkinson’s disease, as well as those utilizing non-speech data like
MRI. Additionally, studies solely relying on traditional statistical
analysis for AD detection without incorporating ML methods
were also excluded. By applying these specific criteria, we aim to
narrow our focus to research that utilizes ML-driven approaches
for automatic AD detection using speech data.

Then, to obtain the relevant articles, we conducted a thorough
literature search using prominent academic databases like Google
Scholar and conference proceedings, with a particular emphasis on
conferences like Interspeech and ICASSP, renowned for their focus
on speech processing and provide valuable contributions to the field
of automatic AD detection through speech analysis. To refine our
search and target relevant articles, we employed inclusion criteria
and exclusion criteria. We applied specific inclusion and exclusion
criteria to refine our search and target relevant articles. Initially,
we used keywords related to “Alzheimer’s disease” OR “AD” OR
“dementia” AND “speech” to retrieve articles. Subsequently, we
manually selected or excluded articles after careful reading to
ensure their relevance to our research focus. Notably, the focus of
this review is on automated AD detection from speech patterns
using ML-based systems. While Mini Mental State Examination
(MMSE) scores are commonly used as a quantitative measure
of cognitive impairment and provide valuable insights into the
disease’s dynamics in monitoring the progression of AD, the
vast and continuously evolving literature on AD progression and
MMSE prediction goes beyond the scope of this review. Moreover,
many studies employed a similar architecture for MMSE prediction
(Rohanian et al., 2021; Jin et al., 2023; Tamm et al., 2023),
which results in significant overlap with AD detection in terms
of features and ML techniques. Due to space limitations and
to maintain a clear focus on AD detection from speech data,
specific aspects related to MMSE prediction were not explored in
this review.

Furthermore, to ensure the most up-to-date information, we
primarily searched for papers published within the last 3 years,
aiming to capture the latest advancements and developments in the
field of automatic AD detection.

By combining these search strategies, we gathered a robust
collection of relevant studies, enriching our literature review
with comprehensive insights and valuable findings related to the
automatic detection of AD from speech data.

3. Materials

3.1. Datasets

A dataset used for automatic AD detection from speech
is obtained by recruiting participants with and without AD
and collecting recordings from them using various methods,
including neuropsychological tests and natural conversations.
Neuropsychological tests include but not limited to the
following tests.

• The picture description test (Croisile et al., 1996; Forbes-
McKay and Venneri, 2005). The picture description test
involves presenting a subject with an picture and requesting
them to provide a detailed description of the depicted scenario
within a specified time frame.

• Verbal fluency test: animal category (Hart et al., 1988;
Randolph et al., 1993). During verbal fluency assessment,
participants are given a specific category, typically related to
animals (e.g., dog, cat, fish), and are instructed to generate as
many different words as possible within a time limit.

• Boston naming test (BNT) (Koss et al., 1996). BNT has been
predominantly used to assess naming ability for the degree of
language disturbances in clinical neuropsychology. A typical
form consists of 60 pictures ordered from easy to difficult, and
the subjects are requested to name them (Kaplan et al., 2001).
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• Logical memory test (Greene et al., 1996; Rabin et al., 2009).
Logical memory test is especially useful for detecting relatively
mild retrieval problems, which includes word list learning,
delayed recall, recognition and constructional praxis (Rosen
et al., 1984). During these selected tests, spontaneous speech
data will be recorded. Some of them are then manually
transcribed.

Several public datasets are published for automatic detection of
AD from spontaneous speech, which allows researchers to easily
access the study of AD detection. Table 1 presents a compilation of
public datasets, including their respective dataset names, reference
papers, spoken languages, modalities, and participant information.
These datasets were selected by following the criteria of public
availability, and widespread usage in experiments for automatic
AD detection.

DementiaBank (Boller and Becker, 2005) is the largest publicly
available database, which is a multilingual data bank consisting of
15 datasets in English, German, Mandarin, Spanish and Taiwanese.
DementiaBank contains 241 narrations from individuals without
any cognitive impairment (referred to as healthy controls or
HCs) and 310 narrations from those diagnosed with dementia.
These narrations were collected annually from 1983 to 1988 from
participants aged between 45 and 90 years. They were asked to
perform various tasks, such as the picture description test. Audio
recordings with/without textual transcriptions, annotated at the
utterance level and synchronized with the audio, are available for
each case in the dataset. After that, more data will be added to
DementiaBank. Pitt corpus (Becker et al., 1994) is a widely used
subset of DementiaBank. Pitt were gathered longitudinally from
104 elderly controls, 208 with probable and possible AD, and
85 unknown diagnosis participants. Responses to four language
tasks were recorded, including one task of Cookie Theft picture
description for all participants, and three tasks of verbal fluency,
sentence construction and story recall for AD group only. Lu
corpus from DementiaBank comprises interview recordings of 52
AD patients in Mandarin and 16 AD patients in Taiwanese, by
performing tasks such as the Cookie theft picture description,
category fluency, and picture naming (MacWhinney et al., 2011).
Ivanova et al. (2022) collected recordings from a total of 361
Spanish native speakers aged over 60, including 74 AD patients, 197
HCs and 90 individuals with MCI. They were asked to read the first
paragraph of the novel “The Ingenious Gentlemen Don Quixote
of La Mancha.” The Wisconsin Longitudinal Study (WLS) is a
long-term research project that aims to understand the life course
and the factors influencing individuals’ lives. It includes a random
sample of 10,317 Wisconsin high school graduates surveyed over
nearly 60 years from 1957 to 2011 (Herd et al., 2014). While the
WLS does not currently provide dementia-related diagnoses in its
metadata, it offers valuable data on demographics, socioeconomic
status, health behaviors, and cognitive abilities, making it a relevant
resource for AD research.

The Carolinas Conversation Collection (CCC) dataset (Pope
and Davis, 2011) is a collection of transcribed speech and video of
conversations with people over the age of 65. It consists of over 200
consented conversations with 125 subjects who have one or more
of 12 chronic conditions and over 400 conversations with 125 AD

patients, recorded at least twice a year. These conversations cover
topics related to the participants’ daily lives and health issues and
are conducted with interviewers.

The Chile dataset (Sanz et al., 2022) was created from 55 native
Spanish speakers, including 21 AD patients, 18 Parkinson’s disease
(PD) patients, and 16 HCs. The participants were asked to perform
seven language tasks covering different communicative behaviors,
such as describing daily routine and primary interests, recounting
a pleasant memory as well as an unpleasant memory, describing
a modified picnic scene and a picture depicting a family working
in an unsafe kitchen, and immediately recalling and narrating a
one-minute silent animated film. Through these tasks, linguistic
patterns express diverse and partly predictable. The audio was
recorded using laptops in a quiet room, and the transcripts were
generated using ASR and then manually revised.

The Interdisciplinary Longitudinal Study on Adult

Development and Aging (ILSE) (Martin et al., 2000) was
collected with the aim of studying the challenges posed by rapidly
aging societies in both East and West Germany. It consists of more
than 8,000 hours of recorded speech over a long period of 20 years
from 1,000+ individuals diagnosed with AD, cognitive decline,
mild cognitive disorder, vascular dementia, as well as HCs. Each
participant was asked to complete up to four measurements and
provide detailed responses to open-ended questions. So far, 380
hours of ILSE were manually transcribed (Weiner et al., 2016a).

ADReSS (The Alzheimer’s Dementia Recognition through

Spontaneous Speech), derived from the Cookie session of Pitt, is
a “balanced and acoustically enhanced” challenge dataset hosted
by Interspeech2020 conference (Luz et al., 2020). ADReSS contains
the recordings of 78 AD patients and 78 HCs with a matched age
and gender. The data from Pitt were enhanced with noise removal,
and then segmented using voice activity detection. After volume
normalization, over 5000 speech segments were generated.

ADReSSo (The Alzheimer’s Dementia Recognition through

Spontaneous Speech only) is a dataset used in Interspeech2021
Challenge (Luz et al., 2021). Two tasks were designed to record
speech of participants: a semantic fluency task and a Cookie Theft
picture description task. The resulting training set contained 166
instances with 87 AD patients and 79 HCs. There were also other
71 instances with 35 AD patients and 36 HCs in the test set. No
transcripts are provided with ADreSSo.

NCMMSC’s (National Conference on Man-Machine Speech

Communication) AD dataset (Competition Group, 2021) is used
for NCMMSC2021 AD Recognition Challenge. The recordings
were collected from a total of 124 Chinese speakers, containing
26 AD patients, 44 HCs and 54 MCIs. They were required to
complete tasks including picture description, fluency test and free
conversation with the interviews. The resulting dataset contained
280 samples with the duration of each sample in about 30-60
seconds.

ADReSS-M (Multilingual Alzheimer’s Dementia

Recognition through Spontaneous Speech) is an ICASSP
2023 Signal Processing Grand Challenge that aims to explore
the extraction of universal acoustic features from speech data
to facilitate multilingual detection of AD (Luz et al., 2023).
The ADReSS-M dataset consists of audio recordings of picture
descriptions obtained from 148 AD patients and 143 HCs, in

Frontiers in AgingNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qi et al. 10.3389/fnagi.2023.1224723

TABLE 1 This table shows a summary of datasets for AD detection.

Dataset References Language Modality Source

DementiaBank Boller and Becker, 2005 English, German, Mandarin,
Spanish, Taiwanese

Audio, Video, or Text 310 AD patients, 241 HCs

Pitt Becker et al., 1994 English Audio, Text 208 AD patients, 104 HCs, 85 unknown diagnosis

Lu MacWhinney et al., 2011 Chinese Audio, Text 52 AD patients in Mandarin and 16 AD in
Taiwanese

Ivanova Ivanova et al., 2022 Spanish Audio, Text 74 AD patients, 197 HCs, 90 MCI

WLS Herd et al., 2014 English Audio 10,317 participants

CCC Pope and Davis, 2011 English Audio, Text 125 AD patients, 125 non-AD controls

Chile Sanz et al., 2022 Spanish Audio, Text 21 AD patients, 18 Parkinson’s disease patients,
and 16 HCs

ILSE Martin et al., 2000 German Audio, Text (part) Over 8,000 hours of recorded speech data from
more than 1,000 participants over a long period of
20 years. 5.4 % AD patients, 5.4% MCI, 60.8% HCs
in the third measurements

ADReSS Luz et al., 2020 English Audio, Text 78 AD patients, 78 HCs

ADReSSo Luz et al., 2021 English Audio 87 AD patients, 78 HCs

NCMMSC2021 Competition Group, 2021 Mandarin Audio, Text 26 AD patients, 44 HCs, 54 MCI

ADReSS-M Luz et al., 2023 English, Greek Audio 148 AD patients, 143 HCs

Note that the datasets Pitt, Lu, Ivanova and WLS are subsets of DementiaBank. ADReSS and ADReSSo are subsets of Pitt, which have been acoustically enhanced and reorganized.

English and Greek languages. The dataset is divided into three
splits: an English training split, a Greek sample split, and a Greek
test split. The English training set was collected from 122 AD
patients and 115 HCs. Participants were asked to describe the
Cookie Theft picture in English during the recording session.
On the other hand, the Greek sample split and test split consist
of spontaneous speech descriptions of a different picture in the
Greek language. The sample split includes recordings from 8
subjects, with 4 AD patients and 4 HCs, while the test split involves
data from 46 participants, with 22 AD patients and 24 HCs. It is
noteworthy that the ADReSS-M dataset’s splits were meticulously
balanced for both age and gender.

3.2. Feature extraction

After a dataset is prepared, it is necessary to extract
features from spontaneous speech before classification. Feature
extraction is expected to separate the relevant features for AD
detection from redundant and irrelevant data. After that, feature
selection or/and feature fusion is implemented to improve the
detection performance by selecting a subset of more discriminative
representative features and fusing them. As shown in Figure 1,
three types of features can be extracted: acoustic features from
audio, linguistic features from the transcripts and other features.

3.2.1. Acoustic features
Acoustic features may change in individuals with AD due

to the physiological and cognitive changes associated with the
disease. Firstly, AD can impact the coordination and control
of the muscles involved in speech production, including the

articulatory and vocal folds muscles. This can result in changes
in articulation, such as imprecise consonant production, reduced
vocal range, and alterations in speech rhythm. These changes
can be reflected in features like MFCCs, which capture spectral
information, and measures like jitter and shimmer, which assess
perturbations in fundamental frequency and amplitude. Secondly,
AD is characterized by progressive cognitive decline, including
impairments in memory, attention, language, and executive
functions. These changes can affect speech production, leading to
alterations in acoustic features. For example, individuals with AD
may exhibit difficulties in word retrieval, sentence construction,
andmaintaining coherent speech, which can be reflected in changes
in speech rate, pauses, and speech fluency. Then, individuals
with AD may experience changes in vocal quality, including
hoarseness, breathiness, and reduced vocal intensity. These changes
can be detected by jitter, shimmer, and harmonics-to-noise
ratio, which provide measures of vocal stability, roughness, and
clarity. Additionally, language impairments, such as word-finding
difficulties, semantic deficits, and syntactic errors, are commonly
associated with AD. These can influence the structure and content
of speech, leading to changes in acoustic features related to
language, such as pauses, speech rate, and the distribution of
acoustic energy across different frequency bands.

Based on the recent papers, acoustic features used in AD
detection can be divided into frame-level features, embedding
features and paralinguistic features including prosody, disfluency
and emotional features.

3.2.1.1. Frame-level features

Frame-level acoustic features are directly derived from audio
files. The time and frequency characteristics and statistical
functionals are captured, such as MFCCs, F0 and energy
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distribution. Frame-level features can be easily obtained by public
audio processing toolkits, such as OpenSMILE (Eyben et al., 2010)
andKaldi (Povey et al., 2011). From these toolkits, different acoustic
feature sets can be extracted from the raw audio files as follows.

• Emobase (Schuller et al., 2010). It includes a range of audio
features including MFCC, F0, F0 envelope, line spectral pairs
(LSP) and intensity features, along with their first and second-
order derivatives.

• IS10 (Eyben et al., 2013). The set includes MFCC, loudness,
F0 envelope, LSP, voicing probability, jitter local, jitter derived
perturbation parameter, and shimmer local features.

• AVEC (Valstar et al., 2013). The AVEC feature set comprises
various energy, spectral, and voicing-related features, along
with their statistical properties, regression features, and
functionals related to local minima and maxima.

• ComParE (Schuller et al., 2013). The ComParE feature set
includes a comprehensive collection of acoustic features
that capture various aspects of speech and non-speech
signals. Some specific features within the ComParE set
include "logarithmic harmonic-to-noise ratio, voice quality
features, Viterbi smoothing for F0, spectral harmonicity and
psychoacoustic spectral sharpness" (Schuller et al., 2013).
Finally, statistical functionals are calculated to summarize the
distributional properties of these features.

• eGeMAPS (Eyben et al., 2015). The feature set attempts to
reduce the number of other sets to 88 features with theoretical
significance, and thus detect physiological changes in voice
production. These features encompass MFCC, loudness,
spectral flux, jitter, shimmer, F0, F1, F2, F3, alpha ratio,
Hammarberg index, slope V0, and their statistical functionals.

• Bag-of-Audio-Words (BoAW) (Schmitt and Schuller, 2017).
BoAW contains the quantization of acoustic low-level
descriptors (LLDs), including MFCC, log-Mel, and the
ComParE features.

• Multi-resolution Cochleagram features (MRCGs) (Chen et al.,
2014). MRCGs are generated bymimicing the human auditory
filters. Firstly, the audio signal is passed through a gammatone
filter and then decomposed in the frequency domain using
multiple levels of resolution. The low-resolution level encodes
spectrotemporal information, while the high-resolution level
focuses on capturing local information. By combining these
different levels of resolution, a time-frequency representation
is obtained to effectively capture the multi-resolution power
distribution of the audio signal.

3.2.1.2. Acoustic embeddings features

Embedding features are generated from the embedding layer
based on deep neural network.

• VGGish (Hershey et al., 2017). VGGish is an acoustic
embedding model which is pretrained using a CNN-based
structure on YouTube’s Audio dataset. VGGish extracts and
transforms the audio into high-level feature vectors.

• Speaker Embeddings. Speaker embeddings aim to extract
information related to speaker identity in a compact form.
The typical speaker embeddings contains i-vectors (Dehak
et al., 2010) and x-vetctors (Snyder et al., 2018). I-vector

embeddings are extracted based on a Universal Background
Model (UBM) and a Gaussian Mixture Model (GMM) to
model the variability of the speaker and channel. X-vectors
are a type of speaker representation and extracted using
deep neural networks. These embeddings contain information
related to gender, emotion, and articulatory, phonatory and
prosodic information. Pérez-Toro et al. (2021) extracted x-
vectors based on a trained Time delay neural network for AD
detection.

• Neural network. Popular deep neural network architectures,
such as DNN, CNN, can also generate embedding features
by selecting the output of a specific layer. These embeddings
capture higher-level representations of the input data
learned by the neural network. Cummins et al. (2020)
investigated Siamese network combined with contrastive
loss functions and end-to-end convolutional neural network
(CNN), and found that these systems can capture the features
related to different production mechanisms and extract the
characteristic of AD speech from all. Pan et al. (2020) proposed
Sinc-CLA as a feature extractor for the classification of
neurodegenerative disorders, mild cognitive impairment and
healthy controls.

• Wav2vec2.0 (Baevski et al., 2020). Wav2vec2.0 is a self-
supervised end-to-end ASR system developed by Facebook
AI Research. Wav2vec2.0 contains a multi-layer convolutional
feature encoder which encodes raw wave into latent
representations, a quantization module for masking and a
Transformer to get textualized representationsoptimized by
minimizing a connectionist temporal classification (CTC) loss.
Since Wav2vec2.0 can also capture the speaker and language
characteristics in the audio (Fan et al., 2020), the outputs
of transformer layers can be extracted as the embedding
representations of the input utterances. Pan et al. (2021) used
the last hidden state of Wav2vec2.0 as acoustic embedding
features.

3.2.1.3. Prosody

Prosody defines patterns of intonation and stress, which is
easily affected by cognitive impairments. Prosodic measures focus
on temporal aspects, intensity, voice quality, interruptions, voice
periods, and variation in F0, as well as statistical functionals.

3.2.1.4. Disfluency

AD patients often experience difficulties with language and
cognitive skills. As the disease progresses, they may exhibit slower
speech rate, longer pauses or breaks between words or sentences,
and increased difficulty in finding the right words, resulting in
disfluencies in their speech. There are different types of disfluency
features to show the ability of subjects in organizing language, such
as percentage of broken words, repetitions, sound prolongations,
self-repairs (Shriberg, 1994) and pauses. Pauses include filled pauses
and unfilled pauses. Cmmon filled pauses contain “uh,” “um,” “oh,”
“well,” laughter, and so on. Yuan et al. (2020) calculated word
frequencies and showed that AD patients had potential to use
more ’uh’, laughter and meaningless words like “well,” “oh,” but less
“um,” compared to HCs. Moreover, the durations of unfilled pauses
calculated from forced alignment were analyzed and the results
showed that AD patients had more and longer pauses. As a result,
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the durations can be extracted for distinguishing AD patients as
pause features.

3.2.1.5. Emotional embeddings

AD patients often experience a reduced ability to perceive
and express emotions due to their memory loss (Henry et al.,
2009), and thus emotional features can be extracted to capture
relevant information about the emotional state of AD patients. A
continuous emotion state can be expressed by a three-dimensional
vector with valence, arousal, and dominance. Pérez-Toro et al.
(2021) trained three models to respectively obtain three factors
by combining CNN and GRU, and extracted the output of the
embedding layer as emotional features.

3.2.2. Linguistic features
Linguistic features undergo changes in individuals with AD due

to the progressive nature of the condition, which affects various
cognitive and language-related processes. AD is characterized by
language impairments, and as the disease advances, individualsmay
encounter difficulties in word retrieval, comprehension of complex
grammatical structures, construction of grammatically correct
sentences, and maintenance of coherent discourse. These language
impairments are evident in alterations in vocabulary usage,
sentence structure, and overall linguistic fluency. Word-finding
challenges may lead to frequent pauses and the substitution of
words with similar-sounding alternatives, consequently impacting
the flow and coherence of speech. Furthermore, AD can result
in decreased verbal expression abilities, including reduced output,
shorter and less complex sentences, and a decrease in the
overall quantity of speech. As a result, the range of vocabulary
becomes limited, and the utilization of syntactic structures may
diminish. Additionally, AD can affect the organization and
coherence of discourse, leading to unrelated responses, difficulties
in maintaining topic coherence, and challenges in adhering to
conversational conventions. Pragmatic impairments may also arise,
encompassing difficulties in appropriate language usage within
social contexts. These challenges can involve struggles with turn-
taking, adherence to conversational norms, and comprehension of
non-literal language, such as sarcasm or metaphors.

Linguistic features used in AD detection encompass various
aspects such as syntax, semantics, word embeddings, sentence
embeddings, and more. These features can also be categorized as
traditional handcrafted features and deep embeddings.

3.2.2.1. Traditional features

Traditional handcrafted features derived from theories of
Linguistics, which include features related to syntactic, semantic,
and lexical diversity. Specifically, it includes the following features.

• Parts-of-speech (POS). The production of different POS
reflects language changes, including a decrease in the number
of nouns, and an increase in the number of pronouns,
adjectives and verbs (Bucks et al., 2000). POS and related
statistical features comprise the frequency of different POS
occurrences, dependency tags in the subject’s transcript, ratios
of nouns to verbs, pronouns to nouns, and more.

• Syntactic complexity. The syntactic complexity of the picture
descriptions can be assessed through various measures,
including the mean length of utterances, T-units (Hunt, 1970),
clauses, the height of the parse tree and the statistics of Yngve
depth (Yngve, 1960).

• Grammatical constituents. A set of context-free grammar
features derived from the parse tree analysis has shown the
potential to differentiate between individuals with agrammatic
aphasia and HCs during a story-telling task (Fraser et al.,
2014). These features includes the frequency of different
grammatical constituents, as well as the rate, proportion and
average length of different phrases (e.g., noun phrases, verb
phrases and prepositional phrases).

• Vocabulary richness or lexical diversity. It can be measured by
unique word count, type-token ratio (TTR), moving-average
type-token ratio, Brunét’s index and Honoré’s statistic (Fraser
et al., 2016a). TTR denotes the ratio of the total number of
unique words to the overall text length, which is sensitive
to text length, while the other three measures provide an
unbiased metric of lexical richness without being influenced
by text length.

• Repetitive and diverse features. AD disorder impacts memory,
resulting in AD patients potentially using a more repetitive
and less diverse vocabulary compared to HCs (Nicholas et al.,
1985; Syed et al., 2021). To quantify it, some features are
extracted such as TTR, the number of repetitive words, and
the number of sweepback caused by self-corrections. A bag-
of-words measures the cosine distance between each pair of
utterances, with a result of zero to indicate the two identical
utterances.

• TF-IDF (Ramos et al., 2003). TF-IDF is used to determining a
word’s relative importance in a specific document compared
to its overall frequency across the entire document corpus.
Common words in a single document tend to achieve a higher
score than those like articles and prepositions. Given the
documents D = {d1, d2, d3, ...}, where di denote a document
in the corpus, the TF-IDF of a word w in a document di can be
calculated by Salton and Buckley (1988)

Tdi
w = cdiw log

|D|

cDw
, (8)

where c
di
w denotes the number of times the word w appears

in the document di. |D| represents the total number
of documents in the corpus. cDw denotes the number of
documents in which the word w appears.

3.2.2.2. Deep embeddings

• Word2Vec. Word2Vec represents a class of neural network
models, such as skip-gram and the continuous bag-of-
words (CBOW). Word2Vec can encode semantic information
from unlabeled data by producing embedding vectors. These
vectors can be used for the semantic similarity andmany other
NLP tasks. The procedure for CBOW as an example is to
train a NN using neighbor words to predict a target word.
Specifically, text segment is first represented using the average
of normalized word embeddings such as one-hot encodings,
and the results are fed to a RF classifier (Bojanowski et al.,
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2017). Word vectors are obtained from the activations of a
hidden layer.

• BERT-based embeddings.
BERT is a powerful unsupervised and deep pretrained

model (Kenton and Toutanova, 2019). By utilizing the
encoder part of the Transformer architecture, BERT
transforms words/sentences in a corpus into embedding
feature vectors, which can be further used for classification.
BERT has spawned various variants. One widely used variant
called RoBERTa (Robustly Optimized BERT approach)
(Liu et al., 2019) has been developed and gained significant
attention. RoBERTa benefits from the larger training corpus
and optimized training procedure to learn more robust
representations and exhibit improved performance across
multiple tasks. Wang et al. (2022b) used fine-tuned text
embedding networks, such as BERT and Roberta, to extract
linguistic information, and then used majority voting to fuse
the decisions.

3.2.2.3. Readability features

Considering that AD patients show difficulties in
understanding the meaning of complex words and syntax (Croisile
et al., 1996), readability features are extracted for AD detection
to capture the complexity of language, such as gunning fog index
(GFI) (Gunning, 1969), automated readability index (ARI) (Smith
and Senter, 1967), the simple measure of Gobbledygook (SMOG)
grading (Mc Laughlin, 1969) and the ratio of unique words. GFI
and ARI are designed to evaluate the number of years of formal
education required for a person to comprehend a text on the first
reading, which are calculated as Martinc and Pollak (2020)

GFI =
0.4(Nw + 100Nlw)

Ns
, (9)

ARI =
4.71Nc

Nw
+

0.5Nw

Ns
− 21.43, (10)

where Nc, Nw and Ns denote the number of characters, words and
sentences, respectively.Nlw is the number of long words longer than
7 characters. SMOG grading is used to assess the reading level and
comprehension difficulty of health messages, expressed as

SMOG = 3.1291+ 1.0430
√

30Nsyl/Ns, (11)

where Nsyl is the number of polysyllabic words in samples of 30
sentences.

3.2.2.4. Acoustic and linguistic feature fusion

Besides separate acoustic and linguistic features, there are
techniques providing a way of fusing acoustic and linguistic
features. For example, Haider et al. (2019) developed an active
data representation (ADR) to fuse bi-modal features at a
word and sentence level, which can model temporal aspects
of text and speech. The ADR features include cluster counts,
cross-modality word embeddings, pause, centroid embeddings,
embedding velocity and centroid velocity, duration (Haider et al.,
2019; Martinc et al., 2021). Martinc et al. (2021) combined ADR
with TF-IDF weighted bag-of-n-grams to model semantics better.

3.2.2.5. Other features

Other features encompass various aspects relevant to AD
detection, such as age and gender obtained from a demographic
questionnaire or natural conversations during the recording
process, and interactional features from dialogues.

3.2.2.6. Meta features

Meta-features, such as age, gender, education, genetic factors
and so on, are demographic or clinical characteristics of individuals
that are not directly related to the disease but can have a significant
impact on its development, progression, and presentation. The
relationship between AD and meta-features has been a subject
of significant research interest in the field of neurodegenerative
diseases. For example, aging is associated with various changes
in the brain, including the accumulation of amyloid plaques
and neurofibrillary tangles, which are hallmark features of AD
pathology. Andersen et al. (1999) has shown that gender may play
a role in AD susceptibility. Women tend to have a higher risk
of developing AD compared to men. Education level has been
associated with cognitive reserve, which refers to the brain’s ability
to adapt and function despite damage. Higher education levels have
been linked to greater cognitive reserve, potentially delaying the
onset of cognitive decline and AD symptoms.

3.2.2.7. Interactional features

During dialogue conversations, temporal and interactional
aspects are distinctive between AD patients and the interviewers.
For example, the subjects with AD are older people with longer
lapse and lower speech rates compared to the interviewers within
the conversation. Thus, an interactional feature set can be extracted
to quantify the interactions between patients and interviewers
for AD detection. Nasreen et al. (2021b) exploited 32 features to
describe the interaction within the natural conversations, including
speech rate (measured in syllables per minute), turn length
(measured in words per turn), floor control ratio (indicating the
proportion of speech time by AD patients relative to the total
conversation duration), normalized total duration of short and
long pauses (the total duration of pauses normalized by the total
duration without pauses), and so on.

Based on the available studies, it is evident that a wide
range of features have been extracted with the primary aim
of obtaining more discriminative features for effective AD
detection. Furthermore, there is a noticeable trend in the studies
toward transitioning from handcrafted features to utilizing deep
embedding representations. This transition highlights the growing
interest in leveraging advanced techniques to capture higher-level
representations for AD detection.

4. Methods

After learning features from bi-modal speech and text data, they
are used to build a classificationmodel for recognizing AD patients.
There are two typical types of algorithms for this end: statistical
machine learning methods and deep learning methods.
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4.1. Statistical machine learning

4.1.1. Support vector machine (SVM)
SVM (Cortes and Vapnik, 1995) is a popular type of supervised

learning algorithm used for classification and regression tasks.
SVM aims to find a hyperplane that separates the data points
into different classes by maximizing the margin between the
classes, i.e., the distance between the closest data points from
each class to the hyperplane. The data points that are closest
to the hyperplane are called support vectors, and used to define
the hyperplane. Moreover, SVM can map the input data points
into a higher-dimensional space using a kernel function, and then
different classes may be more easily recognized. Zargarbashi and
Babaali (2019) extracted acoustic representations of I-vectors and
D-vectors for speech and N-gram representations for transcription
text, and used SVM on these features to recognize AD, achieving a
classification accuracy of 83.6% using the Pitts Corpus. Wang et al.
(2022b) selected classifiers from five classification models: SVM,
LDA, Gaussian process (GP), multilayer perceptron (MLP), and
extreme gradient boost (XGB). The experimental results showed
that SVM classifier combined with BERT and Roberta features
achieved best performance among all.

4.1.2. Logistic regression
Logistic regression (LaValley, 2008) is used to analyze and

model binary or categorical outcomes. The model first uses the
logistic function to compute the probability of the binary outcome,
and then utilizes the predictors to estimate the coefficients of the
logistic function, which determines the relationship between the
predictors and the probability of the binary outcome. Liu et al.
(2020) used a logistic regression model trained on spectrogram
features extracted from speech data for recognizing AD. Shah
et al. (2021) tested the performance of SVM, LR and majority
vote classifiers when using acoustic features only, linguistic
features only and the combined features, and showed that an
ensemble of acoustic-based and language-based models yielded the
best performance.

4.1.3. Linear discriminant analysis (LDA)
LDA (Balakrishnama and Ganapathiraju, 1998) aims to find

a linear combination of features that maximizes the separation
between different classes while minimizing the variance within each
class. The core concept of LDA is to project the original high-
dimensional data onto a lower-dimensional subspace that retains
the most discriminatory information. This subspace is defined by
the eigenvectors of the between-class scatter matrix and is referred
to as the discriminant subspace. Weiner et al. (2016b) developed a
LDA model for classification and achieved a classification accuracy
of 85.7%.

4.1.4. k-Nearest neighbors (KNN)
KNN (Fix, 1985) identifies the k-nearest neighbors to a

given data point based on a distance metric, and then uses the
majority vote of these neighbors to classify the data point or
estimate the value of the target variable. One of the advantages

of KNN is its simplicity and interpretability, as the decision
boundary is determined by the data itself. However, KNN can be
computationally expensive for large datasets and may suffer from
the curse of dimensionality.

4.1.5. Decision tree (DT)
A decision tree is a tree-like model that consists of a series of

decisions and their possible consequences (Quinlan, 1986). Each
internal node of the tree represents a decision based on the value
of a feature, and each leaf node represents a class or a value
of the target variable. DT is popular due to its interpretability,
flexibility, and ease of implementation. Mirzaei et al. (2018) used
three classificationmodels: KNN, SVM and DT to classify AD,MCI
and HCs.

4.1.6. Random forest (RF)
RF (Breiman, 2001) is an ensemble learning method that

combines multiple decision trees to improve the accuracy and
robustness of themodel. Each tree in the forest is trained on a subset
of the data, and the final prediction is made by taking the majority
vote of all the trees. RF is known for its high accuracy, scalability,
and resistance to overfitting. Hernández-Domínguez et al. (2018)
trained SVM and RF to distinguish between HCs and MCI, and
the results provide insights into the effectiveness of SVM and RF
classifiers in the early diagnosis of MCI. In Edwards et al. (2020),
the effectiveness of multiscale (word and phoneme level) features
was explored using five different classification models: LDA, KNN,
DT, RF and SVM, achieving a maximum classification accuracy
of 79.2%.

4.2. Deep learning

4.2.1. Convolutional neural network (CNN)
CNN (LeCun et al., 1998) is composed of multiple

convolutional layers that learn a hierarchy of features from
the input data, followed by one or more fully connected layers
that perform the classification task. CNN is known for its ability
to automatically learn spatial and temporal features from the data,
and has been widely studied and applied in various fields, such as
self-driving cars, medical image analysis, and robotics. Warnita
et al. (2018) utilized a gated CNN and achieved an accuracy of
73.6% for AD detection on the Pitt corpus.

4.2.2. Recurrent neural network (RNN)
RNN (Werbos, 1988) is composed of a network of recurrently

connected nodes that allow to maintain a state or memory of
previous inputs. RNN can handle variable-length input sequences
and commonly used for sequence modeling tasks. However, RNN
suffers from gradients exploding or vanishing during training. To
overcome this issue, long short-term memory (LSTM) is designed
to use a memory cell and several gating mechanisms to selectively
retain or forget information from previous inputs, which allows
the network to preserve a long-term memory of past inputs. Koo
et al. (2020) used an improved convolutional RNN to identify AD.
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Pan et al. (2019) exploited a bidirectional hierarchical RNN with an
attention layer for AD detection. Ablimit et al. (2022) used CNN-
GRU-Attention and FCNN to process features and make model
fusion. Yang et al. (2022) constructed AD detection model using
two LSTM layers after the convolutional layers.

4.2.3. Transformer models and variations
The Transformer (Vaswani et al., 2017) is a groundbreaking

deep learning model architecture that introduced the attention
mechanism and revolutionized the processing of sequential
data. Unlike RNNs that rely on sequential processing, the
Transformer enables parallelization and more efficient training.
The Transformer model consists of two key components: the
encoder which processes the input sequence and extracts its
contextual information, and the decoder which generates the
output sequence. The key innovation of the Transformer lies in its
attention mechanism, which allows the model to focus on different
parts of the input sequence while processing each word or token.
It helps the model capture long-range dependencies and contextual
information effectively.

BERT is based on the Transformer architecture developed by
Google (Kenton and Toutanova, 2019). BERT is pretrained on
large amounts of unlabeled text data to predict missing words
in a sentence by considering the context of both the left and
right surrounding words. This bidirectional approach enables
BERT to capture deeper contextual relationships and produce
more meaningful representations of words. After pretraining,
BERT can be fine-tuned on specific NLP tasks by adding task-
specific layers, and the entire model is fine-tuned on labeled task-
specific data. Fine-tuning allows BERT to adapt its representations
to the specific requirements of the target task. BERT has been
used for AD detection by fine-tuning it on a dataset of speech
samples from individuals with and without AD (Balagopalan
et al., 2021). ERNIE (Enhanced Representation through Knowledge
Integration) is a language representation model based on the
Transformer architecture (Zhang et al., 2019). ERNIE is designed
to capture rich semantic representations of text by incorporating
techniques such as knowledge masking, sentence-level discourse
representation, and knowledge graph.

4.3. Optimization and performance

Based on the above classical learning methods, more research
is focusing on finding optimization techniques to improve the
performance of automatic AD detection. To achieve this goal,
the studies have focused on two main aspects: extracting more
distinguishing features, and building more powerful classification
models to detect AD.

Table 2 summarized performance comparison of AD detection
on different datasets when using different optimization methods, in
terms of the average accuracyA(%), precision P(%), recall R(%) and
F1(%). Only the most notable studies chosen to show in Table 2, to
provide a comprehensive understanding of the current state-of-the-
art in AD detection.When diving into how to achieve better results,

the typical optimization methods can be categorized as follows
in detail.

4.3.1. Extraction of discriminative features
Features play a crucial role in determining the performance of

a classifier. Numerous studies have made efforts to extract features
by analyzing the impact of Alzheimer’s disease (AD) on patients,
focusing on characteristics that distinguish them from individuals
without AD, include longer pauses, increased disfluency, slower
response during dialogues, andmore. These discriminative features
include pauses (Yuan et al., 2020; Rohanian et al., 2021; Zhu
et al., 2021), disfluency (Sarawgi et al., 2020; Qiao et al., 2021;
Rohanian et al., 2021), interactional features (Nasreen et al.,
2021a), cognition features (Sarawgi et al., 2020), ADR features
(Martinc et al., 2021). By identifying and incorporating such
specific features into the classification process, researchers aim to
enhance the accuracy and effectiveness of AD detection methods.
For instance, Nasreen et al. (2021a) obtained promising results
using interactional features alone with an accuracy of 87%. Yuan
et al. (2020) encoded pauses into three bins: long (over 2 s),
medium (0.5-2 second) and short (under 0.5 second), and reported
89.58% accuracy when combining with ERNIE. Rohanian et al.
(2021) extracted features (disflency, pauses, and language model
probabilities) and achieved an accuracy of 84% with a classifier
of LSTM with gating. Zhu et al. (2021) introduced non-semantic
information, i.e., sentence-level pauses based on wav2vec, and
BERT classifier achieved an accuracy of 83.1%. Pan et al. (2021)
adopted ASR for feature extraction and BERT for classification,
and finally achieved 74.65% and 84.51% accuracy for the acoustic-
only and best linguistic-only features, respectively. Paralinguistic
features, such as duration, pauses, and others, have been shown
to be effective for multilingual AD detection. Shah et al. (2023)
extracted paralinguistic features, including word-level duration,
pause rate, as well as meta-features and confidence scores of
each word from the ASR model, for cross-lingual AD detection.
Chen et al. (2023) utilized paralinguistic features for cross-lingual
AD detection and achieved excellent results when compared to
pre-trained features. Therefore, incorporating more discriminative
features has the potential to increase the accuracy of AD detection.

4.3.2. Model fusion
Model fusion can further improve the classification

performance by combining data from multiple models. Two
types of fusion methods are usually used, feature fusion and
decision fusion. Feature fusion refers to the process of combining
features from different sources or modalities at the input
stage of a model. For feature fusion, different features can be
concatenated, weighted, or combined in other ways to form a more
comprehensive or informative representation of features. On the
other hand, decision fusion combines the outputs or decisions
of multiple models at or near the output stage using various
techniques such as voting, averaging, or weighted aggregation. By
decision fusion, the system can benefit from the complementary
strengths of different models and improve the accuracy of the final
decision. Wang et al. (2022b) designed a best performing system
using BERT and RoBERTa feature decision voting with a SVM
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TABLE 2 This table shows a performance comparison of AD detection on di�erent datasets in terms of the average accuracy A(%), precision P(%), recall

R(%) and F1(%) defined in Equation 4.

Dataset References Modality Feature Classifier A P R F1 Optimization

Pitt Wang et al., 2022a Text (ASR) BERT, RoBERTa SVM 91.7 88.5 95.8 92.0 ASR improvement,
Model fusion

Sarawgi et al., 2020 Speech, Text Disfluency,
ComParE,
Interventions

MLP 88.0 92.0 82.0 88.0 Prosody features,
Model fusion

Ye et al., 2021 Text (ASR) BERT SVM 88.0 82.0 96.0 88.0 ASR improvement

ADReSS Wang et al., 2022b Text (ASR) BERT, RoBERTa SVM 93.8 92.0 95.8 93.9 Model fusion

Martinc et al., 2021 Speech, Text ADR,
Bag-of-n-gram

k-means clustering, RF 93.8 - - - ADR features,
Model fusion

Wang et al., 2022b Text (Manual) BERT, RoBERTa SVM 91.7 91.7 91.7 91.7 Model fusion

Martinc et al., 2021 Text Bag-of-n-gram k-means clustering, RF 89.6 - - - -

Yuan et al., 2020 Text Pauses ERNIE 89.6 90.2 89.5 89.6 Task-specific
features

Syed et al., 2020 Text BERT, RoBERTa,
DistilBERT

SVM, LR 85.4 - - - Model fusion

Sarawgi et al., 2020 Speech, Text Disfluency,
ComParE,
Interventions

MLP 83.0 83.0 83.0 83.0 More features,
Model fusion

ADReSSo Pan et al., 2021 Text (ASR) ASR hypotheses,
Confidence score

BERT 84.5 84.7 84.6 84.5 ASR features

Syed et al., 2021 Text (ASR) BERT LR 84.5 - - 84.5 Model fusion

Rohanian et al., 2021 Speech, Text (ASR) Acoustic, GloVe,
Disfluency, Pause

LSTM with gating 84.0 - - - Prosody features

Zhu et al., 2021 Speech, Text (ASR) Wav2vec, Pause BERT 83.1 83.6 83.0 83.0 Pause features

Qiao et al., 2021 Text (ASR) Complexity,
Disfluency

LR, ERNIE, BERT 83.1 83.5 83.0 83.0 Model fusion

Wang et al., 2021 Speech, Text (ASR) X-vector, Linguistic CNN + attention 80.3 81.9 80.1 81.0 Model fusion

Pan et al., 2021 Speech Wav2vec RF 74.7 75.0 74.6 74.5 -

CCC Nasreen et al., 2021a Speech Acoustic,
Interactional

SVM, LR 90.0 90.5 90.0 89.5 Interactional
features

ADReSS-M Jin et al., 2023 Speech Acoustic,
Disfluency

Swin transformer, RF 86.7 - - - Model fusion

Tamm et al., 2023 Speech eGeMAPS attention pooling+MLP 82.6 88.9 - 80.0 Fine tuning

Mei et al., 2023 Speech Low-pass filtered
speech

Wav2vec2 73.9 - - - Fine tuning

Shah et al., 2023 Speech, Text (ASR) Duration, Pause,
Confidence score,
Meta

LR 69.6 - - - Feature
combination

Chen et al., 2023 Speech IS10 SVM 69.6 69.2 75.0 72.0 Paralinguistic
features

classifier, regardless of which ASR systems being used, achieving
F1 scores of 93.9% and 91.7%, respectively. Syed et al. (2020) fused
the top-10 performing embedding models based on transcripts
and achieved an accuracy of 85.4%. Syed et al. (2021) proposed
a label fusion system based on deep textual embeddings and LR
classifier. By fusing high specificity and high sensitivity models,
the paper achieved an accuracy of 84.51%. Qiao et al. (2021)
employed model stacking to combine two LRs using complexity
and disfluency features respectively, and two models, i.e. BERT
and ERNIE, resulting 83.1% accuracy. Wang et al. (2021) fused
three CNN-attention networks based on linguistic features and

x-vectors using an attention layer followed by a softmax layer,
and achieved a good performance. Jin et al. (2023) proposed a
complementary and simultaneous ensemble (CONSEN) algorithm
to combine the results of prediction and regression tasks, and
yielded state-of-the-art performance on the ADReSS-M dataset.

4.3.3. Transfer learning
When it comes to multilingual or low-resource AD detection,

transfer learning proves to be a powerful approach for efficiently
leveraging patterns from similar tasks and achieving remarkable
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performance. Recent studies such as Mei et al. (2023), Tamm et al.
(2023) have demonstrated the effectiveness of this approach by
utilizing pre-training on English datasets and fine-tuning on Greek
datasets, resulting in impressive performance for cross-lingual AD
detection. This utilization of transfer learning shows its potential in
addressing the challenges posed by multilingual and low-resource
scenarios in AD detection research.

4.3.4. ASR improvement
Some research tried to improve ASR performance or extract

ASR-related features (Pan et al., 2021) for better performance.
Ye et al. (2021) exploited a range of techniques to improve
ASR performance for older adults to achieve an accuracy of
88%. It is noticed that when using the ground truth transcripts
rather than ASR outputs, a comparable or worse performance was
obtained with a F1 score of 87%. Wang et al. (2022a) employed
ASR optimization using neural architecture search, cross-domain
adaptation and fine-grained elderly speaker adaptation and multi-
pass rescoring based system combination with hybrid TDNN.

4.3.5. Combined optimization methods
Many studies have improved the system performance by

exploiting more than one kind of optimization methods. For
example, Sarawgi et al. (2020) extracted three diverse features and
used model fusion strategies, resulting in an accuracy of 88% on
Pitt dataset and 83.3% on the ADReSS dataset. Wang et al. (2022a)
employed ASR optimization and model fusion strategies based
on BERT and RoBERTa features. As a result, the paper achieved
state-of-the-art performance with a F1 score of 92% on the Pitt
dataset.Martinc et al. (2021) accounted for temporal aspects of both
linguistic and acoustic features by combining ADR with bag-of-n-
gram features, and used late fusion via majority vote of 5 classifiers,
including Xgboost, RF, SVM, LR and LDA. As a result, the system
obtained an appreciable performance with an accuracy of 93.8%.

From Table 2, it is seen that linguistic features extracted from
text modality consistently outperform acoustic features extracted
from speech. For instance, in the work by Pan et al. (2021),
the accuracy of acoustic-only and linguistic-only approaches was
reported as 74.65% and 84.51% respectively. Rohanian et al. (2021)
revealed that utilizing text modality alone yielded better results
than using audio modality, with an accuracy of 74% and 68%,
respectively. Then, incorporating diverse features from multiple
modalities generally leads to improved performance. For instance,
Martinc et al. (2021) demonstrated that the best performance was
achieved by combining speech and text modalities, even when
text-only features were available. Rohanian et al. (2021) indicated
that a multimodal LSTM model with gating outperformed single
modality models (0.79 vs. 0.74). Wang et al. (2021) utilized both
audio and linguistic features to yield a best performance for
AD detection.

Moreover, it is evident that optimization strategies play a
crucial role in determining the performance of the studies. Among
the various methods employed, model fusion has emerged as an
effective approach to achieve better performance in the majority of
cases. This demonstrates the significance of optimization strategies

and highlights the potential benefits of integrating multiple models
for enhanced accuracy and reliability in AD detection studies.

Recently, end-to-endmodels can directly build a mapping from
data to the result label and have achieved promising performance
in other fields such as speech processing (Watanabe et al., 2018;
He et al., 2019; Yasuda et al., 2021), NLP (Libovickỳ and Helcl,
2018; Xie et al., 2022), CV (Feng et al., 2019; Coquenet et al., 2022).
They are also exploited to detect AD recently, such as fine-tuned
BERT (Balagopalan et al., 2020), degraded version of generative
Transformer (GPT-D) (Li et al., 2022a). However, limited by the
size of the publicly available data, the performance of large models
does not show significant improvement compared to the utilization
of a feature extraction and classification pipeline, with accuracy of
85% lower than the state-of-the-art accuracy of 93.8% (Wang et al.,
2022b) on the ADReSS dataset.

5. Discussion

ML or DL-based classification models have achieved promising
results for the automatic detection of AD. However, there are still
some challenges that need to be addressed.

5.1. Few-shot and diverse data

There are very few public datasets available until now, with only
a limited number of participants, mainly due to the challenges of
recording large quantities of audio from AD patients and obtaining
expert annotations. Considering the complexity of AD detection,
large-scale datasets are necessary for more effective, scalable and
powerful models. Moreover, the datasets show a large diversity
of accents, languages, neuropsychological tests, background noise
and device channels, and thus the best model on one dataset
may not have a stable performance on another dataset. Some
technologies, such as transfer learning, self-supervised learning or
unsupervised learning, data augmentation, provide the potential to
address this issue. For example, a recent study by Chen et al. (2023)
demonstrated the extraction of paralinguistic features and the
feature transfer across English andGreek languages formultilingual
AD detection, showing promising results. Additionally, combining
an ASR systemwith speech augmentation and speech enhancement
techniques enhances robustness to noise. Beyond the latest studies,
more research is required for this challenge.

5.2. Model explainability

Although many classification models for AD detection are
still based on statistical machine learning algorithm, as shown
in Table 2, it can be expected that DL-based methods will be
exploited by more studies as the size of the dataset increases in the
future because of powerful ability of information representation.
However, many of the DL-based models appear as a black box.
Thus, it is hard to analyze learned representations and give AD
patients any meaningful interpretation, which is often undesirable
in medical domain. Some work introduced interpretable NNs
to provide interpretation information. For example, Pan et al.
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(2020) designed SincNet by defining the filters as a collection of
parameterized Sinc functions. By analyzing the output of SincNet,
a better interpretation of the frequency-related information is
gained for cognitive decline assessment. Laguarta and Subirana
(2021) introduced the biomarker saliency map to track and
visualize progression of AD for the model explainability. However,
the explanation provided may not meet the expectations of
patients, as they often require a more comprehensive and easily
understandable explanation. Additionally, clinicians, who require
a deeper and more specialized understanding, also have distinct
needs for explanation. Catering to these different requirements
for explanation introduces complexity into the model’s design
and implementation. Recently, there are also many work for
interpretable DL used in various fields (Liao et al., 2019;
Preuer et al., 2019; Li et al., 2022b), such as drug discovery,
glaucoma diagnosis, surveillance of COVID-19, and so on, which
can be also used for AD-related tasks to make the model
results meaningful.

5.3. Model reliability for short recordings

The detection of AD theoretically requires long-term
monitoring. However, for most researchers only public datasets
are available, and their durations lasting between seconds and
minutes. Therefore, the question arises whether such short
recordings can provide reliable AD detection results. There is
work, such as Laguarta and Subirana (2021), to provide long-
term analysis by adding more biomarkers with longitudinal
recordings, such as cough. However, the lack of available
longitudinal data prevents more researchers from studying
this topic.

5.4. More modality fusion

This paper reviews automatic detection methods of AD from
spontaneous speech, which contains two modalities: audio and
text. The use of these two modalities is basically only to extract
features separately and then cascade or build separate classification
models and fuse them, without aligning the information between
modalities. These fusion methods cannot well handle the
relationship and interdependence between modalities. Besides,
other efficient modalities are also used for AD detection, such
as video (MacWhinney et al., 2011), MRI (Chyzhyk et al., 2012;
Altinkaya et al., 2020; Noor et al., 2020) and functional MRI images
(Wagner, 2000; Ibrahim et al., 2021), video games (Castiblanco
et al., 2022), biomakers (Laguarta and Subirana, 2021) and so
on. Sheng et al. (2022) fused information from speech and eye-
tracking, and achieved a better performance. Pan et al. (2021)
designed five models based on BERT, with acoustic features only
as model input and combined linguistic features and acoustic
features as model input. The detection results showed that the the
performance of bimodal-based models outperforms speech only.
Future research can use information from more modalities to learn
the relationship and interdependence through joint multimodal
learning methods.

5.5. Distinguishing diseases with similar
symptoms

AD is characterized by a range of cognitive and behavioral
symptoms, including memory impairment, cognitive decline,
emotional and behavioral changes, agitation, aggression, and
impairment in daily living activities. These symptoms share
similarities with several other medical conditions, which can lead
to confusion during early AD diagnosis. For instance, MCI is
an early stage of cognitive decline that can be associated with
AD but can also occur independently or as a precursor to
other types of dementia. Depressive symptoms are also common
in AD but can manifest in various other medical conditions
as well. Lewy Body Dementia (LBD) is a degenerative brain
disorder similar to AD, characterized by the presence of Lewy
bodies in brain cells. LBD patients may exhibit AD-like memory
problems along with visual hallucinations and motor issues.
Thus, Careful differentiation of these similar symptoms is crucial
during the early stages of AD diagnosis to establish an accurate
assessment. Research by Fraser et al. (2016b) demonstrated the
efficiency of MFCC features and SVM classifier in detecting
dementia from depression. Pérez-Toro et al. (2023) utilized
modified ForestNets to discriminate between AD and depression
in AD patients. However, their study did not provide a definitive
conclusion regarding the primary distinguishing speech-based
symptoms for classifying dementia from other conditions with
similar symptoms.

6. Conclusions

The paper focuses on the development of automatic AD
detection from spontaneous speech, leveraging theoretical basis
of the language dysfunction of patients. Compared to other
modalities such as MRI, speech-based methods offer non-
invasive, convenient and scalable solutions. In this paper, we
describe three key components for AD detection in detail,
including data collection, feature extraction, and classification
models. We also summarize optimization methods and the
state-of-the-art performance on several public datasets, with a
focus on the last three years. However, AD detection systems
face many challenges, and future research can be directed
toward improving reliability and accuracy, including increasing
dataset sizes or exploring few-shot learning methods, designing
interpretable neural networks, establishing long-term monitoring
mechanisms (e.g., using wearable devices for real-time monitoring
of elderly activities), incorporating multiple modalities and
adopting multimodal fusion methods.

The inclusion of cognitive assessments, such as MMSE
scores, in longitudinal studies will further advance our
understanding of disease progression and its correlation
with speech patterns. Future research should consider
conducting specialized reviews on AD progression, providing
deeper insights into advancements and complementing our
current understanding. These efforts will contribute to the
development of effective diagnostic tools and treatment strategies
for AD.

Frontiers in AgingNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qi et al. 10.3389/fnagi.2023.1224723

Author contributions

Conceptualization: XQ and WB. Methodology, writing—
original draft preparation, and project administration: XQ.
Investigation: QZ. Writing—review and editing: QZ and JD.
Visualization: JD. Supervision: WB. All authors have read and
agreed to the published version of the manuscript.

Funding

This work was supported by the Scientific Research Innovation
Project of China University of Political Science and Law
(10821424), the Open Projects Program of State Key Laboratory
of Multimodal Artificial Intelligence Systems, the National Natural
Science Foundation of China (NSFC) (61603390), and the
Fundamental Research Funds for the Central Universities.

Conflict of interest

QZ is employed by AI Speech Co., Ltd.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ablimit, A., Scholz, K., and Schultz, T. (2022). “Deep learning approaches for
detecting Alzheimer’S dementia from conversational speech Of ILSE study,” in Proc.
Interspeech 2022. 3348–3352.

Ahmed, S., Haigh, A.-M. F., de Jager, C. A., and Garrard, P. (2013). Connected
speech as a marker of disease progression in autopsy-proven Alzheimer’s disease. Brain
136, 3727–3737. doi: 10.1093/brain/awt269

Alhanai, T., Au, R., and Glass, J. (2017). “Spoken language biomarkers for detecting
cognitive impairment,” in 2017 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU) (Piscataway, NJ: IEEE), 409–416.

Altinkaya, E., Polat, K., and Barakli, B. (2020). Detection of Alzheimer’s disease and
dementia states based on deep learning from mri images: a comprehensive review. J.
Institute of Electron. Comput. 1, 39–53.

Alzheimer’s Association (2019). 2019 Alzheimer’s disease facts and figures.
Alzheimer’s Dement. 15, 321–387. doi: 10.1002/alz.12328

Alzheimer’s Society (2020). Facts for the Media. Available online at: https://www.
alzheimers.org.uk/about-us/news-and-media (accessed August 11, 2023).

American Psychiatric Association, DSM-5 Task Force (2013). Diagnostic and
Statistical Manual of Mental Disorders: DSM (5th ed.). Washington, DC: American
Psychiatric Publishing, Inc. doi: 10.1176/appi.books.9780890425596

Andersen, K., Launer, L. J., Dewey, M. E., Letenneur, L., Ott, A., Copeland, J., et al.
(1999). Gender differences in the incidence of ad and vascular dementia: The eurodem
studies. Neurology 53, 1992–1992.

Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020). “wav2vec 2.0:
A framework for self-supervised learning of speech representations,” in NIPS’20:
Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC: ACM), 12449–12460. Available online at: https://dl.acm.org/
doi/epdf/10.5555/3495724.3496768

Balagopalan, A., Eyre, B., Robin, J., Rudzicz, F., and Novikova, J. (2021). Comparing
pre-trained and feature-based models for prediction of Alzheimer’s disease based on
speech. Front. Aging Neurosci. 13, 635945. doi: 10.3389/fnagi.2021.635945

Balagopalan, A., Eyre, B., Rudzicz, F., and Novikova, J. (2020). To BERT or not
to BERT: comparing speech and language-based approaches for Alzheimer’s disease
detection. In Proc. Interspeech 2020. 2167–2171.

Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a
brief tutorial. IEEE Trans. Signal Inf. Process 18, 1–8.

Becker, J. T., Boiler, F., Lopez, O. L., Saxton, J., and McGonigle, K. L. (1994). The
natural history of Alzheimer’s disease: description of study cohort and accuracy of
diagnosis. Arch. Neurology 51, 585–594.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word
vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146.
doi: 10.1162/tacl_a_00051

Boller, F. and Becker, J. (2005). Dementiabank Database Guide. Pittsburgh:
University of Pittsburgh.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
doi: 10.1023/A:1010933404324

Bucks, R. S., Singh, S., Cuerden, J. M., and Wilcock, G. K. (2000). Analysis of
spontaneous, conversational speech in dementia of alzheimer type: evaluation of an
objective technique for analysing lexical performance. Aphasiology 14, 71–91.

Castiblanco, M. C., Carvajal, L. V. C., Pardo, C., and Arciniegas, L. D. L. (2022).
“Systematic mapping of literature about the early diagnosis of Alzheimer’s disease
through the use of video games,” in Trends in Artificial Intelligence and Computer
Engineering Lecture Notes in Networks and Systems (Cham: Springer International
Publishing), 139–153.

Chen, J., Wang, Y., and Wang, D. (2014). A feature study for
classification-based speech separation at low signal-to-noise ratios. IEEE/ACM
Trans. Audio Speech Lang. 22, 1993–2002. doi: 10.1109/TASLP.2014.23
59159

Chen, X., Pu, Y., Li, J., and Zhang, W.-Q. (2023). “Cross-lingual Alzheimer’s disease
detection based on paralinguistic and pre-trained features,” in ICASSP 2023–2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Rhodes
Island: IEEE), 1–2.

Chyzhyk, D., Grana, M., Savio, A., and Maiora, J. (2012). Hybrid dendritic
computing with kernel-lica applied to Alzheimer’s disease detection in MRI.
Neurocomputing 75, 72–77. doi: 10.1016/j.neucom.2011.02.024

Competition Group (2021). Ncmmsc2021 Alzheimer’S Disease Recognition
Competition. Available online at: https://github.com/lzl32947/NCMMSC2021_AD_
Competition (accessed August 11, 2023).

Coquenet, D., Chatelain, C., and Paquet, T. (2022). End-to-end handwritten
paragraph text recognition using a vertical attention network. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 508–524.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297.

Croisile, B., Ska, B., Brabant, M.-J., Duchene, A., Lepage, Y., Aimard, G., et al.
(1996). Comparative study of oral and written picture description in patients with
Alzheimer’s disease. Brain Lang. 53, 1–19.

Cummins, N., Pan, Y., Ren, Z., Fritsch, J., Nallanthighal, V. S., Christensen, H.,
et al. (2020). “A comparison of acoustic and linguistics methodologies for Alzheimer’s
dementia recognition,” in Proc. Interspeech 2020, 2182–2186.

de la Fuente Garcia, S., Ritchie, C. W., and Luz, S. (2020). Artificial intelligence,
speech, and language processing approaches to monitoring Alzheimer’s disease:
a systematic review. J. Alzheimer’s Dis. 78, 1547–1574. doi: 10.3233/JAD-20
0888

Dehak, N., Kenny, P. J., Dehak, R., Dumouchel, P., and Ouellet, P. (2010). Front-
end factor analysis for speaker verification. IEEE/ACM Trans. Audio Speech Lang. 19,
788–798. doi: 10.1109/TASL.2010.2064307

Dubois, B., Picard, G., and Sarazin, M. (2009). Early detection of Alzheimer’s
disease: new diagnostic criteria. Dialogues Clin. Neurosci. 11, 135–139.
doi: 10.31887/DCNS.2009

Edwards, E., Dognin, C., Bollepalli, B., and Singh, M. (2020). “Multiscale System for
Alzheimer’s Dementia Recognition Through Spontaneous Speech,” in Proc. Interspeech
2020 (Grenoble: ISCA), 2197–2201.

Frontiers in AgingNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://doi.org/10.1093/brain/awt269
https://doi.org/10.1002/alz.12328
https://www.alzheimers.org.uk/about-us/news-and-media
https://www.alzheimers.org.uk/about-us/news-and-media
https://doi.org/10.1176/appi.books.9780890425596
https://dl.acm.org/doi/epdf/10.5555/3495724.3496768
https://dl.acm.org/doi/epdf/10.5555/3495724.3496768
https://doi.org/10.3389/fnagi.2021.635945
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TASLP.2014.2359159
https://doi.org/10.1016/j.neucom.2011.02.024
https://github.com/lzl32947/NCMMSC2021_AD_Competition
https://github.com/lzl32947/NCMMSC2021_AD_Competition
https://doi.org/10.3233/JAD-200888
https://doi.org/10.1109/TASL.2010.2064307
https://doi.org/10.31887/DCNS.2009
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qi et al. 10.3389/fnagi.2023.1224723

Eyben, F., Scherer, K. R., Schuller, B. W., Sundberg, J., André, E., Busso,
C., et al. (2015). The geneva minimalistic acoustic parameter set (gemaps) for
voice research and affective computing. IEEE Trans. Affect. Comput. 7, 190–202.
doi: 10.1109/TAFFC.2015.2457417

Eyben, F., Weninger, F., Gross, F., and Schuller, B. (2013). “Recent developments in
opensmile, the munich open-source multimedia feature extractor,” in Proceedings of the
21st ACM international Conference on Multimedia (New York, NY: ACM), 835–838.

Eyben, F., Wöllmer, M., and Schuller, B. (2010). “Opensmile: the munich versatile
and fast open-source audio feature extractor,” in Proceedings of the 18th ACM
International Conference on Multimedia, 1459–1462.

Fan, Z., Li, M., Zhou, S., and Xu, B. (2020). Exploring wav2vec 2.0
on speaker verification and language identification. arXiv:2012.06185.
doi: 10.48550/arXiv.2012.06185

Feng,W., He,W., Yin, F., Zhang, X.-Y., and Liu, C.-L. (2019). “Textdragon: An end-
to-end framework for arbitrary shaped text spotting,” in Proceedings of the IEEE/CVF
International Conference On Computer Vision (Piscataway, NJ: IEEE), 9076–9085.

Fix, E. (1985). Discriminatory Analysis: Nonparametric Discrimination, Consistency
Properties. Dayton, OH: USAF school of Aviation Medicine.

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). “mini-mental state”:
a practical method for grading the cognitive state of patients for the clinician. J.
Psychiatric Res. 12, 189–198.

Forbes-McKay, K. E., and Venneri, A. (2005). Detecting subtle spontaneous
language decline in early Alzheimer’s disease with a picture description task.
Neurological sciences 26, 243–254. doi: 10.1007/s10072-005-0467-9

Fraser, K. C., Hirst, G., Meltzer, J. A., Mack, J. E., and Thompson, C. K. (2014).
“Using statistical parsing to detect agrammatic aphasia,” in Proceedings of BioNLP 2014
(Stroudsburg, PA: ACL), 134–142.

Fraser, K. C., Meltzer, J. A., and Rudzicz, F. (2016a). Linguistic features
identify Alzheimer’s disease in narrative speech. J. Alzheimer’s Dis. 49, 407–422.
doi: 10.3233/JAD-150520

Fraser, K. C., Rudzicz, F., and Hirst, G. (2016b). “Detecting late-life depression in
Alzheimer’s disease through analysis of speech and language,” in Proceedings of the
Third Workshop on Computational Linguistics and Clinical Psychology (Stroudsburg,
PA: ACL), 1–11.

Greene, J. D., Baddeley, A. D., and Hodges, J. R. (1996). Analysis of the episodic
memory deficit in early Alzheimer’s disease: evidence from the doors and people test.
Neuropsychologia 34, 537–551.

Gunning, R. (1969). The fog index after twenty years. J. Busin. Commun. 6, 3–13.

Haider, F., De La Fuente, S., and Luz, S. (2019). An assessment of paralinguistic
acoustic features for detection of alzheimer’s dementia in spontaneous speech. IEEE J.
Sel. Top. 14, 272–281. doi: 10.1109/JSTSP.2019.2955022

Hart, S., Smith, C. M., and Swash, M. (1988). Word fluency in patients with early
dementia of alzheimer type. Br. J. Clinical Psychol. 27, 115–124.

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I., Alvarez, R., Zhao, D., et al.
(2019). “Streaming end-to-end speech recognition for mobile devices,” in ICASSP
2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (Brighton: IEEE), 6381–6385.

Henry, J. D., Rendell, P. G., Scicluna, A., Jackson, M., and Phillips, L. H. (2009).
Emotion experience, expression, and regulation in Alzheimer’s disease. Psychol. Aging
24, 252. doi: 10.1037/a0014001

Herd, P., Carr, D., and Roan, C. (2014). Cohort profile: Wisconsin longitudinal
study (wls). Int. J. Epidemiol. 43, 34–41. doi: 10.1093/ije/dys194

Hernández-Domínguez, L., Ratté, S., Sierra-Martínez, G., and Roche-Bergua,
A. (2018). Computer-based evaluation of Alzheimer’s disease and mild cognitive
impairment patients during a picture description task. Alzheimers Dement (Amst). 10,
260–268. doi: 10.1016/j.dadm.2018.02.004

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore,
R. C., et al. (2017). “Cnn architectures for large-scale audio classification,” in 2017
IEEE international conference on acoustics, speech and signal processing (icassp) (New
Orleans: IEEE), 131–135.

Hoffmann, I., Nemeth, D., Dye, C. D., Pákáski, M., Irinyi, T., and Kálmán, J. (2010).
Temporal parameters of spontaneous speech in Alzheimer’s disease. Int. J. Speech-Lang.
Pathol. 12, 29–34. doi: 10.3109/17549500903137256

Hunt, K.W. (1970). Do sentences in the second language grow like those in the first?
Tesol Quart. 4, 195–202. doi: 10.2307/3585720

Ibrahim, B., Suppiah, S., Ibrahim, N., Mohamad, M., Hassan, H. A., Nasser,
N. S., et al. (2021). Diagnostic power of resting-state fmri for detection of network
connectivity in Alzheimer’s disease and mild cognitive impairment: a systematic
review. Human Brain Mapp. 42, 2941–2968. doi: 10.1002/hbm.25369

Ivanova, O., Meilán, J. J. G., Martínez-Sánchez, F., Martínez-Nicolás, I., Llorente,
T. E., and González, N. C. (2022). Discriminating speech traits of Alzheimer’s disease
assessed through a corpus of reading task for spanish language. Comput. Speech Lang.
73, 101341. doi: 10.1016/j.csl.2021.101341

Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey,
D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (adni): Mri methods.
J. Magn. Reson. Imaging 27, 685–691. doi: 10.1002/jmri.21049

Jin, L., Oh, Y., Kim, H., Jung, H., Jon, H. J., Shin, J. E., et al. (2023). “Consen:
Complementary and simultaneous ensemble for Alzheimer’s disease detection and
mmse score prediction,” in ICASSP 2023–2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (Rhodes Island: IEEE), 1–2.

Kaplan, E., Goodglass, H., Weintraub, S., et al. (2001). Boston Naming Test. Austin,
TX: Pro-Ed.

Kenton, J. D. M.-W. C. and Toutanova, L. K. (2019). “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of naacL-HLT 2
(Stroudsburg, PA: ACL), 4171–4186.

Koo, J., Lee, J. H., Pyo, J., Jo, Y., and Lee, K. (2020). “Exploiting Multi-Modal
Features from Pre-Trained Networks for Alzheimer’s Dementia Recognition,” in Proc.
Interspeech 2020 (Grenoble: ISCA), 2217–2221.

Koss, E., Edland, S., Fillenbaum, G., Mohs, R., Clark, C., Galasko, D., et al. (1996).
Clinical and neuropsychological differences between patients with earlier and later
onset of Alzheimer’s disease: a cerad analysis, part xii. Neurology 46, 136–141.

Laguarta, J. and Subirana, B. (2021). Longitudinal speech biomarkers for automated
alzheimer’s detection. Front. Comput. Sci. 3, 624694. doi: 10.3389/fcomp.2021.
624694

LaValley, M. P. (2008). Logistic regression. Circulation 117, 2395–2399.
doi: 10.1161/CIRCULATIONAHA.106.682658

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proce. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Li, C., Knopman, D., Xu, W., Cohen, T., and Pakhomov, S. (2022a). “Gpt-d:
Inducing dementia-related linguistic anomalies by deliberate degradation of artificial
neural language models,” in Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (Stroudsburg, PA: ACL), 1866–
1877.

Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., et al. (2022b). Interpretable deep
learning: Interpretation, interpretability, trustworthiness, and beyond. Knowl. Inf. Syst.
64, 3197–3234.

Liao, W., Zou, B., Zhao, R., Chen, Y., He, Z., and Zhou, M. (2019). Clinical
interpretable deep learning model for glaucoma diagnosis. IEEE J. Biomed. Health Info.
24, 1405–1412. doi: 10.1109/JBHI.2019.2949075

Libovickỳ, J. and Helcl, J. (2018). “End-to-end non-autoregressive neural machine
translation with connectionist temporal classification,” in 2018 Conference on
Empirical Methods in Natural Language Processing (Stroudsburg, PA: Association for
Computational Linguistics), 3016–3021.

Liu, L., Zhao, S., Chen, H., and Wang, A. (2020). A new machine learning
method for identifying Alzheimer’s disease. Simul. Model Pract. Theory. 99, 102023.
doi: 10.1016/j.simpat.2019.102023

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019). Roberta: A
robustly optimized bert pretraining approach. arXiv. doi: 10.48550/arXiv.1907.11692

Luz, S., Haider, F., de la Fuente, S., Fromm, D., and MacWhinney, B. (2020).
“Alzheimer’s dementia recognition through spontaneous speech: the adress challenge,”
in Proc. Interspeech 2020 (Grenoble: ISCA), 2172–2176.

Luz, S., Haider, F., de la Fuente, S., Fromm, D., and MacWhinney, B. (2021).
“Detecting cognitive decline using speech only: the ADReSSo challenge,”. in Proc.
Interspeech 2021 (Grenoble: ISCA), 3780–3784. doi: 10.21437/Interspeech.2021-1220

Luz, S., Haider, F., Fromm, D., Lazarou, I., Kompatsiaris, I., and MacWhinney, B.
(2023). Multilingual Alzheimer’S Dementia Recognition Through Spontaneous Speech:
A Signal Processing Grand Challenge. Ithaca: arXiv.

MacWhinney, B., Fromm, D., Forbes, M., and Holland, A. (2011).
Aphasiabank: Methods for studying discourse. Aphasiology 25, 1286–1307.
doi: 10.1080/02687038.2011.589893

Martin, P., Grünendahl, M., and Schmitt, M. (2000). Persönlichkeit, kognitive
leistungsfähigkeit und gesundheit in ost und west: Ergebnisse der interdisziplinären
längsschnittstudie des erwachsenenalters (ilse). Zeitschrift für Gerontologie und
Geriatrie 33, 111–123.

Martinc, M., Haider, F., Pollak, S., and Luz, S. (2021). Temporal integration of
text transcripts and acoustic features for alzheimer’s diagnosis based on spontaneous
speech. Front. Aging Neurosci. 13, 642647. doi: 10.3389/fnagi.2021.642647

Martinc, M. and Pollak, S. (2020). “Tackling the ADReSS challenge: a multimodal
approach to the automated recognition of Alzheimer’s dementia,” in Proc. Interspeech
2020, 2157–2161.

Martínez-Nicolás, I., Llorente, T. E., Martínez-Sánchez, F., and Meilán, J. J. G.
(2021). Ten years of research on automatic voice and speech analysis of people with
Alzheimer’s disease and mild cognitive impairment: a systematic review article. Front.
Psychology 12, 620251. doi: 10.3389/fpsyg.2021.620251

Mc Laughlin, G. H. (1969). Smog grading-a new readability formula. J. Reading 12,
639–646.

Frontiers in AgingNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://doi.org/10.1109/TAFFC.2015.2457417
https://doi.org/10.48550/arXiv.2012.06185
https://doi.org/10.1007/s10072-005-0467-9
https://doi.org/10.3233/JAD-150520
https://doi.org/10.1109/JSTSP.2019.2955022
https://doi.org/10.1037/a0014001
https://doi.org/10.1093/ije/dys194
https://doi.org/10.1016/j.dadm.2018.02.004
https://doi.org/10.3109/17549500903137256
https://doi.org/10.2307/3585720
https://doi.org/10.1002/hbm.25369
https://doi.org/10.1016/j.csl.2021.101341
https://doi.org/10.1002/jmri.21049
https://doi.org/10.3389/fcomp.2021.624694
https://doi.org/10.1161/CIRCULATIONAHA.106.682658
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/JBHI.2019.2949075
https://doi.org/10.1016/j.simpat.2019.102023
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.21437/Interspeech.2021-1220
https://doi.org/10.1080/02687038.2011.589893
https://doi.org/10.3389/fnagi.2021.642647
https://doi.org/10.3389/fpsyg.2021.620251
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qi et al. 10.3389/fnagi.2023.1224723

Mei, K., Ding, X., Liu, Y., Guo, Z., Xu, F., Li, X., et al. (2023). “The ustc system for
adress-m challenge,” in ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (Rhodes Island: IEEE), 1–2.

Mirheidari, B., Blackburn, D., Walker, T., Venneri, A., Reuber, M., and Christensen,
H. (2018). “Detecting signs of dementia using word vector representations,” in
Interspeech (Grenoble: ISCA), 1893–1897.

Mirzaei, S., El Yacoubi, M., Garcia-Salicetti, S., Boudy, J., Kahindo, C., Cristancho-
Lacroix, V., et al. (2018). Two-stage feature selection of voice parameters for
early Alzheimer’s disease prediction. IRBM 39, 430–435. doi: 10.1016/j.irbm.2018.
10.016

Nasreen, S., Hough, J., and Purver, M. (2021a). “Detecting Alzheimer’s Disease
Using Interactional and Acoustic Features from Spontaneous Speech,” in Proc.
Interspeech 2021 (Grenoble: ISCA), 1962–1966.

Nasreen, S., Rohanian, M., Hough, J., and Purver, M. (2021b). Alzheimer’s dementia
recognition from spontaneous speech using disfluency and interactional features.
Front. Computer Sci. 49, 640669. doi: 10.3389/fcomp.2021.640669

Nestor, P. J., Scheltens, P., and Hodges, J. R. (2004). Advances in the early detection
of Alzheimer’s disease. Nat. Med. 10, S34–S41. doi: 10.1038/nrn1433

Nicholas, M., Obler, L. K., Albert, M. L., and Helm-Estabrooks, N. (1985). Empty
speech in Alzheimer’s disease and fluent aphasia. J. Speech, Lang Hearing Res. 28,
405–410.

Nichols, E., Steinmetz, J. D., Vollset, S. E., Fukutaki, K., Chalek, J., Abd-Allah, F.,
et al. (2022). Estimation of the global prevalence of dementia in 2019 and forecasted
prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet
Public Health 7, e105–e125. doi: 10.1016/S2468-2667(21)00249-8

Noor, M. B. T., Zenia, N. Z., Kaiser, M. S., Mamun, S. A., and Mahmud, M.
(2020). Application of deep learning in detecting neurological disorders frommagnetic
resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease
and schizophrenia. Brain Inform. 7, 1–21. doi: 10.1186/s40708-020-00112-2

Pan, Y., Mirheidari, B., Harris, J. M., Thompson, J. C., Jones, M., Snowden,
J. S., et al. (2021). “Using the Outputs of Different Automatic Speech Recognition
Paradigms for Acoustic- and BERT-Based Alzheimer’s Dementia Detection Through
Spontaneous Speech,” in Proc. Interspeech 2021 (Grenoble: ISCA), 3810–3814. doi: 10.
21437/Interspeech.2021-1519

Pan, Y., Mirheidari, B., Reuber, M., Venneri, A., Blackburn, D., and Christensen, H.
(2019). “Automatic Hierarchical Attention Neural Network for Detecting AD,” in Proc.
Interspeech 2019 (Grenoble: ISCA), 4105–4109.

Pan, Y., Mirheidari, B., Tu, Z., O’Malley, R., Walker, T., Venneri, A., et al.
(2020). “Acoustic Feature Extraction with Interpretable Deep Neural Network
for Neurodegenerative Related Disorder Classification,” in Proc. Interspeech 2020
(Grenoble: ISCA), 4806–4810.

Pennington, J., Socher, R., and Manning, C. D. (2014). “Glove: Global vectors for
word representation,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (Stroudsburg, PA: ACL), 1532–1543.

Pérez-Toro, P., Bayerl, S., Arias-Vergara, T., Vásquez-Correa, J., Klumpp, P.,
Schuster, M., et al. (2021). “Influence of the Interviewer on the Automatic Assessment
of Alzheimer’s Disease in the Context of the ADReSSo Challenge,” in Proc. Interspeech
2021 (Grenoble: ISCA), 3785–3789. doi: 10.21437/Interspeech.2021-1589

Pérez-Toro, P., Rodríguez-Salas, D., Arias-Vergara, T., Bayerl, S., Klumpp, P.,
Riedhammer, K., et al. (2023). “Transferring quantified emotion knowledge for the
detection of depression in Alzheimer’s disease using forestnets,” in ICASSP 2023-2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(Rhodes Island: IEEE), 1–5.

Petti, U., Baker, S., and Korhonen, A. (2020). A systematic literature review of
automatic Alzheimer’s disease detection from speech and language. J. Am. Medical
Infor. Assoc. 27, 1784–1797. doi: 10.1093/jamia/ocaa174

Pope, C. and Davis, B. H. (2011). Finding a balance: The carolinas conversation
collection. Corpus Linguist. Linguist. Theory 7, 143–161. doi: 10.1515/cllt.2011.007

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., et al.
(2011). “The kaldi speech recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding (Piscataway, NJ: IEEE Signal Processing Society).

Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., and Unterthiner, T.
(2019). “Interpretable deep learning in drug discovery,” in Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning (Cham: Springer). 331–345.

Pulido, M. L. B., Hernández, J. B. A., Ballester, M. Á. F., González, C.
M. T., Mekyska, J., and Smékal, Z. (2020). Alzheimer’s disease and automatic
speech analysis: a review. Expert Syst. Appl. 150, 113213. doi: 10.1016/j.eswa.2020.
113213

Qiao, Y., Yin, X., Wiechmann, D., and Kerz, E. (2021). “Alzheimer’s Disease
Detection from Spontaneous Speech Through Combining Linguistic Complexity and
(Dis)Fluency Features with Pretrained Language Models,” in Proc. Interspeech 2021.
3805–3809.

Quinlan, J. R. (1986). Induction of decision trees.Machine Learn. 1, 81–106.

Rabin, L. A., Paré, N., Saykin, A. J., Brown, M. J., Wishart, H. A., Flashman,
L. A., et al. (2009). Differential memory test sensitivity for diagnosing amnestic

mild cognitive impairment and predicting conversion to Alzheimer’s disease. Aging,
Neuropsychol. Cognit. 16, 357–376. doi: 10.1080/13825580902825220

Ramos, J. et al. (2003). “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the First Instructional Conference onMachine Learning. (New
Jersey, USA: IEEE), 29–48.

Randolph, C., Braun, A. R., Goldberg, T. E., and Chase, T. N. (1993). Semantic
fluency in Alzheimer’s, Parkinson’s, and Huntington’s disease: Dissociation of storage
and retrieval failures. Neuropsychology 7, 82.

Ritchie, K. and Lovestone, S. (2002). The dementias. Lancet 360, 1759–1766.
doi: 10.1016/S0140-6736(02)11667-9

Rohanian, M., Hough, J., and Purver, M. (2021). “Alzheimer’s dementia recognition
using acoustic, lexical, disfluency and speech pause features robust to noisy inputs,” in
Proc. Interspeech 2021 (Grenoble: ISCA), 3820–3824. doi: 10.21437/Interspeech.2021-
1633

Rosen, W. G., Mohs, R. C., and Davis, K. L. (1984). A new rating scale for
Alzheimer’s disease. A. J. Psychiatry 141, 1356–1364.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text
retrieval. Info. Proc. Manage. 24, 513–523.

Samper-González, J., Burgos, N., Bottani, S., Fontanella, S., Lu, P., Marcoux,
A., et al. (2018). Reproducible evaluation of classification methods in Alzheimer’s
disease: Framework and application to mri and pet data. NeuroImage 183,
504–521.

Sanz, C., Carrillo, F., Slachevsky, A., Forno, G., Gorno Tempini, M. L., Villagra,
R., et al. (2022). Automated text-level semantic markers of Alzheimer’s disease.
Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 14, e12276.
doi: 10.1002/dad2.12276

Sarawgi, U., Zulfikar, W., Soliman, N., and Maes, P. (2020). “Multimodal Inductive
Transfer Learning for Detection of Alzheimer’s Dementia and its Severity,” in Proc.
Interspeech 2020 (Grenoble: ISCA), 2212–2216.

Schmitt, M. and Schuller, B. (2017). Openxbow: introducing the passau open-source
crossmodal bag-of-words toolkit. J. Machine Learn. Res. 18, 3370–3374. Available
online at: https://dl.acm.org/doi/abs/10.5555/3122009.3176840

Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C., et al.
(2010). “The interspeech 2010 paralinguistic challenge,” in Proc. INTERSPEECH 2010,
Makuhari, Japan (Grenoble: ISCA), 2794–2797.

Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, F.,
et al. (2013). “The interspeech 2013 computational paralinguistics challenge: Social
signals, conflict, emotion, autism,” in Proceedings INTERSPEECH 2013, 14th Annual
Conference of the International Speech Communication Association, Lyon, France
(Grenoble: ISCA).

Shah, Z., Qi, S.-A., Wang, F., Farrokh, M., Tasnim, M., Stroulia, E., et al. (2023).
“Exploring language-agnostic speech representations using domain knowledge for
detecting Alzheimer’s dementia,” in ICASSP 2023–2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (Rhode Island: IEEE), 1–2.

Shah, Z., Sawalha, J., Tasnim, M., Qi, S.-a., Stroulia, E., and Greiner,
R. (2021). Learning language and acoustic models for identifying alzheimer’s
dementia from speech. Front. Comp. Sci. 3, 624–659. doi: 10.3389/fcomp.2021.
624659

Sheng, Z., Guo, Z., Li, X., Li, Y., and Ling, Z. (2022). “Dementia detection by fusing
speech and eye-tracking representation,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Rhode Island: IEEE),
6457–6461.

Shriberg, E. E. (1994). Preliminaries to a Theory of Speech Disfluencies. Berkeley, CA:
University of California at Berkeley.

Smith, E. and Senter, R. (1967). “Automated readability index,” in AMRL-TR.
Aerospace Medical Research Laboratories (US) (Wright-Patterson Air Force Base,
OH: Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force
Systems Command), 1–14. Available online at: https://books.google.com/books?id=
vuZD9Q3g2_sC&hl=zh-CN&source=gbs_navlinks_s

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. (2018). “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE international
conference on acoustics, speech and signal processing (ICASSP) (Rhode Island: IEEE),
5329–5333.

Syed, M. S. S., Syed, Z. S., Lech, M., and Pirogova, E. (2020). “Automated Screening
for Alzheimer’s Dementia Through Spontaneous Speech,” in Proc. Interspeech 2020
(Grenoble: ISCA), 2222–2226. doi: 10.21437/Interspeech.2020-3158

Syed, Z. S., Syed,M. S. S., Lech,M., and Pirogova, E. (2021). “Tackling the ADRESSO
challenge 2021: the MUET-RMIT system for Alzheimer’s dementia recognition from
spontaneous speech,” in Proc. Interspeech 2021 (Grenoble: ISCA), 3815–3819.

Szatloczki, G., Hoffmann, I., Vincze, V., Kalman, J., and Pakaski, M. (2015).
Speaking in Alzheimer’s disease, is that an early sign? importance of changes
in language abilities in Alzheimer’s disease. Front. Aging Neurosci. 7, 195.
doi: 10.3389/fnagi.2015.00195

Tamm, B., Vandenberghe, R., and Van Hamme, H. (2023). “Cross-lingual transfer
learning for alzheimer’s detection from spontaneous speech,” in ICASSP 2023-2023

Frontiers in AgingNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://doi.org/10.1016/j.irbm.2018.10.016
https://doi.org/10.3389/fcomp.2021.640669
https://doi.org/10.1038/nrn1433
https://doi.org/10.1016/S2468-2667(21)00249-8
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.21437/Interspeech.2021-1519
https://doi.org/10.21437/Interspeech.2021-1589
https://doi.org/10.1093/jamia/ocaa174
https://doi.org/10.1515/cllt.2011.007
https://doi.org/10.1016/j.eswa.2020.113213
https://doi.org/10.1080/13825580902825220
https://doi.org/10.1016/S0140-6736(02)11667-9
https://doi.org/10.21437/Interspeech.2021-1633
https://doi.org/10.1002/dad2.12276
https://dl.acm.org/doi/abs/10.5555/3122009.3176840
https://doi.org/10.3389/fcomp.2021.624659
https://books.google.com/books?id=vuZD9Q3g2_sC&hl=zh-CN&source=gbs_navlinks_s
https://books.google.com/books?id=vuZD9Q3g2_sC&hl=zh-CN&source=gbs_navlinks_s
https://doi.org/10.21437/Interspeech.2020-3158
https://doi.org/10.3389/fnagi.2015.00195
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qi et al. 10.3389/fnagi.2023.1224723

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(Rhode Island: IEEE), 1–2.

Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., et al.
(2013). “Avec 2013: the continuous audio/visual emotion and depression recognition
challenge,” in Proceedings of the 3rd ACM International Workshop on Audio/Visual
Emotion Challenge (New York, NY: ACM), 3–10.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems (Piscataway, NJ: IEEE), 30.

Vigo, I., Coelho, L., and Reis, S. (2022). Speech-and language-based
classification of Alzheimer’s disease: a systematic review. Bioengineering 9, 27.
doi: 10.3390/bioengineering9010027

Wagner, A. D. (2000). Early detection of Alzheimer’s disease: An fmri marker for
people at risk? Nat. Neurosci. 3, 973–974.

Wang, N., Cao, Y., Hao, S., Shao, Z., and Subbalakshmi, K. (2021). “Modular multi-
modal attention network for Alzheimer’s disease detection using patient audio and
language data,” in Proc. Interspeech 2021 (Grenoble: ISCA), 3835–3839.

Wang, T., DENG, J., Geng, M., Ye, Z., Hu, S., Wang, Y., et al. (2022a). “Conformer
based elderly speech recognition system for Alzheimer’s disease detection”, in Proc.
Interspeech 2022 (Grenoble: ISCA), 4825–4829.

Wang, Y., Wang, T., Ye, Z., Meng, L., Hu, S., Wu, X., et al. (2022b). “Exploring
linguistic feature and model combination for speech recognition based automatic
AD detection,” in Proc. Interspeech 2022 (Grenoble: ISCA), 3328–3332. doi: 10.21437/
Interspeech.2022-723

Warnita, T., Inoue, N., et al. (2018). “Detecting alzheimer’s disease using gated
convolutional neural network from audio data,” in Proc. Interspeech 2018 (Grenoble:
ISCA), 1706–1710.

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., et al. (2018).
“Espnet: End-to-end speech processing toolkit,” in Proc. Interspeech 2018 (Grenoble:
ISCA), 2207–2211.

Weiner, J., Frankenberg, C., Telaar, D., Wendelstein, B., Schröder, J., and Schultz, T.
(2016a). “Towards automatic transcription of ilse - an interdisciplinary longitudinal
study of adult development and aging,” in Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC’16) [Paris: European
Language Resources Association (ELRA)], 718–725.

Weiner, J., Herff, C., and Schultz, T. (2016b). “Speech-based detection of
Alzheimer’s disease in conversational German,” in Interspeech (Grenoble: ISCA), 1938–
1942.

Werbos, P. J. (1988). Generalization of backpropagation with application to a
recurrent gas market model. Neural Netw. 1, 339–356.

World Health Organisation (2020). Dementia: Key Facts. Available online
at: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed
August 11, 2023).

Xie, S., Xia, Y., Wu, L., Huang, Y., Fan, Y., and Qin, T. (2022). End-to-
end entity-aware neural machine translation. Machine Learn. 111, 1181–1203.
doi: 10.1007/s10994-021-06073-9

Yang, L.,Wei,W., Li, S., Li, J., and Shinozaki, T. (2022). Augmented Adversarial Self-
Supervised Learning for Early-Stage Alzheimer’s Speech Detection. In Proc. Interspeech
2022. 541–545. doi: 10.21437/Interspeech.2022-943

Yasuda, Y., Wang, X., and Yamagishd, J. (2021). “End-to-end text-to-speech
using latent duration based on vq-vae,” in ICASSP 2021–2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Rhode Island: IEEE),
5694–5698.

Ye, Z., Hu, S., Li, J., Xie, X., Geng, M., Yu, J., et al. (2021). “Development of
the cuhk elderly speech recognition system for neurocognitive disorder detection
using the dementiabank corpus,” in ICASSP 2021–2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (Rhode Island: IEEE),
6433–6437.

Yngve, V. H. (1960). “A model and an hypothesis for language structure,”
in Proceedings of the American Philosophical Society (Philadelphia, PA: American
Philosophical Society), 444–466.

Yuan, J., Bian, Y., Cai, X., Huang, J., Ye, Z., and Church, K. (2020). Disfluencies and
Fine-Tuning Pre-Trained Language Models for Detection of Alzheimer’s Disease. In
Proc. Interspeech 2020 (Grenoble: ISCA), 2162–2166. doi: 10.21437/Interspeech.2020-
2516

Zargarbashi, S. and Babaali, B. (2019). A multi-modal feature embedding
approach to diagnose alzheimer disease from spoken language. arXiv.
doi: 10.48550/arXiv.1910.00330

Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., and Liu, Q. (2019). “Ernie: Enhanced
language representation with informative entities,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (Stroudsburg, PA: ACL),
1441–1451.

Zhu, Y., Obyat, A., Liang, X., Batsis, J. A., and Roth, R. M. (2021). “WavBERT:
Exploiting Semantic and Non-Semantic Speech Using Wav2vec and BERT for
Dementia Detection,” in Proc. Interspeech 2021 (Grenoble: ISCA), 3790–3794. doi: 10.
21437/Interspeech.2021-332

Frontiers in AgingNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1224723
https://doi.org/10.3390/bioengineering9010027
https://doi.org/10.21437/Interspeech.2022-723
https://www.who.int/news-room/fact-sheets/detail/dementia
https://doi.org/10.1007/s10994-021-06073-9
https://doi.org/10.21437/Interspeech.2022-943
https://doi.org/10.21437/Interspeech.2020-2516
https://doi.org/10.48550/arXiv.1910.00330
https://doi.org/10.21437/Interspeech.2021-332
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org

	Noninvasive automatic detection of Alzheimer's disease from spontaneous speech: a review
	1. Introduction
	2. Task description
	2.1. System architecture
	2.2. Evaluation metrics
	2.3. Study selection process

	3. Materials
	3.1. Datasets
	3.2. Feature extraction 
	3.2.1. Acoustic features
	3.2.1.1. Frame-level features
	3.2.1.2. Acoustic embeddings features
	3.2.1.3. Prosody
	3.2.1.4. Disfluency
	3.2.1.5. Emotional embeddings

	3.2.2. Linguistic features
	3.2.2.1. Traditional features
	3.2.2.2. Deep embeddings
	3.2.2.3. Readability features
	3.2.2.4. Acoustic and linguistic feature fusion
	3.2.2.5. Other features
	3.2.2.6. Meta features
	3.2.2.7. Interactional features



	4. Methods
	4.1. Statistical machine learning
	4.1.1. Support vector machine (SVM)
	4.1.2. Logistic regression
	4.1.3. Linear discriminant analysis (LDA)
	4.1.4. k-Nearest neighbors (KNN)
	4.1.5. Decision tree (DT)
	4.1.6. Random forest (RF)

	4.2. Deep learning
	4.2.1. Convolutional neural network (CNN)
	4.2.2. Recurrent neural network (RNN)
	4.2.3. Transformer models and variations

	4.3. Optimization and performance
	4.3.1. Extraction of discriminative features
	4.3.2. Model fusion
	4.3.3. Transfer learning
	4.3.4. ASR improvement
	4.3.5. Combined optimization methods


	5. Discussion
	5.1. Few-shot and diverse data
	5.2. Model explainability
	5.3. Model reliability for short recordings
	5.4. More modality fusion
	5.5. Distinguishing diseases with similar symptoms

	6. Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References




